Folder: _EC3 Bolted connections

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Folder: _EC3 Bolted connections"

Transcript

1 Folder: _EC3 Bolted connections Euro-Code 3 Bolted connections Bolted angilar connection: Dimensions of connection: Plate thickness d = 15,00 mm Bolt spacing e = 35,00 mm Spacing of bolts e o = 30,00 mm Spacing of bolts b = 70,00 mm Spacing of bolts h = 220,00 mm Angle of tension force β = 45,00 Bolts: Plate: Bolt = SEL("steel/bolt"; BS; ) = M 20 SC = SEL("steel/bolt"; SC; ) = 8.8 f u,b = TAB("steel/bolt"; fubk; SC=SC) = 800,00 N/mm² Hole diameter d l = TAB("steel/bolt"; d; BS=Bolt) = 20,00 mm Shaft diameter d ll = d l +2 = 22,00 mm Cross-section areas A s = TAB("steel/bolt"; Asp; BS=Bolt) = 2,45 cm² steel = SEL("steel/EC"; Name; ) = Fe 510 f y = TAB("steel/EC"; fy; Name=steel) = 355,00 N/mm² f u = TAB("steel/EC"; fu; Name=steel) = 510,00 N/mm² γ M0 = 1,10 γ Mb = 1,25 Loads: S sd = 424,26 kn N sd = COS(β) * S sd = 300,00 kn V sd = SIN(β) * S sd = 300,00 kn Force per bolt: F t,sd = N sd / 4 = 75,00 kn F v,sd = V sd / 4 = 75,00 kn

2 Folder: _EC3 Bolted connections Limit tension force of bolts: F t,rd = 0,9 * f u,b * A s / γ Mb / 10 = 141,12 kn F t,sd / F t,rd = 0,53 < 1 Check limit shear force for bolts: F v,rd = 0,6 * f u,b * π * d l ² / 4000 / γ Mb = 120,64 kn F v,sd / F v,rd = 0,62 < 1 Check combined: F t,sd / (1,4 * F t,rd ) + F v,sd / F v,rd = 1,00 1 Analysis of bearing strength: as in : e o / d ll = 1,36 > 1 as in : e o / d ll = 1,36 < 1,5 as in (1): e / d ll = 1,59 > 1,2 as in (3): b / d ll = 3,18 > 3 α = MIN(e / (3 * d ll ); b / (3 * d ll ) - 0,25; f u,b / f u ; 1) = 0,53 Tab F b1,rd = 2,5 * α * f u * d l * d / γ Mb / 10³ = 162,18 kn (10) F b2,rd = 2/3 * F b1,rd = 108,12 kn F b,rd = F b2,rd + (F b1,rd - F b2,rd ) * (e o / d l - 1,2) / 0,3 = 162,18 kn F v,sd / F b,rd = 0,46 < 1

3 Folder: _EC3 Bolted connections Bolted connection subject to bending Dimensions of connection: a = 80,00 mm a 1 = 45,00 mm e = 80,00 mm e 1 = 45,00 mm e 2 = 50,00 mm e 3 = 90,00 mm d 1 = 20,00 mm d 2 = 8,00 mm b 1 = 160,00 mm h 2 = 2 * (e 2 + e 3 ) = 280,00 mm Flansch-Bolts: Bolt f = SEL("steel/bolt"; BS; ) = M 20 SC1 = SEL("steel/bolt"; SC; ) = 4.6 f u,bo = TAB("steel/bolt"; fubk; SC=SC1) = 400,00 N/mm² Hole diameter d lo = TAB("steel/bolt"; d; BS=Bolt f ) = 20,00 mm Shaft diameter d l1o = d lo + 2 = 22,00 mm Number of rows n o = 3 Steg-Bolts: Bolt S = SEL("steel/bolt"; BS; ) = M 16 SC2 = SEL("steel/bolt"; SC; ) = 4.6 f u,bs = TAB("steel/bolt"; fubk; SC=SC2) = 400,00 N/mm² Hole diameter d ls = TAB("steel/bolt"; d; BS=Bolt S ) = 16,00 mm Shaft diameter d l1s = d ls + 2 = 18,00 mm Number of rows n s = 3 Number of columns m s = 2 Profil: Profil Typ = SEL("steel/Profils"; Name; ) = IPE Selected Profil = SEL("steel/"Typ; Name; ) = IPE 240 Column height h = TAB("steel/"Typ; h; Name=Profil) = 240,00 mm Web thickness s = TAB("steel/"Typ; s; Name=Profil) = 6,20 mm Flange thickness t = TAB("steel/"Typ; t; Name=Profil) = 9,80 mm Cross-sectional area A = TAB("steel/"Typ; A; Name=Profil) = 39,10 cm² Moment of resistance W y = TAB("steel/"Typ; Wy; Name=Profil) = 324,00 cm² Moment of resistance W pl = 1,14 * W y = 369,36 cm³

4 Folder: _EC3 Bolted connections Material and Partial safety factors: steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² f u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm² γ M0 = 1,10 γ M2 = 1,25 Loads: M sd = 157,95 knm V sd = 60,75 kn Check beam-web strength without holes: M c,rd = W pl * f y / γ M0 / 10 ³ = 78,91 knm M sd / M c,rd = 2,00 < 1 A v = 1,04 * h * s / 100 = 15,48 cm² V pl,rd = A v * f y / 10 / (3) / γ M0 = 190,93 kn V sd / V pl,rd = 0,32 < 1 Check beam-web strength with holes: A z = 0,5 * A = 19,55 cm² A z,net = A z - (2 * d l1o * t + ((n s - 1) / 2) * d l1s * s) / 100 = 14,12 cm² (f y / f u * γ M2 / γ M0 ) / (0,9 * A z,net / A z ) = 1,14 1 W pl,net = W pl - 2 * d l1o * t * (h - t) / 2000 = 319,73 cm³ M c,rd,c =W pl,net * f y / (γ M0 * 10³) = 68,31 knm M sd / M c,rd,c = 2,31 < 1 A v,net = A v - n s * d l1s * s / 100 = 12,13 cm² f y / f u * A v / A v,net = 0,83 < 1 Area of holes will be neglected. Analysis of bolts in flange: I w = 2 / 12 * d 2 * h 2 ³ / 10 4 = 2926,93 cm 4 I f = 2 * b 1 * d 1 * ((h + d 1 ) / 2)² / 10 4 = 10816,00 cm 4 M w = M sd * I w / (I w + I f ) = 33,64 knm M f = M sd * I f / (I w + I f ) = 124,31 knm Effective tension force in flange: N sd = M f / (h + d 1 ) * 10³ = 478,12 kn Limit shear force F v,rd =n o * 2 * 0,6 * f u,bo * π/4 * d lo ² / γ M2 / 10³ = 361,91 kn Limit bearing force: α = MIN(a 1 / (3 * d l1o ); a / (3 * d l1o ) - 0,25; f u,bo / f u ; 1) = 0,682 F b,rd =2 * n o * 2,5 * α * f u * d lo * t / γ M2 / 10³ = 577,46 kn N sd / MIN(F v,rd ; F b,rd ) = 1,32 < 1

5 Folder: _EC3 Bolted connections Analysis of bolts in web: n s1 = (n s - 1) / 2 + 0,49 = 1 n s2 = n s1 * 2 = 2 m s1 = (m s - 1) / 2 + 0,49 = 1 m s2 = m s1 * 2 = 2 I p = (n s * m s2 * ((m s -1) / 2*e)² + n s2 * m s * ((n s -1) / 2*e 3 )²)/10² = 420,00 cm² M sw = M w + V sd * e 3 / 10³ = 39,11 knm R sd = ((10*M sw *e 3 /I p )² + ((V sd /(m s *n s )) + 10*M sw *(m s -1)/2*e/I p )²) = 96,27 kn F v,rd = m s * 0,6 * f u,bs * π/4 * d ls ² / 10³ / γ M2 = 77,21 kn α = MIN(e 1 / (3 * d l1s ); e / (3 * d l1s ) - 0,25; f u,bo / f u ; 1) = 0,833 F b,rd = 2,5 * α * f u * d ls * s / γ M2 / 10³ = 59,50 kn R sd / MIN(F v,rd ; F b,rd ) = 1,62 < 1 Analysis of cover plates: A = d 1 * b 1 / 100 = 32,00 cm² A net = A - (2 * d l1o * d 1 ) / 100 = 23,20 cm² Limit tension force: N t,rd = MIN(A * f y / γ M0 ; 0,9 * A net * f u / γ M2 )/ 10 = 601,34 kn N sd / N t,rd = 0,80 < 1

6 Folder: _EC3 Bolted connections Connection subject to moment load: e e e e e e e e 1 1 Dimensions of connection: Bolt spacing e = 50,00 mm Edge distance e1 = 35,00 mm Bolt spacing e3 = 70,00 mm Plate thickness t = 6,00 mm Number of bolts n = 8 Bolts: Bolt1 = SEL("steel/bolt"; BS; ) = M 30 SC1 = SEL("steel/bolt"; SC; ) = 5.6 f u,b1 = TAB("steel/bolt"; fubk; SC=SC1) = 500,00 N/mm² Hole diameter d l1 = TAB("steel/bolt"; d; BS=Bolt1) = 30,00 mm Bolt2 = SEL("steel/bolt"; BS; ) = M 12 SC2 = SEL("steel/bolt"; SC; ) = 5.6 f u,b2 = TAB("steel/bolt"; fubk; SC=SC2) = 500,00 N/mm² Hole diameter d s2 = TAB("steel/bolt"; d; BS=Bolt2) = 12,00 mm Shaft diameter d l2 = d s2 +1 = 13,00 mm IPE330 aus steel = SEL("steel/EC"; Name; ) = Fe 360 f u2 = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm² γ Mb = 1,25 γ Mo = 1,25 Loads: V sd = 58,70 kn M sd = 910,00 kncm Analysis of the right bolt: Check limit shear force F v,rd = 0,6 * π / 4 * (d l1 / 10)² * f u,b1 / γ Mo / 10 = 169,65 kn V sd / F v,rd = 0,35 < 1 Limit bearing strength F b,rd = 1,5 * d l1 * t * f u2 / γ Mb / 10³ = 77,76 kn V sd / F b,rd = 0,75 < 1

7 Folder: _EC3 Bolted connections Check bolts on left: I p = (6 * e² + 6 * e 3 ²) / 100 = 444,00 cm² Maximum horizontal force in bolt due to moment: F h = M sd * e 3 / 10 / I p = 14,35 kn Maximum vertical force: F v = M sd * e / 10 / I p + V sd / n = 17,59 kn Resulting force R r = (F h ² + F v ²) = 22,70 kn F v,rd = 0,6 * f u,b2 * d l2 ² * π / 4 / γ Mb / 10³ = 31,86 kn R r / F v,rd = 0,71 < 1 Analysis of bearing strength α = MIN(e 1 / (3 * d l2 ); 2 * e / (3 * d l2 ) - 0,25; f u,b2 / f u2 ; 1) = 0,90 F b,rd = 2,5 * α * f u2 * d l2 * t / γ Mb / 10³ = 50,54 kn F h / F b,rd = 0,28 < 1

8 Folder: _EC3 Bolted connections Bolted shear joint: Dimensions of connection: Spacing of bolts a = 45,00 mm Spacing of bolts a 0 = 35,00 mm Spacing of bolts a 1 = 30,00 mm Spacing of bolts a 2 = 50,00 mm Spacing of bolts a 3 = 90,00 mm Depth of cope a 4 = 30,00 mm Plate projection a s = 20,00 mm Lever-arm x = 45,00 mm Number of bolts n = 3 Bolts: M Bolt = SEL("steel/bolt"; BS; ) = M 16 SC = SEL("steel/bolt"; SC; ) = 4.6 f u,b = TAB("steel/bolt"; fubk; SC=SC) = 400,00 N/mm² Hole diameter d l = TAB("steel/bolt"; d; BS=Bolt) = 16,00 mm Shaft diameter d 0 = d l +2 = 18,00 mm Angle section P = SEL("steel/WG"; Name; ) = L 80x8 Angle thickness t = TAB("steel/WG"; s; Name=P) = 8,00 mm Factor for group bolts as in (3): k = 0,5 for 1 group bolts; =2,5 for 2 rows steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² f u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm² Profil Typ = SEL("steel/Profils"; Name; ) = IPE Selected Profil = SEL("steel/"Typ; Name; ) = IPE 270 Column height h = TAB("steel/"Typ; h; Name=Profil) = 270,00 mm Web thickness s = TAB("steel/"Typ; s; Name=Profil) = 6,60 mm γ Mb = 1,25 γ M2 = 1,25 γ M0 = 1,10 Loads: V sd = 60,00 kn

9 Folder: _EC3 Bolted connections Check bolt spacing as in 6.5.1: 1,2 * d 0 / a 1 = 0,72 < 1 a 1 / MAX(12 * t; 150) = 0,20 < 1 1,5 * d 0 / a 0 = 0,77 < 1 a 0 / MAX(12 * t; 150) = 0,23 < 1 2,2 * d 0 / a 2 = 0,79 < 1 a 2 / MIN(12 * s; 200) = 0,63 < 1 Check bolts strength: Bolts in web of main beam F v,sd = V sd / (2 * n) = 10,00 kn Bolts in web of connecting beam M sd = x / 10 * V sd = 270,00 kncm Horizontal force due to M sd F h,sd = M sd / ((n - 1) * a 2 / 10) = 27,00 kn Distributed shearing force on bolts F v,sd = V sd / n = 20,00 kn Maximum bolt strength F sd = (F h,sd ² + F v,sd ²) = 33,60 kn Limit strength and analysis of bolts: Bolts in web of main beam: Plain...in the shear plane F v,rd = 0,6 * f u,b * π * d l ² / 4 / γ Mb / 10³ = 38,60 kn Limit bearing strength α = MIN(a 1 / (3 * d 0 ); a 2 / (3 * d 0 ) - 0,25; f u,b / f u ; 1) = 0,556 F b,rd = 2,5 * α * f u * d l * t / γ Mb / 10³ = 51,24 kn Analysis: F sd / F b,rd = 0,66 < 1 Bolts in web of connecting beam: F v,rd = 2 * 0,6 * f u,b * π * d l ² / 4 / γ Mb / 10³ = 77,21 kn Limit bearing strength α = MIN(a 1 / (3 * d 0 ); a 2 / (3 * d 0 ) - 0,25; f u,b / f u ; 1) = 0,556 F b,rd = 2,5 * α * f u * d l * s / γ Mb / 10³ = 42,27 kn Analysis: F sd / F b,rd = 0,79 < 1 Check angle section strength Design loads: V sdw = V sd / 2 = 30,00 kn M sdw = M sd / 2 = 135,00 knm A = (2 * a * a 1 ) * t / 200 = 6,40 cm² A net = (2 * a * a 1 - n * d 0 ) * t / 200 = 4,24 cm² (f y / f u * γ M2 / γ M0 ) / (0,9 * A net / A) = 1,24 > 1 Subtract bottom bolt holes. A = A * 2 = 12,80 cm² A net = A net * 2 = 8,48 cm² f y / f u * A / A net = 0,99 < 1 Bolt holes should not be subtracted W pl = (t * (2 * a * a 1 )² / 4 - d 0 * t * a 2 ) / 1000 = 44,00 cm³ M pl,rd = W pl * f y / 10 / γ M0 = 940,00 kncm M sd / M pl,rd = 0,29 < 1 V pl,rd = A * f y / 10 / ( (3) * γ M0 ) = 157,88 kn V sd / V pl,rd = 0,38 < 1 Also: V sd / (V pl,rd / 2) = 0,76 < 1 No interaction.

10 Folder: _EC3 Bolted connections Check shear failure: L v = (n - 1) * a 2 = 100,00 mm L 1 = a 2 = 50,00 mm L 1 / (5 * d 0 ) = 0,56 < 1 L 2 = (a - k * d 0 ) * f u / f y = 55,15 mm L 3 = L v + a 2 + a 3 = 240,00 mm L v,eff = L v + L 1 + L 2 = 205,15 mm L v,eff / L 3 = 0,85 < 1 L 3 / ((L v + a 2 + a 3 - n * d 0 ) * f u / f y ) = 0,84 < 1 Effective shear area: A v,eff = L v,eff * t / 100 = 16,41 cm² V eff,rd = A v,eff * f y / 10 / (3) / γ M0 = 202,41 kn V sd / V eff,rd = 0,30 < 1

11 Folder: _EC3 Bolted connections Double shear joint with bolts: Dimensions of connection: Plate thickness d 1 = 6,00 mm Number of plates n 1 = 2 Plate thickness d 2 = 7,10 mm Number of plates n 2 = 1 Plate width b = 210,00 mm Bolt spacing e = 40,00 mm Edge distance e1 = 60,00 mm Edge distance e2 = 40,00 mm Bolt spacing e3 = 65,00 mm Bolts: Plate : Loads: Bolt = SEL("steel/bolt"; BS; ) = M 20 SC = SEL("steel/bolt"; SC; ) = 10.9 f u,b = TAB("steel/bolt"; fubk; SC=SC) = 1000,00 N/mm² Hole diameter d l = TAB("steel/bolt"; d; BS=Bolt) = 20,00 mm Cross-section areas A s = TAB("steel/bolt"; Asp; BS=Bolt) = 2,45 cm² Number of bolts n= 5 steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² f u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm² γ M0 = 1,10 γ M2 = 1,25 N sd = 100,00 kn Joint with tension and shear: Limit tension force of plate links A = b * d 1 * n 1 / 100 = 25,20 cm² d = d l + 2 = 22,00 mm Cross-section area 1: A net,1 = A - 2 * d * d 1 * n 1 / 100 = 19,92 cm²

12 Folder: _EC3 Bolted connections Cross-section area 2: A net,2 = A-3 *d *d 1 *n 1 /10² + 2 * e² / (4*e 3 ) * d 1 * n 1 / 10² = 18,76 cm² A net = MIN(A net,1 ; A net,2 ) = 18,76 cm² N t,rd1 =MIN(A * f y / γ M0 ; 0,9 * A net * f u / γ M2 )/10 = 486,26 kn Limit tension force of plate rechts A = b * d 2 * n 2 / 100 = 14,91 cm² d = d l + 2 = 22,00 mm A net,1 = A - 2 * d * d 2 * n 2 / 100 = 11,79 cm² A net,2 = A - 3 * d * d 2 * n 2 / 10² + 2 * e² / (4*e 3 ) * d 2 * n 2 / 10² = 11,10 cm² A net = MIN(A net,1 ; A net,2 ) = 11,10 cm² N t,rd2 =MIN(A * f y / γ M0 ; 0,9 * A net * f u / γ M2 )/10 = 287,71 kn N t,rd = MIN(N t,rd2 ; N t,rd1 ) = 287,71 kn Limit tension force of boltsn: A s = π * (d l /10)² / 4 = 3,14 cm² Thread in the shearing plane: F v,rd = 0,6 * n * (n 1 + n 2-1) * f u,b / 10* A s / γ M2 = 1507,20 kn Limit bearing strength α = MIN(e 1 / (3 * d); 2 * e / (3 * d) - 0,25; f u,b / f u ; 1) = 0,91 F b,rd1 =n 1 * n * 2,5 * α * f u * d l * d 1 / γ M2 / 10³ = 786,24 kn α = MIN(e 1 / (3 * d); 2 * e / (3 * d) - 0,25; f u,b / f u ; 1) = 0,91 F b,rd2 =n 2 * n * 2,5 * α * f u * d l * d 2 / γ M2 / 10³ = 465,19 kn F b,rd = MIN(F b,rd1 ; F b,rd2 ) = 465,19 kn Maximum allowed force: N l,rd = MIN(N t,rd ; F v,rd ; F b,rd ) = 287,71 kn Analysis: N sd / N l,rd = 0,35 < 1

13 Folder: _EC3 Bolted connections High strength friction-grip bolt connection: Dimensions of connection: Plate thickness 1 d 1 = 10,00 mm Plate thickness 2 d 2 = 8,00 mm Bolt spacing e = 65,00 mm Edge distance e1 = 55,00 mm Edge distance e2 = 50,00 mm Bolt spacing e3 = 70,00 mm Plate width b= 240,00 mm Bolts: Bolt = SEL("steel/bolt"; BS; ) = M 22 SC = SEL("steel/bolt"; SC; ) = 10.9 f u,b = TAB("steel/bolt"; fubk; SC=SC) = 1000,00 N/mm² Hole diameter d l = TAB("steel/bolt"; d; BS=Bolt) = 22,00 mm Cross-section areas A s = TAB("steel/bolt"; Asp; BS=Bolt) = 3,03 cm² Number of bolts n= 5 Löcher mit normalem Lochspiel as in (2) K s = 1,00 Anzahl der Gleitfugen as in (1) η = 1,00 Reibungszahl as in µ = 0,40 as in (3) γ Ms = 1,25 Plate: Loads: steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² f u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm² γ M0 = 1,10 γ M2 = 1,25 Tension force N sd = 100,00 kn Limit tension force of plate: A = b * MIN(d 1 ; d 2 ) / 100 = 19,20 cm² as in d = d l + 2 = 24,00 mm Cross-section area 1: A net,1 = A - 2 * d * MIN(d 1 ; d 2 ) / 10² = 15,36 cm² Cross-section area 2: A net,2 = A - 3 * d * MIN(d 1 ; d 2 )/10² + 2 * e² / (4*e 3 ) * MIN(d 1 ; d 2 )/10² = 15,85 cm² A net = MIN(A net,1 ; A net,2 ) = 15,36 cm²

14 Folder: _EC3 Bolted connections Friction-grip connection: Plate N net,rd = A net * f y / 10 / γ M0 = 328,15 kn Limit tension force of bolts Limit shank tension F p,cd = 0,7 * f u,b / 10 * A s = 212,10 kn Limit slip resistance force F s,rd = n * K s * η * µ * F p,cd / γ Ms =339,36 kn Limit bearing force: α = MIN(e 1 / (3 * d); 2 * e /(3 * d) - 0,25; f u,b / f u ; 1) = 0,76 F b,rd = n * 2,5 * α * f u / 10 * d l *MIN(d 1 ; d 2 ) / γ M2 / 100 = 481,54 kn Maximum allowed force: N g,rd = MIN(N net,rd ; F b,rd ; F s,rd ) = 328,15 kn Analysis: N sd / N g,rd = 0,30 < 1

15 Folder: _EC3 Bolted connections Joint with tension and shear: Dimensions of connection: Plate thickness d 1 = 10,00 mm Plate thickness d 2 = 8,00 mm Bolt spacing e = 65,00 mm Edge distance e1 = 55,00 mm Edge distance e2 = 50,00 mm Bolt spacing e3 = 70,00 mm Plate width b = 240,00 mm Bolts: Plate: Loads: Bolt = SEL("steel/bolt"; BS; ) = M 22 SC = SEL("steel/bolt"; SC; ) = 4.6 f u,b = TAB("steel/bolt"; fubk; SC=SC) = 400,00 N/mm² Hole diameter d l = TAB("steel/bolt"; d; BS=Bolt) = 22,00 mm Cross-section areas A s = TAB("steel/bolt"; Asp; BS=Bolt) = 3,03 cm² Number of bolts n = 5 steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² f u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm² γ M0 = 1,10 γ M2 = 1,25 N sd = 100,00 kn Joint with tension and shear: Limit tension force of plate: A = b * MIN(d 1 ; d 2 ) / 100 = 19,20 cm² d = d l + 2 = 24,00 mm Cross-section area 1: A net,1 = A - 2 * d * MIN(d 1 ; d 2 ) / 100 = 15,36 cm² Cross-section area 2: A net,2 = A-3*d*MIN(d 1 ;d 2 )/10² + 2*e²/(4*e 3 )*MIN(d 1 ;d 2 )/10² = 15,85 cm² A net = MIN(A net,1 ; A net,2 ) = 15,36 cm² N t,rd = MIN(A * f y / γ M0 ; 0,9 * A net * f u / γ M2 )/ 10 = 398,13 kn

16 Folder: _EC3 Bolted connections Limit tension force of boltsn: A s = π * (d / 10)² / 4 = 4,52 cm² Thread in the shearing plane: F v,rd = 0,6 * n * f u,b / 10 * A s / γ M2 = 433,92 kn/cm² Limit bearing strength α = MIN(e 1 / (3 * d); 2 * e / (3 * d) - 0,25;f u,b / f u ; 1) = 0,76 F b,rd = n * 2,5 * α * f u * d * MIN(d 1 ; d 2 ) / γ M2 / 10³ = 525,31 kn Maximum allowed force: N l,rd = MIN(N t,rd ; F v,rd ; F b,rd ) = 398,13 kn Analysis: N sd / N l,rd = 0,25 < 1

17 Folder: _EC3 Bolted connections Check shear failure: Dimensions of connection: Spacing of bolts a = 50,00 mm Spacing of bolts a 1 = 43,00 mm Spacing of bolts a 2 = 70,00 mm Spacing of bolts a 3 = 75,00 mm Number of bolts n = 4 Bolts: Bolt = SEL("steel/bolt"; BS; ) = M 20 SC = SEL("steel/bolt"; SC; ) = 5.6 f u,b = TAB("steel/bolt"; fubk; SC=SC) = 500,00 N/mm² Hole diameter d l = TAB("steel/bolt"; d; BS=Bolt) = 20,00 mm Shaft diameter d l2 = d l +2 = 22,00 mm k = 0,5 for 1 group bolts; =2,5 for 2 rows steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² f u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm² Profil Typ = SEL("steel/Profils"; Name; ) = IPE Selected Profil = SEL("steel/"Typ; Name; ) = IPE 360 Column height h = TAB("steel/"Typ; h; Name=Profil) = 360,00 mm Web thickness s = TAB("steel/"Typ; s; Name=Profil) = 8,00 mm γ Mb = 1,25 γ M0 = 1,10 Loads: V sd = 58,70 kn Limit shear force of section: A v = 1,04 * h * s / 100 = 29,95 cm² V pl,rdp = A v * f y / 10 / (3) / γ M0 = 369,41 kn A v,net = A v - (n * s * d l2 ) / 100 = 22,91 f y / f u * A v / A v,net = 0,85 < 1 Holes can be neglected.

18 Folder: _EC3 Bolted connections Joint with shear failure as in Bild 6.5.5: L v = (n - 1) * a 2 = 210,00 mm L 1 = a 1 = 43,00 mm L 1 / (5 * d l2 ) = 0,39 < 1 L 2 = (a - k * d l2 ) * f u / f y = 59,74 mm L 3 = L v + a 1 + a 3 = 328,00 mm L v,eff = L v + L 1 + L 2 = 312,74 mm L v,eff / L 3 = 0,95 < 1 L 3 / (L v + a 1 + a 3 - n + d l2 ) = 0,95 < 1 Effective shear area: A v,eff = L v,eff * s / 100 = 25,02 cm² V pl,rd = A v,eff * f y / 10 / (3) / γ M0 = 308,60 kn Maximum design force for shear: V Rd = MIN(V pl,rdp ; V pl,rd ) = 308,60 kn

19 Folder: _EC3 Columns Columns Column of section class 4: F h A t1 b t 2 B h F C D Load diagram: Column height H = 6,50 m Beam width b = 50,00 cm Column height h = 100,00 cm Web thickness t 1 = 1,00 cm Flange thickness t 2 = 1,00 cm Loads: N d = 3500,00 kn Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² E = TAB("steel/EC"; E; Name=steel) = ,00 N/mm² ε = (235 / f y ) = 1,00 Partial safety factors: γ M = 1,10 γ g = 1,35 Section classification: As in Table b' = b - 2 * t 1 = 48,00 cm b' / t 2 / (42 * ε) = 1,14 > 1 Section class 4 h' = h - 2 * t 2 = 98,00 cm h' / t 1 / (42 * ε) = 2,33 > 1 Section class 4

20 Folder: _EC3 Columns Effective web area: Part A-B; C-D As in Table 5.3.2: ψ = 1,00 k σ = 4,00 as in 5.3.5(3) λ trans,p =b' / t 2 / (28,4 * ε * (k σ )) = 0,85 >0,673 ρ = (λ trans,p - 0,22) / λ trans,p ² = 0,872 b eff = ρ * b' = 41,86 cm Part A-C; B-D As in Table 5.3.2: ψ = 1,00 cm k σ = 4,00 as in 5.3.5(3) λ trans,p =h' / t 1 / (28,4 * ε * (k σ )) = 1,73 >0,673 ρ = (λ trans,p - 0,22) / λ trans,p ² = 0,505 h eff = ρ * h' = 49,49 cm Check buckling: A eff = 2 * (h eff * t 1 + b eff * t 2 ) + 4 * t 1 * t 2 = 186,70 cm² A = b * h - (b - 2 * t 1 ) * (h - 2 * t 2 ) = 296,00 cm² β A = A eff / A = 0,631 I b = (b * h³ - (b - 2 * t 1 ) * (h - 2 * t 2 )³) / 12 = ,67 cm 4 I h = (b³ * h - (b - 2 * t 1 )³ * (h - 2 * t 2 )) / 12 = ,67 cm 4 I = MIN(I b ; I h ) = ,67 cm 4 N cr = π² * E/10 * I / (H * 100)² = 67941,82 kn λ trans = (β A * A * f y /10 / N cr ) = 0,25 Apply strut curve b α = 0,34 ϕ = 0,5 * (1 + α * (λ trans - 0,2) + λ trans ²) = 0,540 χ = 1 / (ϕ + (ϕ² - λ trans ²) 0,5 ) = 0,9817 N b,rd = χ * β A * A * f y / 10 / γ M = 3917,19 kn N d / N b,rd = 0,893 < 1

21 Folder: _EC3 Columns Column subject to compression force: Nd H Column heigth H = 7,50 m l y = H/2 = 3,75 m l z = H/3 = 2,50 m Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 430 f y = TAB("steel/EC"; fy; Name=steel) = 275,00 N/mm² E = TAB("steel/EC"; E; Name=steel) = ,00 N/mm² ε = (235 / f y ) = 0,92 Profil: Profil Typ = SEL("steel/Profils"; Name; ) = IPE Selected Profil = SEL("steel/"Typ; Name; ) = IPE 300 Cross-sectional area A = TAB("steel/"Typ; A; Name=Profil) = 53,80 cm² Column height h = TAB("steel/"Typ; h; Name=Profil) = 300,00 mm Depth of web h 1 = TAB("steel/"Typ; h1; Name=Profil) = 248,00 mm Web thickness s = TAB("steel/"Typ; s; Name=Profil) = 7,10 mm Flange width b = TAB("steel/"Typ; b; Name=Profil) = 150,00 mm Flange thickness t = TAB("steel/"Typ; t; Name=Profil) = 10,70 mm Radius of gyration i y = TAB("steel/"Typ; iy; Name=Profil) = 12,50 cm Radius of gyration i z = TAB("steel/"Typ; iz; Name=Profil) = 3,35 cm Section classification As in Table 5.3.1: Web: ( h 1 / s ) / ( 33 * ε ) = 1,15 < 1 ( h 1 / s ) / ( 38 * ε ) = 1,00 < 1 Section class 2. Flange: ( b / 2 / t ) / ( 10 * ε ) = 0,76 < 1 Section class 1. Section will be classified as class 2.

22 Folder: _EC3 Columns Analysis: nach (1) β A = 1,00 Cross-section class 2 nach (2) γ M1 = 1,10 Cross-section class 2 Check buckling In Y-Y Axis: h / b = 2,00 > 1,2 t /10 = 1,07 cm < 4 cm as in Tab : λ y = l y * 100 / i y = 30,00 λ 1 = 93,9 * ε = 86,39 λ trans,y = λ y / λ 1 * (β A ) = 0,347 Apply strut curve a As in Table α = 0,21 ϕ = 0,5 * (1 + α * (λ trans,y - 0,2) + λ trans,y ²) = 0,576 χ = 1 / (ϕ + (ϕ² - λ trans,y ²) 0,5 ) = 0,9655 N b,y,rd = χ * β A * A * f y /10/ γ M1 = 1298,60 kn Check buckling In Z-Z Axis: h / b = 2,00 > 1,2 t / 10 = 1,07 cm < 4cm as in Tab : λ z = l z * 100 / i z = 74,63 λ trans,z = λ z / λ 1 * (β A ) = 0,864 Apply strut curve b As in Table α = 0,34 ϕ = 0,5 * (1 + α * (λ trans,z - 0,2) + λ trans,z ²) = 0,986 χ = 1 / (ϕ + (ϕ² - λ trans,z ²) 0,5 ) = 0,6844 N b,z,rd = χ * β A * A * f y /10/ γ M1 = 920,52 kn max_n d = MIN(N b,y,rd ; N b,z,rd ) = 920,52 kn

23 Folder: _EC3 Columns Column of section class 4: b F t 2 h y h t 1 F Load diagram: Column heigth H = 4,00 kn Flange width b = 20,00 cm Depth of web h = 30,00 cm Web thickness t 1 = 1,20 cm Flange thickness t 2 = 1,20 cm z Loads: N d = 700,00 kn Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² E = TAB("steel/EC"; E; Name=steel) = ,00 N/mm² ε = (235 / f y ) = 1,00 λ 1 = 93,90 * ε = 93,90 Partial safety factors: γ M = 1,10 Section classification As in Table 5.3.1: b / t 2 / (14 * ε) = 1,19 > 1 Section class 4 h / t 1 / (33 * ε) = 0,76 > 1 Section class 1

24 Folder: _EC3 Columns Effective web area: Flangee: As in Table 5.3.3: ψ = 1,00 k σ = 0,43 as in 5.3.5(3) λ trans,p = b / t 2 / (28,4 * ε * (k σ )) = 0,89 >0,673 ρ = (λ trans,p - 0,22) / λ trans,p ² = 0,846 b eff = ρ * b = 16,92 cm A eff = 2 * (b eff * t 2 ) + (h + 2 * t 2 ) * t 1 = 79,49 cm² Location of shear centre: y s,eff = (b eff * (2 * t 2 ) * (b eff + t 2 ) / 2) / A eff = 4,628 cm b eff ³ / 12 * (2 * t 2 ) + b eff * (2 * t 2 ) * ((b eff + t 1 ) / 2 - y s,eff )² = 1766,44 cm 4 (h + 2 * t 2 ) * t 1 ³ / 12 + (h + 2 * t 2 ) * t 1 * y s,eff ² = 837,41 cm 4 Iz,eff= 2603,85 cm 4 W z,eff = I z,eff / ((b eff + t 1 ) - y s,eff - (t 1 / 2)) = 201,97 cm³ Gross area: A = b * 2 * t 2 + (h + 2 * t 2 ) * t 1 = 86,88 cm² Location of center of gravity: y s = (b * 2 * t 2 * (b + t 1 ) / 2) / A = 5,856 cm I z = b³/12*2*t 2 +b*2*t 2 *((b+t 1 )/2-y s )²+(h+2*t 2 )*t 1 ³/12+(h+2*t 2 )*t 1 *y s ² = 4018,23 cm 4 e Nz = y s - y s,eff = 1,228 cm Check buckling: N cr = π² * E/10 * I z / (H * 100)² = 5205,15 kn β A = A eff / A = 0,915 λ trans,z = (β A * A * f y /10 / N cr ) = 0,60 Apply strut curve c As in Table α = 0,49 ϕ = 0,5 * (1 + α * (λ trans,z - 0,2) + λ trans,z ²) = 0,778 χ = 1 / (ϕ + (ϕ² - λ trans,z ²) 0,5 ) = 0,7854 M z = N d * e Nz / 100 = 8,60 knm ψ = 1,00 β Mψ = 1,8-0,7 * ψ = 1,10 µ z = λ trans,z * (2 * β Mψ - 4) = -1,080 < 0,9 k z1 = 1 - (µ z * N d ) / (χ * A eff * f y /10) = 1,515 ~ 1,5 k z2 = 1,500 k z = MIN(k z1 ; k z2 ) = 1,500 N d / (χ * A eff * f y /10 / γ M ) * k z *M z / (W z,eff * f y /10 / γ M ) = 0,824 < 1

25 Folder: _EC3 Columns Column with compression and moment: Nsd Msd H Load diagram: Column heigth H = 5,00 m Loads: N sd = 200,00 kn M y,sd = 10,00 kn Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² E = TAB("steel/EC"; E; Name=steel) = ,00 N/mm² G = TAB("steel/EC"; G; Name=steel) = 81000,00 N/mm² ε = (235 / f y ) = 1,00 Partial safety factors: γ M = 1,10 γ g = 1,35 platischer Formbeiwert α ply = 1,14 platischer Formbeiwert α plz = 1,25 Profil: Profil Typ = SEL("steel/Profils"; Name; ) = HEA Selected Profil = SEL("steel/"Typ; Name; ) = HEA 160 Cross-sectional area A = TAB("steel/"Typ; A; Name=Profil) = 38,80 cm² Column height h = TAB("steel/"Typ; h; Name=Profil) = 152,00 mm Depth of web h 1 = TAB("steel/"Typ; h1; Name=Profil) = 104,00 mm Web thickness s = TAB("steel/"Typ; s; Name=Profil) = 6,00 mm Flange width b = TAB("steel/"Typ; b; Name=Profil) = 160,00 mm Flange thickness t = TAB("steel/"Typ; t; Name=Profil) = 9,00 mm Radius of gyration i y = TAB("steel/"Typ; iy; Name=Profil) = 6,57 cm Radius of gyration i z = TAB("steel/"Typ; iz; Name=Profil) = 3,98 cm W ely = TAB("steel/"Typ; Wy; Name=Profil) = 220,00 cm³ W ply = α ply * W ely = 250,80 cm³ W elz = TAB("steel/"Typ; Wz; Name=Profil) = 76,90 cm³ W plz = α plz * W elz = 96,13 cm³ Section classification As in Table5.3.1: Web will be assumed as pressed in ( h 1 / s ) / ( 33 * ε ) = 0,53 < 1 Section class 1. Flange: ( b / 2 / t ) / ( 10 * ε ) = 0,89 < 1 Section class 1.

26 Folder: _EC3 Columns Check bending and buckling: as in (1) β A = 1,00 Cross-section class 1 as in (2) γ M1 = 1,10 Cross-section class 1 λ y = H * 100 / i y = 76,10 λ 1 = 93,9 * ε = 93,90 λ trans,y = λ y / λ 1 * (β A ) = 0,810 λ z = 100 * H / i z = 125,63 λ trans,z = λ z / (π * (E / f y )) = 1,34 As in Table h / b = 0,95 < 1,2 t / 10 = 0,90 cm < 10cm As in Table:5.5.1 Strut curve b for Y-Y axis α = 0,34 ϕ = 0,5 * (1 + α * (λ trans,y - 0,2) + λ trans,y ²) = 0,932 χ y = 1 / (ϕ + (ϕ² - λ trans,y ²) 0,5 ) = 0,7179 Apply strut curve c for z-achse α = 0,49 ϕ = 0,5 * (1 + α * (λ trans,z - 0,2) + λ trans,z ²) = 1,677 χ z = 1 / (ϕ + (ϕ² - λ trans,z ²) 0,5 ) = 0,3724 ψ = 0,00 β My = 1,8-0,7 * ψ = 1,80 µ y = λ trans,y * (2 * β My - 4) + (W ply - W ely ) / W ely = -0,184 < 0,9 k y = 1 - (µ y * N sd ) / (χ y * A * f y ) = 1,006 < 1,5 χ = MIN(χ y ; χ z ) = 0,372 N sd / (χ * A * f y / 10 / γ M ) * k y * M y,sd / (W ply * f y / 10 / γ M ) = 0,836 < 1 Check torsional-flexural buckling: β w = 1,00 Cross-section class 1 As in Table: F.1.1 ψ = 0,00 k = 1,00 C 1 = 1,879 λ LT = 90 * H / i z / ((C 1 ) 0,5 * (1 + 1 / 20 * ((100 * H / i z ) / (h / t))²) 0,25 ) = 59,208 λ trans,lt = λ LT / λ 1 * (β w ) = 0,631 For rolled sections strut curve a α = 0,21 ϕ = 0,5 * (1 + α * (λ trans,lt - 0,2) + λ trans,lt ²) = 0,74 χ LT = 1 / (ϕ + (ϕ² - λ trans,lt ²) 0,5 ) = 0,89 β M,LT = 1,8-0,7 * ψ = 1,80 λ trans,z = λ z / λ 1 * (β A ) = 1,338 µ LT = 0,15 * λ trans,z * β M,LT - 0,15 = 0,211 < 0,9 h / b = 0,95 < 1,2 t / 10 = 0,90 cm < 10cm Z-Z axis Strut curve c α = 0,49 ϕ = 0,5 * (1 + α * (λ trans,z - 0,2) + λ trans,z ²) = 1,674 χ z = 1 / (ϕ + (ϕ² - λ trans,z ²) 0,5 ) = 0,3731 k LT = 1 - (µ LT * N sd ) / (χ z * A * f y ) = 0,988 < 1,0 N sd / (χ z * A * f y / 10 / γ M ) * k LT * M y,sd / (χ LT *W ply * f y / 10 / γ M )= 0,854 < 1

27 Folder: _EC3 Columns Column subject to compression force: Nd H Column base is pinned. For buckling, column head is pinned about the Y-Y axis, and fixed about the Z-Z axis. Load diagram: Column heigth H = 8,00 m Loads: N d = 2000,00 kn Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² E = TAB("steel/EC"; E; Name=steel) = ,00 N/mm² ε = (235 / f y ) = 1,00 Effective length factor: k y = 1,00 For simply supported ends k z = 0,70 fixed ends Profil: Profil Typ = SEL("steel/Profils"; Name; ) = HEB Selected Profil = SEL("steel/"Typ; Name; ) = HEB 300 Cross-sectional area A = TAB("steel/"Typ; A; Name=Profil) = 149,00 cm² Column height h = TAB("steel/"Typ; h; Name=Profil) = 300,00 mm Depth of web h 1 = TAB("steel/"Typ; h1; Name=Profil) = 208,00 mm Web thickness s = TAB("steel/"Typ; s; Name=Profil) = 11,00 mm Flange width b = TAB("steel/"Typ; b; Name=Profil) = 300,00 mm Flange thickness t = TAB("steel/"Typ; t; Name=Profil) = 19,00 mm Moment of inertia I = TAB("steel/"Typ; Iy; Name=Profil) = 25170,00 cm 4 Radius of gyration i y = TAB("steel/"Typ; iy; Name=Profil) = 13,00 cm Radius of gyration i z = TAB("steel/"Typ; iz; Name=Profil) = 7,58 cm Section classification: Web: ( h 1 / s ) / ( 33 * ε ) = 0,57 < 1 Flange: ( b / 2 / t ) / ( 10 * ε ) = 0,79 < 1 Section class 1.

28 Folder: _EC3 Columns Analysis: β A = 1,00 Cross-section class 1 γ M1 = 1,10 Cross-section class 1 Check buckling In Y-Y Axis: h / b = 1,00 < 1,2 t / 10 = 1,90 cm < 10cm λ y = k y * H * 100 / i y = 61,54 λ 1 = 93,9 * ε = 93,90 λ trans,y = λ y / λ 1 * (β A ) = 0,655 Apply strut curve b As in Table α = 0,34 ϕ = 0,5 * (1 + α * (λ trans,y - 0,2) + λ trans,y ²) = 0,792 χ = 1 / (ϕ + (ϕ² - λ trans,y ²) 0,5 ) = 0,8083 N b,rd = χ * β A * A * f y / 10 / γ M1 = 2572,97 kn N d / N b,rd = 0,78 < 1 Check buckling In Z-Z Axis: h / b = 1,00 < 1,2 t / 10 = 1,90 cm < 10cm λ z = k z * H * 100 / i z = 73,88 m λ trans,z = λ z / λ 1 * (β A ) = 0,787 Apply strut curve c As in Table α = 0,49 ϕ = 0,5 * (1 + α * (λ trans,z - 0,2) + λ trans,z ²) = 0,953 χ = 1 / (ϕ + (ϕ² - λ trans,z ²) 0,5 ) = 0,6709 N b,rd = χ * β A * A * f y / 10 / γ M1 = 2135,60 kn N d /N b,rd = 0,94 < 1

29 Folder: _EC3 Columns Column of channel section with compression and transverse loads: q d Pd b t 2 H t 1 y h z Load diagram: Column height H = 4,00 m Beam width b = 9,50 cm Depth of web h = 29,40 cm Web thickness t 1 = 1,00 cm Flange width t 2 = 0,60 cm Loads: q d = 15,00 kn/m N d = 90,00 kn Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² E = TAB("steel/EC"; E; Name=steel) = ,00 N/mm² ε = (235 / f y ) = 1,00 λ 1 = 93,90 * ε = 93,90 Partial safety factors: γ M = 1,10 Section classification: As in Table b / t 2 / (14 * ε) = 1,13 > 1 Section class 4 As in Table h / t 1 / (33 * ε) = 0,89 > 1 Section class 1 A = b * 2 * t 2 + (h + 2 * t 2 ) * t 1 = 42,00 cm² Location of center of gravity: y s = (b * 2 * t 2 * (b + t 1 ) / 2) / A = 1,425 cm b³ / 12 * 2 * t 2 + b * 2 * t 2 * ((b + t 1 ) / 2 - y s )² = 252,53 cm 4 (h + 2 * t 2 ) * t 1 ³ / 12 + (h + 2 * t 2 ) * t 1 * y s ² = 64,69 cm 4 Iz= 317,22 cm 4 I y = h³ / 12 * t * (b * t 2 ³ / 12 + b * t 2 * ((h + t 2 ) / 2)²) = 4683,02 cm 4 W el,z = I z / (b + t 1 / 2 - y s ) = 36,99 cm³ W el,y = I y / ((h + t 1 ) / 2) = 308,09 cm³

30 Folder: _EC3 Columns Effective web area: Flangee: As in Table 5.3.3: ψ = 1,00 k σ = 0,43 as in 5.3.5(3) λ trans,p = b / t 2 / (28,4 * ε * (k σ )) = 0,85 >0,673 ρ = (λ trans,p - 0,22) / λ trans,p ² = 0,872 b eff = ρ * b = 8,28 cm A eff = 2 * (b eff * t 2 ) + (h + 2 * t 2 ) * t 1 = 40,54 cm² Location of shear centre: y s,eff = (b eff * (2 * t 2 ) * (b eff + t 2 ) / 2) / A eff = 1,088 cm e Nz = y s - y s,eff = 0,337 cm β A = A eff / A = 0,965 Slenderness and reductions: In Z-Z Axis: N cr,z = π² * E * I z / (H * 100)² = 4109,22 kn λ trans,z = (β A * A * f y / N cr,z ) = 1,52 Apply strut curve c α = 0,49 ϕ = 0,5 *(1 + α * (λ trans,z - 0,2) + λ trans,z ²) = 1,979 χ z = 1 / (ϕ + (ϕ² - λ trans,z ²) 0,5 ) = 0,3080 In Y-Y Axis: N cr,y = π² * E * I y / (H * 100)² = 60663,06 kn λ trans,y = (β A * A * f y / N cr,y ) = 0,40 Apply strut curve c α = 0,49 ϕ = 0,5 * (1 + α * (λ trans,y - 0,2) + λ trans,y ²) = 0,629 χ y = 1 / (ϕ + (ϕ² - λ trans,y ²) 0,5 ) = 0,8973 χ = MIN(χ z ; χ y ) = 0,3080 N b,rd = χ * A eff * f y / γ M = 2667,53 kn

31 Folder: _EC3 Columns Limit bending moment about the Y-Y axis: Cross-section class 4 z' s = (-b eff * t 2 * (h + t 2 ) / 2 + (b + (t 1 / 2)) * t 2 * (h + t 2 ) / 2) / A eff = 0,382 cm (h + t 2 )³ / 12 * t 1 + (h + t 2 ) * t 1 * z' s = 2261,46 cm 4 b eff * t 2 * ((h + t 2 ) / 2 + z' s )² + (b + (t 1 / 2)) * t 2 * ((h + t 2 ) / 2 - z' s )² = 2457,57 cm 4 Ieff,y= 4719,03 cm 4 W eff,y = I eff,y / ((h + t 2 ) / 2 + z' s ) = 306,79 cm³ M c,rd,y =W eff,y * f y / γ M = 65541,50 knm Limit bending moment about the Z-Z axis: Cross-section class 4 Tab ψ = -ys / (b + (t 1 / 2) - y s ) = -0,17 k σ = 0,57-0,21 * ψ + 0,07 * ψ² = 0,61 (b + (t 1 / 2)) / t 2 / (21 * ε * (k σ )) = 1,02 > 1 As in Table:5.3.5 (3) λ trans,p = (b + (t 1 / 2)) / t 2 / (28,4 * ε * (k σ )) = 0,75 > 0,673 ρ = (λ trans,p - 0,22) / λ trans,p ² = 0,942 b eff = ρ * (b + (t 1 / 2)) / (1 - ψ) = 8,05 cm b t = -(b + (t 1 / 2)) * ψ / (1 - ψ) = 1,45 cm c eff = b eff + b t = 9,50 cm A eff = (h + t 2 ) * t * c eff * t 2 = 41,40 cm² y' = 2 * c eff ² * t 2 / 2 / A eff = 1,31 cm I eff,z = (h + t 2 ) * t 1 * y'² + 2 * c eff ³ / 12 * t * c eff * t 2 * (c eff / 2 - y')² = 272,12 cm 4 W eff,z = I eff,z / (c eff / 2 - y') = 79,10 cm³ M c,rd,z =W eff,z * f y / γ M = 16898,64 knm Check buckling: N sd = N d = 90,00 kn M y,sd = q d * H² / 8 = 30,00 knm M z,sd = N d * e Nz / 100 = 0,30 knm Hilfsbeiwerte: β My = 1,30 µ y = λ trans,y * (2 * β My - 4) = -0,560 < 0,9 k y = 1 - (µ y * N sd ) / (χ y * A eff * f y ) = 1,006 < 1,5 ψ = 1,000 β Mψ = 1,8-0,7 * ψ = 1,10 < 1,5 µ z = λ trans,z * (2 * β Mψ - 4) = -2,736 < 0,9 k z1 = 1 - (µ z * N sd ) / (χ * A eff * f y ) = 1,082 k z2 = 1,500 k z = MIN(k z1 ; k z2 ) = 1,082 N sd /(χ*a eff *f y /γ M )+k y *100*M y,sd /(W eff,y *f y /γ M )+k z *100*M z,sd /(W eff,z *f y /γ M ) = 0,081 < 1

32 l Euro-Code 3 Folder: _EC3 Columns Laced column made up of channel and angle sections: H sd N d b l y h Loads: N sd = 300,00 kn H sd = 45,00 kn Plan and elevation values: Span length l y = 69,20 cm Column height l = 10*l y /100 = 6,92 m Width b = 40,00 cm Winkel ϕ 1 = 45,00 U-Profil U = SEL("steel/U"; Name; ) = U 300 A f = TAB("steel/U"; A; Name=U) = 58,80 cm² e z = TAB("steel/U"; ez; Name=U) = 2,70 cm i z = TAB("steel/U"; iz; Name=U) = 2,90 cm Winkel W = SEL("steel/WG"; Name; ) = L 50x5 Angle thickness A D = TAB("steel/WG"; A; Name=W) = 4,80 cm² Angle thickness i ζ = TAB("steel/WG"; iζ; Name=W) = 0,98 cm steel = SEL("steel/EC"; Name; ) = Fe 360 f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² E = TAB("steel/EC"; E; Name=steel) = ,00 N/mm² ε = (235 / f y ) = 1,00 λ 1 = 93,90 * ε = 93,90 Partial safety factors: γ M = 1,10

33 Folder: _EC3 Columns Maximal tension force in chord: Effective length ratio k = 2,00 Imperfection: w o = 2 * l / 5 = 2,77 cm Effective moment of inertia: h o = b - 2 * e z = 34,60 cm I eff = 0,5 * h o ² * A f = 35196,50 cm 4 Shear strength: S v = 2 * E/10 * A D * l y * h o ² / (2 * (2 * h o ²)³) = 71276,36 kn N cr = 1 / ((4 * (100 * l)²/(π² * E/10 * I eff )) + (1 / S v )) = 3615,26 kn max_m s =H sd * l + N sd / (1 - N sd / N cr ) * w o / 100 = 320,46 knm N f,sd = 0,5 * N sd * max_m s / h o = 1076,18 kn Analysis of channels: λ = l y / i z = 23,86 λ trans = λ / (λ 1 * ε) = 0,254 Apply strut curve c α = 0,49 ϕ = 0,5 * (1 + α * (λ trans - 0,2) + λ trans ²) = 0,545 χ = 1 / (ϕ + (ϕ² - λ trans ²) 0,5 ) = 0,9735 N b,rd = χ * A f * f y / 10 / γ M = 1222,89 kn N f,sd / N b,rd = 0,88 < 1 Analysis of lacing angles: max_v s = H sd + N sd / (1 - N sd / N cr ) * w o * π / (200 * l) = 47,06 kn Design force for a diagonal: N ds = max_v s / (2 * COS(ϕ 1 )) = 33,28 kn λ = (2 * h o ²) / i ζ = 49,93 λ trans = λ / (λ 1 * ε) = 0,532 Apply strut curve c α = 0,49 ϕ = 0,5 * (1 + α * (λ trans - 0,2) + λ trans ²) = 0,723 χ = 1 / (ϕ + (ϕ² - λ trans ²) 0,5 ) = 0,8247 N b,rd = χ * A D * f y / 10 / γ M = 84,57 kn N ds /N b,rd = 0,39 < 1

34 Folder: _EC3 Continuous Beam Continuous Beam Purlin / Strut with biaxial bending and torsional-flexural buckling: q sd q sd l l ϕ Plan and elevation values: Span length l= 720,00 cm Angle of slope ϕ= 10,00 Spacing of purlin l'= 4,00 m platischer Formbeiwert α ply = 1,14 platischer Formbeiwert α plz = 1,25 Loads: From dead load g= 0,20 kn/m² From snow load s= 0,40 kn/m² Section classification for: IPE 200 Profil Typ = SEL("steel/Profils"; Name; ) = IPE Selected Profil = SEL("steel/"Typ; Name; ) = IPE 200 Column height h = TAB("steel/"Typ; h; Name=Profil) = 200,00 mm Flange width b f = TAB("steel/"Typ; b; Name=Profil) = 100,00 mm Flange thickness t f = TAB("steel/"Typ; t; Name=Profil) = 8,50 mm Flange thickness t w = TAB("steel/"Typ; s; Name=Profil) = 5,60 mm Moment of inertia I y = TAB("steel/"Typ; Iy; Name=Profil) = 1940,00 cm 4 Moment of inertia I z = TAB("steel/"Typ; Iz; Name=Profil) = 142,00 cm 4 Moment of inertia I y = TAB("steel/"Typ; IT; Name=Profil) = 6,98 cm 4 I ω = t f * b f ³ * (h - t f )² / (24*106 ) = 12988,09 cm 6 i z = TAB("steel/"Typ; iz; Name=Profil) = 2,24 cm W ely = TAB("steel/"Typ; Wy; Name=Profil) = 194,00 cm³ W ply = α ply * W ely = 221,16 cm³ W elz = TAB("steel/"Typ; Wz; Name=Profil) = 28,50 cm³ Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 360 E s = TAB("steel/EC"; E; Name=steel) = ,00 N/mm² G = TAB("steel/EC"; G; Name=steel) = 81000,00 N/mm² f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² ε = (235/f y ) = 1,00 Partial safety factors: γ M = 1,10 γ g = 1,35 γ p = 1,50

35 Folder: _EC3 Continuous Beam Design calculations: Factored load p d = γ g * g + γ p * s = 0,87 kn/m² Effective load q d = p d * 4 = 3,48 kn/m Vertical load component q zd = q d * COS(ϕ) = 3,43 kn/m Horizontal load component q yd = q d * SIN(ϕ) = 0,60 kn/m Forces at 2nd support: M bysd = 0,105 * q zd * (l / 100)² = 18,67 knm M bzsd = 0,105 * q yd * (l / 100)² = 3,27 knm V bzsd = 0,606 * q zd * l / 100 = 14,97 kn V bysd = 0,606 * q yd * l / 100 = 2,62 kn Check biaxial bending strength: About Y-Y axis A v = 1,04 * h * t w / 10² = 11,65 cm² V pl,z,rd = A v * fy / (γ M * (3) * 10) = 143,69 kn V bzsd / V pl,z,rd = 0,10 < 1 V bzsd / V pl,z,rd = 0,10 < 0,5 No reduction in moment strength necessary due to shear. M pl,y,rd = W ply * f y / γ M / 10 = 4724,78 kncm About Z-Z axis A v = 2 * b f * t f / 10² = 17,00 cm² V pl,y,rd = A v * fy / (γ M * (3) * 10) = 209,68 kn V bysd / V pl,y,rd = 0,01 < 1 V bysd / V pl,y,rd = 0,01 < 0,5 No reduction in moment strength necessary due to shear M pl,z,rd = 1,5 * W elz * f y / γ M / 10 = 913,30 kncm Analysis: as in 5.35: for I- and H- sections: α= 2,00 β= 1,00 Or else: (11) ABS((M bysd /(M pl,y,rd /10²)) (α) +(M bzsd /(M pl,z,rd /10²)) (β) ) = 0,514 < 1 Check flexural-torsional buckling strength: i LT = (I z * I ω / W ply ²)0,25 = 2,48 cm Load is applied in top flange. z a = 10,00 cm z s = 0,00 cm z g = z a - z s = 10,00 cm As in Table F.1.2, Werte interpoliert. C 1 = 1,00 C 2 = 0,80 C 3 = 0,70 For simply supported ends fixed ends k = 0,70 No measures taken toward bending k w = 1,00

36 Folder: _EC3 Continuous Beam h s = (h - t f ) / 10 = 19,15 cm 5.5.2; Section class 1+2 β w = 1,00 λ 1 = π * (E s / f y ) = 93,91 Auxilliary value v =((k / k w )²+1/20*(k*l/i LT /(h/t f ))²+(2*C 2 *z g /h s )²) = 4,92 λ LT = k*l/i LT /((C 1 ) 0,5 *(v 0,5-2*C 2 *z g /h s ) 0,5 ) = 172,83 λ trans,lt = λ LT / λ 1 * (β w ) = 1,840 Apply strut curve a: As in Table α = 0,21 ϕ = 0,5 * (1 + α * (λ trans,lt -0,2) + λ trans,lt ²) = 2,37 χ LT = 1 / (ϕ + (ϕ² - λ trans,lt ²) 0,5 ) = 0,26 No longitudinal forces k z = 1,00 No longitudinal forces k LT = 1,00 k LT * M bysd / (χ LT * M pl,y,rd / 10²) + k z * M bzsd / (M pl,z,rd / 10²) = 1,88 < 1 Section is not adequate: Restrain section in quarterly points: l = l / 4 = 180,00 cm Auxilliary value v =((k/k w )²+1/20*(k*l/i LT /(h/t f ))²+(2*C 2 *z g /h s )²) = 1,42 λ LT = k*l/i LT /((C 1 ) 0,5 *(v 0,5-2*C 2 *z g /h s ) 0,5 ) = 85,14 λ trans,lt = λ LT / λ 1 * (β w ) = 0,907 Apply strut curve a: ϕ = 0,5 * (1 + α * (λ trans,lt -0,2) + λ trans,lt ²) = 0,99 χ LT = 1 / (ϕ + (ϕ² -λ trans,lt ²) 0,5 ) = 0,72 k LT * M bysd / (χ LT * M pl,y,rd / 10²) + k z * M bzsd / (M pl,z,rd / 10²) = 0,91 < 1

37 Folder: _EC3 foot and support foot and support Concentrated point load of a beam in another beam: Design loads and properties P sd = 68,00 kn M sd1 = 70,00 knm M sd2 = -22,00 knm Top beam (IPE180) Profil TypO = SEL("steel/Profils"; Name; ) = IPE Selected ProfilO = SEL("steel/"TypO; Name; ) = IPE 180 Web thickness s o = TAB("steel/"TypO; s; Name=ProfilO) = 5,30 mm Flange thickness t o = TAB("steel/"TypO; t; Name=ProfilO) = 8,00 mm Radius r o = TAB("steel/"TypO; r; Name=ProfilO) = 9,00 mm Flange width b o = TAB("steel/"TypO; b; Name=ProfilO) = 91,00 mm Web depth h o = TAB("steel/"TypO; h; Name=ProfilO) = 180,00 mm Web depth h 1o = TAB("steel/"TypO; h1; Name=ProfilO) = 146,00 mm W elo = TAB("steel/"TypO; W y ; Name=ProfilO) = 146,00 cm³ W plo = 1,14 * W elo = 166,44 cm 3 I yo = TAB("steel/"TypO; Iy; Name=ProfilO) = 1320,00 cm 4 Bottom beam (HEA200) Profil TypO = SEL("steel/Profils"; Name; ) = HEA Selected ProfilO = SEL("steel/"TypO; Name; ) = HEA 200 Web thickness of beam s u = TAB("steel/"TypO; s; Name=ProfilO) = 6,50 mm Flange thickness t u = TAB("steel/"TypO; t; Name=ProfilO) = 10,00 mm Radius r u = TAB("steel/"TypO; r; Name=ProfilO) = 18,00 mm Flange width bu = TAB("steel/"TypO; b; Name=ProfilO) = 200,00 mm Web depth h u = TAB("steel/"TypO; h; Name=ProfilO) = 190,00 mm Web depth h 1u = TAB("steel/"TypO; h1; Name=ProfilO) = 134,00 mm W elu = TAB("steel/"TypO; W y ; Name=ProfilO) = 389,00 cm³ W plu = 1,14 * W elu = 443,46 cm 3 I yu = TAB("steel/"TypO; Iy; Name=ProfilO) = 3690,00 cm 4

38 Folder: _EC3 foot and support Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 360 E s = TAB("steel/EC"; E; Name=steel) = ,00 N/mm² G = TAB("steel/EC"; G; Name=steel) = 81000,00 N/mm² f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm² ε = (235 / f y ) = 1,00 γ M = 1,10 λ 1 = 93,90 * ε = 93,90 f yd = f y /γ M = 213,64 kn/cm² Limit plastic bearing: Stiff bearing length of top, bottom beam: s s1 = s o + 2 * t o + 4 * r o * (1 - (2) / 2) = 31,84 mm σ f,ed1 = 100 * M sd1 / W elu = 17,99 kn/cm² b f1 = t u * 25 = 250,00 mm b f1 = MIN(b f1 ; b u ) = 200,00 mm s y1 = 2 * t u * (b u / s u ) 0,5 * (1 - (γ M * σ f,ed1 / f y * 10 )²) 0,5 = 59,83 mm R y,rd1 = (s s1 + s y1 ) * s u * f y / γ M / 10 ³ = 127,30 kn P sd / R y,rd1 = 0,53 < 1 Stiff bearing length of bottom beam: s s2 = s u + 2 * t u + 4 * r u * (1 - (2) / 2) = 47,59 mm σ f,ed2 = 100 * M sd2 / W elo = -15,07 kn/cm² b f = t o * 25 = 200,00 mm b f2 = MIN(b f ; b o ) = 91,00 mm s y2 = 2 * t o * (b o / s o ) 0,5 * ( 1 - (γ M * σ f,ed2 / f y * 10)²) 0,5 = 46,99 mm R y,rd2 = (s s2 + s y2 ) * s o * f y / γ M / 10³ = 107,09 kn P sd / R y,rd2 = 0,63 < 1 Check web crushing: Bottom beam: m 1 = s s1 / h 1u = 0,238 m 2 = 0,200 m u = MIN(m 1 ; m 2 ) = 0,200 R a,rd1 = 0,5 * s u ² * (E s * f y ) 0,5 * ((t u / s u ) 0,5 + 3 *(s u / t u ) * m u ) / γ M / 10³ = 219,95 kn P sd / R a,rd1 = 0,31 < 1 M c,rd1 = W plu * f y / γ M / 10³ = 94,74 knm M sd1 / M c,rd1 = 0,74 < 1 Top beam: m 1 = s s2 / h 1o = 0,326 m 2 = 0,200 m o = MIN(m 1 ; m 2 ) = 0,200 R a,rd2 = 0,5 * s o ² * (E s * f y ) 0,5 * ((t o / s o ) 0,5 + 3 * (s o / t o ) * m o ) / γ M / 10³ = 145,85 kn P sd / R a,rd2 = 0,47 < 1 M c,rd2 = W plo * f y / γ M / 10³ = 35,56 knm ABS(M sd2 ) / M c,rd2 = 0,62 < 1

39 Folder: _EC3 foot and support Check web buckling for whole web: Bottom beam: Effective web width b eff2 = (h u ² + s s1 ²) 0,5 = 192,65 mm Effective web area A 2 = b eff2 * s u / 100 = 12,52 cm² Moment of inertia I 2 = b eff2 / 10 * (s u / 10)³ / 12 = 0,441 cm 4 Radius of gyration i 2 = (I 2 / A 2 ) 0,5 = 0,188 cm Effective slenderness λ trans2 = h u / (i 2 * λ 1 * 10) = 1,076 Apply strut curve c: α = 0,49 ϕ = 0,5 * (1 + α * (λ trans2-0,2) + λ trans2 ²) = 1,294 χ 2 = 1 / (ϕ + (ϕ² - λ trans2 ²) 0,5 ) = 0,4968 R b,rd2 = χ 2 * A 2 * f y / 10 / γ M = 132,88 kn P sd / R b,rd2 = 0,51 < 1 Top beam: Effective web width b eff1 = (h o ² + s s1 ²) 0,5 = 182,79 mm Effective web area A 1 = b eff1 * s o / 100 = 9,69 cm² Moment of inertia I 1 = b eff1 / 10 * (s o / 10)³ / 12 = 0,227 cm 4 Radius of gyration i 1 = (I 1 / A 1 ) 0,5 = 0,153 cm Effective slenderness λ trans1 = h o / (i 1 * λ 1 * 10) = 1,253 Apply strut curve c: α = 0,49 ϕ = 0,5 * (1 + α * (λ trans1-0,2) + λ trans1 ²) = 1,543 χ 1 = 1 / (ϕ + (ϕ² - λ trans1 ²) 0,5 ) = 0,4093 R b,rd1 = χ 1 * A 1 * f y / 10 / γ M = 84,73 kn P sd / R b,rd1 = 0,80 < 1 Check web yield at load points: Bottom beam: σ x,ed2 = M sd1 * 10² * (h u / 2 - t u ) / I yu = 161,25 kn/cm² σ z,ed2 = 10³ * P sd / ((s s1 + 2 * t u ) * s u ) = 201,80 kn/cm² (σ x,ed2 / f yd )² + (σ z,ed2 / f yd )² - (σ x,ed2 / f yd )*(σ z,ed2 / f yd )= 0,75 < 1 Top beam: σ x,ed1 = -M sd2 * 10² * (h o / 2 - t o ) / I yo = 136,67 kn/cm² σ z,ed1 = 10³ * P sd / ((s s2 + 2 * t o ) * s o ) = 201,76 kn/cm² (σ x,ed1 / f yd )² + (σ z,ed1 / f yd )² - (σ x,ed1 / f yd ) * (σ z,ed1 / f yd ) = 0,70 < 1

40 Folder: _EC3 foot and support Column base subject to compression und bending: Msd Nsd l d e1 p e1 e a Plan and elevation values: Distance to edge of baseplate e = 45,00 mm Distance to edge of baseplate e 1 = 100,00 mm Spacing of bolts p = 300,00 mm Width of baseplate b = 500,00 mm Length of baseplate a = 500,00 mm Plate thickness d = 30,00 mm Projection of plate l = 100,00 mm Weld thickness a w = 10,00 mm Projection of pad footing a r = 1000,00 mm Depth of pad footing h = 1400,00 mm as in L.3 (idr) Bearing plane factor β j = 2/3 = 0,67 b Profil Typ = SEL("steel/Profils"; Name; ) = HEB Selected Profil = SEL("steel/"Typ; Name; ) = HEB 300 Moment of inertia I y1 = TAB("steel/"Typ; Iy; Name=Profil) = 25170,00 cm 4 Flange width b f = TAB("steel/"Typ; b; Name=Profil) = 300,00 mm Flange thickness t f = TAB("steel/"Typ; t; Name=Profil) = 19,00 mm Column height h t = TAB("steel/"Typ; h; Name=Profil) = 300,00 mm M pl,y,rd = TAB("steel/"Typ; Mplyd; Name=Profil) = 418,00 knm N pl,rd = TAB("steel/"Typ; Npld; Name=Profil) = 3250,00 kn Loads: N sd = 1000,00 kn M sd = 221,75 knm

41 Folder: _EC3 foot and support Materials and stresses: steel = SEL("steel/EC"; Name; ) = Fe 430 E s = TAB("steel/EC"; E; Name=steel) = ,00 N/mm² f y = TAB("steel/EC"; fy; Name=steel) = 275,00 N/mm² Concrete = SEL("Concrete/EC"; Name; ) = C30/37 f ck = TAB("Concrete/EC"; f ck ; Name=Concrete) = 30,00 N/mm² SC = SEL("steel/bolt"; SC; ) = 4.6 Bolt = SEL("steel/bolt"; BS; ) = M 24 f u = TAB("steel/bolt"; fubk; SC=SC) = 400,00 N/mm² A s = TAB("steel/bolt"; Asp; BS=Bolt) = 3,53 cm² γ Mb = 1,25 γ c = 1,50 γ M0 = 1,10 Design: m = l - e - 0,8 * a w * (2) = 43,69 mm l eff1a = MIN(4 * m + 1,25 * e; 2 * m + 0,625 * e + e 1 ) = 215,51 mm l eff1b = MIN(2 * m + 0,625 * e + 0,5 * p; e 1 + 0,5 * p; b / 2) = 250,00 mm l eff1 = MIN(l eff1a ; l eff1b ) = 215,51 mm l eff2a = MIN(π * 2 * m; π * m + 2 * e 1 ) = 274,51 mm l eff2b = MIN(π * m + p; p + 2 * e 1 ) = 437,26 mm l eff = MIN(l eff2a ; l eff2b ; l eff1 ) = 215,51 mm Maximum stress of base plate at the centre of tension bolt: M pl,1,rd = 0,25 * l eff * (d / 10)² * f y / 10/ γ M0 = 12,12*10 3 knmm n = e = 45,00 mm n / (1,25 * m) = 0,82 < 1 B t,rd = 0,9 * f u * A s / 10 / γ Mb = 101,66 kn Full flange yield: F T,Rd1 = 4 * M pl,1,rd / m = 1109,64 kn Bolt failure with flange yielding: F T,Rd2 = (2 * M pl,1,rd + n * 2 * B t,rd ) / ( m + n ) = 376,47 kn Bolt failure without flange yielding: F T,Rd3 = 2 * B t,rd = 203,32 kn F T,Rd = MIN(F T,Rd1 ; F T,Rd2 ; F T,Rd3 ) = 203,32 kn Effective compression area: Limit pressure in the base plate: a 1 = MIN(a + 2 * a r ; 5 * a; a + h) = 1900,00 mm k j = (a 1 ² / (a * b)) 0,5 = 3,80 f j = β j * k j * f ck / γ c = 50,92 N/mm² A eff = 10 * (N sd + F T,Rd ) / f j = 236,32 cm² c = d * (f y *10/ ( 3 * f j * γ M0 )) 0,5 = 121,36 mm x 0 = 100 * A eff / ( 2 * c + b f ) = 43,54 mm x 0 /(t f + 2 * c) = 0,17 < 1

42 Folder: _EC3 foot and support Limit moment at column base: r c = h t / 2 + c - x 0 / 2 = 249,59 mm M Rd = (F T,Rd * 10³ *(h t / e) + A eff * 100 * f j * r c ) / 10 6 = 342,02 knm Check permissible strength of column to bending and compression.: M Ny,Rd = 1,1 * M pl,y,rd * (1- N sd / N pl,rd ) = 318,32 knm Analysis: M sd / MIN(M Ny,Rd ; M Rd ) = 0,70 < 1

43 Folder: _EC3 Frames Frames Sway frame with bracing out of plane of frame, plastic theory: q d H d B D h A C l Plan and elevation values: Frame width l = 8,00 m Frame depth h = 6,00 m Number of column n c = 2 Number of storeys n s = 1 Beam: Profil Typ1 = SEL("steel/Profils"; Name; ) = IPE Selected Profil1= SEL("steel/"Typ1; Name; ) = IPE 240 Column height h 1 = TAB("steel/"Typ1; h; Name=Profil1) = 240,00 mm Web thickness s 1 = TAB("steel/"Typ1; s; Name=Profil1) = 6,20 mm Moment of inertia I y1 = TAB("steel/"Typ1; Iy; Name=Profil1) = 3890,00 cm 4 Cross-sectional area A 1 = TAB("steel/"Typ1; A; Name=Profil1) = 39,10 cm² Moment of resistance W y1 = TAB("steel/"Typ1; Wy; Name=Profil1) = 324,00 cm² Moment of resistance Wpl y1 = 1,14 * W y1 = 369,36 cm³ Column section: Profil Typ2 = SEL("steel/Profils"; Name; ) = HEB Selected Profil2 = SEL("steel/"Typ2; Name; ) = HEB 240 Flange width b 2 = TAB("steel/"Typ2; b; Name=Profil2) = 240,00 mm Column height h 2 = TAB("steel/"Typ2; h; Name=Profil2) = 240,00 mm Web thickness s 2 = TAB("steel/"Typ2; s; Name=Profil2) = 10,00 mm Moment of inertia I y2 = TAB("steel/"Typ2; Iy; Name=Profil2) = 11260,00 cm 4 Moment of inertia I z2 = TAB("steel/"Typ2; Iz; Name=Profil2) = 3920,00 cm 4 Moment of inertia I t2 = TAB("steel/"Typ2; IT; Name=Profil2) = 103,00 cm 4 Moment of inertia I ω2 = 10³*TAB("steel/"Typ2; Iω; Name=Profil2) =486900,00 cm 6 Cross-sectional area A 2 = TAB("steel/"Typ2; A; Name=Profil2) = 106,000 cm² i y = TAB("steel/"Typ2; iy; Name=Profil2) = 10,30 cm i z = TAB("steel/"Typ2; iz; Name=Profil2) = 6,08 cm Moment of resistance W ely2 = TAB("steel/"Typ2;Wy; Name=Profil2) = 938,00 cm³ Moment of resistance W ply2 = 1,25 * W ely2 = 1172,50 cm³ Loads: H d = 9,00 kn q d = 9,00 kn/m

5.0 DESIGN CALCULATIONS

5.0 DESIGN CALCULATIONS 5.0 DESIGN CALCULATIONS Load Data Reference Drawing No. 2-87-010-80926 Foundation loading for steel chimney 1-00-281-53214 Boiler foundation plan sketch : Figure 1 Quantity Unit Dia of Stack, d 6.00 m

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΗΡΑΚΛΕΙΟ ΜΑΡΤΙΟΣ 1999 Α. ΑΝΤΟΧΗ ΙΑΤΟΜΗΣ 1.ΕΦΕΛΚΥΣΜΟΣ ( 5.4.3 ). N t.rd = min { N pl. Rd = A f y / γ M0, N u.

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

Analyse af skrå bjælke som UPE200

Analyse af skrå bjælke som UPE200 Analyse af skrå bjælke som UPE Project: Opgave i stål. Skrå bjælke som UPE Description: Snitkræfter, forskydningscentrum, samling Customer: LC FEDesign. StruSoft Designed: LC Date: 9 Page: / 4 Documentation

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΧΑΛΥΒΔΙΝΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ (EN & EN1998-1)

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΧΑΛΥΒΔΙΝΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ (EN & EN1998-1) ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΧΑΛΥΒΔΙΝΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ (EN 1993-1-1 & EN1998-1) Επιλογή Διατομής υλικά: fy (N/mm 2 ) E (N/mm 2 ) G (N/mm 2 ) γ Μο = 1,00 2 Χάλυβας 1 235 210000 80769 γ Μ1 = 1,00 γ Μ2 = 1,25 13 ύψος στύλου

Διαβάστε περισσότερα

MasterSeries MasterPort Lite Sample Output

MasterSeries MasterPort Lite Sample Output MasterSeries MasterPort Lite Sample Output The following output is from the MasterPort Lite Design program. Contents 2 Frame Geometry and Loading 3 Tabular Results Output 4 Bending Moment and Diagrams

Διαβάστε περισσότερα

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES Customer: PDI, 4200 Oakleys Court, Richmond, VA 23223 Date: 5/31/2017 A. PALMA e n g i n e e r i n g Tag: Seismic Restraint Suspended Bus System Supports Building Code: 2012 IBC/2013 CBC&ASCE7-10 STRUCTURAL

Διαβάστε περισσότερα

Struct4u b.v. Calculation number : Revision : 0 Page 1 of 8 Project number : Date - time : :25 Project description : Part :

Struct4u b.v. Calculation number : Revision : 0 Page 1 of 8 Project number : Date - time : :25 Project description : Part : Calculation number : Revision : 0 Page 1 of 8 GENERAL File: document1.xcol Applied standards: Consequence class Structural Class : NEN-EN 1992-1-1 + C2:2011/NB:2011 (nl) : NEN-EN 1992-1-2 + C1:2011/NB:2011

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results

Διαβάστε περισσότερα

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information MI Girder 90/120 Materia Specifications 1 15 / 16 " (50) Materia Gavanizing Ordering Information Description S235 JRG2 DIN 10025, (ASTM A283 (D) 34 ksi) Hot-dip gavanized 3 mis (75 μm) DIN EN ISO 1461,

Διαβάστε περισσότερα

Design of Self supporting Steel Chimney for

Design of Self supporting Steel Chimney for Prepared by : Date : Job No. : Sheet : Cont'd : Verified by : Project : Subject : Calculation Sheet CALCULATION Revision Notes : Design of Self supporting Steel Chimney for Data Wind Loads as per India

Διαβάστε περισσότερα

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD: APPENDIX 1: Gravity Load Calculations SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD: A t = 16.2 * 13 = 208 ft^2 R 1 = 1.2 -.001* A t = 1.2 -.001*208 =.992 F = 0 for a flat

Διαβάστε περισσότερα

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain

Διαβάστε περισσότερα

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Seria : 0. T_ME_(+B)_Strength of Materia_9078 Dehi Noida Bhopa Hyderabad Jaipur Luckno Indore une Bhubanesar Kokata atna Web: E-mai: info@madeeasy.in h: 0-56 CLSS TEST 08-9 MECHNICL ENGINEERING Subject

Διαβάστε περισσότερα

Cross sectional area, square inches or square millimeters

Cross sectional area, square inches or square millimeters Symbols A E Cross sectional area, square inches or square millimeters of Elasticity, 29,000 kips per square inch or 200 000 Newtons per square millimeter (N/mm 2 ) I Moment of inertia (X & Y axis), inches

Διαβάστε περισσότερα

MasterSeries MasterPort Plus Sample Output

MasterSeries MasterPort Plus Sample Output MasterSeries MasterPort Plus Sample Output The following output is from the MasterPort Plus Design program. Contents 2 Frame Geometry and Loading 4 Tabular Results Output support reactions and nodal deflections

Διαβάστε περισσότερα

D28 1-1/4" PIPE x 42-1/2" HIGH RAIL WITHOUT BOTTOM RAIL

D28 1-1/4 PIPE x 42-1/2 HIGH RAIL WITHOUT BOTTOM RAIL Ultra-tec Cable Railing Systems G-D28 D28 1-1/4" PIPE x 42-1/2" HIGH RAIL WITHOUT BOTTOM RAIL Building Code: Material: 2006 International Building Code 2007 California Building Code AISC Steel Construction

Διαβάστε περισσότερα

Figure 1 - Plan of the Location of the Piles and in Situ Tests

Figure 1 - Plan of the Location of the Piles and in Situ Tests Figure 1 - Plan of the Location of the Piles and in Situ Tests 1 2 3 A B C D DMT4 DMT5 PMT1 CPT4 A 2.2 1.75 S5+ SPT CPT7 CROSS SECTION A-A C2 E7 E5 S4+ SPT E3 E1 E DMT7 T1 CPT9 DMT9 CPT5 C1 ground level

Διαβάστε περισσότερα

STATIC ANALYSIS / STRUCTURAL DESIGN GLASSCON SHADOGLASS LOUVERS SYSTEM

STATIC ANALYSIS / STRUCTURAL DESIGN GLASSCON SHADOGLASS LOUVERS SYSTEM STATIC ANALYSIS / STRUCTURAL DESIGN GLASSCON SHADOGLASS LOUVERS SYSTEM 1/28 CONTENTS 1. Technical Description - Assumptions... 3 1.1 Technical Description... 3 1.2 Design Standards and Norms... 3 1.3 Loads

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΚΥΚΛΙΚΗΣ ΚΟΙΛΟΔΟΚΟΥ ΓΕΜΙΣΜΕΝΗΣ ΜΕ ΣΚΥΡΟΔΕΜΑ

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΚΥΚΛΙΚΗΣ ΚΟΙΛΟΔΟΚΟΥ ΓΕΜΙΣΜΕΝΗΣ ΜΕ ΣΚΥΡΟΔΕΜΑ Διάμετρος διατομής υλικά: f (N/mm 2 ) 6 Χάλυβας 2 235 Σκυρόδεμα 2 2 Διατομή Χάλυβα: 12 Χάλυβας Ο/Σ 3 section 355,6x5, συντελεστές ασφαλείας: D (mm) 355,6 γ a = 1, t (mm) 5, γ c = 1,5 A a (cm 2 ) 55,1 γ

Διαβάστε περισσότερα

Το σχέδιο της μέσης τομής πλοίου

Το σχέδιο της μέσης τομής πλοίου ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Το σχέδιο της μέσης τομής πλοίου Α. Θεοδουλίδης Σχέδιο Μέσης Τομής Αποτελεί ένα από τα βασικώτερα κατασκευαστικά σχέδια του πλοίου.

Διαβάστε περισσότερα

COMPOSITE SLABS DESIGN CONTENTS

COMPOSITE SLABS DESIGN CONTENTS CONTENTS 1. INTRODUCTION... 3 2. GENERAL PARAMETERS... 5 3. PROFILED STEEL SHEETING CROSS-SECTIONS... 6 4. COMPOSITE SLAB STEEL REINFORCEMENT... 9 5. LOADS... 10 6. ANALYSIS... 11 7. DESIGN... 13 8. REPORT

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΔΙΠΛΟΥ ΤΑΥ ΕΓΚΙΒΩΤΙΣΜΕΝΗΣ ΣΕ ΣΚΥΡΟΔΕΜΑ

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΔΙΠΛΟΥ ΤΑΥ ΕΓΚΙΒΩΤΙΣΜΕΝΗΣ ΣΕ ΣΚΥΡΟΔΕΜΑ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΔΙΠΛΟΥ ΤΑΥ ΕΓΚΙΒΩΤΙΣΜΕΝΗΣ ΣΕ ΣΚΥΡΟΔΕΜΑ τύπος διατομής υλικά: f (N/mm 2 ) 3 Χάλυβας 2 235 Σκυρόδεμα 5 35 Διατομή Χάλυβα: 7 Χάλυβας Ο/Σ 3 section HE 2 B συντελεστές

Διαβάστε περισσότερα

Grey Cast Irons. Technical Data

Grey Cast Irons. Technical Data Grey Cast Irons Standard Material designation Grey Cast Irons BS EN 1561 EN-GJL-200 EN-GJL-250 EN-GJL-300 EN-GJL-350-1997 (EN-JL1030) (EN-JL1040) (EN-JL1050) (EN-JL1060) Characteristic SI unit Tensile

Διαβάστε περισσότερα

COMPOSITE INSULATOR. ANSI Standard Type COMPOSITE LONGE ROD SUSPENSION INSULATOR. PDI 16mm Diameter Rod Deadend Insulators

COMPOSITE INSULATOR. ANSI Standard Type COMPOSITE LONGE ROD SUSPENSION INSULATOR. PDI 16mm Diameter Rod Deadend Insulators COMPOSITE LONGE ROD SUSPENSION INSULATOR PDI 16mm Diameter Rod Deadend Insulators Mechanical Characteristics Item of Length Diameter Net Wt. Torsion SML RTL Proof Cat. Sheds (kg) (N-m) (kn) (kn) (kn) 1

Διαβάστε περισσότερα

Structural Design of Raft Foundation

Structural Design of Raft Foundation QATAR UNIVERSITY COLLAGE OF ENGINEERING COURSE: DESIGN OF REINFORCED CONCRETE STRUCTURES Structural Design of Raft Foundation Submitted to: Dr. Mohammed Al-ansari Prepared by: Haytham Adnan Sadeq Mohammed

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΩΝ ΕΜΠ ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ ΙΣΟΓΕΙΟ ΒΙΟΜΗΧΑΝΙΚΟ ΚΤΙΡΙΟ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΚΑΤΑΣΚΕΥΗΣ ΩΡΟΛΟΓΟΠΟΥΛΟΥ ΒΑΣΙΛΙΚΗ A B Γ 1 2 3 4 5 6 proper anchorage

Διαβάστε περισσότερα

katoh@kuraka.co.jp okaken@kuraka.co.jp mineot@fukuoka-u.ac.jp 4 35 3 Normalized stress σ/g 25 2 15 1 5 Breaking test Theory 1 2 Shear tests Failure tests Compressive tests 1 2 3 4 5 6 Fig.1. Relation between

Διαβάστε περισσότερα

ECOL Motors In Aluminum Housing

ECOL Motors In Aluminum Housing ECOL Motors In Aluminum Housing FEATURES APPLICATIONS E TBS C TBW B L K AC TBH A AA KK H AD N T E TBS R TBW L AC M 56-160 IM B3 56-160 IM B5 56-160 IM B14 TBH 4-S KK P HD N TBS T E R TBW L AC P M TBH 4-S

Διαβάστε περισσότερα

MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE

MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE MSN SERIES MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE W H FEATURE Available in 176 sizes. Stand / carrying handle can be adjusted in 30 degree. Maximum load is kg. There are no ventilation hole

Διαβάστε περισσότερα

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM AT-3263 Surface Mount Package SOT-363 (SC-7) I I Y Pin Connections B 1 C 1 E 1 E 2 C 2 B 2 Page 1 21.4., 7:6 PM Absolute Maximum Ratings [1] Absolute Thermal Resistance [2] : Symbol Parameter Units Maximum

Διαβάστε περισσότερα

ΔΗΛΩΣΗ ΕΠΙΔΟΣΕΩΝ Αρ. HSL-3_B-1109-CPR-0002

ΔΗΛΩΣΗ ΕΠΙΔΟΣΕΩΝ Αρ. HSL-3_B-1109-CPR-0002 EL ΔΗΛΩΣΗ ΕΠΙΔΟΣΕΩΝ Αρ. HSL-3_B-1109-CPR-0002 1. Μοναδικός κωδικός ταυτοποίησης του τύπου του προϊόντος: Hilti HSL-3 2. Προβλεπόμενη(-ες) χρήση(-εις): Προϊόν Μεταλλικά αγκύρια για χρήση σε σκυρόδεμα Προβλεπόμενη(-ες)

Διαβάστε περισσότερα

PRB. Development of a New Bending Method PRB for High Strength Steel Tube and Application of High Strength Steel Tubes for Automotive Parts

PRB. Development of a New Bending Method PRB for High Strength Steel Tube and Application of High Strength Steel Tubes for Automotive Parts JFE No. 17 2007 8 p. 52 58 PRB Development of a New Bending Method PRB for High Strength Steel Tube and Application of High Strength Steel Tubes for Automotive Parts SUZUKI Koji TOYODA Shunsuke SATO Akio

Διαβάστε περισσότερα

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments MS SERIES MS DESK TOP ENCLOSURE FEATURE Available in 176 sizes. Screws are not appeared on the surface. Usable as rack mount case with optinal mounting bracket. There are no ventilation hole for cover

Διαβάστε περισσότερα

TUBO LED T8 LLUMOR PROLED 18W 120CM

TUBO LED T8 LLUMOR PROLED 18W 120CM Luminaire Property Luminaire: Report NO.: Test NO.: Lamp: LLUMOR-PL-T8-18W 6000K Sum Lumens: 2483.33 lm Number of Lamps: 1 Diameter: 0mm Length: 1200mm Photometric Type: Type C Photometric Results Voltage:

Διαβάστε περισσότερα

TUBO LED T8 LLUMOR PROLED 25W 150CM

TUBO LED T8 LLUMOR PROLED 25W 150CM PHOTOMETRIC TEST REPORT Luminaire Property Luminaire: Report NO.: Test NO.: Lamp: LLUMOR-PL-T8-25W 6000K Sum Lumens: 3473.92 lm Number of Lamps: 1 Diameter: 0mm Length: 1500mm Photometric Type: Type C

Διαβάστε περισσότερα

CONTENTS. Examples of Ultimate Limit states. 1. SECT.-001, ULTIMATE LIMIT STATE, Tension Structural design Structural Fire design

CONTENTS. Examples of Ultimate Limit states. 1. SECT.-001, ULTIMATE LIMIT STATE, Tension Structural design Structural Fire design Examples of Ultimate Limit states CONTENTS 1. SECT.-001, ULTIMATE LIMIT STATE, Tension 1.1. Structural design 1.2. Structural Fire design 2. SECT.-002, ULTIMATE LIMIT STATE, Compression perpendicular to

Διαβάστε περισσότερα

ΕΥΡΩΚΩ ΙΚΑΣ 9: Φέρουσες κατασκευές αλουµινίου

ΕΥΡΩΚΩ ΙΚΑΣ 9: Φέρουσες κατασκευές αλουµινίου ΗΜΕΡΙ Α ΕΥΡΩΚΩ ΙΚΩΝ ΕΥΡΩΚΩ ΙΚΑΣ 9: Φέρουσες κατασκευές αλουµινίου X.K.MΠΑΝΙΩΤΟΠΟΥΛΟΣ, Καθηγητής Τµήµατος Πολιτικών Μηχανικών Α.Π.Θ. Το αλουµίνιο που ως χηµικό στοιχείο αποµονώθηκε για πρώτη φορά από τον

Διαβάστε περισσότερα

TUBO LED T8 LLUMOR PROLED ULTRA 25W 150CM

TUBO LED T8 LLUMOR PROLED ULTRA 25W 150CM PHOTOMETRIC TEST REPORT Luminaire Property Luminaire: Report NO.: Test NO.: Lamp: LLUMOR-PLU-25W-T8-6000K Sum Lumens: 4092.59 lm Number of Lamps: 1 Diameter: 0mm Length: 1512mm Photometric Type: Type C

Διαβάστε περισσότερα

of concrete buildings Illustration of elements design

of concrete buildings Illustration of elements design Dissemination of information for training Lisbon 10-11 February 2011 1 Specific rules for design and detailing of concrete buildings Design for DCM and DCH Illustration of elements design M.N. Fardis University

Διαβάστε περισσότερα

A, B. Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts in depth shown on diagram.

A, B. Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts in depth shown on diagram. Corner Joints Machining, Frame edge sealing. Page ID: frame01 D D C A, B A C B C A 20 60 Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts

Διαβάστε περισσότερα

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10) Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Scope -This specification applies to all sizes of rectangular-type fixed chip resistors with Ruthenium-base as material. Features

Διαβάστε περισσότερα

Epoxy resin - High performance. Anchor mechanical properties

Epoxy resin - High performance. Anchor mechanical properties Standard embedment (Galvanized and SS) Epoxy resin - High performance 1/10 Technical data APPLICATION Steel profiles Fixing machinery (resistant to vibration) Storage tanks, pipes Signs Guard rails Electrical

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* PART NUMBER SYSTEM

Διαβάστε περισσότερα

Fixed spherical bearing KF 32 N/mm 2 Dimensions and weights acc. to German approval

Fixed spherical bearing KF 32 N/mm 2 Dimensions and weights acc. to German approval Fixed spherical bearing KF 32 N/mm 2 Höga Kusten Bron, Sweden Permissible concrete pressure = 32 N/mm 2 type of load H D u D o weight bearing V kn mm mm mm kg KF 1 1000 112 300 300 66 KF 2 2000 116 370

Διαβάστε περισσότερα

CONSULTING Engineering Calculation Sheet

CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Structure Design - EQ Load Definition and EQ Effects v20 EQ Response Spectra in Direction X, Y, Z X-Dir Y-Dir Z-Dir Fundamental period of building, T 1 5.00

Διαβάστε περισσότερα

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT .5 C, φ, deg Tan(φ) Total.7 2.2 Effective.98 8.33 Shear,.5.5.5 2 2.5 3 Total Normal, Effective Normal, Deviator,.5.25.75.5.25 2.5 5 7.5 Axial Strain, % Type of

Διαβάστε περισσότερα

Consolidated Drained

Consolidated Drained Consolidated Drained q, 8 6 Max. Shear c' =.185 φ' =.8 tan φ' =.69 Deviator, 8 6 6 8 1 1 p', 5 1 15 5 Axial, Symbol Sample ID Depth Test Number Height, in Diameter, in Moisture Content (from Cuttings),

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* Temperature Coefficient

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

HSS Hollow. Structural Sections LRFD COLUMN LOAD TABLES HSS: TECHNICAL BROCHURE

HSS Hollow. Structural Sections LRFD COLUMN LOAD TABLES HSS: TECHNICAL BROCHURE HSS Hollow Structural Sections LRFD COLUMN LOAD TABLES HSS: TECHNICAL BROCHURE Steel Tube Institute Waukegan Road, Suite Glenview, IL TEL:.1.1 FA:..1 HSS Manufacturing Methods The transformation of steel

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to

Διαβάστε περισσότερα

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT Page 1 Of 12 LUMINAIRE PHOTOMETRIC TEST REPORT Test:U:.2V I:.3512A P:41.83W PF:.9913 Lamp Flux:x2 lm DATA OF LAMP PHOTOMETRIC DATA Eff: 28.97 lm/w MODEL PHILIPS T5 F24W/83 Imax(cd) 248.4 S/MH(C/18) 1.29

Διαβάστε περισσότερα

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor Technical Report General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor Tasos Lazaridis Electrical Engineer CAD/CAE Engineer tasoslazaridis13@gmail.com Three-Phase Induction Machine

Διαβάστε περισσότερα

Περιεχόμενα Table of Contents

Περιεχόμενα Table of Contents Περιεχόμενα Table of Contents 1. Εισαγωγή Introduction 3-10 2. Βασικές Τυπολογίες Φ/Β για Ταράτσες και Στέγες Roof / Flat Roof / Industrial Roof Photovoltaic System Basic Typologies 11-16 3. H2200 Συστήματα

Διαβάστε περισσότερα

Longitudinal strength standard

Longitudinal strength standard ( 8:, Creative Commons S11 S11 (1989) (Rev. 1 1993) (Rev. Nov.001) Longitudinal strength standard S11.1 Application This requirement applies only to steel ships of length 90 m and greater in unrestricted

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Thin Film Chip Resistors

Thin Film Chip Resistors FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι Διάλεξη 8 Μέλη υπό σύνθετη εντατική κατάσταση. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι Διάλεξη 8 Μέλη υπό σύνθετη εντατική κατάσταση. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Διάλεξη 8 έλη υπό σύνθετη εντατική κατάσταση χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of Product: Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520 official distributor of Current Sensing Chip Resistor (SMDL Series) 1. Features -3 Watts

Διαβάστε περισσότερα

Περιεχόμενα ή Εταιρικό προφιλ

Περιεχόμενα ή Εταιρικό προφιλ Περιεχόμενα ή Εταιρικό προφιλ Hanger bolts with nuts and EPDM-sealing washers Ντιζοστρίφωνα με παξιμάδι και ελαστική ροδέλα Item.- No. LM LH M M 2 0 2 0 2 0 3 00 9022 0 9022 9022 9022 2 9022 0 90222 90222

Διαβάστε περισσότερα

(Mechanical Properties)

(Mechanical Properties) 109101 Engineering Materials (Mechanical Properties-I) 1 (Mechanical Properties) Sheet Metal Drawing / (- Deformation) () 3 Force -Elastic deformation -Plastic deformation -Fracture Fracture 4 Mode of

Διαβάστε περισσότερα

Lisun Electronics Inc. Tel:+86(21)

Lisun Electronics Inc.  Tel:+86(21) Report No.: Test Time: 2014-01-20 17:40 Luminaire Property Page 1 of 25 Pages Luminaire Manufacturer: One Electrical Co.,Ltd Luminaire Category: OE-100WLEDFLOOD Lamp Description: 100W Floodlight Luminous

Διαβάστε περισσότερα

Luminaire Property. Photometric Results. Page 1 of 15 Pages. Report No.: 9 Test Time: 2017/5/18 09:59

Luminaire Property. Photometric Results. Page 1 of 15 Pages. Report No.: 9 Test Time: 2017/5/18 09:59 Report No.: 9 Test Time: 2017/5/18 09:59 Page 1 of 15 Pages Luminaire Property Luminaire Manufacturer: Luminaire Description: VMC4911 Current: 0.2A Power Factor: 0.989 Voltage: 120 V Power: 54.0W Photometric

Διαβάστε περισσότερα

GAUGE BLOCKS. Grade 0 Tolerance for the variation in length. Limit deviation of length. ± 0.25μm. 0.14μm ±0.80μm. ± 1.90μm. ± 0.40μm. ± 1.

GAUGE BLOCKS. Grade 0 Tolerance for the variation in length. Limit deviation of length. ± 0.25μm. 0.14μm ±0.80μm. ± 1.90μm. ± 0.40μm. ± 1. GAUGE BLOCKS Accuracy according to ISO650 Nominal length (mm) Limit deviation of length Grade 0 Tolerance for the variation in length Grade Grade Grade Grade 2 Limit deviations of Tolerance for the Limit

Διαβάστε περισσότερα

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1 20/01/2014 1 of 8 TOW SSD v3 Location Project a =IF(Design_Storm>0,VL b =IF(Design_Storm>0,VL c =IF(Design_Storm>0,VL Designed By Checked By Date Date Comment Min Tc 15 LOCATION From To MH or CBMH STA.

Διαβάστε περισσότερα

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS FEATURE Operating Temperature: -55 ~ +155 C 3 Watts power rating in 1 Watt size, 1225 package High purity alumina substrate for high power dissipation Long side terminations with higher power rating PART

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF

Διαβάστε περισσότερα

Weight [lb] = (Do-t)*π*L*t*40.84/ (60-1)*3.1416*100*1*40.84/144 = (20000*1*1)/(29+0.6*1) = Pipe and Shell ver 4.

Weight [lb] = (Do-t)*π*L*t*40.84/ (60-1)*3.1416*100*1*40.84/144 = (20000*1*1)/(29+0.6*1) = Pipe and Shell ver 4. 1 Pipe and Shell ver 4.08 Page 1 of 2 2 Host Shell Description 3 Options: 4 Interior ip? - Calculate interior pressure 5 No Exterior ep? - Calculate exterior pressure 6 Rolled Plate pr? - Pipe or rolled

Διαβάστε περισσότερα

Current Sense Metal Strip Resistors (CSMS Series)

Current Sense Metal Strip Resistors (CSMS Series) Features: Range: 1mΩ to 100mΩ Low TCR as low as 75PPM High power rating Custom Values available RoHS Compliant and Halogen Free Operating Temperature: -55 C to +170 C Part Number Structure CSMS 0805 -

Διαβάστε περισσότερα

Rod End > Ball Bearings Product Overview

Rod End > Ball Bearings Product Overview Rod End > Ball Bearings Product Overview Table of Contents EN4035 EN4036 FC...M / FCN...M ASNA2579E NSA8159 REP / RAP REP...F Page Il-3-4 Il-5-6 Il-7-8 Il-9-10 Il-11-12 Il-13-14 Il-15-16 EN4035 Rod End

Διαβάστε περισσότερα

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

SIEMENS Squirrel Cage Induction Standard Three-phase Motors - SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque

Διαβάστε περισσότερα

Terminal Contact UL Insulation Designation (provided with) style form system approval Flux tight

Terminal Contact UL Insulation Designation (provided with) style form system approval Flux tight eatures A miniature PCB Power Relay. form A contact configuration with quick terminal type. 5KV dielectric strength, K surge voltage between coils to contact. Ideal for high rating Home Appliances of heating

Διαβάστε περισσότερα

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8% 91 500 201 0/11 Aluminum raming Linear Motion and Assembly Technologies 1 Section : Engineering Data and Speciications Technical Data or Proiles Metric U.S. Equivalent Material designation according to

Διαβάστε περισσότερα

Rod End > Ball Bearings Product Overview

Rod End > Ball Bearings Product Overview Product Overview Table of Contents EN4035 EN4036 FC...M / FCN...M ASNA2579E NSA8159 REP / RAP REP...F Page Il-3-4 Il-5-6 Il-7-8 Il-9-10 Il-11-12 Il-13-14 Il-15-16 EN4035 EN4035 L 06 P K A T Surface Treatment

Διαβάστε περισσότερα

Προφίλ Profiles Overview R=1:4 A01

Προφίλ Profiles Overview R=1:4 A01 Προφίλ Profiles Overview R=1:4 A01 ΠΡΟΦΙΛ PROFILE ΠΡΟΦΙΛ No /Profile No mm Bάρος / Weight (gr/m) mm Ix cm Jy cm ΠΡΟΦΙΛ PROFILE ΠΡΟΦΙΛ No /Profile No mm Bάρος / Weight (gr/m) mm Ix cm Jy cm 4 4 4 4 M 9943

Διαβάστε περισσότερα

Ceramic PTC Thermistor Overload Protection

Ceramic PTC Thermistor Overload Protection FEATURES compliant CPTD type are bare disc type CPTL type are leaded Low, medium and high voltage ratings Low resistance; Small size No need to reset supply after overload No noise generated Stable over

Διαβάστε περισσότερα

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

ELWOOD HIGH PERFORMANCE MOTORS H-SERIES MOTOR DATA

ELWOOD HIGH PERFORMANCE MOTORS H-SERIES MOTOR DATA H-SERIES MOTOR DATA MOTOR MODEL H-3007 H-3016 H-4030-P H-4030-M H-4040 H-4050 H-4075 H-6100 H-6200 H-6300 MECHANICAL DATA (1) Rated Torque, Cont (Stall) 0.8 2.3 3.4 3.4 5.0 6.8 10.2 11.3 22.6 36.7 lb-in

Διαβάστε περισσότερα

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Dr.-Ing. 郭瑞昭 Yield criteria Question: For what combinations of loads will the cylinder begin to yield plastically? The criteria for deciding

Διαβάστε περισσότερα

Tabela 1. Table 1 working slat. Spare parts. Rear-attached disc mower Z108/8 2,5m with swath spreader

Tabela 1. Table 1 working slat. Spare parts. Rear-attached disc mower Z108/8 2,5m with swath spreader 1 2 12 2 1 2 1 1 2 21 2 2 2 0 2 11 2 1 1 2 2 1 1 1 Tabela 1 Table 1 working slat Table 1 Cat. No. or Standard Qty No. Part name Z/ 2.m Z/ Working slat set. Contains: tab.1. pos.: 1- /1-000 tab.2. pos.:

Διαβάστε περισσότερα

Long 3000 hour life at 105 C with high ripple current capability 2 and 3 pin versions available Can vent construction

Long 3000 hour life at 105 C with high ripple current capability 2 and 3 pin versions available Can vent construction TS-HA/HB Series 105 C, 3000 hours Long 3000 hour life at 105 C with high ripple current capability 2 and 3 pin versions available Can vent construction RoHS Compliant Rated Working Voltage: Operating Temperature:

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΟΣ /SUMMARY... 3 ΠΡΟΦΙΛΜΕΡΟΣΑ/PROFILPARTA... 13 ΠΡΟΦΙΛΜΕΡΟΣ B/PROFILPARTB... 39. Κράμααλουμινίου:AlMgSi0.5F22, σύμφωνα

ΣΥΝΟΠΤΙΚΟΣ /SUMMARY... 3 ΠΡΟΦΙΛΜΕΡΟΣΑ/PROFILPARTA... 13 ΠΡΟΦΙΛΜΕΡΟΣ B/PROFILPARTB... 39. Κράμααλουμινίου:AlMgSi0.5F22, σύμφωνα 1 Ησειρά Albio 109 Cανοιγόμενων κουφωμάτων με θερμοδιακοπή, συνδυάζει το διαχρονικό σχεδιασμό με τη σύγχρονη τεχνολογία, και το άρτιο αισθητικά αποτέλεσμα με τα υψηλά standard κατασκευής. Είναι σχεδιασμένη

Διαβάστε περισσότερα

LUOYANG JINYUAN OUTSIZE BEARING CO.,LTD J Y C TAPER ROLLER BEARINGS

LUOYANG JINYUAN OUTSIZE BEARING CO.,LTD J Y C TAPER ROLLER BEARINGS J Y C TAPER ROLLER BEARINGS Taper roller bearings are separate bearings. the inner ring with roller and cage form the inner components, and can be mounted separately with outer ring. It has tapered raceway

Διαβάστε περισσότερα

MINIATURE BALL BEARINGS 600 Series(Metric)

MINIATURE BALL BEARINGS 600 Series(Metric) MINIATURE BALL BEARINGS 600 Series(Metric) Bore(d) OD(D) Width (B) Flange Dimensions Radius Basic Load Rating(lbs) Number mm mm Open Shielded Df Open Wf r Dy. (C) Sta.( Co) (lbs.) 682 2 5 1.5 2.3 6.1 0.5

Διαβάστε περισσότερα

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance .635mm Pitch Board to Board Docking Connector Lead-Free Compliance MINIDOCK SERIES MINIDOCK SERIES Features Specifications Application.635mm Pitch Connector protected by Diecasted Zinc Alloy Metal Shell

Διαβάστε περισσότερα

ROTARY TABLE SELECTION GUIDE

ROTARY TABLE SELECTION GUIDE ROTARY TABE SEECTION GUIDE 20 Thompson Rd East indsor CT 06088 1.800.249.5662 860.623.4132 ax www.komaprecision.com info@komaprecision.com ROTARY TABES RNE-SERIES RA-SERIES RBS-SERIES RN-MUTI SERIES (SHON

Διαβάστε περισσότερα

Precision Metal Film Fixed Resistor Axial Leaded

Precision Metal Film Fixed Resistor Axial Leaded Features EIA standard colour-coding Non-Flame type available Low noise and voltage coefficient Low temperature coefficient range Wide precision range in small package Too low or too high ohmic value can

Διαβάστε περισσότερα

ΚΑΝΑΛΙ CHANNEL MTL. Κατάλογος - Catalogue. Eνδοδαπέδια Κανάλια & Κουτιά Παροχών - Διακλαδώσεων Underfloor Channels & Boxes and Juction Boxes

ΚΑΝΑΛΙ CHANNEL MTL. Κατάλογος - Catalogue. Eνδοδαπέδια Κανάλια & Κουτιά Παροχών - Διακλαδώσεων Underfloor Channels & Boxes and Juction Boxes ΚΑΝΑΛΙ CHANNEL MTL Μήκος 2,5 μέτρα, από λαμαρίνα γαλβανισμένη κατά ΕΝ 10142, 2 χωρισμάτων ΠΛΕΟΝΕΚΤΗΜΑΤΑ και 3 χωρισμάτων. Πάχος ελάσματος καλύμματος και βάσης 1,5mm Standard length 2,5 m, sheet steel galvanized

Διαβάστε περισσότερα

ZLW Series. Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD

ZLW Series. Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD ZLW Series Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD 1 Application Apply as the transportation of liquids in the fields of air condition, heating, sanitary water, water treatment cooling,

Διαβάστε περισσότερα

Answers to practice exercises

Answers to practice exercises Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΚΑΝΟΝΙΣΜΩΝ ΝΗΟΓΝΩΜΟΝΩΝ

ΕΦΑΡΜΟΓΗ ΚΑΝΟΝΙΣΜΩΝ ΝΗΟΓΝΩΜΟΝΩΝ ΕΦΑΡΜΟΓΗ ΚΑΝΟΝΙΣΜΩΝ ΝΗΟΓΝΩΜΟΝΩΝ Ενότητα 04: Διαστασιολόγηση των στοιχείων της μεταλλικής κατασκευής Α. Θεοδουλίδης Σχέδιο Μέσης Τομής Αποτελεί ένα από τα βασικώτερα κατασκευαστικά σχέδια του πλοίου. Είναι

Διαβάστε περισσότερα

Thick Film Chip Resistors

Thick Film Chip Resistors FEATURES STANDARD SIZING 0402 (1/16W), 0603 (1/10W), 0805 (1/8W), 1206 (1/4W), 2010 (1/2W) AND 2512 (1W) HIGH VOLTAGE (100VDC ~ 3,000VDC) HIGH RESISTANCE VALUES (UP TO 100MW) THICK FILM ON ALUMINA SUSTRATE,

Διαβάστε περισσότερα

1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5)

1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5) IDE 0 S08 Test 5 Name:. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? ( points) Areas () and (5) Areas () through (5) Areas (), ()

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα