of concrete buildings Illustration of elements design

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "of concrete buildings Illustration of elements design"

Transcript

1 Dissemination of information for training Lisbon February Specific rules for design and detailing of concrete buildings Design for DCM and DCH Illustration of elements design M.N. Fardis University of Patras (GR) G. Tsionis University of Patras (GR)

2 Structure of EN1998-1:2004 Dissemination of information for training Lisbon February General 2. Performance Requirements and Compliance Criteria 3. Ground Conditions and Seismic Action 4. Design of Buildings 5. Specific Rules for Concrete Buildings 6. Specific Rules for Steel Buildings 7. Specific Rules for Steel-Concrete Composite Buildings 8. Specific Rules for Timber Buildings 9. Specific Rules for Masonry Buildings 10. Base Isolation

3 Design concepts for safety under design seismic action Dissemination of information for training Lisbon February Design for energy dissipation (via ductility): q>1.5 Global ductility: Structure forced to remain straight in elevation through shear walls or strong columns (ΣM Rc >1.3ΣM Rb in frames): Local ductility: Plastic hinges detailed for ductility capacity derived from q-factor; Brittle failures prevented by overdesign/capacity it design Capacity design of foundations & foundation elements: On the basis of overstrength of ductile elements of superstructure. (Or: Foundation elements - incl. piles - designed & detailed for ductility) 2. Design w/o energy dissipation & ductility: q 1.5 for overstrength; design only according to EC2 & EC7 (Ductility Class Low DCL) Only: for Low Seismicity i it (NDP; recommended: d PGA on rock 0.08g) 08 ) for superstructure of base-isolated buildings.

4 Control of inelastic seismic response Dissemination of information for training Lisbon February Soft-storey collapse mechanism to be avoided through proper structural configuration: Strong-column/weak beam frames, with beam-sway mechanisms, involving: - plastic hinging at all beam ends, and - either plastic hinging at column bottoms, or rotations at the foundation. Wall-equivalent dual frames, with beam-sway mechanism, involving: - plastic hinging at all beam ends, and -either plastic hinging at wall & column bottoms, or rotations at the foundation. (a) (b) (c) (d) (e) () (a) soft-storey t mechanism in weak column/strong beam frame; (b), (c) beam-sway mechanisms in strong column/ weak beam frame; (d), (e) beam-sway mechanisms in wall system

5 Overview of Eurocode 8 seismic design of RC buildings Dissemination of information for training Lisbon February Damage limitation (storey drift ratio < 0.5-1%) under the damage limitation earthquake (~50% of design seismic action ), using 50% of uncracked gross section stiffness. 2. Member verification for the Ultimate Limit State (ULS) in bending under the design seismic action, with elastic spectrum reduced by the behaviour factor q. 3. In frames or frame-equivalent dual systems: Meet strong column/weak beam capacity design rule, with overstrength factor of 1.3 on beam strengths. 4. Capacity design of members (and joints) in shear. 5. Detailing of plastic hinge regions, on the basis of the value of the curvature ductility factor that corresponds to the q-factor value.

6 Column capacity design rule in frames Dissemination of information for training Lisbon February Fulfilment of strong column/weak beam capacity design rule, with overstrength factor γ Rd on beam strengths: Eurocode 8: γ Rd = 13;strong 1.3; column/weak beam capacity design required only in frames or frame-equivalent dual systems (: frames resist >50% of seismic base shear) above two storeys (except at top storey joints). Beam & column flexural capacities at a joint in Capacity Design rule column 1 column 1 beam 1 beam 2 beam 1 beam 2 column 2 column 2

7 Dissemination of information for training Lisbon February For the calculation of M Rb : Width of slab effective as tension flange of beams at the support to a column: b c b c a 2h f 2h f h f 4h f 4h f c h f b c d b c b 2h f 2h f h f h f a, b: at exterior column; c, d: at interior column: small is it safe for capacity design?

8 NDP-partial factors for materials, in ULS verifications: Dissemination of information for training Lisbon February Recommended: use same values as for persistent & transient design situations (i.e. in concrete buildings: γ c =1.5, γ s =1.15); 15);

9 Seismic design of the foundation Dissemination of information for training Lisbon February Objective: The ground and the foundation system should not reach its ULS before the superstructure, i.e. should remain elastic while inelasticity develops in the superstructure. Means: The ground and the foundation system are designed for their ULS under seismic action effects from the analysis derived for q=1.5, i.e. lower than the q-value l used for the design of the superstructure; t or The ground and the foundation system are designed for their ULS under seismic action effects from the analysis multiplied by γ Rd (R di /E di ) q, where R di force capacity in the dissipative zone or element controlling the seismic action effect of interest, E di the seismic action effect there from the elastic analysis and γ Rd =1.2 (γ Rd =1.0 if q 3.0) For individual spread footings of walls or columns of moment-resisting frames, R di /E di is the minimum value of M Rd /M Ed in the two orthogonal principal directions at the lowest cross-section section of the vertical element where a plastic hinge can form in the seismic design situation; For common foundations of more than one elements, γ Rd (R di /E di ) =1.4.

10 Frame, wall, or dual systems in RC buildings Dissemination of information for training Lisbon February Eurocode 8 definitions: - Frame system: Frames take >65% of seismic base shear,v base - Wall system: Walls take > 65% of V base. - Dual system: Walls and frames take between 35 % & 65% of V base each. - Frame-equivalent equivalent dual system: Frames take between 50 % & 65% of V base. - Wall-equivalent dual system: Walls take between 50 % & 65% of V base. Eurocode 2 definition of wall: Wall column in that its cross-section is elongated (l w /b w >4)

11 For Dissipative Structures: Dissemination of information for training Lisbon February Two Ductility Classes (DC): DC H (High) DC M (Medium). Differences in: q-values (q > 4 for DCH, 1.5 <q <4 for DCM) Local ductility requirements (ductility of materials, member detailing, capacity design against brittle failure modes)

12 Seismic design philosophy for RC buildings according to Eurocode 8 Dissemination of information for training Lisbon February Ductility Classes (DC) Design based on energy dissipation and ductility: DC(M) Medium q = 3 x system overstrength factor ( 1.3). DC (H) High q= x system overstrength factor ( 13) 1.3). The aim of the design is to control the inelastic seismic response: Structural configuration & relative sizing of members to ensure a beam-sway mechanism. Detailing of plastic hinge regions (beam ends, base of columns) to sustain inelastic deformation demands. Plastic hinge regions are detailed for deformation demands related to behaviour factor q: μ δ =q if Τ>Τ c μ δ =1+(q-1)T c /T if Τ Τ c

13 Material limitations for primary seismic elements Dissemination of information for training Lisbon February Ductility Class DC L (Low) DC M (Medium) DC H (High) Concrete grade No limit C16/20 C16/20 Steel class per EN B or C B or C only C , Table C1 Longitudinal bars only ribbed only ribbed Steel overstrength: No limit No limit f yk, f yk

14 Basic value, q o, of behaviour factor for regular in elevation concrete buildings in Eurocode 8 Dissemination of information for training Lisbon February Lateral-load resisting structural system DC M DC H Inverted pendulum system* Torsionally flexible structural system** 2 3 Uncoupled wall system (> 65% of seismic base shear 3 4 u / 1 resisted by walls; more than half by uncoupled walls) not belonging in one of the categories above Any structural t system other than those above 3 u / u / 1 * at least 50% of total mass is in upper-third of the height, or all energy dissipation takes place at the base of a single element (except one-storey frames w/ all columns connected at the top via beams in both horizontal directions in plan & with max. value of normalized axial load in seismic design situation ν d 0.3). ** at any floor: radius of gyration of floor mass > torsional radius in one or both main horizontal directions (sensitive to torsional response about vertical axis). Buildings irregular in elevation: behaviour factor q = 0.8q o ; g g q q o Wall or wall-equivalent dual systems: q multiplied (further) by (1+a ο )/3 1, (a ο : prevailing wall aspect ratio = ΣH i /Σl wi ).

15 α u /α 1 in behaviour factor of buildings designed for ductility: due to system redundancy & overstrength Dissemination of information for training Lisbon February Normally: á uv α b d u & α 1 from base shear-top displacement curve of a pushover analysis. á 1 V b d α u : seismic action at development of 1st yielding global mechanism; anywhere α 1 : seismic action at 1 st flexural yielding anywhere. α u / α 1 1.5; default values given between een 1 to 1.3 for buildings regular in plan: V bd =design base shear = 1.0 for wall systems w/ just 2 uncoupled walls per horiz. direction; = 11f 1.1 for: one-storey frame or frame-equivalent dual systems, or wall systems w/ > 2 uncoupled walls per direction; = 1.2 for: (one-bay multi-storey frame or frame-equivalent dual systems), wall-equivalent dual systems or coupled wall systems; = 1.3 for: multi-storey multi-bay frame or frame-equivalent dual systems. V b global plastic mechanism for buildings irregular in plan: for buildings irregular in plan: default value = average of default value of buildings regular in plan and 1.0 ä to p

16 Dissemination of information for training Lisbon February Capacity design of members, p y g, against pre-emptive shear failure

17 I. Beams Dissemination of information for training Lisbon February Equilibrium of forces and moments on a beam V 1 = V g+ψq g+ψq,1 V 2 =V g+ψq,2 - g+ q V V M 1 L M 2 Capacity-design shear in a beam weaker than the columns: V CD,1 =V g+ψq,1 +γ Rd V CD,2 =V g+ψq,2 +γ Rd

18 Capacity-design shear in beams (weak or strong) - Eurocode 8 Dissemination of information for training Lisbon February Eurocode 8: in DC M γ Rd =1.0, in DC H γ Rd =1.2 & reversal of V accounted for, depending on:

19 II. Columns Dissemination of information for training Lisbon February Capacity-design shear in column which is weaker than the beams: Capacity-design shear in (weak or strong) columns - Eurocode 8: Eurocode 8: in DC M γ Rd =1.1 in DC H γ Rd =1.3

20 III. Walls Dissemination of information for training Lisbon February Eurocode 8: Over-design in shear, by multiplying py shear forces from the analysis for the design seismic action, V Ed, by factor ε: DC M walls: DC H squat walls (h w /l w 2): Over-design for flexural overstrength of the base w.r.to analysis M Edo : design moment at base section (from analysis), M Rdo : design flexural resistance at the base section, γ Rd =1.2 DC H slender walls (h w /l w > 2): Over-design for flexural overstrength of the base w.r.to analysis & for increased inelastic shears S e (T): ordinate of elastic response spectrum T C : upper limit T of const. spectral acc. region T 1 : fundamental period

21 Design shear forces in dual structural systems per Eurocode 8 Dissemination of information for training Lisbon February V wall, top>v wall, base/2 design envelope magnified shear diagram 2 3 h w shear diagram 1 h from analysis 3 w V wall, base To account for increase in the upper storey shears due to higher mode inelastic response (after plastic hinging at the base)

22 Detailing of dissipative zones (flexural plastic hinges) for curvature ductility factor μ φ consistent w/ q-factor Dissemination of information for training Lisbon February μ φ =2q o -1 if T 1 T c μ φ =1+2(q o -1)T c /T 1 if T 1 <T c T 1 : fundamental period of building, T c : T at upper limit of constant spectral acceleration region, q o : q-factor unreduced d for irregularity it in elevation (multiplied w/ M Ed /M Rd at a wall base). Derivation: Relation between μ φ & L pl /L s (L pl : plastic hinge length, L s : shear span) & μ δ (: top displacement ductility factor) in buildings staying straight due to walls or strong columns: μ δ =1+3(μ φ -1)L pl /L s (1-0.5L pl /L s ); Relation q-μ δ -T: μ δ = q if T 1 T c, μ δ = 1+(q-1)T 1)T c /T 1 if T 1 <T c ; Relation of L pl & L s for typical RC beams, columns & walls (for EC2 confinement model: ε* cu = α ωw ): L pl 0,3L s & for (safety) factor 2: L pl =0,15L s. Then: μ φ 2μ δ -1 For steel B (ε u : 5-7.5%, f t /f y : ) increase μ φ -demand by 50%

23 Means for achieving μ φ in plastic hinges Dissemination of information for training Lisbon February Base region of members w/ axial load & symmetric reinforcement, ω=ω (columns, ductile walls): Confining reinforcement (for walls: in boundary elements) with (effective) mechanical volumetric ratio: αω wd =30μ φ (ν d +ω ν )ε yd b c /b o ν d =N d /b c hf cd ; ε yd =fy d /E s ; b c : width of compression zone; b o : width of confined core; ω ν : mechanical ratio of longitudinal web reinforcement =ρ ν f yd,v/f cd DC H columns not meeting the strong-column/weak-beam rule (ΣM Rc<1.3ΣM Rb), should have full confining reinforcement at the end regions of all storeys, not just at the (building) base; DC H strong columns (ΣM Rc >1.3ΣM Rb ) are also provided w/ confining reinforcement for μ φ corresponding to 2/3 of q o at the end regions of every storey. Members w/o axial load & w/ asymmetric reinforcement (beams): Members w/o axial load & w/ asymmetric reinforcement (beams): Max. mechanical ratio of tension steel: ω ω /μ φ ε yd

24 EC8 special feature: two types of dissipative concrete walls Dissemination of information for training Lisbon February Ductile walls: Fixed at the base, to prevent rotation there w.r.to rest of structural system. Designed & detailed to dissipate energy only in flexural plastic hinge just above the base. Large lightly-reinforced walls (only for DC M): Walls with horizontal dimension l w 4m, expected to develop limited cracking or inelastic behaviour during design seismic action, but to transform seismic energy to potential energy (uplift of masses) & to energy radiated back into the soil by rigid-body rocking, etc. Due to its dimensions, or lack-of-fixity fixity at base, or connectivity with transverse walls preventing pl. hinge rotation at base, such a wall cannot be designed for energy dissipation in pl. hinge at the base.

25 Ductile walls: Overdesign in bending Dissemination of information for training Lisbon February Strong column/weak beam capacity design is not required in wall or wall-equivalent dual systems (i.e. in those where walls resist >50% of seismic base shear) But: all ductile walls are designed in flexure, to ensure that plastic hinge develops only at the base: Typical moment diagram in a concrete wall from the analysis & linear envelope for its (over-)design in flexure according Eurocode 8

26 Ductile walls: Design in bending & shear and detailing Dissemination of information for training Lisbon February Inelastic action limited to a plastic hinge at the base, so that the cantilever relation between q & μ φ applies: Wall is provided with flexural overstrength above plastic hinge region (linear moment envelope with shift rule); Design in shear for V from analysis, times: 1.5 for DC M [(1.2 M Rd /M Ed ) (qS e (T c )/S e (T 1 )) 2 ] 1/2 < q for DC H M Ed : design moment at base (from analysis), M Rd : design flexural resistance at base, S e (T): ordinate of elastic response spectrum, T c : upper limit T of const. spectral acc. region T 1 : fundamental period. In plastic hinge zone: boundary elements w/ confining reinforcement having effective mechanical volumetric ratio: αω wd =30μ φ (ν d+ ω )ε yd b c /b o over at least the part of the compression zone depth: x u =(ν d +ω v )l w ε yd b c /b o where the strain is between: ε* cu = αω w & ε cu =0.0035

27 Foundation problem of ductile walls Dissemination of information for training Lisbon February To form a plastic hinge at the wall base We need fixity there: Very large & heavy footing; adds own weight to N & does not uplift; or Fixity of wall in a box type foundation system: 1. Wall-like deep foundation beams along entire perimeter of the foundation (possibly supplemented w/ interior ones across full length of foundation system) = main foundation elements transferring seismic action effects to the ground. In buildings w/ basement: perimeter foundation beams may double as basement walls. 2. Slab designed to act as rigid diaphragm, at the level of the top flange of perimeter foundation beams (e.g. basement roof). 2. Foundation slab, or two-way tie-beams or foundation beams, at the level of bottom of perimeter foundation beams. (M E ) (V E) Basement Fixity of interior walls provided by couple of horizontal forces between 2 & 3 High reverse shear in part of the wall within the basement

28 The problem of the foundation of a large wall Dissemination of information for training Lisbon February Large l w (=h) large moment at the base (for given axial load) low normalized axial force ν=n/(bhfc)~0.05. Footing of usual size w/ tie-beams of usual size: insufficient: Max normalized moment μ=m/(bh 2 f cd )th that tcan be transferred dto the ground: μ ~0.5ν, i.e. ~wall cracking moment! Impossible to form plastic hinge at the wall base. Wall will uplift & rock as a rigid body. W ELEVATION ~Rigid large walls on large footing: Rocking radiation damping in the soil. φ Rotation of rocking wall: Β θ~s 2 v2 /Βg <<φ=arctan(b/h tot ) θ Very stable nonlinear-elastic behaviour; but hard to address in design H tot

29 Geometric effects in large walls, due to rocking or plastic hinging Dissemination of information for training Lisbon February Rotation of uplifting/rocking wall takes place about a point close to the toe of its footing. Rotation at a wall plastic hinge at the base takes place about a neutral axis which is close to the edge of the wall section. In both cases the centroid of the wall section is raised at every rotation: ti Centre of Gravity (CG) of masses supported by the wall is raised too (temporary) harmless increase in potential energy, instead of damaging deformation energy; Ends of beams framing into the wall move upwards CG beam moments & shears are stabilizing for the wall. beams Wall responds as a stack of rigid blocks, uplifting at the base & at hor. sections that crack & yield (storey bottom). The favourable effects are indirectly taken into account in design q-factor beams neutral axis Plan view: beams framing into wall

30 Examples of large walls Dissemination of information for training Lisbon February

31 Large lightly reinforced concrete walls Dissemination of information for training Lisbon February Wall system classified as one of large lightly reinforced walls if, in horizontal direction of interest: At least 2 walls with l w >4 m, supporting together >20% of gravity load above (: sufficient no. of walls / floor area & significant uplift of masses); if just one wall: q=2 Fund. period T 1 <0.5 s for fixity it at the base against rotation ti (: low wall aspect ratio) Systems of large lightly reinforced walls: only DC M (q=3); special (less demanding) di dimensioning i i & detailing. Rationale: For large walls, minimum reinforcement of ductile walls implies: very high cost; flexural overstrength that cannot be transmitted to ground. On the other hand, large lightly reinforced walls: preclude (collapse due to) storey mechanism, minimize nonstructural damage, have shown satisfactory performance in strong EQs. If structural system does not qualify as one of large lightly reinforced walls, all its walls designed & detailed as ductile walls.

32 Design & detailing of large lightly reinforced walls in EC8 Dissemination of information for training Lisbon February Vertical steel tailored to demands due to M & N from analysis Little excess (minimum) reinforcement, in order to minimise flexural overstrength. Shear verification for V from analysis times (1+q)/2 ~2: If so-amplified shear demand is less than (design) shear resistance w/o shear reinforcement: No (minimum) horizontal reinforcement. Reason: Inclined cracking prevented (horizontal cracking & yielding due to flexure mainly at construction joints); If inclined cracking occurs, crack width limited by deformation-controlled nature of response (vs. forcecontrolled non-seismic actions covered in EC2), even w/o min horizontal steel.

33 Dissemination of information for training Lisbon February BEAM-COLUMN JOINTS IN DC H FRAMES

34 Shear forces in joints Dissemination of information for training Lisbon February max possible joint shear force & stress If ΣM Rb < ΣM Rc : Shear forces within joint If b c > b w If b c b w

35 Shear failures of exterior beam-column joints Left & right: reinforced joints; centre: unreinforced joint Dissemination of information for training Lisbon February

36 Principal stress approach for joint shear strength Dissemination of information for training Lisbon February Diagonal cracking of unreinforced joint if principal tensile stress due to: joint shear stress, v j & mean vertical compressive stress from column above, ν top f c, exceeds concrete tensile strength, f ct. v j v ju nfc 1 n Eurocode 8: Diagonal cracking of reinforced joint if the principal tensile stress due to: the joint shear stress, v j & the mean vertical compressive stress from column above, ν topf c c,, and the horizontal confining stress due to horiz. joint reinforcement, -ρ jh f yw : exceeds the concrete tensile strength, f ct. jh f yw Joint ultimate shear stress v ju :ifnf c (n: reduction due to transverse tensile strain) reached in principal stress direction: f ct v 2 j top top f c f ct

37 Alternative approach in EC 8 for joint reinforcement Dissemination of information for training Lisbon February Diagonal strut Truss of: horizontal & vertical bars & diagonal compressive field. Interior joints: Exterior joints:

38 Dissemination of information for training Lisbon February OVERVIEW OF DETAILING & DIMENSIONING OF PRIMARY BEAMS, COLUMNS & DUCTILE WALLS IN RC BUILDINGS OF DC H, M or L

39 Detailing/dimensioning of primary seismic beams (secondary ones: as in DCL) Dissemination of information for training Lisbon February DC H DCM DCL critical region length 1.5h w h w Longitudinal bars (L): min, tension side 0.5f ctm /f yk 0.26f ctm /f yk, 0.13% (0) max, critical regions (1) f cd /( sy,d f yd ) (1) 0.04 A s,min, top & bottom 2 14 (308mm 2 ) - A s,min, top-span A s,top-supports /4 - A s,min, critical regions bottom (2) 0.5A s,top - A smin s,min,, supports bottom A sbottom-span s,bottom span/4 (0) d bl /h c - bar crossing interior joint (3) 6.25(1 0.8 d ) fctm 7.5(1 0.8νd ) fctm ' ( ) f yd ρ' f (1 0.5 ) yd max ρmax - d bl /h c - bar anchored at exterior joint (3) 6.25(1 0.8 d ) (0) NDP (Nationally Determined Parameter) per EC2. Table gives the EC2 recommended value. (1) : value of the curvature ductility factor corresponding to the basic value, q o, of the behaviour factor used in the design (2) The minimum area of bottom steel, A s,min, is in addition to any compression steel that may be needed for the verification of the end section for the ULS in bending under the (absolutely) maximum negative moment from the analysis for the seismic design situation, M Ed. (3) h c : column depth in the direction of the bar, d = N Ed /A c f cd : column axial load ratio for the algebraically minimum axial load in the seismic design situation (compression: positive). fctm f yd 7.5(1 0.8ν ) d f f ctm yd -

40 Detailing & dimensioning of primary seismic beams (cont d) Dissemination of information for training Lisbon February DC H DCM DCL Transverse bars (w): (i) outside critical regions spacing s w 0.75d w 0.08 (f ck (MPa)/f yk (MPa) (0) (ii) in critical regions: d bw 6mm 6d bl, h w, 24d bw, 8d bl, h w, 24d bw, spacing s w mm 225mm -

41 Detailing & dimensioning of primary seismic beams (cont d) Dissemination of information for training Lisbon February DC H DCM DCL Shear design: V Ed, seismic (4) M Rb (4) M from analysis for Rb (4) 1.2 Vo, g 2q Vo, g q l l 2 design seismic cl cl action plus gravity V (5) Rd,max seismic As in EC2: V (5) Rd,max =0.3(1-f ck (MPa)/250)b wo zf cd sin2, 1 cot 2.5 V Rd,s, outside critical regions (5) As in EC2: V Rd,s =b w z w f ywd cot (5), 1 cot 2.5 V Rd,s, critical regions (5) V Rd,s =b w z w f ywd ( =45 o ) As in EC2: V Rd,s=b w z w f ywd cot, 1 cot 2.5 (6) If V If V Emin /V Emax <-0.5: inclined Emax /(2+ )f ctd b w d>1: bars at angle to beam axis, - A with cross-section A s /direction s =0.5V Emax /f yd sin & stirrups for 0.5V Emax (4) At a member end where the moment capacities around the joint satisfy: M Rb > M Rc, M Rb is replaced in the calculation of the design shear force, V Ed, by M Rb ( M Rc / M Rb ) (5) z: internal lever arm, taken equal to 0.9d or to the distance between the tension and the compression reinforcement, d-d 1. (6) V Emax, V E,min are the algebraically maximum and minimum values of V Ed resulting from the sign; V emax is the absolutely largest of the two values, and is taken positive in the calculation of ζ; the sign of V Emin is determined according to whether it is the same as that of V Emax or not.

42 Detailing/dimensioning of primary seismic columns (secondary ones: as in DCL Dissemination of information for training Lisbon February Cross-section section sides, h c,b c DCH DCM DCL 0.25m; - h v /10 if =P /Vh>0.1 (1) critical region length (1) 1.5h c, 1.5b c, 0.6m, l c /5 h c, b c, 0.45m, l c /6 h c, b c Longitudinal bars (L): min 1% 0.1N d /A c f yd, 0.2% (0) max 4% 4% (0) d bl 8mm bars per side 3 2 Spacing between restrained bars 150mm 200mm - distance of unrestrained bar from 150mm (0) Note (0) of Table of beams applies. (1) h v is the distance of the inflection point to the column end further away, for bending within a plane parallel to the side of interest; l c is the column clear length.

43 Detailing & dimensioning of primary seismic columns (cont d) Dissemination of information for training Lisbon February DCH DCM DCL Transverse bars (w): Outside critical regions: d bw 6mm, d bl /4 spacing s w 20d bl, h c, b c, 400mm 12d bl, 0.6h c, 0.6b c, 240mm at lap splices, if d bl >14mm: s w 12d bl, 0.6h c, 0.6b c, 240mm Within critical regions: (2) d (3) bw 6mm, 0.4(f 1/2 yd /f ywd ) d bl 6mm, d bl /4 s w (3),(4) 6d bl, b o /3, 125mm 8d bl, b o /2, 175mm - wd (5) wd (4),(5),(6),(7) 30 * d sy,d b c /b o In critical region at column base: wd wd (4),(5),(6),(8),(9) 30 d sy,d b c /b o (2) For DCM: Ιf q 2 used in the design, the transverse reinforcement in critical regions of columns with axial load ratio d not greater than 0.2 may follow the rules applying to DCL columns. (3) For DCH: In the two lower storeys of the building, the requirements on d bw, s w apply over a distance from the end section not less than 1.5 times the critical region height. (4) c denotes full concrete section; o the confined core (to centreline of perimeter hoop); b o is the smallest side of this core. (5) wd : volume ratio of confining hoops to confined core (to centreline of perimeter hoop) times f yd /f cd

44 Detailing & dimensioning of primary seismic columns (cont d) DCH DCM DCL Dissemination of information for training Lisbon February 2011 Transverse bars (w): 44 Outside critical regions: d bw 6mm, d bl /4 spacing s w 20d bl, h c, b c, 400mm 12d bl,, 0.6h c c, 0.6b c c, 240mm at lap splices, if d bl >14mm: s w 12d bl, 0.6h c, 0.6b c, 240mm Within critical regions: (2) d bw (3) 6mm, 0.4(f yd /f ywd ) 1/2 d bl 6mm, d bl /4 s w (3),(4) 6d bl, b o /3, 125mm 8d bl, b o /2, 175mm - wd (5) wd (4),(5),(6),(7) 30 * d sy,d b c /b o In critical region at column base: wd (4),(5),(6),(8),(9) wd 30 d sy,d b c /b o (6) : confinement effectiveness factor, = s n ; where s =(1-s/2b o )(1-s/2h o ) for hoops, s =(1-s/2b o ) for spirals; n =1 for circular hoops, n =1-{b o /((n h -1)h o )+h o /((n b -1)b o )}/3 for rect. hoops with n b legs parallel to side of the core with length b o and n h legs parallel to the one with length h o. (7) For DCH: at column ends protected from plastic hinging by capacity design of the column, * is the curvature ductility factor corresponding to 2/3 of the basic value q o of the behaviour factor used in the design; at column ends where plastic hinging is not prevented due to the exemptions in Note (10) below, * is the full value corresponding to q o ; sy,d =f yd /Ε s. (8) Note (1) of the Beams Table applies. (9) For DCH: Requirement applies also in the critical regions at the ends of columns where plastic hinging is not prevented, because of the exemptions in Note (10) below.

45 Detailing & dimensioning of primary seismic columns (cont d) Dissemination of information for training Lisbon February DCH DCM DCL 1.3 M Capacity design check at beam- Rb M Rc (10) No moment in transverse direction of column joints: column - Verification for M x -M y -N: Truly biaxial, or uniaxial with (M z /0.7, N), (M y /0.7, N) Axial load ratio d =N Ed /A c f cd Shear design: V Ed seismic (11) ends ends M Rc (11) M from analysis for Rc (11) design seismic lcl lcl action plus gravity (12), (13) V Rd,max seismic i As in EC2: V Rd,max =0.3(1-f ck (MPa)/250)b wo zf cd sin2, 1 cot 2.5 V Rd,s seismic (12), (13), (14) As in EC2: V Rd,s =b w z w f ywd cot +N Ed (h-x)/l (13) cl, 1 cot 2.5 (10) The capacity design rule does not need to be met at beam-column joints: (a) of the top floor, (b) of the ground storey in two-storey buildings with axial load ratio d in all columns, (c) if shear walls resist 50% of base shear parallel to the plane of the frame (wall buildings or wallequivalent dual), or (d) in one-out-of-four columns of plane frames with columns of similar size. (11) At a member end where the moment capacities around the joint satisfy: M Rb < M Rc, M Rc is replaced by M Rc ( M Rb / M Rc ). (12) z is the internal lever arm, equal to 0.9d or to the distance between the tension and the compression reinforcement, d-d 1. (13) The axial load, N Ed, and its normalized value, d, are taken with their most unfavourable values for the shear verification in the seismic design situation (considering both the demand and the capacity). (14) x is the neutral axis depth at the end section in the ULS of bending with axial load.

46 Detailing & dimensioning of ductile walls Dissemination of information for training Lisbon February DCH DCM DCL Web thickness, b wo max(150mm, h storey /20) - max(l critical region length, h w, H w /6) (1) cr min(2l w, h storey ) if wall 6 storeys - min(2l w w, 2h storey) ) if wall > 6 storeys (0) Notes (0) of the Beam & Column Tables apply. (1) l w is the long side of the rectangular wall section or rectangular part thereof; H w is the total height of fthe wall; h storey is the storey height. ht

47 Detailing & dimensioning of ductile walls (cont d) Dissemination of information for training Lisbon February DCH DCM DCL Boundary elements: a) in critical region: - length l c from edge 0.15l w, 1.5b w, length over which c > thickness b w over l c 0.2m; h st /15 if l c max(2b w, l w /5), h st /10 if l c >max(2b w, l w /5) - - vertical reinforcement: min over A c =l c b w 0.5% 0.2% (0 ) max over A c 4% (0) - confining hoops (w) (2 ) : d bw 6mm, 0.4(f yd /f ywd ) 1/2 d bl 6mm, in the part of the spacing s w (3) 6d bl, b o /3, 125m m 8d bl, b o /2, 175mm section where L >2%: wd (2 ) as over the rest of the wd (3 ),(4 ) 30 ( d + ) sy,d b w /b o wall (case b, below) In parts of the section where c >0.2% : v,min = 0.5%; In parts of the section where L >2% : - distance of unrestrained bar in compression zone from nearest restrained bar b) over the rest of the wall 150m m; height: - hoops with d bw max(6mm, d bl /4) & spacing s w min(12d bl, 0.6b wo, 240mm) (0 ) up to a distance of 4b w above or belo w fl oor b eams or slabs, or s w min(20d bl, b wo, 400m m) (0 ) beyond that distance (2) For DC M: If in the seismic design situation d =N Ed /A c f cd 0.15, the DCL rules may be applied for the boundary elements; these rules apply also if d 0.2 but the q-value used in the design is of 85% of the value allowed when the DC M confining reinforcement is used in boundary elements. (3) Notes (4), (5), (6) of the columns Table apply for the confined core of boundary elements. (4) is the curvature ductility factor corresponding to the product of q o andthe ratio M Edo /M Rdo at the base of the wall; sy,d = f yd /Ε s, d is the mechanical ratio of the vertical web reinforcement.

48 Detailing & dimensioning of ductile walls (cont d) Dissemination of information for training Lisbon February DCH DCM DCL Web: - vertical bars (v): v,min wherever c >0.2%: 0.5%; elsewhere 0.2% 0.2% (0) v,max 4% d b 8mm - d bv b wo /8 - spacing s v min(25d bv, 250mm) min(3b wo, 400mm) - horizontal bars: hmin 0.2% max(0.1%, 0.25 v ) (0) d bh 8mm - d bh b wo /8 - spacing s h min(25d bh, 250mm) 400mm axial load ratio d = N Ed /A c f cd Design moments M Ed : If H w /l w 2, design moments from linear envelope of from analysis for maximum moments M Ed from analysis for the design seismic seismic design situation, shifted up by the tension action & gravity shift a l (0) Notes (0) of the Beam & Column Tables apply.

49 Detailing & dimensioning of ductile walls (cont d) Dissemination of information for training Lisbon February DCH DCM DCL Shear design: Design shear force V Ed = shear force V Ed from the analysis for the design seismic action, times factor : if H (5) w /l w 2 : =1.2M Rdo /M Edo q if H w /l w >2 (5), (6) : =1.5 = M S T ε Rdo q e C 1.2 q M 0.1 Edo Se T 1 Design shear force in walls fd from analysis for of dual systems with 0.75z 1 H w /l w >2, for z between H w /3 1.5 z H a s V ( ) (0) 1.5 w Ed z εved εved design seismic action H 4 3 and H w : (7) w Hw & gravity V Rd,max outside critical region As in EC2: V Rd,max =0.3(1-f ck (MPa)/250)b wo (0.8l w )f cd sin2, with 1 cot 2.5 V Rd,max in critical region 40% of EC2 value As in EC2 (5) M edo : moment at the wall base from the analysis for the seismic design situation; (6) M Rdo : design moment resistance at the wall base for the axial force N Ed from the same analysis S e (T 1 ): value of the elastic spectral acceleration at the period of the fundamental mode in the horizontal direction (closest to that) of the wall shear force being multiplied by ; S e (T c ): spectral acceleration at the corner period T C of the elastic spectrum. (7) A dual structural system is one where walls resist between 35 and 65% of the seismic base shear in the direction of the wall shear force considered; z is distance from the base of the wall.

50 Detailing & dimensioning of ductile walls (cont d) Dissemination of information for training Lisbon February DCH DCM DCL Shear design: V Rd,s in critical region; web reinforcement ratios: h, (i) if s =M Ed /V Ed l w 2 : = v,min, h from V Rd,s : V Rd,s =b wo (0.8l w ) h f ywd (ii) if s <2: h from V Rd,s : (8) V Rd,s =V Rd,c +b wo s (0.75l w ) h f yhd v from: (9) f yvd h f yhd -N Ed /(0.8l w b wo ) Resistance to sliding shear: via bars with total area A si at angle to the horizontal (10) v,min at construction joints (9),(11) V Rd,s =A si f yd cos + A sv min(0.25f yd, 1.3 (f yd f cd ))+ 0.3(1-f ck (MPa)/250)b wo xf cd , f 1.3 f yd ctd 1.5 N f A cd Ed c f yd As in EC2: V Rd,s =b wo (0.8l w ) h f ywd cot, 1 cot 2.5 As in EC2: V Rd,s =b wo (0.8l w ) h f ywd cot, 1 cot 2.5 (8) If b w & d in m, f cd in MPa, ρ L : tensile reinforcement ratio and N Εd in kn, V Rd,c (in kn) is given by:.. N 1 / / / 3 Ed V Rd,c max , 35 1 f cd fcd. bwd d 1 d 0 15 Ac N ed >0 for compression; min. value from analysis for seismic design situation; V Rd, =0 for tension (9) N Ed >0 for compression; use its minimum value from the analysis for the seismic design situation (10) A sv : total area of web vert. bars & of additional vert. bars in boundary elements for shear sliding (11) f ctd =f ctκ 005 / c : design value of (5%-fractile) tensile strength of concrete. -

51 RC Building Design Example Dissemination of information for training Lisbon February Example design of beams in flexure

52 Beam C Dissemination of information for training Lisbon February A B SLAB C TYPICAL PLAN D

53 Beam C storey 6 Dissemination of information for training Lisbon February * STOREY: 6 * BEAMS: * Concrete: C25 - Long. Reinforcement: S500 - Stirrups: S500 - Cover: 35(mm) * GEOMETRY - BENDING MOMENTS MSd - LONGITUDINAL REINFORCEMENT Beam: 10 Length l: 5.50m X-section 50m X L Depth h: 0.50m Width bw: 0.25m JOINT GEOMETRY - SHEAR FORCES - VERIFICATION IN SHEAR L end: 10 Top flange thickness (m): 0.18 (L end) 0.18 (centre) 0.18 (R end) Joint Max Φ J width J hor. shear J hor. shear J hor. steel J ver. steel R end: 10 Bot flange thickness (m): 0.00 (L end) - (centre) 0.00 (R end) bj Vjh strength area Ash area Asv (mm)+---(m) (kn) (kn) (mm2) (mm2)----+ Location Effect. max MSd Required Beam bars Provided Flexural fl width steel area Contin Addit steel area capacity (m)---+--(knm) (mm2) (mm2)---+-(knm) L end top Φ L end bot Φ midspan Φ R end top Φ R end bot Φ Note: Top reinforcement includes 250mm2 /m of effective slab width Beam: 11 Length l: 5.30m X-section L Depth h: 0.50m Width bw: 0.25m L end: 11 Top flange thickness (m): 0.18 (L end) 0.18 (centre) 0.18 (R end) R end: 11 Bot flange thickness (m): 0.00 (L end) - (centre) 0.00 (R end) Location Effect. max MSd Required Beam bars Provided Flexural fl width steel area Contin Addit steel area capacity (m)---+--(knm) (mm2) (mm2)---+-(knm)-- + (knm) + (mm2) + + (mm2) + (knm) L end top Φ L end bot Φ midspan Φ R end top Φ12 1Φ R end bot Φ Note: Top reinforcement includes 250mm2 /m of effective slab width + Beam: 12 Length l: 5.30m X-section L Depth h: 0.50m Width bw: 0.25m L end: 12 Top flange thickness (m): 0.18 (L end) 0.18 (centre) 0.18 (R end) R end: 12 Bot flange thickness (m): 0.00 (L end) - (centre) 0.00 (R end) Location Effect. max MSd Required Beam bars Provided Flexural fl width steel area Contin Addit steel area capacity (m)---+--(knm) (mm2) (mm2)---+-(knm)-- L end top Φ12 1Φ L end bot Φ midspan Φ R end top Φ12 1Φ R end bot Φ Note: Top reinforcement includes 250mm2 /m of effective slab width

54 Beam C storey 5 Dissemination of information for training Lisbon February * STOREY: 5 * BEAMS: * Concrete: C25 - Long. Reinforcement: S500 - Stirrups: S500 - Cover: 35(mm) * GEOMETRY - BENDING MOMENTS MSd - LONGITUDINAL REINFORCEMENT Beam: 10 Length l: 5.50m X-section L Depth h: 0.50m Width bw: 0.25m JOINT GEOMETRY - SHEAR FORCES - VERIFICATION IN SHEAR L end: 10 Top flange thickness (m): 0.18 (L end) 0.18 (centre) 0.18 (R end) Joint Max Φ J width J hor. shear J hor. shear J hor. steel J ver. steel R end: 10 Bot flange thickness (m): 0.00 (L end) - (centre) 0.00 (R end) bj Vjh strength area Ash area Asv (mm)+---(m) (kn) (kn) (mm2) (mm2)----+ Location Effect. max MSd Required Beam bars Provided Flexural fl width steel area Contin Addit steel area capacity (m)---+--(knm) (mm2) (mm2)---+-(knm) L end top Φ12 1Φ L end bot Φ12 1Φ midspan Φ R end top Φ12 1Φ R end bot Φ12 1Φ Note: Top reinforcement includes 250mm2 /m of effective slab width + Beam: 11 Length l: 5.30m X-section L Depth h: 0.50m Width bw: 0.25m L end: 11 Top flange thickness (m): 0.18 (L end) 0.18 (centre) 0.18 (R end) R end: 11 Bot flange thickness (m): 0.00 (L end) - (centre) 0.00 (R end) Location Effect. max MSd Required Beam bars Provided Flexural fl width steel area Contin Addit steel area capacity (m)---+--(knm) (mm2) (mm2)---+-(knm)-- + (knm) + (mm2) + + (mm2) + (knm) L end top Φ12 2Φ L end bot Φ12 1Φ midspan Φ R end top Φ12 2Φ R end bot Φ12 1Φ Note: Top reinforcement includes 250mm2 /m of effective slab width + Beam: 12 Length l: 5.30m X-section L Depth h: 0.50m Width bw: 0.25m L end: 12 Top flange thickness (m): 0.18 (L end) 0.18 (centre) 0.18 (R end) R end: 12 Bot flange thickness (m): 0.00 (L end) - (centre) 0.00 (R end) Location Effect. max MSd Required Beam bars Provided Flexural fl width steel area Contin Addit steel area capacity (m)---+--(knm) (mm2) (mm2)---+-(knm)-- L end top Φ12 2Φ L end bot Φ12 1Φ midspan Φ R end top Φ12 2Φ R end bot Φ12 1Φ Note: Top reinforcement includes 250mm2 /m of effective slab width

55 Beam C storey 4 Dissemination of information for training Lisbon February * STOREY: 4 * BEAMS: * Concrete: C25 - Long. Reinforcement: S500 - Stirrups: S500 - Cover: 35(mm) * GEOMETRY - BENDING MOMENTS MSd - LONGITUDINAL REINFORCEMENT Beam: 10 Length l: 5.50m X-section L Depth h: 0.50m Width bw: 0.25m JOINT GEOMETRY - SHEAR FORCES - VERIFICATION IN SHEAR L end: 10 Top flange thickness (m): 0.18 (L end) 0.18 (centre) 0.18 (R end) Joint Max Φ J width J hor. shear J hor. shear J hor. steel J ver. steel R end: 10 Bot flange thickness (m): 0.00 (L end) - (centre) 0.00 (R end) bj Vjh strength area Ash area Asv (mm)+---(m) (kn) (kn) (mm2) (mm2)----+ Location Effect. max MSd Required Beam bars Provided Flexural fl width steel area Contin Addit steel area capacity (m)---+--(knm) (mm2) (mm2)---+-(knm) L end top Φ12 1Φ L end bot Φ12 1Φ midspan Φ R end top Φ12 1Φ R end bot Φ12 1Φ Note: Top reinforcement includes 250mm2 /m of effective slab width + Beam: 11 Length l: 5.30m X-section L Depth h: 0.50m Width bw: 0.25m L end: 11 Top flange thickness (m): 0.18 (L end) 0.18 (centre) 0.18 (R end) R end: 11 Bot flange thickness (m): 0.00 (L end) - (centre) 0.00 (R end) Location Effect. max MSd Required Beam bars Provided Flexural fl width steel area Contin Addit steel area capacity (m)---+--(knm) (mm2) (mm2)---+-(knm)-- + (knm) + (mm2) + + (mm2) + (knm) L end top Φ12 2Φ L end bot Φ12 1Φ midspan Φ R end top Φ12 2Φ R end bot Φ12 1Φ Note: Top reinforcement includes 250mm2 /m of effective slab width + Beam: 12 Length l: 5.30m X-section L Depth h: 0.50m Width bw: 0.25m L end: 12 Top flange thickness (m): 0.18 (L end) 0.18 (centre) 0.18 (R end) R end: 12 Bot flange thickness (m): 0.00 (L end) - (centre) 0.00 (R end) Location Effect. max MSd Required Beam bars Provided Flexural fl width steel area Contin Addit steel area capacity (m)---+--(knm) (mm2) (mm2)---+-(knm)-- L end top Φ12 2Φ L end bot Φ12 1Φ midspan Φ R end top Φ12 2Φ R end bot Φ12 1Φ Note: Top reinforcement includes 250mm2 /m of effective slab width

56 Beam C storey 3 Dissemination of information for training Lisbon February * STOREY: 3 * BEAMS: * Concrete: C25 - Long. Reinforcement: S500 - Stirrups: S500 - Cover: 35(mm) * GEOMETRY - BENDING MOMENTS MSd - LONGITUDINAL REINFORCEMENT Beam: 10 Length l: 5.50m X-section L Depth h: 0.50m Width bw: 0.25m JOINT GEOMETRY - SHEAR FORCES - VERIFICATION IN SHEAR L end: 10 Top flange thickness (m): 0.18 (L end) 0.18 (centre) 0.18 (R end) Joint Max Φ J width J hor. shear J hor. shear J hor. steel J ver. steel R end: 10 Bot flange thickness (m): 0.00 (L end) - (centre) 0.00 (R end) bj Vjh strength area Ash area Asv (mm)+---(m) (kn) (kn) (mm2) (mm2)----+ Location Effect. max MSd Required Beam bars Provided Flexural fl width steel area Contin Addit steel area capacity (m)---+--(knm) (mm2) (mm2)---+-(knm) L end top Φ12 3Φ L end bot Φ12 1Φ midspan Φ R end top Φ12 1Φ R end bot Φ12 1Φ Note: Top reinforcement includes 250mm2 /m of effective slab width + Beam: 11 Length l: 5.30m X-section L Depth h: 0.50m Width bw: 0.25m L end: 11 Top flange thickness (m): 0.18 (L end) 0.18 (centre) 0.18 (R end) R end: 11 Bot flange thickness (m): 0.00 (L end) - (centre) 0.00 (R end) Location Effect. max MSd Required Beam bars Provided Flexural fl width steel area Contin Addit steel area capacity (m)---+--(knm) (mm2) (mm2)---+-(knm)-- + (knm) + (mm2) + + (mm2) + (knm) L end top Φ12 2Φ L end bot Φ12 1Φ midspan Φ R end top Φ12 2Φ R end bot Φ12 1Φ Note: Top reinforcement includes 250mm2 /m of effective slab width + Beam: 12 Length l: 5.30m X-section L Depth h: 0.50m Width bw: 0.25m L end: 12 Top flange thickness (m): 0.18 (L end) 0.18 (centre) 0.18 (R end) R end: 12 Bot flange thickness (m): 0.00 (L end) - (centre) 0.00 (R end) Location Effect. max MSd Required Beam bars Provided Flexural fl width steel area Contin Addit steel area capacity (m)---+--(knm) (mm2) (mm2)---+-(knm)-- L end top Φ12 2Φ L end bot Φ12 1Φ midspan Φ R end top Φ12 2Φ R end bot Φ12 1Φ Note: Top reinforcement includes 250mm2 /m of effective slab width

57 Beam C storey 2 Dissemination of information for training Lisbon February * STOREY: 2 * BEAMS: * Concrete: C25 - Long. Reinforcement: S500 - Stirrups: S500 - Cover: 35(mm) * GEOMETRY - BENDING MOMENTS MSd - LONGITUDINAL REINFORCEMENT Beam: 10 Length l: 5.50m X-section L Depth h: 0.50m Width bw: 0.25m JOINT GEOMETRY - SHEAR FORCES - VERIFICATION IN SHEAR L end: 10 Top flange thickness (m): 0.18 (L end) 0.18 (centre) 0.18 (R end) Joint Max Φ J width J hor. shear J hor. shear J hor. steel J ver. steel R end: 10 Bot flange thickness (m): 0.00 (L end) - (centre) 0.00 (R end) bj Vjh strength area Ash area Asv (mm)+---(m) (kn) (kn) (mm2) (mm2)----+ Location Effect. max MSd Required Beam bars Provided Flexural fl width steel area Contin Addit steel area capacity (m)---+--(knm) (mm2) (mm2)---+-(knm) L end top Φ12 1Φ L end bot Φ12 1Φ midspan Φ R end top Φ12 1Φ R end bot Φ12 1Φ Note: Top reinforcement includes 250mm2 /m of effective slab width + Beam: 11 Length l: 5.30m X-section L Depth h: 0.50m Width bw: 0.25m L end: 11 Top flange thickness (m): 0.18 (L end) 0.18 (centre) 0.18 (R end) R end: 11 Bot flange thickness (m): 0.00 (L end) - (centre) 0.00 (R end) Location Effect. max MSd Required Beam bars Provided Flexural fl width steel area Contin Addit steel area capacity (m)---+--(knm) (mm2) (mm2)---+-(knm)-- + (knm) + (mm2) + + (mm2) + (knm) L end top Φ12 2Φ L end bot Φ12 1Φ midspan Φ R end top Φ12 2Φ R end bot Φ12 1Φ Note: Top reinforcement includes 250mm2 /m of effective slab width + Beam: 12 Length l: 5.30m X-section L Depth h: 0.50m Width bw: 0.25m L end: 12 Top flange thickness (m): 0.18 (L end) 0.18 (centre) 0.18 (R end) R end: 12 Bot flange thickness (m): 0.00 (L end) - (centre) 0.00 (R end) Location Effect. max MSd Required Beam bars Provided Flexural fl width steel area Contin Addit steel area capacity (m)---+--(knm) (mm2) (mm2)---+-(knm)-- L end top Φ12 2Φ L end bot Φ12 1Φ midspan Φ R end top Φ12 2Φ R end bot Φ12 1Φ Note: Top reinforcement includes 250mm2 /m of effective slab width

CONSULTING Engineering Calculation Sheet

CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Structure Design - EQ Load Definition and EQ Effects v20 EQ Response Spectra in Direction X, Y, Z X-Dir Y-Dir Z-Dir Fundamental period of building, T 1 5.00

Διαβάστε περισσότερα

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain

Διαβάστε περισσότερα

5.0 DESIGN CALCULATIONS

5.0 DESIGN CALCULATIONS 5.0 DESIGN CALCULATIONS Load Data Reference Drawing No. 2-87-010-80926 Foundation loading for steel chimney 1-00-281-53214 Boiler foundation plan sketch : Figure 1 Quantity Unit Dia of Stack, d 6.00 m

Διαβάστε περισσότερα

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD: APPENDIX 1: Gravity Load Calculations SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD: A t = 16.2 * 13 = 208 ft^2 R 1 = 1.2 -.001* A t = 1.2 -.001*208 =.992 F = 0 for a flat

Διαβάστε περισσότερα

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Α.Σ.ΠΑΙ.Τ.Ε.) «Αρχιμήδης ΙΙΙ Ενίσχυση Ερευνητικών ομάδων στην Α.Σ.ΠΑΙ.Τ.Ε.» Υποέργο: 8 Τίτλος: «Εκκεντρότητες αντισεισμικού σχεδιασμού ασύμμετρων

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Το σχέδιο της μέσης τομής πλοίου

Το σχέδιο της μέσης τομής πλοίου ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Το σχέδιο της μέσης τομής πλοίου Α. Θεοδουλίδης Σχέδιο Μέσης Τομής Αποτελεί ένα από τα βασικώτερα κατασκευαστικά σχέδια του πλοίου.

Διαβάστε περισσότερα

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES Customer: PDI, 4200 Oakleys Court, Richmond, VA 23223 Date: 5/31/2017 A. PALMA e n g i n e e r i n g Tag: Seismic Restraint Suspended Bus System Supports Building Code: 2012 IBC/2013 CBC&ASCE7-10 STRUCTURAL

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10) Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Introduction to Theory of. Elasticity. Kengo Nakajima Summer Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor

Διαβάστε περισσότερα

katoh@kuraka.co.jp okaken@kuraka.co.jp mineot@fukuoka-u.ac.jp 4 35 3 Normalized stress σ/g 25 2 15 1 5 Breaking test Theory 1 2 Shear tests Failure tests Compressive tests 1 2 3 4 5 6 Fig.1. Relation between

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ Νικόλαος Αντωνίου Πολιτικός Μηχανικός Τµήµα Πολιτικών Μηχανικών, Α.Π.Θ.,

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Dr.-Ing. 郭瑞昭 Yield criteria Question: For what combinations of loads will the cylinder begin to yield plastically? The criteria for deciding

Διαβάστε περισσότερα

Struct4u b.v. Calculation number : Revision : 0 Page 1 of 8 Project number : Date - time : :25 Project description : Part :

Struct4u b.v. Calculation number : Revision : 0 Page 1 of 8 Project number : Date - time : :25 Project description : Part : Calculation number : Revision : 0 Page 1 of 8 GENERAL File: document1.xcol Applied standards: Consequence class Structural Class : NEN-EN 1992-1-1 + C2:2011/NB:2011 (nl) : NEN-EN 1992-1-2 + C1:2011/NB:2011

Διαβάστε περισσότερα

COMPOSITE SLABS DESIGN CONTENTS

COMPOSITE SLABS DESIGN CONTENTS CONTENTS 1. INTRODUCTION... 3 2. GENERAL PARAMETERS... 5 3. PROFILED STEEL SHEETING CROSS-SECTIONS... 6 4. COMPOSITE SLAB STEEL REINFORCEMENT... 9 5. LOADS... 10 6. ANALYSIS... 11 7. DESIGN... 13 8. REPORT

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

MasterSeries MasterPort Lite Sample Output

MasterSeries MasterPort Lite Sample Output MasterSeries MasterPort Lite Sample Output The following output is from the MasterPort Lite Design program. Contents 2 Frame Geometry and Loading 3 Tabular Results Output 4 Bending Moment and Diagrams

Διαβάστε περισσότερα

Mechanics of Materials Lab

Mechanics of Materials Lab Mechanics of Materials Lab Lecture 9 Strain and lasticity Textbook: Mechanical Behavior of Materials Sec. 6.6, 5.3, 5.4 Jiangyu Li Jiangyu Li, Prof. M.. Tuttle Strain: Fundamental Definitions "Strain"

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results

Διαβάστε περισσότερα

Figure 1 - Plan of the Location of the Piles and in Situ Tests

Figure 1 - Plan of the Location of the Piles and in Situ Tests Figure 1 - Plan of the Location of the Piles and in Situ Tests 1 2 3 A B C D DMT4 DMT5 PMT1 CPT4 A 2.2 1.75 S5+ SPT CPT7 CROSS SECTION A-A C2 E7 E5 S4+ SPT E3 E1 E DMT7 T1 CPT9 DMT9 CPT5 C1 ground level

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Cross sectional area, square inches or square millimeters

Cross sectional area, square inches or square millimeters Symbols A E Cross sectional area, square inches or square millimeters of Elasticity, 29,000 kips per square inch or 200 000 Newtons per square millimeter (N/mm 2 ) I Moment of inertia (X & Y axis), inches

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

BEHAVIOR OF MASSIVE EARTH RETAINING WALLS UNDER EARTHQUAKE SHAKING Comparisons to EC-8 Provisions

BEHAVIOR OF MASSIVE EARTH RETAINING WALLS UNDER EARTHQUAKE SHAKING Comparisons to EC-8 Provisions UNIVERSITY OF PATRAS DEPARTMENT OF CIVIL ENGINEERING Laboratory of Geotechnical Engineering BEHAVIOR OF MASSIVE EARTH RETAINING WALLS UNDER EARTHQUAKE SHAKING Comparisons to EC-8 Provisions Prof. G. Athanasopoulos

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* PART NUMBER SYSTEM

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Seria : 0. T_ME_(+B)_Strength of Materia_9078 Dehi Noida Bhopa Hyderabad Jaipur Luckno Indore une Bhubanesar Kokata atna Web: E-mai: info@madeeasy.in h: 0-56 CLSS TEST 08-9 MECHNICL ENGINEERING Subject

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* Temperature Coefficient

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

A, B. Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts in depth shown on diagram.

A, B. Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts in depth shown on diagram. Corner Joints Machining, Frame edge sealing. Page ID: frame01 D D C A, B A C B C A 20 60 Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Α ιθ EL. 3. Κα ασ ασ ής: fischerwerke GmbH & Co. KG, Klaus-Fischer-Straße 1, Waldachtal, α ία. Tumlingen,

Α ιθ EL. 3. Κα ασ ασ ής: fischerwerke GmbH & Co. KG, Klaus-Fischer-Straße 1, Waldachtal, α ία. Tumlingen, Η ΩΣΗ ΠΙ ΟΣ Ω Α ιθ. 0020 EL 1. Μο α ι ός ω ι ός α ο οί σ ς ο ύ ο ο οϊό ος: fischer η ώ α ο ώ α ύ ιο FH II, FH II-I 2. Π οβ ό - ς χ ήσ - ις : Π οϊό Α ύ ιο ιασ ο ής χό ς α ό ο ι έ η/ ς ήση/ ις ω σ έ ω σ

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ιερεύνηση αξιοπιστίας EC3 για τον έλεγχο αστοχίας µεταλλικών πλαισίων ιπλωµατική Εργασία: Καλογήρου

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

D28 1-1/4" PIPE x 42-1/2" HIGH RAIL WITHOUT BOTTOM RAIL

D28 1-1/4 PIPE x 42-1/2 HIGH RAIL WITHOUT BOTTOM RAIL Ultra-tec Cable Railing Systems G-D28 D28 1-1/4" PIPE x 42-1/2" HIGH RAIL WITHOUT BOTTOM RAIL Building Code: Material: 2006 International Building Code 2007 California Building Code AISC Steel Construction

Διαβάστε περισσότερα

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού EN 1998 - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ σελ.1 γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού εφελκυσμός άνω ίνα {L} i=1 εφελκυσμός άνω ίνα {R} i=2 N sd.l

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ Σχολή Μηχανικής και Τεχνολογίας Πτυχιακή εργασία ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ Σωτήρης Παύλου Λεμεσός, Μάιος 2018 i ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΩΝ ΕΜΠ ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ ΙΣΟΓΕΙΟ ΒΙΟΜΗΧΑΝΙΚΟ ΚΤΙΡΙΟ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΚΑΤΑΣΚΕΥΗΣ ΩΡΟΛΟΓΟΠΟΥΛΟΥ ΒΑΣΙΛΙΚΗ A B Γ 1 2 3 4 5 6 proper anchorage

Διαβάστε περισσότερα

; +302 ; +313; +320,.

; +302 ; +313; +320,. 1.,,*+, - +./ +/2 +, -. ; +, - +* cm : Key words: snow-water content, surface soil, snow type, water permeability, water retention +,**. +,,**/.. +30- +302 ; +302 ; +313; +320,. + *+, *2// + -.*, **. **+.,

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS FEATURE Operating Temperature: -55 ~ +155 C 3 Watts power rating in 1 Watt size, 1225 package High purity alumina substrate for high power dissipation Long side terminations with higher power rating PART

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Analyse af skrå bjælke som UPE200

Analyse af skrå bjælke som UPE200 Analyse af skrå bjælke som UPE Project: Opgave i stål. Skrå bjælke som UPE Description: Snitkræfter, forskydningscentrum, samling Customer: LC FEDesign. StruSoft Designed: LC Date: 9 Page: / 4 Documentation

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

DISCLAIMER By using the LOGIX Design Manual, in part or in whole, the user accepts the following terms and conditions.

DISCLAIMER By using the LOGIX Design Manual, in part or in whole, the user accepts the following terms and conditions. DISCLAIMER By using the LOGIX Design Manual, in part or in whole, the user accepts the following terms and conditions. The LOGIX Design Manual shall be used for the sole purpose of estimating, design or

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8% 91 500 201 0/11 Aluminum raming Linear Motion and Assembly Technologies 1 Section : Engineering Data and Speciications Technical Data or Proiles Metric U.S. Equivalent Material designation according to

Διαβάστε περισσότερα

Structural Design of Raft Foundation

Structural Design of Raft Foundation QATAR UNIVERSITY COLLAGE OF ENGINEERING COURSE: DESIGN OF REINFORCED CONCRETE STRUCTURES Structural Design of Raft Foundation Submitted to: Dr. Mohammed Al-ansari Prepared by: Haytham Adnan Sadeq Mohammed

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα