Μουσικές Νότες και Κλίμακες Κλίμακες και Ηχοχρώματα (συγκερασμός) Η Πυθαγόρεια Κλίμακα Ισο συγκερασμένη Κλίμακα Ανορθόδοξες Κλίμακες

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μουσικές Νότες και Κλίμακες Κλίμακες και Ηχοχρώματα (συγκερασμός) Η Πυθαγόρεια Κλίμακα Ισο συγκερασμένη Κλίμακα Ανορθόδοξες Κλίμακες"

Transcript

1 Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 10 Μουσικές Νότες και Κλίμακες Κλίμακες και Ηχοχρώματα (συγκερασμός) Η Πυθαγόρεια Κλίμακα Ισο συγκερασμένη Κλίμακα Ανορθόδοξες Κλίμακες

2 Επανάληψη της Διάλεξης 9 Στην τελευταία διάλεξη καλύψαμε: Την αντίληψη συνδυασμένων τόνων (διαφορά τόνων) Διαφορετικές μορφές ακοής (αναλυτική/συνθετική, αρμονική/αναρμονική) Τη φυσική βάση της παραφωνίας Θεωρίες αντίληψης ύψους τόνου (τη σχετική σημασία των στοιχείων μήκους κύματος και συχνότητας) 2

3 Γιατί ένα πιάνο έχει 7 άσπρες νότες και 5 μαύρες νότες ανά οκτάβα; 3

4 Μουσικές Κλίμακες Οι πιθανές συχνότητες που μπορούν να χρησιμοποιηθούν στη μουσική καλύπτουν ένα άπειρο συνεχές. Αλλά, στην πράξη, οι περισσότερες μουσικές χρησιμοποιούν μόνο ένα μικρό (πεπερασμένο) αριθμό συγκεκριμένων συχνοτήτων. Καλούμε κάθε μια από αυτές τις ειδικές συχνότητες μουσική νότα και μια σειρά από νότες την καλούμε μουσική κλίμακα. Διαφορετικοί πολιτισμοί έχουν υιοθετήσει διαφορετικές κλίμακες. Η επιλογή της κλίμακας είναι πρωταρχικά αισθητική, αλλά μερικές αισθητικές κρίσεις επηρεάζονται ισχυρά από φυσικές εκτιμήσεις (π.χ., παραφωνία). Τι μπορεί να μας πει η φυσική για τις μουσικές κλίμακες; 4

5 Αρμονικά Ηχοχρώματα Οι περισσότεροι μουσικοί ήχοι έχουν ανώτερες που είναι κατά προσέγγιση αρμονικές (δηλ., ισοκατανέμονται σε ένα γραμμικό άξονα συχνοτήτων). Αυτό είναι πιο πιθανό λόγω του συνδυασμού δύο μεταξύ τους σχετιζόμενων παραγόντων: Οι συχνότητες συντονισμού πολλών φυσικών συστημάτων συντονισμού είναι προσεγγιστικά αρμονικές. Ο εγκέφαλός μας είναι βελτιστοποιημένος για να ακούει ηχοχρώματα που είναι προσεγγιστικά αρμονικά. Ας σημειωθεί ότι υπάρχουν παραδείγματα φυσικών μη αρμονικών ήχων (π.χ., το χειροκρότημα) αλλά δε τους θεωρούμε ότι είναι και μουσικοί. 5

6 Κανόνας των Οκτάβων Δύο νότες που παίζονται μαζί σε όργανα με αρμονικά τέμπο ακούγονται με περισσότερη συνήχηση (λιγότερο παράφωνες) όταν οι θεμελιώδεις συχνότητές τους διαφέρουν κατά ακριβή αριθμό οκτάβων: συχνότητα Υπό αυτή την έννοια, μια οκτάβα είναι ένα ιδιαίτερο διάστημα, το οποίο μπορούμε να περιμένουμε ότι θα παίξει ειδικό ρόλο σε κάθε «φυσική» κλίμακα (αν και είναι βεβαίως δυνατό να επινοηθούν μη-φυσικές κλίμακες). 6

7 Υποδιαιρώντας την Οκτάβα Στην πράξη, αυτό σημαίνει ότι αν μια συγκεκριμένη συχνότητα περιλαμβάνεται σε μια κλίμακα, τότε όλες οι άλλες συχνότητες που είναι πάνω ή κάτω από αυτή κατά ένα ακριβή αριθμό οκτάβων επίσης περιλαμβάνονται. Επομένως, η επιλογή της σειράς των νοτών που θα χρησιμοποιηθούν σε μια κλίμακα συμπυκνώνεται στο πρόβλημα του πώς θα υποδιαιρεθεί μια οκτάβα. Είναι η επιλογή του πώς θα υποδιαιρεθεί μια οκτάβα καθαρά αισθητική, ή υπάρχουν φυσικές εκτιμήσεις που προτιμούν ορισμένα μουσικά διαστήματα; 7

8 Κλίμακες και Ηχοχρώματα Η επιλογή μιας κλίμακας (υποδιαιρέσεις μιας οκτάβας) σχετίζεται στενά με το ηχόχρωμα του οργάνου που πρόκειται να παίξει την κλίμακα. Η κλίμακα και το ηχόχρωμα σχετίζονται με την παραφωνία: οι νότες μιας κλίμακας δεν πρέπει να ακούγονται δυσάρεστα όταν παίζονται μαζί. Για παράδειγμα, οι περισσότεροι άνθρωποι που ακούνε ένα «όργανο» χωρίς ανώτερες (δηλ.,ένα καθαρό ΑΑΚ ημιτονοειδές κύμα) δε θα έχουν καμιά προτίμηση για το πώς θα υποδιαιρέσουν μια οκτάβα (και η οκτάβα δεν είναι πια ένα ιδιαίτερο διάστημα). 8

9 Εν τούτοις, οι περισσότεροι άνθρωποι που ακροάζονται ένα μουσικό όργανο με αρμονικό ηχόχρωμα (δηλ., τα περισσότερα «μουσικά» όργανα) θα δείχνουν σαφή προτίμηση σε ορισμένα διαστήματα όπου οι ανώτερες συμπίπτουν. Διαφορετικά όργανα με αρμονικά ηχοχρώματα εμφανίζουν διαφορετική ένταση στις διάφορες αρμονικές. Αυτές οι διαφορές επηρεάζουν το ποσοστό συνήχησης των διαστημάτων αλλά δεν μεταβάλλουν τις συχνότητές τους. Επομένως, υπάρχει μια παγκόσμια σειρά προτεινόμενων υποδιαιρέσεων της οκτάβας για όργανα με αρμονικά ηχοχρώματα (βασισμένη σε φυσικό μοντέλο παραφωνίας). 9

10 Πόσο πολύ μπορεί να διαιρεθεί η Οκτάβα; Ελαχιστοποιώντας την παραφωνία νοτών που παίζονται μαζί από όργανα με αρμονικά ηχοχρώματα, μας δίνεται ένας οδηγός για το πώς να δημιουργήσουμε μια κλίμακα με δεδομένο αριθμό νοτών, αλλά όχι ως προς το πόσες νότες θα χρησιμοποιήσουμε.. Μερικές από τις συμβατικές επιλογές είναι: Πεντατονική: η οκτάβα διαιρείται σε 5 νότες (π.χ., Αρχαία Ελληνική, Κινεζική, Κέλτικη, Ιθαγενής Αμερικάνικη μουσική) Διατονική, Τροπική: η οκτάβα διαιρείται σε 7 νότες (π.χ., Ινδική, παραδοσιακή Δυτική μουσική) Χρωματική: η οκτάβα διαιρείται σε 12 notes (σύγχρονη Δυτική μουσική) 10

11 Αλφαβητάρι Μουσικής Σημειογραφίας Οι λευκές νότες στο πιάνο ονομάζονται A,B,C,D,E,F,G. Μετά την G, ξεκινάμε πάλι με A. Αυτό αντανακλά στον ειδικό ρόλο της οκτάβας: δίνουμε σε δύο συχνότητες με απόσταση μιας οκτάβας μεταξύ τους το ίδιο όνομα νότας. C D E F G A B C D E F G A B C 11

12 Ανεβαίνοντας σε συχνότητα (προς τα δεξιά του πληκτρολογίου) από μια λευκή νότα στη γειτονική της μαύρη νότα έχουμε μια δίεση: η C γίνεται C #, η D γίνεται D #, κλπ. Παρόμοια, κατεβαίνοντας σε συχνότητα έχουμε ύφεση: η D γίνεται D b, η E γίνεται E b, κλπ. D b E b G b A b B b D b E b G b A b B b C # D # F # G # A # C # D # F # G # A # C D E F G A B C D E F G A B C Η C # και η D b είναι κατ ανάγκη η ίδια νότα στο πιάνο, αλλά αυτό δεν ισχύει γενικά για όλες τις κλίμακες! 12

13 Πεντατονικές Κλίμακες Η συνήθης επιλογή 5 νοτών σε μια πεντατονική κλίμακα αντιστοιχεί στις μαύρες νότες του πιάνου: Αυτή η κλίμακα περιλαμβάνει το παράφωνο διάστημα πλήρους τόνου (9:8), αλλά δεν περιλαμβάνει τα λιγότερο παράφωνα διαστήματα μεγάλης (5:4) και μικρής (6:5) τρίτης. Γιατί; Πιθανώς διότι μουσική περιορισμένη σε μόνο 5 νότες θα ήταν βαρετή χωρίς λίγη παραφωνία να προκαλεί ένταση! 13

14 Άλλες επιλογές 5 νοτών είναι επίσης πιθανές. Παραδείγματα: Ινδική μουσική Κινεζική μουσική Κέλτικη μουσική: Auld Lange Syne, My Bonnie Lies Over the Ocean 14

15 Διατονικές Κλίμακες Οι μείζονες και οι ελάσσονες κλίμακες της Δυτικής μουσικής είναι διατονικές, στις οποίες η οκτάβα διαιρείται σε 7 βήματα. Οι νότες της μείζονος κλίμακας αντιστοιχούν λευκές νότες του πιάνου, αρχίζοντας από τη C. Η (φυσική) ελάσσων κλίμακα αντιστοιχεί στις λευκές νότες αρχίζοντας από τη A. Οι διατονικές κλίμακες μπορούν επίσης να ξεκινούν από οποιαδήποτε άλλη λευκή νότα του πιάνου. Τα αποτελέσματα είναι οι τρόποι με ονόματα όπως Δωρικός, Φρύγιος, Λύδιος, A C 15

16 Το μεγαλύτερο μέρος της Δυτικής μουσικής από το 17 ο αι. βασίζεται στις μείζονες και τις ελάσσονες κλίμακες. Η προηγούμενη μουσική ήταν πρωταρχικά τροπική. Παράδειγμα: το Γρηγοριανό μέλος 16

17 Χρωματικές Κλίμακες Αν και το μεγαλύτερο μέρος της Δυτικής μουσικής βασίζεται στις διατονικές κλίμακες, συχνά χρησιμοποιεί κλίμακες που αρχίζουν από διάφορες νότες στο ίδιο κομμάτι μουσικής (ως μηχανισμό πρόσθεσης ενδιαφέροντος και συνολικού σχήματος). Μια μείζων κλίμακα που ξεκινά από τη C χρησιμοποιεί μόνο λευκές νότες στο πιάνο, αλλά μια μείζων κλίμακα που ξεκινά από τη B χρησιμοποιεί και τις 5 μαύρες νότες. 17

18 Ο κύριος λόγος υιοθέτησης μιας χρωματικής κλίμακας είναι να μπορούμε να παίζουμε κομμάτια βασισμένα σε διαφορετικές κλίμακες με το ίδιο όργανο. Μια οκτάβα διαιρεμένη σε δώδεκα νότες περιλαμβάνει όλες τις πιθανές διατονικές κλίμακες με τις επτά νότες. Αυτή τη στρατηγική δεν την υιοθετούν όλα τα όργανα. Για παράδειγμα, οι φυσαρμόνικες είναι κάθε μια τους κουρδισμένη σε συγκεκριμένη διατονική κλίμακα. Για να παίξεις σε διαφορετικό κλειδί, χρειάζεσαι διαφορετικό όργανο (ή αλλιώς να κατέχεις τεχνικές «κάμψης»). Ποιές ακριβώς θα πρέπει να είναι οι συχνότητες των 12 νοτών που σχηματίζουν μια χρωματική κλίμακα; 18

19 Υπάρχει προφανής τρόπος υποδιαίρεσης της οκτάβας σε δώδεκα νότες; Ναι: οι νότες πρέπει να ισαπέχουν και να περιλαμβάνει όλους τους ειδικούς συνηχούντες λόγους (3:2, 4:3, ). Σε ποιά έκταση είναι αυτό δυνατό; Μετά την οκτάβα, η πέμπτη (3:2) είναι το πλέον συνηχόν διάστημα για αρμονικά τέμπο. Η τετάρτη (4:3) είναι απλά ένας συνδυασμός οκτάβας και πέμπτης: 4/3 = (3/2) x (1/2) 19

20 Ο Κύκλος με τις Πέμπτες Μπορούμε να αγγίξουμε και τις 12 νότες της χρωματικής κλίμακας ανεβαίνοντας ή κατεβαίνοντας το πιάνο με βήματα μιας πέμπτης (3:2): Ανεβαίνοντας, φθάνουμε όλες τις λευκές νότες του πιάνου εκτός από την F και κατόπιν πάμε μέσω των διέσεων. Κατεβαίνοντας, συναντάμε πρώτη τη F και κατόπιν συνεχίζουμε διά των υφέσεων. Και με τους δύο τρόπους, ξεκινώντας από τη C, τελικά καταλήγουμε στη C (7 οκτάβες μακριά). 20

21 Χρησιμοποιώντας τον κύκλο των πεμπτών, μπορούμε να υπολογίζουμε τη συχνότητα οποιασδήποτε νότας παίζουμε καθώς ανεβαίνουμε, ως εξής: f = f 0 x (3/2) x (3/2) x x (3/2) / 2 / 2 / / 2 νότα εκκίνησης Βήματα προς τα άνω σε πέμπτες Βήματα προς τα κάτω σε οκτάβες 21

22 Παρόμοια μέθοδος λειτουργεί για κάθε κατιόν βήμα κατά πέμπτη: f = f 0 / (3/2) / (3/2) / / (3/2) x 2 x 2 x x 2 Κατιόντα βήματα σε πέμπτες Ανιόντα βήματα σε οκτάβες Τί συμβαίνει όταν καταλήγουμε στην αρχική νότα; Για παράδειγμα, αφού ανέβουμε 12 πέμπτες πάνω, καταλήγουμε στη C η οποία είναι 7 οκτάβες πάνω και αντιστοιχεί σε νότα: f = f 0 x (3/2) 12 / (2) 7 = f 0 (531441/524288) = f 0 Καταλήγουμε κοντά αλλά όχι ακριβώς εκεί από όπου ξεκινήσαμε! 22

23 Η Πυθαγόρειος Κλίμακα Αγνοώντας το προηγούμενο πρόβλημα του ότι δε φθάνουμε ακριβώς εκεί από όπου ξεκινήσαμε, καταλήγουμε στην ομάδα από νότες που αντιστοιχούν στην Πυθαγόρειο κλίμακα. Η Πυθαγόρειος κλίμακα παρουσιάζει το χαρακτηριστικό ότι όλα τα διαστήματα οκτάβας και πέμπτης είναι ακριβώς (και επομένως το ίδιο ισχύει και για τα τετάρτης). 23

24 Αλλά η Πυθαγόρεια κλίμακα έχει και ορισμένες αδυναμίες: Οι συχνότητες που υπολογίζονται από τις μαύρες νότες εξαρτώνται από το αν ανεβαίνουμε ή κατεβαίνουμε, έτσι η C # και η D b είναι διαφορετικές νότες! Τα ημιτόνια από την E στη F και από τη B στη C είναι μεγαλύτερα απ ότι τα ημιτόνια από τη C στη C # και από τη D b στη D. Οι συχνοτικοί λόγοι για διαστήματα άλλα από οκτάβας, 4ης και 5ης εξαρτώνται από τη νότα από την οποία ξεκινάμε και μπορεί να απέχουν αρκετά από τους ιδεατούς λόγους. 24

25 Ισοσυγκερασμένη Κλίμακα Η κλίμακα που χρησιμοποιείται ευρύτατα σήμερα είναι η ισοσυγκερασμένη κλίμακα. Μαθηματικά, κάθε ημιτόνιο αντιστοιχεί σε συχνοτικό λόγο 2 1/12 = 1.059, έτσι ώστε 12 ημιτόνια ισούνται ακριβώς με μια οκτάβα. Η ισοσυγκερασμένη κλίμακα έχει ως κύριο πλεονέκτημα το ότι όλα τα διαστήματα ακούγονται το ίδιο ανεξάρτητα από τη νότα εκκίνησης. 25

26 Ανορθόδοξες Κλίμακες Αντί να διαιρέσουμε την οκτάβα σε 12 ισαπέχουσες νότες, μπορούμε να τη διαιρέσουμε σε οποιοδήποτε αριθμό ισαπεχουσών νοτών. Π.χ.: 12 νότες 13 νότες 8 νότες Αλλά γιατί οι κλίμακες με 13 ή 8 νότες δεν είναι δημοφιλείς; Διότι είναι περισσότερο παράφωνες από τη 12νοτη κλίμακα όταν δύο ή περισσότερες νότες παίζονται μαζί με αρμονικά ηχοχρώματα. 26

27 Τυποποίηση Συχνότητας Οι περισσότεροι άνθρωποι δεν έχουν αντίληψη του απόλυτου ύψους τόνου κι έτσι δεν προκαλεί έκπληξη ότι για μεγάλο χρονικό διάστημα δε χρειάστηκε ο πρότυπος ορισμός της συχνότητας του μέσου C. Το 1877, οι αυλοί A 4 των εκκλησιαστικών οργάνων αναφέρεται ότι κυμαίνονταν από 374 έως 567 Hz (αντίστοιχα με τα σύγχρονα εύρη από F έως C # ). Το σύγχρονο συχνοτικό πρότυπο για τη νότα A 4 είναι 440 Hz και υιοθετήθηκε το

28 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο "Ανοικτά Ακαδημαϊκά Μαθήματα του ΤΕΙ Ιονίων Νήσων" έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Διάλεξη 9. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Αντίληψη συνδυασμών τόνων Μορφές ακοής Συνήχηση & παραφωνία Θεωρίες αντίληψης ύψους

Διάλεξη 9. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Αντίληψη συνδυασμών τόνων Μορφές ακοής Συνήχηση & παραφωνία Θεωρίες αντίληψης ύψους Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 9 Αντίληψη συνδυασμών τόνων Μορφές ακοής Συνήχηση & παραφωνία Θεωρίες αντίληψης ύψους Ανασκόπηση της Διάλεξης 8 Εξετάσαμε την αντίληψη του ύψους ενός καθαρού

Διαβάστε περισσότερα

Διάλεξη 8. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Αντιληπτό ύψος καθαρού τόνου Απόλυτο ύψος

Διάλεξη 8. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Αντιληπτό ύψος καθαρού τόνου Απόλυτο ύψος Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 8 Αντιληπτό ύψος καθαρού τόνου Απόλυτο ύψος Ανασκόπηση της Διάλεξης 7 Το αν ένας ήχος είναι ακουστός ή όχι εξαρτάται κυρίως από την έντασή του και τη συχνότητα.

Διαβάστε περισσότερα

Μουσική και Μαθηματικά

Μουσική και Μαθηματικά Μουσική και Μαθηματικά Πρόλογος Ορισμός μουσικής : Ως μουσική ορίζεται η τέχνη που βασίζεται στην οργάνωση ήχων με σκοπό τη σύνθεση, εκτέλεση και ακρόαση /λήψη ενός μουσικού έργου, καθώς και η επιστήμη

Διαβάστε περισσότερα

Κουρδίσµατα (περίληψη)

Κουρδίσµατα (περίληψη) Κουρδίσµατα (περίληψη) Ι. Αρµονική στήλη Κάθε νότα που παράγεται µε φυσικά µέσα είναι ένα πολύ σύνθετο φαινόµενο. Ως προς το τονικό ύψος, συνιστώσες του ("αρµονικοί") είναι η συχνότητα που ακούµε ("θεµελιώδης")

Διαβάστε περισσότερα

Διάλεξη 12. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Ξύλινα Πνευστά Όργανα: Μονής γλωττίδας Διπλής γλωττίδας (Γλωττίδα αέρα)

Διάλεξη 12. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Ξύλινα Πνευστά Όργανα: Μονής γλωττίδας Διπλής γλωττίδας (Γλωττίδα αέρα) Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 12 Ξύλινα Πνευστά Όργανα: Μονής γλωττίδας Διπλής γλωττίδας (Γλωττίδα αέρα) Ξύλινα Πνευστά Όργανα Τα ξύλινα πνευστά αποτελούν τη μια από τις δύο ομάδες

Διαβάστε περισσότερα

Μουσικοθεωρητικό σύστημα - Αρμονική

Μουσικοθεωρητικό σύστημα - Αρμονική Μουσικοθεωρητικό σύστημα - Αρμονική Κλεονίδης, Εισαγωγή Αρμονική. Αρμονική εστίν επιστήμη θεωρητική και πρακτική. μέρη δε αυτής επτά. Περί φθόγγων Περί διαστημάτων Περί γενών Περί συστήματος Περί τόνου

Διαβάστε περισσότερα

Διάλεξη 5. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Συντονισμός Στάσιμα Κύματα Αρμονικοί Ήχοι & Αρμονικές

Διάλεξη 5. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Συντονισμός Στάσιμα Κύματα Αρμονικοί Ήχοι & Αρμονικές Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 5 Συντονισμός Στάσιμα Κύματα Αρμονικοί Ήχοι & Αρμονικές Επανάληψη της Διάλεξης 4 Εξετάσαμε τη διάθλαση και την περίθλαση των κυμάτων. Αναλύσαμε την κυματική

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ 1 Οι ήχοι που χρησιμοποιούμε στη μουσική λέγονται νότες ή φθόγγοι και έχουν επτά ονόματα : ντο - ρε - μι - φα - σολ - λα - σι. Η σειρά αυτή επαναλαμβάνεται πολλές φορές

Διαβάστε περισσότερα

ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ Α. ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ-ΕΥΡΩΠΑΪΚΕΣ ΚΛΙΜΑΚΕΣ- ΜΕΙΖΟΝΑ ΚΛΙΜΑΚΑ ΤΟΥ ΝΤΟ ΑΣΚΗΣΗ ΠΡΩΤΗ Ονομ/πώνυμο:

ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ Α. ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ-ΕΥΡΩΠΑΪΚΕΣ ΚΛΙΜΑΚΕΣ- ΜΕΙΖΟΝΑ ΚΛΙΜΑΚΑ ΤΟΥ ΝΤΟ ΑΣΚΗΣΗ ΠΡΩΤΗ Ονομ/πώνυμο: 1 ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ Α. ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ-ΕΥΡΩΠΑΪΚΕΣ ΚΛΙΜΑΚΕΣ- ΜΕΙΖΟΝΑ ΚΛΙΜΑΚΑ ΤΟΥ ΝΤΟ ΑΣΚΗΣΗ ΠΡΩΤΗ Ονομ/πώνυμο: 1) Να διαβάσετε προσεκτικά και τις δύο σελίδες της θεωρίας. 2) Να μάθετε απέξω τα εξής: α) Την

Διαβάστε περισσότερα

& percussion. Boomwhackers. Π ο τ έ έ ν α κ ρ ο υ σ τ ό δ ε ν ε ί χ ε τ έ τ ο ι ε ς δ υ ν α τ ό τ η τ ε ς

& percussion. Boomwhackers. Π ο τ έ έ ν α κ ρ ο υ σ τ ό δ ε ν ε ί χ ε τ έ τ ο ι ε ς δ υ ν α τ ό τ η τ ε ς & percussion Boomwhackers Π ο τ έ έ ν α κ ρ ο υ σ τ ό δ ε ν ε ί χ ε τ έ τ ο ι ε ς δ υ ν α τ ό τ η τ ε ς & percussion Βαλτετσίου 15, 10680 Αθήνα Τ: 210 3645147, F: 210 3645149 Ζακύνθου 7, 31100 Λευκάδα

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

2. ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ SYNTHESIS ΣΤΗΝ ΑΠΟ ΟΣΗ ΤΩΝ ΙΑΣΤΗΜΑΤΩΝ ΚΑΙ Η ΑΙΤΙΟΛΟΓΗΣΗ ΤΟΥ

2. ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ SYNTHESIS ΣΤΗΝ ΑΠΟ ΟΣΗ ΤΩΝ ΙΑΣΤΗΜΑΤΩΝ ΚΑΙ Η ΑΙΤΙΟΛΟΓΗΣΗ ΤΟΥ 2. ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ SYNTHESIS ΣΤΗΝ ΑΠΟ ΟΣΗ ΤΩΝ ΙΑΣΤΗΜΑΤΩΝ ΚΑΙ Η ΑΙΤΙΟΛΟΓΗΣΗ ΤΟΥ Tο σύστηµα γραφής που χρησιµοποιεί ο χρήστης στο πρόγραµµα Synthesis προσφέρει αρκετές από τις δυνατότητες

Διαβάστε περισσότερα

Μουσική Πληροφορική. Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015

Μουσική Πληροφορική. Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015 Μουσική Πληροφορική Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015 Άδεια Χρήσης 2 Άδεια Χρήσης 3 Άδεια Χρήσης 4 Ήχος Κλίμακες Β & Γ Δ. Πολίτης 2 ο Μάθημα Περιεχόμενα Μέρος Α : Ανατομία και φυσιολογία του αυτιού

Διαβάστε περισσότερα

ΜΟΥΣΙΚΕΣ ΣΧΟΛΕΣ ΚΑΤΆ ΤΗΝ ΕΛΛΗΝΙΚΗ ΑΡΧΑΙΟΤΗΤΑ ΑΡΙΣΤΟΞΕΝΕΙΑ ΣΧΟΛΗ ΠΥΘΑΓΟΡΕΙΑ ΣΧΟΛΗ

ΜΟΥΣΙΚΕΣ ΣΧΟΛΕΣ ΚΑΤΆ ΤΗΝ ΕΛΛΗΝΙΚΗ ΑΡΧΑΙΟΤΗΤΑ ΑΡΙΣΤΟΞΕΝΕΙΑ ΣΧΟΛΗ ΠΥΘΑΓΟΡΕΙΑ ΣΧΟΛΗ ΜΟΥΣΙΚΕΣ ΣΧΟΛΕΣ ΚΑΤΆ ΤΗΝ ΕΛΛΗΝΙΚΗ ΑΡΧΑΙΟΤΗΤΑ ΑΡΙΣΤΟΞΕΝΕΙΑ ΣΧΟΛΗ ΠΥΘΑΓΟΡΕΙΑ ΣΧΟΛΗ ΑΡΙΣΤΟΞΕΝΕΙΑ ΣΧΟΛΗ Στον τομέα της μουσικής η έρευνα του Αριστόξενου ήταν επαναστατική. Παραμέρισε τις έρευνες των πυθαγορείων

Διαβάστε περισσότερα

Θεωρία Μουσικής. Β εξάμηνο Θεωρία. Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός. Βιογραφικό

Θεωρία Μουσικής. Β εξάμηνο Θεωρία. Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός. Βιογραφικό Θεωρία Μουσικής Β εξάμηνο Θεωρία Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός 1 Θεωρία Μουσικής (Θ) - ΜΙΧΑ Παρασκευή 1 Μουσικολόγος, Μουσικοπαιδαγωγός Βιογραφικό Πτυχιούχος μουσικολογίας και κάτοχος

Διαβάστε περισσότερα

Απευθείας Εναρμόνιση - Πώς να χρησιμοποιήσετε το παρόν βιβλίο

Απευθείας Εναρμόνιση - Πώς να χρησιμοποιήσετε το παρόν βιβλίο Απευθείας Εναρμόνιση - Πώς να χρησιμοποιήσετε το παρόν βιβλίο Γενικές Πληροφορίες 1. Τι είναι το μάθημα της Απευθείας Εναρμόνισης στο πιάνο: Αφορά την απευθείας εκτέλεση στο πιάνο, μιας δοσμένης μελωδικής

Διαβάστε περισσότερα

Τετράδια κιθάρας Θεωρία της μουσικής. Τετράδια κιθάρας. Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις

Τετράδια κιθάρας Θεωρία της μουσικής. Τετράδια κιθάρας. Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις Τετράδια κιθάρας Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις Επικοινωνία : evgeniosasteris@pathfinder.gr 1 Περιεχόμενα Κλίμακες... 3 Μείζονες κλίμακες... 3 Η κλίμακα Ντο μείζονα...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #17: Σειρές Πληρωμών ή Ράντες Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΕΙΣΑΓΩΓΗ: Γνωριμία με την ΑΚΟΥΣΤΙΚΗ 1 ΜΕΡΟΣ ΠΡΩΤΟ: ΘΕΩΡΙΑ 5. 1 ος ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΤΑΛΑΝΤΩΣΕΙΣ 7 Προσδοκώμενα αποτελέσματα 8

ΠΕΡΙΕΧΟΜΕΝΑ. ΕΙΣΑΓΩΓΗ: Γνωριμία με την ΑΚΟΥΣΤΙΚΗ 1 ΜΕΡΟΣ ΠΡΩΤΟ: ΘΕΩΡΙΑ 5. 1 ος ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΤΑΛΑΝΤΩΣΕΙΣ 7 Προσδοκώμενα αποτελέσματα 8 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ: Γνωριμία με την ΑΚΟΥΣΤΙΚΗ 1 ΜΕΡΟΣ ΠΡΩΤΟ: ΘΕΩΡΙΑ 5 1 ος ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΤΑΛΑΝΤΩΣΕΙΣ 7 Προσδοκώμενα αποτελέσματα 8 1.1. Περιοδική κίνηση Περιοδικά φαινόμενα 9 1.2. Ταλάντωση - Ταλαντούμενα

Διαβάστε περισσότερα

Συστήματα Πολυμέσων. Ενότητα 12: Συμπίεση Ψηφιακού Ήχου. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων. Ενότητα 12: Συμπίεση Ψηφιακού Ήχου. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Συστήματα Πολυμέσων Ενότητα 12: Συμπίεση Ψηφιακού Ήχου Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΑΚΟΥΣΤΙΚΗ II

ΕΦΑΡΜΟΣΜΕΝΗ ΑΚΟΥΣΤΙΚΗ II ΕΦΑΡΜΟΣΜΕΝΗ ΑΚΟΥΣΤΙΚΗ II (Έκδοση 1.1, 12/10/2012) ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1. ΤΟΝΙΚΟ ΥΨΟΣ ΚΑΙ ΧΡΟΙΑ... 1.1. Κλίμακες... 1.2 Διάκριση του τονικού ύψους... 1.3 Το τονικό ύψος των καθαρών τόνων... 1.4 Τονικό

Διαβάστε περισσότερα

Διάλεξη 4. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Διάθλαση και Περίθλαση Κυμάτων Κύματα σε Δύο Διαστάσεις Doppler Effect και Shock Waves

Διάλεξη 4. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Διάθλαση και Περίθλαση Κυμάτων Κύματα σε Δύο Διαστάσεις Doppler Effect και Shock Waves Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 4 Διάθλαση και Περίθλαση Κυμάτων Κύματα σε Δύο Διαστάσεις Doppler Effect και Shock Waves Ανασκόπηση Διάλεξης 3 Αναφερθήκαμε στην Απλή Αρμονική Κίνηση (ΑΑΚ)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #8: Όριο και Συνέχεια Συνάρτησης Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής δεσπόζουσα μετ ενάτης

δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής δεσπόζουσα μετ ενάτης δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής δεσπόζουσα μετ ενάτης 2014 2 σημειώσεις θεωρητικών μουσικής 12 δεσπόζουσα μετ ενάτης 12.1 Γενικά 1. H V9/7 είναι μία πεντάφθογγη συγχορδία επί της 5 ης (5)

Διαβάστε περισσότερα

Όρια ακοής, κρίσιμες ζώνες Εντοπισμός ήχου Σύγκριση ακοής & όρασης Ηχηρότητα καθαρού τόνου Ύψος καθαρού τόνου

Όρια ακοής, κρίσιμες ζώνες Εντοπισμός ήχου Σύγκριση ακοής & όρασης Ηχηρότητα καθαρού τόνου Ύψος καθαρού τόνου Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 7 Όρια ακοής, κρίσιμες ζώνες Εντοπισμός ήχου Σύγκριση ακοής & όρασης Ηχηρότητα καθαρού τόνου Ύψος καθαρού τόνου Ανασκόπηση της Διάλεξης 6 Στην ενότητα

Διαβάστε περισσότερα

ΑΚΟΥΜΕ ΤΑ ΧΡΩΜΑΤΑ ΚΑΙ ΒΛΕΠΟΥΜΕ ΤΗ ΜΟΥΣΙΚΗ

ΑΚΟΥΜΕ ΤΑ ΧΡΩΜΑΤΑ ΚΑΙ ΒΛΕΠΟΥΜΕ ΤΗ ΜΟΥΣΙΚΗ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Α ΤΕΤΡΑΜΗΝΟΥ Α ΛΥΚΕΙΟΥ ΜΟΥΣΙΚΟ ΣΧΟΛΕΙΟ ΓΙΑΝΝΙΤΣΩΝ ΣΧ.ΕΤΟΣ 2012-2013 ΑΚΟΥΜΕ ΤΑ ΧΡΩΜΑΤΑ ΚΑΙ ΒΛΕΠΟΥΜΕ ΤΗ ΜΟΥΣΙΚΗ ΤΙ ΕΙΝΑΙ ΧΡΩΜΑ Το χρώμα είναι μια αίσθηση που δημιουργείται στον εγκέφαλο

Διαβάστε περισσότερα

Ιστορία των Ευρωπαϊκών Μουσικών Οργάνων

Ιστορία των Ευρωπαϊκών Μουσικών Οργάνων Ιστορία των Ευρωπαϊκών Μουσικών Οργάνων Ενότητα: Τα Ιδιόφωνα Νικόλαος Μαλιάρας Τμήμα Μουσικών Σπουδών Περιεχόμενα 1. Τα τύμπανα... 4 Σελίδα 2 Τα ιδιόφωνα και τα μεμβρανόφωνα, τα κρουστά όπως γενικά έχει

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 6 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 6 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ.   url: στους Ηλεκτρονικούς Υπολογιστές 6 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Διάλεξη 6. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Ανάλυση Fourier Συμπαθητικές Ταλαντώσεις Το Ανθρώπινο Αυτί

Διάλεξη 6. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Ανάλυση Fourier Συμπαθητικές Ταλαντώσεις Το Ανθρώπινο Αυτί Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 6 Ανάλυση Fourier Συμπαθητικές Ταλαντώσεις Το Ανθρώπινο Αυτί Συμπαθητικές Ταλαντώσεις Αν δύο αντηχεία είναι σε επαφή, τότε δίνοντας ενέργεια στο ένα μπορεί

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ιστορία των Ευρωπαϊκών Μουσικών Οργάνων Ενότητα 1: Εισαγωγή. Νικόλαος Μαλιάρας Φιλοσοφική Σχολή Τμήμα Μουσικών Σπουδών

Ιστορία των Ευρωπαϊκών Μουσικών Οργάνων Ενότητα 1: Εισαγωγή. Νικόλαος Μαλιάρας Φιλοσοφική Σχολή Τμήμα Μουσικών Σπουδών Ιστορία των Ευρωπαϊκών Μουσικών Οργάνων Ενότητα 1: Νικόλαος Μαλιάρας Φιλοσοφική Σχολή Τμήμα Μουσικών Σπουδών Οι φθόγγοι που προκύπτουν από τις απλές αριθμητικές αναλογίες 1/3 Εικόνα 1 Εικόνα 2 3 Οι φθόγγοι

Διαβάστε περισσότερα

Τρόποι της Ελληνικής Παραδοσιακής Μουσικής

Τρόποι της Ελληνικής Παραδοσιακής Μουσικής Τρόποι της Ελληνικής Παραδοσιακής Μουσικής Δημήτρης Πυργιώτης www.music-theory.gr Εισαγωγή Η συνοπτική περιγραφή των τρόπων της ελληνικής παραδοσιακής μουσικής εξακολουθεί να είναι μια θεωρητική πρόκληση.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ

ΑΣΚΗΣΕΙΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ Απόστολος Σιόντας ΑΣΚΗΣΕΙΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ Η τονικότητα ΝΤΟ µείζων Πειραµατικό Μουσικό Γυµνάσιο Παλλήνης Παλλήνη 2010 Πρόλογος Καθώς θεωρούµε ότι είναι απαραίτητη η γνώση του περιεχοµένου του µουσικού

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 5: Ισοδυναμία Πιστωτικών Τίτλων Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Οι κλίµακες της Βυζαντινής Mουσικής, κατά την Μουσική Επιτροπή του 1881

Οι κλίµακες της Βυζαντινής Mουσικής, κατά την Μουσική Επιτροπή του 1881 Οι κλίµακες της Βυζαντινής Mουσικής, κατά την Μουσική Επιτροπή του 1881 του Παναγιώτη. Παπαδηµητρίου panayiotis@analogion.net, α έκδοση: 4 Οκτωβρίου 2005 Το Οικουµενικό Πατριαρχείο στα 1881 συγκρότησε

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Κλινική χρήση των ήχων

Κλινική χρήση των ήχων Κλινική χρήση των ήχων Ήχοι και ακουστότητα Κύματα υπερήχων Ακουστικά κύματα, Ήχοι, Είδη ήχων Ήχους υπό την ευρεία έννοια καλούμε κάθε κύμα πίεσης που υπάρχει και διαδίδεται στο εσωτερικό των σωμάτων.

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Απόκριση Συχνότητας Αναλογικών Σ.Α.Ε Διαγράμματα BODE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 2.1: Ανάλυση Fourier Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 10: Αριθμητική υπολοίπων - Κυκλικές ομάδες: Διαιρετότητα - Ευκλείδειος αλγόριθμος - Κατάλοιπα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Έννοιες φυσικών επιστημών Ι και αναπαραστάσεις Ενότητα 12: Ο ήχος, τα ηχητικά φαινόμενα και οι σχετικές ιδέες των μαθητών

Έννοιες φυσικών επιστημών Ι και αναπαραστάσεις Ενότητα 12: Ο ήχος, τα ηχητικά φαινόμενα και οι σχετικές ιδέες των μαθητών Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγικό Τμήμα Νηπιαγωγών Έννοιες φυσικών επιστημών Ι και αναπαραστάσεις Ενότητα 12: Ο ήχος, τα ηχητικά φαινόμενα και οι σχετικές ιδέες των μαθητών Καθηγητής: Καριώτογλου

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 10: ΡΑΝΤΕΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creatve Commos εκτός και αν αναφέρεται διαφορετικά Το έργο υλοποιείται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 14ο ΕΛΑΣΣΟΝΕΣ ΚΛΙΜΑΚΕΣ. Η ελάσσονα κλίµακα ανήκει στην ίδια οικογένεια µε τις µείζονες γιατί έχει τον ίδιο οπλισµό µε αυτές.

ΚΕΦΑΛΑΙΟ 14ο ΕΛΑΣΣΟΝΕΣ ΚΛΙΜΑΚΕΣ. Η ελάσσονα κλίµακα ανήκει στην ίδια οικογένεια µε τις µείζονες γιατί έχει τον ίδιο οπλισµό µε αυτές. 22 ΚΕΦΑΛΑΙΟ 14ο ΕΛΑΣΣΟΝΕΣ ΚΛΙΜΑΚΕΣ Η ελάσσονα κλίµακα ανήκει στην ίδια οικογένεια µε τις µείζονες γιατί έχει τον ίδιο οπλισµό µε αυτές. Για να βρούµε µια ελάσσονα κλίµακα κάνουµε τα εξής: (απαιτείται καλή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 5: ΤΑΛΑΝΤΩΣΗ ΣΕ ΔΙΕΓΕΡΣΗ ΠΛΗΓΜΑΤΟΣ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 2: Σύνολα και σχέσεις Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Μουσικά Όργανα των Αρχαίων Ελλήνων (Μέρος β )

Μουσικά Όργανα των Αρχαίων Ελλήνων (Μέρος β ) Μουσικά Όργανα των Αρχαίων Ελλήνων (Μέρος β ) ΕΜΠΝΕΥΣΤΑ - ΠΝΕΥΣΤΑ Ο αυλός δίαυλος ή διπλός αυλός Η σάλπιγγα Το κέρας (κεράτινη σάλπιγγα ) Η σύριγξ (σύριγγα του Πάνα, φλογέρα του βοσκού). ΑΥΛΟΣ Το ποιο

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 7: Κανονική Κατανομή Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΔΡΔ: Διαγράμματα Ροής Δεδομένων

ΔΡΔ: Διαγράμματα Ροής Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΡΔ: Διαγράμματα Ροής Δεδομένων Τεχνολογία Πολιτισμικού Λογισμικού Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς ΤΕΙ Ιονίων

Διαβάστε περισσότερα

Συστήματα Πολυμέσων Ενότητα 7: Ψηφιοποίηση και ψηφιακή επεξεργασία σήματος.

Συστήματα Πολυμέσων Ενότητα 7: Ψηφιοποίηση και ψηφιακή επεξεργασία σήματος. Συστήματα Πολυμέσων Ενότητα 7: Ψηφιοποίηση και ψηφιακή επεξεργασία σήματος. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 8: Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Εισαγωγή στην πληροφορική Ενότητα 5: ΑΛΓΟΡΙΘΜΟΙ Πασχαλίδης Δημοσθένης Τμήμα Διαχείρισης Εκκλησιαστικών Κειμηλίων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μουσική Παιδαγωγική Θεωρία και Πράξη

Μουσική Παιδαγωγική Θεωρία και Πράξη Μουσική Παιδαγωγική Θεωρία και Πράξη Σκοποί Στόχοι - Δραστηριότητες Ζωή Διονυσίου Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά

Διαβάστε περισσότερα

Νυκτά Όργανα: Κιθάρα. Δρ. Χρυσούλα Αλεξανδράκη ΤΕΙ Κρήτης Σχολή Εφαρμοσμένων Επιστημών Τμήμα Μηχανικών Μουσικής Τεχνολογίας και Ακουστικής

Νυκτά Όργανα: Κιθάρα. Δρ. Χρυσούλα Αλεξανδράκη ΤΕΙ Κρήτης Σχολή Εφαρμοσμένων Επιστημών Τμήμα Μηχανικών Μουσικής Τεχνολογίας και Ακουστικής Νυκτά Όργανα: Κιθάρα Δρ. Χρυσούλα Αλεξανδράκη ΤΕΙ Κρήτης Σχολή Εφαρμοσμένων Επιστημών Τμήμα Μηχανικών Μουσικής Τεχνολογίας και Ακουστικής Η ανατομία της κιθάρας Η κιθάρα αποτελείται απο το σώμα, τις χορδές

Διαβάστε περισσότερα

Μουσική και Μαθηματικά!!!

Μουσική και Μαθηματικά!!! Μουσική και Μαθηματικά!!! Η μουσική είναι ίσως από τις τέχνες η πιο δεμένη με τα μαθηματικά, με τη μαθηματική σκέψη, από την ίδια τη φύση της. Η διατακτική δομή μπορεί να κατατάξει τα στοιχεία ενός συνόλου,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ. Ορισμός της θεωρίας Θεωρία είναι το μάθημα που μας διδάσκει το γράψιμο και το διάβασμα της μουσικής.

ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ. Ορισμός της θεωρίας Θεωρία είναι το μάθημα που μας διδάσκει το γράψιμο και το διάβασμα της μουσικής. 1 1 ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ Ορισμός της Μουσικής. Η Μουσική είναι μια τέχνη, η οποία εκφράζει τις αρετές της μέσα από την πλοκή και τον συνδυασμό των ήχων. Τα εργαλεία τα οποία χρησιμοποιούμε για την παραγωγή των

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 14: Γραμματικές Χωρίς Συμφραζόμενα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 8: Πρόσκαιρες Ράντες Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

Διοίκηση Ανθρώπινων Πόρων Ενότητα 2: Κλασική τακτική στη διοίκηση

Διοίκηση Ανθρώπινων Πόρων Ενότητα 2: Κλασική τακτική στη διοίκηση Διοίκηση Ανθρώπινων Πόρων Ενότητα 2: Κλασική τακτική στη διοίκηση Δρ. Σερδάρης Παναγιώτης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΗ ΓΥΜΝΑΣΤΙΚΗ

ΠΑΙΔΑΓΩΓΙΚΗ ΓΥΜΝΑΣΤΙΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΠΑΙΔΑΓΩΓΙΚΗ ΓΥΜΝΑΣΤΙΚΗ Ενότητα 5. Η κατανόηση αντίληψη του ρυθμού: Εκμάθηση βασικών στοιχείων του ρυθμού και της μουσικής Μπαρκούκης Βασίλειος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 1, Μέρος 2ο: ΠΕΡΙ ΣΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Αναζήτηση & Ταξινόμηση. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Αναζήτηση & Ταξινόμηση. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Αναζήτηση & Ταξινόμηση ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Αναζήτηση Το πρόβλημα της αναζήτησης (searching) ενός στοιχείου σε

Διαβάστε περισσότερα

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του

Διαβάστε περισσότερα

Λ. βαν Μπετόβεν ( ) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι:

Λ. βαν Μπετόβεν ( ) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι: Λ. βαν Μπετόβεν (1770-1827) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση Γενικοί Στόχοι: Πέρασμα από τον Κλασικισμό στο Ρομαντισμό. Σύγκριση Προγραμματικής και Απόλυτης Μουσικής.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Θεόδωρου Π. Ματθαίου, συγγραφέα

Θεόδωρου Π. Ματθαίου, συγγραφέα Νεαντερτάλιος Αυλός: Πεντατονική μουσική κλίμακα ηλικίας 40000-80000 ετών; Θεόδωρου Π. Ματθαίου, συγγραφέα ΠΕΡΙΕΧΟΜΕΝA 1. H Ανακάλυψη του Ευρήματος 2. Πιθανή Εξέλιξη της Μουσικής 3. Προσπάθεια Ανασκευής

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη Ο ΠΥΘΑΓΟΡΑΣ (572-500 ΠΧ) ΗΤΑΝ ΦΟΛΟΣΟΦΟΣ, ΜΑΘΗΜΑΤΙΚΟΣ ΚΑΙ ΘΕΩΡΗΤΙΚΟΣ ΤΗΣ ΜΟΥΙΣΚΗΣ. ΥΠΗΡΞΕ Ο ΠΡΩΤΟΣ ΠΟΥ ΕΘΕΣΕ ΤΙΣ ΒΑΣΕΙΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΣΤΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΜΑΘΗΜΑ: ΣΤΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Σχόλιο [h1]: Παράδειγμα: https://ocp.teiath.gr/modules/ exercise/exercise_result.php?course=pey101&eurid=16 9 ΜΑΘΗΜΑ: ΣΤΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 6: ΕΦΑΡΜΟΓΕΣ ΑΠΛΟΣ ΤΟΚΟΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Διδακτική της Περιβαλλοντικής Εκπαίδευσης

Διδακτική της Περιβαλλοντικής Εκπαίδευσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διδακτική της Περιβαλλοντικής Εκπαίδευσης Ενότητα 01: Προβληματική της Περιβαλλοντικής Εκπαίδευσης Πολυξένη Ράγκου Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Αλγόριθμοι. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Αλγόριθμοι. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Αλγόριθμοι ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Ανάπτυξη Λογισμικού Η διαδικασία ανάπτυξης λογισμικού μπορεί να παρομοιαστεί

Διαβάστε περισσότερα

Διάλεξη 3. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Απόσβεση, Μεταβατικά, Φάκελοι Η Αρχή της Υπέρθεσης Ανάκλαση Κυμάτων

Διάλεξη 3. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Απόσβεση, Μεταβατικά, Φάκελοι Η Αρχή της Υπέρθεσης Ανάκλαση Κυμάτων Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 3 Απόσβεση, Μεταβατικά, Φάκελοι Η Αρχή της Υπέρθεσης Ανάκλαση Κυμάτων Διδάσκων: Δρ Διονύσιος Θ. Γ. Κατερέλος (d.katerelos@gmail.com) Ανασκόπηση της Διάλεξης

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 5: Ονομαστικό και Πραγματικό Επιτόκιο Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9ο. Ενώ µεταξύ του ΜΙ και του ΦΑ. Η διαφορά αυτή υπάρχει γιατί η απόσταση µερικών φθόγγων από άλλων είναι διαφορετική.

ΚΕΦΑΛΑΙΟ 9ο. Ενώ µεταξύ του ΜΙ και του ΦΑ. Η διαφορά αυτή υπάρχει γιατί η απόσταση µερικών φθόγγων από άλλων είναι διαφορετική. ΚΕΦΑΛΑΙΟ 9ο 7 α) τόνοι - ηµιτόνια Αν παρατηρήσουµε τις νότες στο πιάνο θα προσέξουµε ότι µεταξύ µερικών ΙΑ ΟΧΙΚΩΝ (συνεχόµενων) φθόγγων έχουµε µαύρα πλήκτρα και άλλων όχι. λ.χ. Μεταξύ του ΝΤΟ και του ΡΕ,

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 4: Πειραματική μελέτη συστημάτων διαμόρφωσης συχνότητας (FΜ) Δρ.

Διαβάστε περισσότερα

Διάλεξη 1. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Εισαγωγή Οργάνωση Περιεχόμενα Τί είναι ο ήχος;

Διάλεξη 1. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Εισαγωγή Οργάνωση Περιεχόμενα Τί είναι ο ήχος; Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 1 Εισαγωγή Οργάνωση Περιεχόμενα Τί είναι ο ήχος; Διδάσκων: Δρ Διονύσιος Θ. Γ. Κατερέλος (d.katerelos@gmail.com) Εισαγωγή Στις διαλέξεις θα μάθουμε: Μερικά

Διαβάστε περισσότερα

Διδακτική της Περιβαλλοντικής Εκπαίδευσης

Διδακτική της Περιβαλλοντικής Εκπαίδευσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διδακτική της Περιβαλλοντικής Εκπαίδευσης Ενότητα 08: Σχεδιασμός και Οργάνωση ενός Προγράμματος Περιβαλλοντικής Εκπαίδευσης Ι Πολυξένη

Διαβάστε περισσότερα

Εργαστήριο Ηλεκτροτεχνικών Εφαρμογών

Εργαστήριο Ηλεκτροτεχνικών Εφαρμογών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εργαστήριο Ηλεκτροτεχνικών Εφαρμογών Ενότητα: Παράρτημα Γεώργιος Χ. Ιωαννίδης Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 5: ΙΣΟΔΥΝΑΜΙΑ ΣΥΝΑΛΛΑΓΜΑΤΙΚΩΝ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών. Ενότητα 10: ΚΛΙΜΑΚΕΣ ΜΕΤΡΗΣΗΣ Λοΐζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών. Ενότητα 10: ΚΛΙΜΑΚΕΣ ΜΕΤΡΗΣΗΣ Λοΐζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 10: ΚΛΙΜΑΚΕΣ ΜΕΤΡΗΣΗΣ Λοΐζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Συναρτήσεις & Υποπρογράμματα. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Συναρτήσεις & Υποπρογράμματα. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Συναρτήσεις & Υποπρογράμματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Τμηματικός Προγραμματισμός Η επίλυση ενός προβλήματος διευκολύνεται

Διαβάστε περισσότερα

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ᄃ Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF Ασκήσεις Ενότητας: Πομποδέκτες, Μείκτες, Ενισχυτές Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής,

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Πληροφορική ΙΙ Θεματική Ενότητα 5

Πληροφορική ΙΙ Θεματική Ενότητα 5 Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Θεματική Ενότητα 5 Λογικοί Τελεστές Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

[ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ]

[ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ] 2013 Μουσικό Γυμνάσιο / Λύκειο Ιλίου Ευαγγελία Λουκάκη [ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ] Σημειώσεις για τις ανάγκες διδασκαλίας του μαθήματος της Αρμονίας. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ Στην Αρµονία συναντώνται συνηχήσεις-συγχορδίες

Διαβάστε περισσότερα

Μάθημα: Τεχνολογία Ήχου

Μάθημα: Τεχνολογία Ήχου Τμήμα Τεχνών Ήχου και Εικόνας Ιόνιο Πανεπιστήμιο Μάθημα: Τεχνολογία Ήχου Εργαστηριακή Άσκηση 3 «Καταγραφή της επίπτωσης της κατευθυντικότητας ηλεκτροακουστικών μετατροπέων» Διδάσκων: Φλώρος Ανδρέας Δρ.

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σηµμάτων

Ψηφιακή Επεξεργασία Σηµμάτων Ψηφιακή Επεξεργασία Σηµμάτων Διάλεξη 3: DSP for Audio Δρ. Θωµμάς Ζαρούχας Επιστηµμονικός Συνεργάτης Μεταπτυχιακό Πρόγραµμµμα: Τεχνολογίες και Συστήµματα Ευρυζωνικών Εφαρµμογών και Υπηρεσιών 1 Προεπισκόπηση

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Βάσεις Δεδομένων. Ενότητα 5: ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών

Βάσεις Δεδομένων. Ενότητα 5: ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Βάσεις Δεδομένων Ενότητα 5: ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ

ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ v.1.0 Τα βασικότερα εργαλεία της Οικονομικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο "Ανοικτά Ακαδημαϊκά

Διαβάστε περισσότερα