Μουσική και Μαθηματικά!!!

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μουσική και Μαθηματικά!!!"

Transcript

1 Μουσική και Μαθηματικά!!!

2 Η μουσική είναι ίσως από τις τέχνες η πιο δεμένη με τα μαθηματικά, με τη μαθηματική σκέψη, από την ίδια τη φύση της. Η διατακτική δομή μπορεί να κατατάξει τα στοιχεία ενός συνόλου, ενός χαρακτήρα, όπως είναι το ύψος, ή ένταση, ή πυκνότητα, όπως είναι ο βαθμός αταξίας. Στην ιστορία, πολλές φορές η μουσική σκέψη ήταν πρωτοπορία απέναντι στη μαθηματική σκέψη. Οι Πυθαγόρειοι, για παράδειγμα, συσχέτιζαν το ύψος με το μήκος των χορδών. Για να βρούνε, ας πούμε, το διάστημα της ογδόης, έπρεπε να διαιρέσουν τη χορδή στα τέσσερα. Είναι διαίρεση με το δύο - πρόκειται για μια φθίνουσα γεωμετρική πρόοδο. Ι. Ξενάκης, Έλληνας μουσικός και μαθηματικός.

3 Ιστορική αναδρομή - Πυθαγόρας Αρχαία ελληνικά μουσικά όργανα Αρμονία, φιλοσοφία & μαθηματικά

4 Ρυθμός - Αριθμός Η πρώτη συνάντηση της Μουσικής με τα Μαθηματικά συντελείται μέσω της αίσθησης που έχουμε για τον χρόνο. Ο άνθρωπος διαθέτει την ικανότητα να εντοπίζει, να απομονώνει χρονικές στιγμές. Το διάστημα που μεσολαβεί μεταξύ δύο στιγμών συγκροτεί την έννοια της διάρκειας. Η κατάτμηση που υφίσταται ο χρόνος από τη ροή των γεγονότων δημιουργεί ένα πυκνό σύνολο από στιγμές. Κατά τον Bachelard η διάρκεια είναι ένας αριθμός, μονάδα του οποίου είναι η στιγμή (G.Bachelard 1997).

5 Η ΜΟΥΣΙΚΗ ΣΤΟΥΣ ΠΥΘΑΓΟΡΕΙΟΥΣ Η ιδέα της σύνδεσης των μαθηματικών και της μουσικής γεννήθηκε πριν από 26 ολόκληρους αιώνες στην αρχαία Ελλάδα από τον Πυθαγόρα, μαθηματικό και ιδρυτή της πυθαγόρειας σχολής σκέψης. Πυθαγόρας Οι ειδικοί ερευνητές θεωρούν ότι το πιθανότερο είναι πως ο ίδιος και οι μαθητές του εντρύφησαν στη σχέση της μουσικής και των αριθμών μελετώντας το αρχαίο όργανο μονόχορδο.

6 Όπως φαίνεται από το όνομά του, το μονόχορδο ήταν ένα όργανο με μία χορδή και ένα κινητό καβαλάρη που διαιρούσε τη χορδή επιτρέποντας μόνο ένα τμήμα της να ταλαντώνεται. Το μονόχορδο χρησιμοποιήθηκε για τον καθορισμό των μαθηματικών σχέσεων των μουσικών ήχων. Ονομαζόταν και "Πυθαγόρειος κανών" γιατί απέδιδαν την εφεύρεσή του στον Πυθαγόρα. Μονόχορδο

7 Η Αναλογία - Πυθαγόρας Ο Πυθαγόρας ανακάλυψε ότι οι μουσικοί τόνοι έχουν το αντίστοιχό τους σε χωρική έκταση. Οι μουσικές συνηχήσεις ορίζονται από λόγους μονοψήφιων ακέραιων αριθμών. Οι συνηχήσεις πάνω στις οποίες βασιζόταν το ελληνικό μουσικό σύστημα μπορούν να εκφραστούν με την πρόοδο 1:2:3:4.

8 Η Αναλογία - Πλάτωνας Ο Πλάτωνας έβρισκε αυτή την αρμονία στα τετράγωνα και στους κύβους του διπλάσιου και του τριπλάσιου της μονάδας, πράγμα που τον οδήγησε στις δύο γεωμετρικές προόδους 1, 2, 4, 8,... και 1, 3, 9, 27,...

9 Η Πυθαγόρεια άποψη. Η πρώτη συστηματική αλλά συγχρόνως και καθοριστική προσπάθεια υπαγωγής του φαινομένου της μουσικής σε Μαθηματικές σχέσεις γίνεται από τον Πυθαγόρα. Δύο βασικά ερωτήματα απασχολούν τους Πυθαγόρειους: α) Πότε δύο ήχοι (νότες) συνηχούν αρμονικά, β) Ποια είναι η βαθύτερη αιτία αυτής της αρμονικής συνήχησης. Ήδη είχε τεθεί ρητά το πρόβλημα της αρμονίας.

10 Στο πρώτο ερώτημα η απάντηση φαίνεται να προέρχεται μέσα από την παρατήρηση και το πείραμα, τις δύο βασικές δηλαδή επιστημονικές δραστηριότητες, οι οποίες οδηγούν στη διατύπωση του πρώτου νόμου στον οποίο υπακούει η αρμονία. "Όταν δύο χορδές έχουν μήκη ανάλογα με δύο από τους αριθμούς 1, 2, 3, 4, τότε συνηχούν αρμονικά". Έτσι κατασκευάζεται η περίφημη Πυθαγόρεια κλίμακα η οποία χρησιμοποιήθηκε για πολλούς αιώνες σαν φυσική κλίμακα μουσικής σύνθεσης.

11 Η εξήγηση αυτού του φαινομένου στηρίζεται, κατά τους Πυθαγόρειους, στις μεταφυσικές ιδιότητες που έχουν οι αριθμοί 1, 2, 3, 4 (τετρακτύς). Η αρμονία επιβάλλεται, κατά κάποιον τρόπο, από τους λόγους που προέρχονται από την τετρακτύ δηλαδή από τα 2/3, 3/4, 2/4, 1/2 κλπ.

12 Αρχαία ελληνικά μουσικά όργανα Φόρμιγγα, λύρα, αυλός, κιθάρα.

13

14 Η μετάβαση Η σύγχρονη αντίληψη για την αρμονία προκύπτει μέσα από τη χρήση ενός ισχυρότατου Μαθηματικού "εργαλείου", της ανάλυσης Fourier. Κάθε περιοδικό φαινόμενο, επομένως και η μουσική νότα, μπορεί να εκφραστεί από ένα αλγεβρικό άθροισμα αρμονικών συνιστωσών. Η αρμονία πλέον δύο μουσικών τόνων καθορίζεται από το πλήθος των αρμονικών συνιστωσών οι οποίες συμπίπτουν. Θα αναζητήσουμε τη σύνδεση των Μαθηματικών με τη Μουσική στις δύο βασικές συνιστώσες της Μουσικής που είναι ο Ρυθμός και η Αρμονία.

15 Ο Μπαχ αργότερα δημιούργησε μαθηματικές θεωρίες μουσικής σύνθεσης. Και ο μαθηματικός- αρχιτέκτονας Ιάνης Ξενάκης συνδύασε τα Μαθηματικά με τη Μουσική και δημιούργησε ηλεκτρονικές μουσικές συνθέσεις.

16 Εφαρμογή της χρυσής τομής σε ένα βιολί Stradivarius

17 «Δεν θα υπήρχε (μουσική) αρμονία αν δεν υπήρχαν αριθμοί. Δεν θα υπήρχε αρμονία αν δεν υπήρχε ο άνθρωπος για να την ακούσει και να την κρίνει ως τέτοια, για να γίνουν οι αριθμοί εργαλεία. Δεν υπάρχει αρμονία από μόνη της» Ρούντολφ Τάσνερ, καθηγητής στο Τεχνολογικό Πανεπιστήμιο της Βιέννης.

18

19 Επίλογος Η Μουσική είναι ένα ποιοτικό φαινόμενο όπως η αίσθηση του ωραίου, της ανάμνησης και της λήθης, του ευχάριστου και του δυσάρεστου. Η ιστορία του Δυτικού κόσμου συνδέεται άμεσα, τους τρεις τελευταίους αιώνες, με την προσπάθεια υπαγωγής όλων των ποιοτικών φαινομένων σε ποσότητες εφόσον έτσι γίνονται τα φαινόμενα αυτά ελέγξιμα, ερμηνεύσιμα, αντικειμενικά. Κάθε εσωτερική αίσθηση μπορεί πλέον να γίνει εικόνα, να βγει στο χώρο. Ένας συνεχής μετασχηματισμός συντελείται ο οποίος μεταμορφώνει το υποκειμενικό σε αντικειμενικό και ο καταλύτης σε αυτόν το μετασχηματισμό φαίνεται πως είναι τα Μαθηματικά.

20

21 Επιμέλεια: Παππάς Δημήτρης, Πετράκος Κωνσταντίνος, Σκιαδάς Πέτρος, Τσιλίκης Γιάννης

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη Ο ΠΥΘΑΓΟΡΑΣ (572-500 ΠΧ) ΗΤΑΝ ΦΟΛΟΣΟΦΟΣ, ΜΑΘΗΜΑΤΙΚΟΣ ΚΑΙ ΘΕΩΡΗΤΙΚΟΣ ΤΗΣ ΜΟΥΙΣΚΗΣ. ΥΠΗΡΞΕ Ο ΠΡΩΤΟΣ ΠΟΥ ΕΘΕΣΕ ΤΙΣ ΒΑΣΕΙΣ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ

ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ Κατασκευή: Το μονόχορδο του Πυθαγόρα 2005-2006 Τόλιας Γιάννης Α1 Λ Υπεύθυνη Καθηγήτρια: Α. Τσαγκογέωργα Περιεχόμενα: Τίτλος Εργασίας Σκοπός Υπόθεση (Περιγραφή Κατασκευής) Ορισμός Μεταβλητών

Διαβάστε περισσότερα

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΤΙ ΡΩΤΑΜΕ ΜΙΑ ΕΙΚΟΝΑ ; ΤΙ ΜΑΣ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΠΩΣ ΜΑΣ ΤΟ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΣΥΝΘΕΣΗ: Οργάνωση ενός συνόλου από επιμέρους στοιχεία σε μια ενιαία διάταξη Αρχική ιδέα σύνθεσης

Διαβάστε περισσότερα

ΜΟΥΣΙΚΕΣ ΣΧΟΛΕΣ ΚΑΤΆ ΤΗΝ ΕΛΛΗΝΙΚΗ ΑΡΧΑΙΟΤΗΤΑ ΑΡΙΣΤΟΞΕΝΕΙΑ ΣΧΟΛΗ ΠΥΘΑΓΟΡΕΙΑ ΣΧΟΛΗ

ΜΟΥΣΙΚΕΣ ΣΧΟΛΕΣ ΚΑΤΆ ΤΗΝ ΕΛΛΗΝΙΚΗ ΑΡΧΑΙΟΤΗΤΑ ΑΡΙΣΤΟΞΕΝΕΙΑ ΣΧΟΛΗ ΠΥΘΑΓΟΡΕΙΑ ΣΧΟΛΗ ΜΟΥΣΙΚΕΣ ΣΧΟΛΕΣ ΚΑΤΆ ΤΗΝ ΕΛΛΗΝΙΚΗ ΑΡΧΑΙΟΤΗΤΑ ΑΡΙΣΤΟΞΕΝΕΙΑ ΣΧΟΛΗ ΠΥΘΑΓΟΡΕΙΑ ΣΧΟΛΗ ΑΡΙΣΤΟΞΕΝΕΙΑ ΣΧΟΛΗ Στον τομέα της μουσικής η έρευνα του Αριστόξενου ήταν επαναστατική. Παραμέρισε τις έρευνες των πυθαγορείων

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΑΣ. Πέτρου Αναστασία. Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα

ΠΥΘΑΓΟΡΑΣ. Πέτρου Αναστασία. Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα ΠΥΘΑΓΟΡΑΣ Πέτρου Αναστασία Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα ΑΘΗΝΑ 2013 Ο Πυθαγόρας (586 500 π.χ.) του Μνησάρχου και της «ωραίας υπέρ φύσιν» Πυθαϊδος γεννήθηκε στη Σάμο. Μικρός επισκέφθηκε τους Δελφούς,

Διαβάστε περισσότερα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα Κ. Σ. Δ. Μ. Ο. Μ. Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα της Κάτω Ιταλίας. Η κοινότητα στεγαζόταν

Διαβάστε περισσότερα

«Διαστηµατικά» Εκεί που τα µαθηµατικά συναντούν τη µουσική.

«Διαστηµατικά» Εκεί που τα µαθηµατικά συναντούν τη µουσική. «Διαστηµατικά» Εκεί που τα µαθηµατικά συναντούν τη µουσική. Του καθηγητή µουσικής µουσικολόγου Δηµήτρη Γρίβα Web-site: http://users.sch.gr/dgrivas E-mail: dgrivas@sch.gr Τα µαθηµατικά και η µουσική είναι

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΕΙΣΑΓΩΓΗ: Γνωριμία με την ΑΚΟΥΣΤΙΚΗ 1 ΜΕΡΟΣ ΠΡΩΤΟ: ΘΕΩΡΙΑ 5. 1 ος ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΤΑΛΑΝΤΩΣΕΙΣ 7 Προσδοκώμενα αποτελέσματα 8

ΠΕΡΙΕΧΟΜΕΝΑ. ΕΙΣΑΓΩΓΗ: Γνωριμία με την ΑΚΟΥΣΤΙΚΗ 1 ΜΕΡΟΣ ΠΡΩΤΟ: ΘΕΩΡΙΑ 5. 1 ος ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΤΑΛΑΝΤΩΣΕΙΣ 7 Προσδοκώμενα αποτελέσματα 8 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ: Γνωριμία με την ΑΚΟΥΣΤΙΚΗ 1 ΜΕΡΟΣ ΠΡΩΤΟ: ΘΕΩΡΙΑ 5 1 ος ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΤΑΛΑΝΤΩΣΕΙΣ 7 Προσδοκώμενα αποτελέσματα 8 1.1. Περιοδική κίνηση Περιοδικά φαινόμενα 9 1.2. Ταλάντωση - Ταλαντούμενα

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΔΡΟΜΙΑ 2017 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Παρασκευή 27 Ιανουαρίου 2017 ΛΕΥΚΩΣΙΑ Τάξη: Α Γυμνασίου

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΔΡΟΜΙΑ 2017 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Παρασκευή 27 Ιανουαρίου 2017 ΛΕΥΚΩΣΙΑ Τάξη: Α Γυμνασίου Τάξη: Α Γυμνασίου A. Να τοποθετήσετε στο κάθε κουτί του πιο κάτω πίνακα έναν αριθμό, ώστε το άθροισμα κάθε γραμμής, στήλης και διαγωνίου να είναι. B. Οι αριθμοί από το μέχρι και το θα τοποθετηθούν στα

Διαβάστε περισσότερα

Μουσική Πληροφορική. Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015

Μουσική Πληροφορική. Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015 Μουσική Πληροφορική Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015 Άδεια Χρήσης 2 Άδεια Χρήσης 3 Άδεια Χρήσης 4 Ήχος Κλίμακες Β & Γ Δ. Πολίτης 2 ο Μάθημα Περιεχόμενα Μέρος Α : Ανατομία και φυσιολογία του αυτιού

Διαβάστε περισσότερα

Μουσικές Νότες και Κλίμακες Κλίμακες και Ηχοχρώματα (συγκερασμός) Η Πυθαγόρεια Κλίμακα Ισο συγκερασμένη Κλίμακα Ανορθόδοξες Κλίμακες

Μουσικές Νότες και Κλίμακες Κλίμακες και Ηχοχρώματα (συγκερασμός) Η Πυθαγόρεια Κλίμακα Ισο συγκερασμένη Κλίμακα Ανορθόδοξες Κλίμακες Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 10 Μουσικές Νότες και Κλίμακες Κλίμακες και Ηχοχρώματα (συγκερασμός) Η Πυθαγόρεια Κλίμακα Ισο συγκερασμένη Κλίμακα Ανορθόδοξες Κλίμακες Επανάληψη της Διάλεξης

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 2 Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 2 Α ΛΥΚΕΙΟΥ Page1 ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 2 Α ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: 1.1 Δειγματικός χώρος Ενδεχόμενα i. ΔΙΔΑΚΤΙΚΟΙ ΣΤΟΧΟΙ: 1. Προσδιορίζουν το δειγματικό χώρο ενός πειράματος τύχης και ενδεχόμενα

Διαβάστε περισσότερα

ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ

ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ ΔΟΜΕΣ Δομή Ομάδας Σύνολο Α και μια πράξη η πράξη είναι κλειστή ισχύει η προσεταιριστική ιδότητα υπάρχει ουδέτερο στοιχείο υπάρχει αντίστροφο στοιχείο ισχύει η αντιμεταθετική

Διαβάστε περισσότερα

Το Βιολί. Πασχαλιά-Μπρέντα Νίκη. Μαθήτρια Α2 Γυμνασίου, Ελληνικό Κολλέγιο Θεσσαλονίκης. Επιβλέπων Καθηγητής: Κωνσταντίνος Παρασκευόπουλος

Το Βιολί. Πασχαλιά-Μπρέντα Νίκη. Μαθήτρια Α2 Γυμνασίου, Ελληνικό Κολλέγιο Θεσσαλονίκης. Επιβλέπων Καθηγητής: Κωνσταντίνος Παρασκευόπουλος Το Βιολί Πασχαλιά-Μπρέντα Νίκη Μαθήτρια Α2 Γυμνασίου, Ελληνικό Κολλέγιο Θεσσαλονίκης Επιβλέπων Καθηγητής: Κωνσταντίνος Παρασκευόπουλος Καθηγητής Πληροφορικής Ελληνικού Κολλεγίου Θεσσαλονίκης Περίληψη Στην

Διαβάστε περισσότερα

«ΕΥΡΗΚΑ ΕΥΡΗΚΑ» «ΕΥΡΗΚΑ ΕΥΡΗΚΑ»

«ΕΥΡΗΚΑ ΕΥΡΗΚΑ» «ΕΥΡΗΚΑ ΕΥΡΗΚΑ» «ΕΥΡΗΚΑΕΥΡΗΚΑ» «ΕΥΡΗΚΑ ΕΥΡΗΚΑ» ΤΑΚΕΦΑΛΑΙΑΤΟΥΒΙΒΛΙΟΥ 1. ΟΡΙΣΜΟΣ ΚΑΙ ΙΣΤΟΡΙΚΗ ΑΝΑΣΚΟΠΗΣΗ 2. ΒΙΟΓΡΑΦΙΕΣ:ΘΑΛΗΣ, ΠΥΘΑΓΟΡΑΣ, ΑΡΧΙΜΗ ΗΣ, ΕΥΚΛΕΙ ΗΣ 3. ΜΑΘΗΜΑΤΙΚΑ: ΑΝΑΚΑΛΥΨΗ Η ΕΠΙΝΟΗΣΗ; 4. Ο ΘΑΥΜΑΣΤΟΣ ΚΟΣΜΟΣ ΤΩΝ

Διαβάστε περισσότερα

Νηπιαγωγείο - Δημοτικό

Νηπιαγωγείο - Δημοτικό Νηπιαγωγείο - Δημοτικό Το πρόγραμμα «Τέχνη και Μαθηματικά» για το νηπιαγωγείο δημοτικό, αποτελείται από τρία διδακτικά μέρη, δύο εκ των οποίων είναι κοινά για τους μαθητές όλων των τάξεων (Μέρη Α & Β )

Διαβάστε περισσότερα

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Περιεχόμενα ΠΡΟΛΕΓΟΜΕΝΑ 15 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών Η αναπαράσταση των

Διαβάστε περισσότερα

ΤΙ ΟΝΟΜΑΖΟΥΜΕ ΓΝΩΣΗ; ΠΟΙΑ ΕΙΝΑΙ ΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΗΣ; Το ερώτημα για το τι είναι η γνώση (τι εννοούμε όταν λέμε ότι κάποιος γνωρίζει κάτι ή ποια

ΤΙ ΟΝΟΜΑΖΟΥΜΕ ΓΝΩΣΗ; ΠΟΙΑ ΕΙΝΑΙ ΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΗΣ; Το ερώτημα για το τι είναι η γνώση (τι εννοούμε όταν λέμε ότι κάποιος γνωρίζει κάτι ή ποια 18 ΤΙ ΟΝΟΜΑΖΟΥΜΕ ΓΝΩΣΗ; ΠΟΙΑ ΕΙΝΑΙ ΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΗΣ; Το ερώτημα για το τι είναι η γνώση (τι εννοούμε όταν λέμε ότι κάποιος γνωρίζει κάτι ή ποια χαρακτηριστικά αποδίδουμε σε ένα πρόσωπο το οποίο λέμε

Διαβάστε περισσότερα

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Πρώτη νύχτα Μονάδα Όνειρα ( εργασία ) Η έννοια του απείρου Φρόυντ Κλάσματα Αριθμητικό σύστημα ( εργασία

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 5 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 5 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 5 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 5.2 Ασκήσεις: 1-17 Θεωρία ως και την 5.3 Ασκήσεις: 18-24 Άσκηση 1 Θεωρούμε την ακολουθία

Διαβάστε περισσότερα

Η ιστορία του φωτός σαν παραμύθι

Η ιστορία του φωτός σαν παραμύθι Η ιστορία του φωτός σαν παραμύθι περιγραφή της δράσης Χρήστος Γκοτζαρίδης Φυσικός ΕΙΣΑΓΩΓΙΚΟΣ ΤΟΜΕΑΣ ΚΑΙ ΠΡΟΚΑΤΑΡΤΙΚΗ ΦΑΣΗ Μικρή Περιγραφή: Οι μαθητές θα παρακολουθήσουν μία ιστορία, για την εξέλιξη των

Διαβάστε περισσότερα

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci»

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci» Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci» Μάθημα: Άλγεβρα Υπεύθυνος καθηγητής: κ. Σκοτίδας Τάξη: Β Λυκείου Τμήμα Β2 Ονοματεπώνυμο: Λαμπρινή Μαρίνα Λάππα Σχολικό έτος: 2010 2011 1 ΠΕΡΙΕΧΟΜΕΝΑ 1) Ποιο πρόβλημα

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΤΩΝ. ΤΟΥ 46 ου ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΘΗΝΩΝ Β ΤΑΞΗΣ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΦΙΛΟΣΟΦΙΑΣ ΘΕΜΑ: «ΑΡΙΣΤΟΤΕΛΗΣ ΓΝΩΣΗ»

ΕΡΓΑΣΙΑ ΜΑΘΗΤΩΝ. ΤΟΥ 46 ου ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΘΗΝΩΝ Β ΤΑΞΗΣ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΦΙΛΟΣΟΦΙΑΣ ΘΕΜΑ: «ΑΡΙΣΤΟΤΕΛΗΣ ΓΝΩΣΗ» ΕΡΓΑΣΙΑ ΜΑΘΗΤΩΝ Β ΤΑΞΗΣ ΤΟΥ 46 ου ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΘΗΝΩΝ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΦΙΛΟΣΟΦΙΑΣ ΘΕΜΑ: «ΑΡΙΣΤΟΤΕΛΗΣ ΓΝΩΣΗ» Αριστοτέλης (384-322 π.χ.) Ο Αριστοτέλης γεννήθηκε το 384 π.χ. Ήταν γιος ενός θεραπευτή.

Διαβάστε περισσότερα

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2 Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια Μαριάννα Μπιτσάνη Α 2 Τι είναι η φιλοσοφία; Φιλοσοφία είναι η επιστήμη που ασχολείται με: ερωτήματα προβλήματα ή απορίες που μπορούμε να αποκαλέσουμε οριακά,

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ ΧΡΥΣΗ ΤΟΜΗ ΤΕΧΝΕΣ ΜΑΘΗΤΕΣ ΛΑΜΠΡΟΠΟΥΛΟΥ ΕΥΑ ΜΑΝΕΝΤΗ ΖΩΗ ΑΝΤΩΝΑΤΟΥ ΑΣΠΑ ΔΡΟΓΓΙΤΗΣ ΓΙΩΡΓΟΣ ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΗΤΡΙΑ ΑΝΤΩΝΟΠΟΥΛΟΥ ΕΛΠΙΔΑ

Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ ΧΡΥΣΗ ΤΟΜΗ ΤΕΧΝΕΣ ΜΑΘΗΤΕΣ ΛΑΜΠΡΟΠΟΥΛΟΥ ΕΥΑ ΜΑΝΕΝΤΗ ΖΩΗ ΑΝΤΩΝΑΤΟΥ ΑΣΠΑ ΔΡΟΓΓΙΤΗΣ ΓΙΩΡΓΟΣ ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΗΤΡΙΑ ΑΝΤΩΝΟΠΟΥΛΟΥ ΕΛΠΙΔΑ 1 η ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ ΧΡΥΣΗ ΤΟΜΗ ΤΕΧΝΕΣ ΜΑΘΗΤΕΣ ΛΑΜΠΡΟΠΟΥΛΟΥ ΕΥΑ ΜΑΝΕΝΤΗ ΖΩΗ ΑΝΤΩΝΑΤΟΥ ΑΣΠΑ ΔΡΟΓΓΙΤΗΣ ΓΙΩΡΓΟΣ ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΗΤΡΙΑ ΑΝΤΩΝΟΠΟΥΛΟΥ ΕΛΠΙΔΑ ΠΑΤΡΑ 17 ΙΑΝΟΥΑΡΙΟΥ 2012 Εισαγωγή

Διαβάστε περισσότερα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στο μάθημα Ανάλυση Ι & Εφαρμογές 26 Φεβρουαρίου 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στο μάθημα Ανάλυση Ι & Εφαρμογές 26 Φεβρουαρίου 2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στο μάθημα Ανάλυση Ι & Εφαρμογές 26 Φεβρουαρίου 25 Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Όσοι έχουν πάρει προβιβάσιμο βαθμό στην Πρόοδο (πάνω

Διαβάστε περισσότερα

Ιστοσελίδα: Γραφείο: ΣΘΕ, 4 ος όροφος, γραφείο 3 Ώρες: καθημερινά Βιβλίο: Ομότιτλο, εκδόσεις

Ιστοσελίδα:  Γραφείο: ΣΘΕ, 4 ος όροφος, γραφείο 3 Ώρες: καθημερινά Βιβλίο: Ομότιτλο, εκδόσεις Ιστοσελίδα: http://www.astro.auth.gr/~varvogli/ Γραφείο: ΣΘΕ, 4 ος όροφος, γραφείο 3 Ώρες: 10.00-12.00 καθημερινά Βιβλίο: Ομότιτλο, εκδόσεις Πλανητάριο, 200 σελίδες Ημερολόγιο μαθήματος Μέθοδος διδασκαλίας:

Διαβάστε περισσότερα

Έννοιες φυσικών επιστημών Ι και αναπαραστάσεις Ενότητα 12: Ο ήχος, τα ηχητικά φαινόμενα και οι σχετικές ιδέες των μαθητών

Έννοιες φυσικών επιστημών Ι και αναπαραστάσεις Ενότητα 12: Ο ήχος, τα ηχητικά φαινόμενα και οι σχετικές ιδέες των μαθητών Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγικό Τμήμα Νηπιαγωγών Έννοιες φυσικών επιστημών Ι και αναπαραστάσεις Ενότητα 12: Ο ήχος, τα ηχητικά φαινόμενα και οι σχετικές ιδέες των μαθητών Καθηγητής: Καριώτογλου

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το

Διαβάστε περισσότερα

Εκπαιδευτικοί στόχοι

Εκπαιδευτικοί στόχοι ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΑΡΧΑΙΟΤΗΤΩΝ ΚΑΙ ΠΟΛΙΤΙΣΤΙΚΗΣ ΚΛΗΡΟΝΟΜΙΑΣ ΔΙΕΥΘΥΝΣΗ ΜΟΥΣΕΙΩΝ TMHMA ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Εκπαιδευτικοί στόχοι των προτεινόμενων

Διαβάστε περισσότερα

ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ

ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Συχνά τα Μαθηματικά χρησιμοποιούνται ως ένα «εργαλείο» προκειμένου να ανιχνευθεί η «εξυπνάδα» του κάθε ανθρώπου, να διαφοροποιηθούν οι μαθητές μεταξύ τους σε

Διαβάστε περισσότερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα [ 1 ] Πανεπιστήµιο Κύπρου Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα Νικόλαος Στυλιανόπουλος Ηµερίδα Ιστορία των Μαθηµατικών Πανεπιστήµιο Κύπρου Νοέµβριος 2016 [ 2 ] Πανεπιστήµιο Κύπρου υσκολίες

Διαβάστε περισσότερα

Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ

Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ Επιμέλεια: Μιχαηλίσιν Άννα- Μαρία, Τζιώτης Δημήτρης, Τσάτσα Κωνσταντίνα Η συμμετρία στο φυσικό κόσμο Η συμμετρία που κατεξοχήν

Διαβάστε περισσότερα

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος

Διαβάστε περισσότερα

ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΕΦΑΛΑΙΟ # 1: ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΟΡΓΑΝΩΣΗΣ

ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΕΦΑΛΑΙΟ # 1: ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΟΡΓΑΝΩΣΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΕΦΑΛΑΙΟ # 1: ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΟΡΓΑΝΩΣΗΣ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της

Διαβάστε περισσότερα

καλύπτει πολλά πεδία του επιστητού, ασχέτως του εάν στην Ελλάδα δεν διδάσκεται στο Λύκειο ως τμήμα της Φυσικής.

καλύπτει πολλά πεδία του επιστητού, ασχέτως του εάν στην Ελλάδα δεν διδάσκεται στο Λύκειο ως τμήμα της Φυσικής. ΠΡΟΛΕΓΟΜΕΝΑ H ιστορία των μουσικών οργάνων είναι τόσο παλιά, όσο ο πολιτισμός του ανθρώπου. Το ενδιαφέρον των «επιστημόνων» για τα μουσικά όργανα χρονολογείται από την εποχή του Πυθαγόρα (τουλάχιστον)

Διαβάστε περισσότερα

1 Dodecaeder 3 7 5 11 9. 2 12 4 10 6. 8 Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Dodecaeder Copyright 1998-2005 Gijs Korthals

Διαβάστε περισσότερα

Ο Ήχος. Υπεύθυνος Καθηγητής: Παζούλης Παναγιώτης

Ο Ήχος. Υπεύθυνος Καθηγητής: Παζούλης Παναγιώτης ιαθεµατική Εργασία µε Θέµα: Οι Φυσικές Επιστήµες στην Καθηµερινή µας Ζωή Ο Ήχος Τµήµα: β1 Γυµνασίου Υπεύθυνος Καθηγητής: Παζούλης Παναγιώτης Συντακτική Οµάδα: Γεώργιος Ελευθεριάδης Ο Ήχος Έχει σχέση ο

Διαβάστε περισσότερα

«ΦΥΣΙΚΗ ΚΑΙ ΜΟΥΣΙΚΗ»

«ΦΥΣΙΚΗ ΚΑΙ ΜΟΥΣΙΚΗ» ΠΑΡΕΜΒΑΣΕΙΣ ΣΤΗ ΜΟΥΣΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: «ΦΥΣΙΚΗ ΚΑΙ ΜΟΥΣΙΚΗ» Δράσεις που υλοποιήθηκαν με την Ε2 Τάξη του 3 ου Δημοτικού Σχολείου Διαβατών Ιανουάριος Ιούνιος 2013 Συντελεστές προγράμματος Οι μαθητές/ριες

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

Μουσικοθεωρητικό σύστημα - Αρμονική

Μουσικοθεωρητικό σύστημα - Αρμονική Μουσικοθεωρητικό σύστημα - Αρμονική Κλεονίδης, Εισαγωγή Αρμονική. Αρμονική εστίν επιστήμη θεωρητική και πρακτική. μέρη δε αυτής επτά. Περί φθόγγων Περί διαστημάτων Περί γενών Περί συστήματος Περί τόνου

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

ΕΜΜΑΝΟΥΗΛ ΚΑΝΤ (1724-1804)

ΕΜΜΑΝΟΥΗΛ ΚΑΝΤ (1724-1804) ΕΜΜΑΝΟΥΗΛ ΚΑΝΤ - ΣΥΝΤΟΜΗ ΠΕΡΙΛΗΨΗ ΤΗΣ ΓΝΩΣΙΟΘΕΩΡΙΑΣ ΤΟΥ 1 ΕΜΜΑΝΟΥΗΛ ΚΑΝΤ (1724-1804) (Η σύντομη περίληψη που ακολουθεί και η επιλογή των αποσπασμάτων από την πραγματεία του Καντ για την ανθρώπινη γνώση,

Διαβάστε περισσότερα

Αφαίρεση και Γενίκευση στα Μαθηματικά

Αφαίρεση και Γενίκευση στα Μαθηματικά 1 Αφαίρεση και Γενίκευση στα Μαθηματικά Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ3 www.p-theodoropoulos.gr ΠΕΡΙΛΗΨΗ Στην εργασία αυτή εξετάζεται εντός του πλαισίου της Διδακτικής των

Διαβάστε περισσότερα

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 Β Γυμνασίου Φυσική: Ασκήσεις Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 Ασκήσεις στο 1 ο Κεφάλαιο Ασκήσεις με κενά 1. Να συμπληρώσεις τα κενά στις παρακάτω προτάσεις:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΕΠΙΜΕΛΕΙΑ: Νάκου Αλεξάνδρα Εισαγωγή στις Επιστήμες της Αγωγής Ο όρος ΕΠΙΣΤΗΜΕΣ ΤΗΣ ΑΓΩΓΗΣ δημιουργεί μία αίσθηση ασάφειας αφού επιδέχεται πολλές εξηγήσεις. Υπάρχει συνεχής διάλογος και προβληματισμός ακόμα

Διαβάστε περισσότερα

ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ

ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΦΑΙΔΡΑ ΚΟΥΡΒΙΣΙΑΝΟΥ ΒΑΣΙΛΗΣ ΚΑΤΣΑΝΤΩΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΗΛΙΟΠΟΥΛΟΣ ΑΝΔΡΕΑΣ ΚΑΣΙΜΑΤΗΣ Ερευνητικά Ερωτήματα Ποιοι είναι ΟΙ ΣΗΜΑΝΤΙΚΟΙ

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

«Μουσικό διάστημα: Μήκος ή λόγος μηκών;»

«Μουσικό διάστημα: Μήκος ή λόγος μηκών;» «Μουσικό διάστημα: Μήκος ή λόγος μηκών;» Η έννοια «διάστημα» ως σχέσεως δύο αριθμών προς αλλήλους. Η σχέση μεταξύ δύο αριθμών στη Πυθαγόρειο θεωρία της Μουσικής και σ αυτήν ακόμη την Κατατομή Κανόνος του

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου) Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο: Όνοµα: Όνοµα πατέρα: e-mail: ιεύθυνση: Τηλέφωνο: Εξεταστικό Κέντρο: Σχολείο προέλευσης: Τάξη: Θέµατα Καγκουρό 007 Επίπεδο: (για µαθητές της ' και ' τάξης

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων

Διαβάστε περισσότερα

Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή» 2012-2013

Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή» 2012-2013 Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή» 2012-2013 Η Χρυσή τοµή στην καθηµερινότητά µας Η χρυσή τοµή δεν είναι µόνο ένας µαθηµατικός όρος, αλλά και µια

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού

Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού Πέτρος Κλιάπης kliapis@sch.gr 1 Ο Ρόλος του εκπαιδευτικού Αξιολογεί την αρχική μαθηματική κατάσταση κάθε παιδιού, ομαδοποιεί τα παιδιά σύμφωνα με

Διαβάστε περισσότερα

Στάμη Τσικοπούλου. ΕΥΚΛΕΙΔΗΣ Β 85τ.1/1

Στάμη Τσικοπούλου. ΕΥΚΛΕΙΔΗΣ Β 85τ.1/1 Πίνακες πολλαπλασιασμού Το Βεδικό τετράγωνο Στάμη Τσικοπούλου Σ τα μαθηματικά και ιδιαίτερα στην αριθμητική ένας πίνακας πολλαπλασιασμού (ή αλλιώς ένας πυθαγόρειος πίνακας) είναι ένας πίνακας που χρησιμοποιείται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

2 ος. Γυμνασίου. ΘΕΜΑ 1 ο Με τα. αριθμός που μπορούμε να σχηματίσουμε ώστε. Απάντηση = β) Γνωρίζουμε ότι διψήφιο τμήμα

2 ος. Γυμνασίου. ΘΕΜΑ 1 ο Με τα. αριθμός που μπορούμε να σχηματίσουμε ώστε. Απάντηση = β) Γνωρίζουμε ότι διψήφιο τμήμα ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑ ΑΣ 2 ος Ημαθιώτικος Μαθητικός Διαγωνισμός στα Μαθηματικά. «Κ. ΚΑΡΑΘΕΟΔΩΡΗ» Σάββατο 23 Ιανουαρίου 2010 Α Γυμνασίου ΘΕΜΑ 1 ο Με τα ψηφία 0, 1, 2, 3, 4, 5 σχηματίζουμ

Διαβάστε περισσότερα

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 2 1. Ο Άρης έφαγε 5 μιας σοκολάτας και ο Φίλιππος έφαγε 1 10 σοκολάτας περισσότερο από τον Άρη. Τι μέρος της σοκολάτας έμεινε;

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τα Μαθηματικά στην αρχαία Ελλάδα. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Σ. ΑΝΔΡΕΑΔΑΚΗΣ Β. ΚΑΤΣΑΡΓΥΡΗΣ Σ. ΠΑΠΑΣΤΑΥΡΙΔΗΣ Γ. ΠΟΛΥΖΟΣ Α. ΣΒΕΡΚΟΣ ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε

Διαβάστε περισσότερα

ΕΠΑ 331 Διδακτική των Μαθηματικών. Παρουσίαση «Γεωμετρία» ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης

ΕΠΑ 331 Διδακτική των Μαθηματικών. Παρουσίαση «Γεωμετρία» ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης ΕΠΑ 331 Διδακτική των Μαθηματικών Παρουσίαση «Γεωμετρία» ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης 1 ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης 1. Αναγνωρίζουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟΣ ΠΟΛΙΤΙΣΜΟΣ ΕΛΠ22 ΤΡΙΤΗ ΕΡΓΑΣΙΑ ΠΡΟΤΥΠΗ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟΣ ΠΟΛΙΤΙΣΜΟΣ ΕΛΠ22 ΤΡΙΤΗ ΕΡΓΑΣΙΑ ΠΡΟΤΥΠΗ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟΣ ΠΟΛΙΤΙΣΜΟΣ ΕΛΠ22 ΤΡΙΤΗ ΕΡΓΑΣΙΑ ΠΡΟΤΥΠΗ ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ... 2 Εισαγωγή... 3 Οι αρχές του σύμπαντος κατά τον Αριστοτέλη... 3 Ο υποσελήνιος χώρος... 3 Ο χώρος

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται

Διαβάστε περισσότερα

Εισαγωγή στη μουσική. Μουσικοκινητική Αγωγή. Α εξάμηνο Θεωρία 3. ΝΟΤΕΣ. 1. Μουσική 2. Μελωδία 3. Νότες 4. Ρυθμός

Εισαγωγή στη μουσική. Μουσικοκινητική Αγωγή. Α εξάμηνο Θεωρία 3. ΝΟΤΕΣ. 1. Μουσική 2. Μελωδία 3. Νότες 4. Ρυθμός Μουσικοκινητική Αγωγή Α εξάμηνο Θεωρία Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός 1 Μουσικοκινητική Αγωγή (Θ) ΜΙΧΑ Παρασκευή 1 Εισαγωγή στη μουσική 1. Μουσική 2. Μελωδία 3. Νότες 4. Ρυθμός 2 Μουσικοκινητική

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας Μονοψήφια διαίρεση Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους

Διαβάστε περισσότερα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα Φυσική Γ Λυκείου Κατεύθυνσης Προτεινόμενα Θέματα Θέμα ο Ένα σώμα εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Η φάση της ταλάντωσης μεταβάλλεται με το χρόνο όπως δείχνει το παρακάτω σχήμα : φ(rad) 2π π 6

Διαβάστε περισσότερα

Το πυθαγόρειο θεώρημα: απόδειξη με ένα απλό πείραμα

Το πυθαγόρειο θεώρημα: απόδειξη με ένα απλό πείραμα Το πυθαγόρειο θεώρημα: απόδειξη με ένα απλό πείραμα Γιατί να μαθαίνουμε Μαθηματικά; Ένας καθηγητής Μαθηματικών ανεξάρτητα από το πόσο αγαπά τη δουλειά του και κατά πόσο η επικοινωνία του με τους μαθητές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Το πρόβλημα στα Μαθηματικά

Το πρόβλημα στα Μαθηματικά Το πρόβλημα στα Μαθηματικά από το ΣΔΕ Γιαννιτσών Δημήτρης Πολυτίδης (Μαθηματικός) Στα Μαθηματικά το πρόβλημα θα πρέπει να είναι μια κατάσταση η επίλυση της οποίας, από το μαθητή, δεν είναι αυτόματη και

Διαβάστε περισσότερα

Αρχές Φιλοσοφίας Β Λυκείου Τράπεζα Θεμάτων: 2 ο κεφάλαιο «Κατανοώντας τα πράγματα»

Αρχές Φιλοσοφίας Β Λυκείου Τράπεζα Θεμάτων: 2 ο κεφάλαιο «Κατανοώντας τα πράγματα» Αρχές Φιλοσοφίας Β Λυκείου Τράπεζα Θεμάτων: 2 ο κεφάλαιο «Κατανοώντας τα πράγματα» Α] Ασκήσεις κλειστού τύπου (Σωστό Λάθος) Για τον Πλάτωνα οι καθολικές έννοιες, τα «καθόλου», δεν είναι πράγματα ξεχωριστά

Διαβάστε περισσότερα

1.6.3 Ιατρικές και βιολογικές θεωρίες στον Πλάτωνα και στον Αριστοτέλη Η αρχαία ελληνική ιατρική µετά τον Ιπποκράτη

1.6.3 Ιατρικές και βιολογικές θεωρίες στον Πλάτωνα και στον Αριστοτέλη Η αρχαία ελληνική ιατρική µετά τον Ιπποκράτη 1 2 Περιεχόµενα Πρόλογος...5 Εισαγωγή: Οι Απαρχές της Ελληνικής Επιστήµης...8 Κεφάλαιο 1: Η Αρχαία Ελληνική Επιστήµη...24 1.1 Οι φυσικές θεωρίες των Προσωκρατικών φιλοσόφων...25 1.1.1 H πρώιµη ιωνική φιλοσοφική

Διαβάστε περισσότερα

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου 2006 1/5 Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Ν:6 ο Οι απαρχές των Μαθηματικών Τα μαθηματικά είναι η επιστήμη εκείνη η οποία

Διαβάστε περισσότερα

Κουρδίσµατα (περίληψη)

Κουρδίσµατα (περίληψη) Κουρδίσµατα (περίληψη) Ι. Αρµονική στήλη Κάθε νότα που παράγεται µε φυσικά µέσα είναι ένα πολύ σύνθετο φαινόµενο. Ως προς το τονικό ύψος, συνιστώσες του ("αρµονικοί") είναι η συχνότητα που ακούµε ("θεµελιώδης")

Διαβάστε περισσότερα

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1: Α. Στις ερωτήσεις 1-3 να σημειώσετε το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα σώμα μάζας m

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΗΡΙΟ «ΤΟ ΠΑΓΚΡΗΤΙΟΝ» ΕΡΕΥΝΑ. Της μαθήτριας της Α Λυκείου Χριστίνας Ρητσοπούλου

ΕΚΠΑΙΔΕΥΤΗΡΙΟ «ΤΟ ΠΑΓΚΡΗΤΙΟΝ» ΕΡΕΥΝΑ. Της μαθήτριας της Α Λυκείου Χριστίνας Ρητσοπούλου ΕΚΠΑΙΔΕΥΤΗΡΙΟ «ΤΟ ΠΑΓΚΡΗΤΙΟΝ» ΕΡΕΥΝΑ Της μαθήτριας της Α Λυκείου Χριστίνας Ρητσοπούλου Ποιο είναι το αγαπημένο είδος μουσικής των μαθητών της Α Λυκείου Στα πλαίσια του μαθήματος «Tεχνολογία» ΗΡΑΚΛΕΙΟ 2009

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Κ. Τζιρώνης, Θ. Τζουβάρας ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Συµπλήρωµα στις λύσεις των ασκήσεων του βιβλίου Περιλαµβάνει λύσεις ή υποδείξεις για ασκήσεις του βιβλίου που αφορούν κυρίως προβλήµατα των οποίων η επίλυση

Διαβάστε περισσότερα

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) Γράφημα της συνάρτησης f( x), αν p x< 0 F( x) = f( x), αν 0 x p και F( x+ 2 p) = F( x), x R (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) ΠΡΟΛΟΓΟΣ Το Βιβλίο αυτό απευθύνεται στους

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΧΡΟΝΟΣ: 1 ΩΡΑ 3 ΛΕΠΤΑ Το δοκίμιο αυτό αποτελείται από δύο μέρη. Το πρώτο μέρος αποτελείται από 15 ερωτήσεις πολλαπλής επιλογής.

Διαβάστε περισσότερα

Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας;

Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας; Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας; Τα μαθηματικά διαπερνούν κάθε ανθρώπινη δραστηριότητα. Σ αυτή την παρουσίαση θα

Διαβάστε περισσότερα

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127 Α - Β Γυμνασίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 0. Αν = M = 60, η τιμή του M + N είναι: 5 45 N Α. Β. 9 Γ. 45 Δ. 05 Ε.. Ένα τετράγωνο και ένα τρίγωνο έχουν ίσες περιμέτρους. Το μήκος των τριών

Διαβάστε περισσότερα