Οικονομικά Μαθηματικά

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Οικονομικά Μαθηματικά"

Transcript

1 Οικονομικά Μαθηματικά Ενότητα 8: Πρόσκαιρες Ράντες Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο TEI Δυτικής Μακεδονίας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 Σκοποί ενότητας Να κατανοήσει ο φοιτητής τις έννοιες των πρόσκαιρων ράντων. 4

5 Περιεχόμενα ενότητας Ράντες. Σχετικά παραδείγματα-ασκήσεις. 5

6 Ράντα (1) Ράντα ονομάζουμε ένα σύνολο κεφαλαίων K 1, K 2, K 3, τα οποία καταβάλλονται σε ίσα, τακτά χρονικά διαστήματα. Καθένα από τα κεφάλαια αυτά K 1, K 2, K 3, ονομάζεται όρος της ράντας. Η χρονική στιγμή καταβολής των κεφαλαίων ονομάζεται λήξη του όρου. Όταν η καταβολή των όρων της ράντας εξαρτάται από στοχαστικά γεγονότα όπως π.χ. ο θάνατος ενός ασφαλισμένου, τότε καλείται τυχαία ράντα. Αντίθετα, οι ράντες που η καταβολή των όρων τους δεν εξαρτάται από τυχαία γεγονότα ονομάζονται βέβαιες ράντες. 6

7 Ράντα (2) Σε κάθε βέβαια ράντα διακρίνουμε τα εξής: Την περίοδο της ράντας. Το χρονικό διάστημα που μεσολαβεί μεταξύ της καταβολής δυο διαδοχικών όρων της ράντας ονομάζεται περίοδος. Το μέγεθος της περιόδου. Όταν η περίοδος είναι το έτος η ράντα ονομάζεται ετήσια, αντίστοιχα όταν η περίοδος είναι το εξάμηνο, το τρίμηνο, ο μήνας η ράντα καλείται εξαμηνιαία, τριμηνιαία, μηνιαία κλπ. Τη διάρκεια της ράντας. Όταν το πλήθος των όρων της ράντας είναι πεπερασμένο η ράντα καλείται πρόσκαιρη, ενώ όταν το πλήθος των όρων είναι άπειρο η ράντα καλείται διηνεκής. Το μέγεθος του όρου της ράντας. Όταν όλοι οι όροι ράντας είναι ίση τότε η ράντα καλείται σταθερή, ενώ όταν οι όροι της ράντας μεταβάλλονται π.χ. σε γεωμετρική πρόοδο τότε η ράντα ονομάζεται μεταβλητή. 7

8 Ράντα (3) Την ημέρα καταβολής των όρων της ράντας. Όταν η καταβολή των όρων της ράντας γίνεται στην αρχή της κάθε περιόδου τότε η ράντα καλείται προκαταβλητέα, ενώ στην αντίθετη περίπτωση που καταβολή των όρων γίνεται στο τέλος κάθε περιόδου η ράντα ονομάζεται ληξιπρόθεσμη. Την αρχή ράντας και το τέλος της ράντας. Αρχή ράντας καλείται η αρχή της πρώτης περιόδου, ενώ τέλος ράντας ονομάζεται το τέλος της περιόδου στην οποία γίνεται η καταβολή του τελευταίου όρου της ράντας. Την παρούσα αξία. Παρούσα ή αρχική αξία της ράντας καλείται η αξία της ράντας, δηλαδή του συνόλου των κεφαλαίων K 1, K 2, K 3,, στην αρχή της πρώτης περιόδου. Την τελική αξία της ράντας. Τελική αξία της ράντας καλείται η αξία της ράντας, δηλαδή του συνόλου των κεφαλαίων K 1, K 2, K 3,, στο τέλος της τελευταίας περιόδου. 8

9 Πρόσκαιρες Ράντες (1) Η παρούσα αξία ληξιπρόθεσμη ράντας, δηλαδή η αξία όλων των όρων της ράντας στην αρχή της ράντας, υπολογίζεται με βάση τη σύνθετη κεφαλαιοποίηση. Έστω ότι καταβάλλεται στο τέλος κάθε περιόδου κεφάλαια αξίας 1 ευρώ, για n περιόδους με επιτόκιο i για κάθε την κάθε περίοδο. Η παρούσα αξία της ράντα αυτής ισούται με την άθροιση των παρουσών αξιών των αντίστοιχων καταβολών. Για παράδειγμα, η παρούσα αξία ενός ευρώ που θα έχει καταβληθεί στο τέλος της πρώτης περιόδου θα είναι ίση, σύμφωνα με τον τύπο του ανατοκισμού: Κ 0 =Κ 2T (1+i) 2T Κ 0 = (1+i) T 9

10 Πρόσκαιρες Ράντες (2) Επίσης, η παρούσα αξία ενός ευρώ που θα έχει καταβληθεί στο τέλος της δεύτερης περιόδου θα είναι ίση: Κ 0 =Κ T (1+i) T Κ 0 = 1 (1+i) 2 Αν, λοιπόν, θέσουμε όπου 1 (1+i) = y 10

11 Πρόσκαιρες Ράντες (3) Τότε οι παρούσες αξίες των ευρώ που θα έχουν καταβληθεί στο τέλος της πρώτης, της δεύτερης περιόδου, της τρίτης κ.ο.κ θα είναι αντίστοιχα ίσες. Y =1 (1+i) 1, Y 2 =1 (1+i) 2, Y 3 =1 (1+i) 3, Y n-1 =1 (1+i) n-1 Και Y n =1 (1+i) n 11

12 Πρόσκαιρες Ράντες (4) Διάγραμμα 1. Πρόσκαιρες Ράντες 12

13 Πρόσκαιρες Ράντες (5) a jn =(1 (1+i) 1 ) + (1 (1+i) 2 + (1 (1+i) 3 +,...+ (1 (1+i) n-1 + (1 (1+i) n ή a jn = Υ + Υ 2 + Υ Υ n-1 + Υ n Η παράσταση στο δεύτερο μέλος της εξίσωσης είναι γεωμετρική πρόοδος με πρώτο όρο α = Υ, λόγο λ = Υ και τελευταίο όρο τ = Υ n. Γνωρίζουμε ότι το άθροισμα μιας γεωμετρικής προόδου είναι ίσο με: 13

14 Πρόσκαιρες Ράντες (6) Σ = [(τ *(τελευταίος όρος * λ (λόγος)) α* (πρώτος όρος)] (λ (λόγος) -1) Κατ αντιστοιχία η παρούσα αξία της υπό εξέτασης ράντας θα είναι ίση με: a jn =Y + (Y) 2 + (Y) 3 +,...+ (Y) n-1 + (Y) n = (Y n * Y - Y ) (Y -1) = (Y* Y n -1) (Y -1) Διαιρούμε αριθμητή και παρονομαστή με Υ και απλοποιούμε a jn == [(Y* (Y n -1) Υ] / [(Y -1) Υ] = (Y* Y n -1) (Y -1) = (Y n -1) ) (Υ/ Υ - 1/ Υ) = (Y n - 1) ) (1-1/ Υ) Ανατικαθιστούμε όπου Υ = 1/ (1+i): a jn = (1/(1+i) n -1) ) (1-1/ 1/(1+i)) = (1/(1+i) n -1) ) (1-1- i) = (1/(1+i) n -1) ) -i Πολλπαλασιάζουμε αριθμητή και παρονομαστή με το πρόσημο (-): a j n= (1-1/(1+i) n ) ) i 14

15 Πρόσκαιρες Ράντες (7) Ο συντελεστής a jn = 1- (1 (1+t)) n t είναι η παρούσα αξία μιας μοναδιαίας ληξιπρόθεσμης ράντας με επιτόκιο i για n όρους μιας νομισματικής μονάδας. 15

16 Πρόσκαιρες Ράντες (8) Εάν οι όροι της ράντας είναι ίση με R νομισματικές μονάδες τότε η παρούσα αξία της ράντας θα είναι ίση με: A jn = R* [(1 (1+i)) 1 + [(1 (1+i)) 2 + [(1 (1+i)) [(1 (1+t)) n-1 + [(1 (1+t)) n ] = R* a j n = R* [1- (1 (1+i)) 1n i] 16

17 Πρόσκαιρες Ράντες (9) Με ανάλογο τρόπο μπορεί να υπολογισθεί η τελική αξία S n j ληξιπρόθεσμης ράντας, δηλαδή η αξία όλων των όρων της ράντας στο τέλος της τελευταίας περιόδου. Έστω ότι καταβάλλεται στο τέλος κάθε περιόδου κεφάλαια αξίας 1 ευρώ, για n περιόδους με επιτόκιο i για κάθε την κάθε περίοδο. Η τελική αξία της ράντα αυτής ισούται με την άθροιση των τελικών αξιών των αντίστοιχων καταβολών. Για παράδειγμα, η τελική αξία του ευρώ που θα έχει καταβληθεί στο τέλος της τελευταίας περιόδου θα είναι ίση: 17

18 Πρόσκαιρες Ράντες (10) Κ t = K 0 (1+i) t K t = 1*(1+i) 0 =1 Επίσης η τελική αξία ενός ευρώ που θα έχει καταβληθεί στο τέλος της προτελευταίας περιόδου θα είναι ίση: Κ t = K 0 (1+i) t K t = 1*(1+i) 1 =(1+i) 1 Επίσης η τελική αξία ενός ευρώ που θα έχει καταβληθεί δυο περιόδους πριν την λήξη της ράντας θα είναι ίση: Κ t = K 0 (1+i) t K t = 1*(1+i) 2 =(1+i) 2 Αν λοιπόν θέσουμε όπου (1+i) = y τότε οι τελικές αξίες των ευρώ που θα άεχουν καυαβληθεί στο τέλος της τελευταίας, προτελευταίας κ.ο.κ περιόδου θα είναι αντίστοιχα ίσες. 18

19 Πρόσκαιρες Ράντες (11) Διάγραμμα 2. πρόσκαιρες ράντες (11) Εάν συμβολίσουμε την τελική αξία μιας ληξιπρόθεσμης πρόσκαιρης ράντας μιας νομοσματικής μονάδας με S j n όπου n ο αριθμός των περιόδων και i το επιτόκιο, τότε η παρούσα ή αλλιώς η αρχική αξία S j n Της παραπάνω ράντα θα ισούται με το άθροισμα των επιμέρους παρουσών αξιών των όρων της ράντας, δηλαδή: S jn = 1+ (1+i) 1 +(1+i) 2 +(1+i) 3 + +(1+i) n-1 19

20 ή Πρόσκαιρες Ράντες (12) S j n = Υ + Υ 2 + Υ Υ n-1 Η παράσταση στο δεύτερο μέλος της εξίσωσης είναι γεωμετρική πρόοδος με πρώτο όρο α = 1, λόγο λ = Υ και τελευταίο όρο τ = Υ n-1. Γνωρίζουμε ότι το άθροισμα μιας γεωμετρικής προόδου είναι ίσο με: 20

21 Πρόσκαιρες Ράντες (13) Η παράσταση στο δεύτερο μέλος της εξίσωσης είναι γεωμετρική πρόοδος με πρώτο όρο α = 1, λόγο λ = Υ και τελευταίο όρο τ = Υ n- 1. Γνωρίζουμε ότι το άθροισμα μιας γεωμετρικής προόδου είναι ίσο με: Σ = [(τ *(τελευταίος όρος * λ (λόγος)) α* (πρώτος όρος)] (λ (λόγος) -1) 21

22 Πρόσκαιρες Ράντες (14) Κατ αντιστοιχία η παρούσα αξία της υπό εξέτασης ράντας θα είναι ίση με: S j n = Υ + Υ 2 + Υ Υ n-1 = ((Υ n-1 *Υ) -1) / (Y-1) = ( Υ n -1/ (Y-1) Αντικαθιστούμε όπου Y=1+i S jn =((1+i) n -1)/ (1+i-1) = =((1+i) n -1)/ i Ο συντελεστής S j n είναι η τελική αξία μιας μοναδιαίας ληξιπρόθεσμης ράντας με επιτόκιο i για n όρος μιας νομισματικής μονάδας. Στο τελος του βιβλίου υπάρχουν πίνακες με αποτελέσματα του εν λόγω συντελεστή για διάφορες τιμές i και n. Εάν οι όροι της ράντας είναι ίση με R νομισματικές μονάδες τότε η παρούσα αξία της ράντας θα είναι ίση με S jn =1*R + R*(1+i) 1 + R*(1+i) 2 + R*(1+i) 3 + R*(1+i) n-1 = R *(1+(1+i) 1 + R*(1+i) 2 + R*(1+i) 3 + R*(1+i) n-1 ) 22

23 Πρόσκαιρες Ράντες (16) 1. Να βρεθεί η παρούσα αξία ετήσιας ληξιπρόθεσμης ράντας όρου ευρώ, διάρκειας 15 ετών, όταν το επιτόκιο είναι 9%. Λύση Η παρούσα αξία ράντας μπορεί να υπολογιστεί είτε με την βοήθεια του πίνακα είτε με τον υπολογισμό του συντελεστή [1- (1 (1+t)) n ] t Δηλαδή Α jn = R* a jn = R*[1- (1 (1+t)) n ] i a)με την χρήση του παραρτήματος Β1- Όρος της ράντας = R= ευρώ. Από τους πίνακες στο τέλος του βιβλίου (Σόρμας & Σαριαννίδης, 2010) λαμβάνουμε συντελεστή ράντας = a j n = a 15 0,09 = 8,06 Πίνακας 1. Πρόσκαιρες Ράντες Α jn = R* a j n = 8,06*2.000 = ευρώ παρούσα αξία. 23

24 Παράδειγμα 1 (1) Να βρεθεί η τελική αξία ράντας που θα σχηματισθεί μετά 10 έτη, όταν γίνεται κατάθεση ευρώ στο τέλος κάθε έτους, με επιτόκιο 10 %. Λύση Η εύρεση της τελικής αξία μπορεί να γίνει με τον υπολογισμό πρώτα της αρχικής αξίας της ράντας και στη συνέχεια με την εφαρμογή του τύπου της τελικής αξίας μέσω ανατοκισμού υπολογίζουμε την τελική αξία της ράντας. Ο αριθμός των περιόδων είναι ίσος με 10. Το επιτόκιο είναι 0,10 α) Με τη χρήση του πίνακα Όρος της ράντας = R = ευρώ Συντελεστής ράντας = a jn = a 0,10 10 =6,144 24

25 Παράδειγμα 1 (2) Πίνακας 2. Δεδομένα παραδείγματος 1 A jn = R*a j n = R*a 0, =2.000 *6,144 = 6, ευρώ. 25

26 Παράδειγμα 1 (3) Η τελική αξία είναι ίση με: Κ t = K 0 (1+i) t K 10 = *(1+0,10) 10 =12.288(1,10) 10 = ,91 Με άλλα λόγια, η αξία των ετησίων καταβολών 2000, με επιτόκιο 10% μετά 10 έτη θα είναι , 91 ευρώ. 26

27 Παράδειγμα 1 (4) Β) Με τον υπολογισμό του σχετικού συντελεστή Α jn = R* a 0,10 10 = A jn = R* [(1 (1/(1+i) n ))]/ i =2.000 * [(1 (1/(1+0,10) 10 ))]/ 0,10 = 2.000* [(1 (1/2,593742)]/ 0,10 = 2.000*6,144 = Παρομοίως η τελική αξία της ράντας είναι ίση με Κ t = K 0 (1+i) t K 10 = *(1+0,10) 10 =12.288(1,10) 10 = ,91 ευρώ 27

28 Παράδειγμα 2 (1) Να βρεθεί η παρούσα αξία προκαταβλητέας ράντας που αφορά καταβολές 1000 ευρώ στην αρχή κάθε έτους για 8 έτη με ετήσιο επιτόκιο 5%. Λύση Η ράντα καλείται προκαταβλητέα καθώς οι καταβολές γίνονται στην αρχή της κάθε περιόδου, σε αντίθεση με την ληξιπρόθεσμη που οι καταβολές γίνονται στο τέλος κάθε περιόδου. θα πρέπει να μετατρέψουμε την προκαταβλητέα ράντα σε ληξιπρόθεσμη. θα πρέπει να μετακινήσουμε την κάθε καταβολή από την αρχή της κάθε περιόδου στο τέλος. Η μεταφορά αυτή μπορεί να επιτευχθεί, πολλαπλασιάζοντας την κάθε καταβολή με το συντελεστή (1+i), βρίσκοντας έτσι την τελική αξία της κάθε καταβολή για μια περίοδο. 28

29 Παράδειγμα 2 (2) A jn = (1+i) * (R / (1+i) 1 ) +(1+i) * (R / (1+i) 2 )+ (1+i) * (R / (1+i) n-1 )+ (1+i) * (R / (1+i) n ) =(1+i) * R*((1 / (1+i) 1 ) +(1/ (1+i) 2 )+ (1/ (1+i) n-1 )+ (1/ (1+i) n )) = (1+i) * R a j n = (1+i) * R ((1-(1 / (1+i) n )) / i) Διάγραμμα 3. Διαγράμματα παραδείγματος 2 Η εν λόγω ράντα έχει επιτκόκιο i=5% με όρο R =1.000 και διάρκεια n=8. 29

30 Παράδειγμα 2 (3) α) Με τη χρήση του πίνακα του παραρτήματος Β.1 (Σόρμας & Σαριαννίδης, 2010) Όρος της ράντας = R = ευρώ Συντελεστής ράντας = a j n = a 0,05 8 = 47,065 Πίνακας 3. Δεδομένα παραδείγματος 1. A jn = (1+i)* R*a j n = (1,05)*6,46* Επομένως, η αρχική ή παρούσα αξία της ράντας είναι ευρώ. 30

31 Παράδειγμα 2 (4) β) Με τον υπολογισμό του σχετικού συντελεστή A jn = (1+i) * R ((1-(1 / (1+i) n )) / i) = 1,05*1.000* ((1-(1 / (1+0,05) 8 )) / 0,05) = 1.050* (1-0,676839) / 0,05 =

32 Παράδειγμα 3 (1) Επενδυτής σε διακανονισμό με την τράπεζα θα αποπληρώσει το δάνειό του σε 5 ετήσιες δόσεις καταβάλλοντας την πρώτη δόση μετά 3 έτη. Να βρεθεί η αξία του δανείου σήμερα όταν δόσεις είναι ευρώ στο τέλος κάθε έτους με επιτόκιο 10%. Λύση Η εν λόγω ράντα είναι μέλλουσα, δηλαδή η αρχή της ράντας βρίσκεται 3 έτη μετά την ημέρα υπολογισμού (σήμερα). Στη ληξιπρόθεσμη ράντα, η πρώτη καταβολή γίνεται στο τέλος του έτους (έτος 1ο) κ.ο.κ., ενώ η παρούσα αξία αφορά στη «μεταφορά» όλων των καταβολών στο χρόνο μηδέν. Συνεπώς, υπολογισμός της ράντας που αρχίζει μετά 3 έτη θα «μεταφέρει» όλες τις καταβολές στο δεύτερο έτος και επομένως είναι απαραίτητη η προεξόφληση της αξίας αυτή κατά δυο έτη ώστε να βρεθεί η παρούσα αξία της ράντας. 32

33 Παράδειγμα 3 (2) Διάγραμμα 4. Παράδειγμα 3 Άλλωστε, όπως παρατηρούμε και από το παραπάνω σχήμα η εύρεση της παρούσας αξίας θα γίνει με δυο βήματα. Πρώτα θα βρεθεί η αξία της ράντας στο χρόνο δυο και στη συνέχεια θα γίνει η προεξόφληση για τον υπολογισμό της ράντας στο χρόνο μηδέν. Η εν λόγω ράντα έχει επιτόκιο i= 10%, με όρο R=2.000 και διάρκεια n=5. 33

34 Πίνακας 4. Δεδομένα παραδείγματος 3 Συντελεστής ράντας= a 0,10 5 =3,79 Παράδειγμα 3 (3) Το αποτέλεσμα R*a jn = 2.000*a 0,10 5 =2.000*3,79 =7.580 αφορά την αξία της ράντας στο έτος δυο, για να βρεθεί η παρούσα αξία θα μεταφέρουμε την αξία της ράντας με τον τύπο του ανατοκισμού στο χρόνο μηδέν, δηλαδή Κ t = K 0 (1+i) t K 0 = / (1,10) 2 = 6.264,46. Εάν συμπεριλάβουμε τις παραπάνω προσαρμογές στον τύπο της ράντας ο υπολογισμός της εν λόγω μέλλουσας ράντας θα είναι ισοδύναμος με Α j n =(1/1+i) t ) *R*a jn = (1/(1,10) 2 ) *2.000*3,79 = 6.264,46 Η παρούσα αξία της ράντας είναι 6.264,46 ευρώ. 34

35 Παράδειγμα 4 (1) Εισοδηματίας αναμένει, μετά 15 έτη, το σχηματισμό ευρώ, στο λογαριασμό του σε τράπεζα που δίνει 6 % ετήσιο επιτόκιο στις καταθέσεις. Να βρεθεί η αξία της κάθε δόσης που καταβάλει ο εισοδηματίας στο τέλος κάθε έτους. Επίσης, να λυθεί η άσκηση με την υπόθεση ότι οι καταβολές γίνονται στην αρχή κάθε έτους. Λύση α) Οι καταβολές γίνονται στο τέλος κάθε έτους. Το ποσό των ευρώ αποτελεί την τελική αξία ράντας με επιτόκιο 6%. Για να υπολογίσουμε, λοιπόν, την αξία των καταβολών είναι απαραίτητο να υπολογιστεί πρώτα η αρχική αξία της ράντας και στη συνέχεια με εφαρμογή του αντίστοιχου τύπου να βρεθεί ο όρος R (το ζητούμενο της άσκησης). Η αρχική (παρούσα) αξία της ράντας είναι ίση με : 35

36 Παράδειγμα 4 (2) A 0,06 15 =K 0 = K t / (1+i) t = / (1,06) 15 = ,6 ευρώ Με τη χρήση του πινακα του παραρτήματος Β.1 του βιβλίου (Σόρμας & Σαριαννίδης, 2010) Συντελεστής ράντας = a jn = a 0,06 15 =9,71 και Α 0,06 15 =1.718,9 Από τον τύπο της ράντας Α 0,06 15 =R* a 0, ,6 = 1,06*R*9,71 R = 1.718,9 Πίνακας 5. Δεδομένα παραδείγματος 4 36

37 Παράδειγμα 4 (3) β) Οι καταβολές γίνονται στην αρχή κάθε έτους. Η διαφορά της προκαταβλητέας ράντα από την ληξιπρόθεσμη έιναι ο συντελεστής (1+i), επόμένως πολύ εύκολα υπολογίζεται η αξία του όρου R ως εξής Α jn = a 0,06 15 =(1+i)*R* a 0, ,6 = 1,06*R*9,71 R = ,6 / (1,06*9,71) R = 1.621,6 ευρώ η αξία της κάθε δόσης 37

38 Βιβλιογραφία Σαριαννίδης, Ν. & Μποντζίδου, Ε. (2010). Χρηματοοικονομικά Μαθηματικά. ISBN Σόρμας, Α. & Σαριαννίδης, Ν. (2010). Οικονομικά Μαθηματικά. ISBN

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 8: Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 9: Διηνεκείς Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Χρηματοοικονομική Ι. Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

Χρηματοοικονομική Ι. Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι Χρηματοοικονομική Ι Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #17: Σειρές Πληρωμών ή Ράντες Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 4: Ανατοκισμός Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Χρηματοοικονομική Διοίκηση

Χρηματοοικονομική Διοίκηση Χρηματοοικονομική Διοίκηση Ενότητα 2: Ράντες Γιανναράκης Γρηγόρης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 1: Κεφαλαιοποίηση Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 5: Ονομαστικό και Πραγματικό Επιτόκιο Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 6: Επιτόκιο Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά Ενότητα 11: Δείκτης Κερδοφορίας

Οικονομικά Μαθηματικά Ενότητα 11: Δείκτης Κερδοφορίας Οικονομικά Μαθηματικά Ενότητα 11: Δείκτης Κερδοφορίας Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 7: Καθαρή Παρούσα Αξία Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 7: Καθαρή Παρούσα Αξία Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-)

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-) ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-) 5. Ράντες 5.1.1.Ορισμοι- Κατηγορίες Ράντα ονομάζουμε σειρά κεφαλαίων που καταβάλλονται ανά ισα χρονικά διαστήματα. Για τα κεφάλαια αυτά ισχύει

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 10: ΡΑΝΤΕΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creatve Commos εκτός και αν αναφέρεται διαφορετικά Το έργο υλοποιείται

Διαβάστε περισσότερα

Ράντες. Χρήση ραντών. Ορισμοί ράντας Κατάταξη ραντών Εύρεση αρχικής αξίας ράντας

Ράντες. Χρήση ραντών. Ορισμοί ράντας Κατάταξη ραντών Εύρεση αρχικής αξίας ράντας Ράντες Χρήση ραντών Έννοια ράντας Ορισμοί ράντας Κατάταξη ραντών Εύρεση αρχικής αξίας ράντας Χρήση περιοδικών κεφαλαίων (ράντες) Σχηματισμός κεφαλαίου με ισόποσες καταθέσεις Εξόφληση χρέους με δόσεις Μηνιαίες

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ

ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ Ενότητα 1: Αξιολόγηση Επενδύσεων (1/5) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 10: Εφαρμογές των Ράντων Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ράντες. - Κατανόηση και χρησιμοποίηση μιας σειράς πληρωμών που ονομάζεται ράντα.

Ράντες. - Κατανόηση και χρησιμοποίηση μιας σειράς πληρωμών που ονομάζεται ράντα. Ράντες Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι - Αρχική αξία - Τελική αξία - Δόση ή όρος - Περίοδος - Διάρκεια (συμβολισμός n) - Διηνεκής ράντα - Κλασματική ράντα ΣΤΟΧΟΙ - Κατανόηση και χρησιμοποίηση

Διαβάστε περισσότερα

Κεφάλαιο , 05. Τέλος το ποσό της τελευταίας κατάθεσης (συμπλήρωση του 17 ου έτους) θα τοκισθεί μόνο για 1 έτος

Κεφάλαιο , 05. Τέλος το ποσό της τελευταίας κατάθεσης (συμπλήρωση του 17 ου έτους) θα τοκισθεί μόνο για 1 έτος Κεφάλαιο 5 5. Ράντες 5.. Εισαγωγικές έννοιες και ορισμοί Είναι σύνηθες στις μέρες μας να καταθέτουν οι γονείς κάποιο ποσό για τα παιδιά τους σε μηνιαία, εξαμηνιαία ή ετήσια βάση έτσι ώστε να συσσωρευτεί

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μαθηματικά για Οικονομολόγους

Μαθηματικά για Οικονομολόγους ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μαθηματικά για Οικονομολόγους Ενότητα # 19: Επανάληψη Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΤΕΙ ΠΑΤΡΩΝ

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΤΕΙ ΠΑΤΡΩΝ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΤΕΙ ΠΑΤΡΩΝ Απλός Τόκος Εφαρμόζεται στις βραχυπρόθεσμες οικονομικές πράξεις, συνήθως μέχρι τριών μηνών ή το πολύ μέχρι ενός έτους.

Διαβάστε περισσότερα

Χρηματοοικονομική Διοίκηση

Χρηματοοικονομική Διοίκηση Χρηματοοικονομική Διοίκηση Ενότητα 5: Τεχνικές επενδύσεων ΙΙΙ Γιανναράκης Γρηγόρης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΑΠΟΦΑΣΕΩΝ

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΑΠΟΦΑΣΕΩΝ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΑΠΟΦΑΣΕΩΝ 8 Ο εξάμηνο Χημικών Μηχανικών Δανάη Διακουλάκη, Καθηγήτρια ΕΜΠ diak@chemeng.ntua.gr Άγγελος Τσακανίκας, Επ. καθηγητής ΕΜΠ atsaka@central.ntua.gr ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 8: ΑΝΑΤΟΚΙΣΜΟΣ Η ΣΥΝΘΕΤΟΣ ΤΟΚΟΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creave Coons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Χρηματοοικονομική Ι. Ενότητα 4: Η Χρονική Αξία του Χρήματος (1/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

Χρηματοοικονομική Ι. Ενότητα 4: Η Χρονική Αξία του Χρήματος (1/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι Χρηματοοικονομική Ι Ενότητα 4: Η Χρονική Αξία του Χρήματος (1/2) Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 5: Ακολουθίες, όρια, σειρές (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ

ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ Ενότητα 4: Αξιολόγηση Επενδύσεων (4/5). Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Χρηματοοικονομική Διοίκηση Ενότητα 1: Εισαγωγή

Χρηματοοικονομική Διοίκηση Ενότητα 1: Εισαγωγή Χρηματοοικονομική Διοίκηση Ενότητα 1: Εισαγωγή Γιανναράκης Γρηγόρης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης

Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Χρηματοοικονομική Διοίκηση

Χρηματοοικονομική Διοίκηση Χρηματοοικονομική Διοίκηση Ενότητα 4: Τεχνικές επενδύσεων ΙΙ Γιανναράκης Γρηγόρης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Χρηματοοικονομική Διοίκηση

Χρηματοοικονομική Διοίκηση Χρηματοοικονομική Διοίκηση Ενότητα 6: Τεχνικές επενδύσεων IV Γιανναράκης Γρηγόρης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Κεφάλαιο 4. μιας και αντιστοιχεί στην περίοδο μηδέν, είναι δηλαδή το αρχικό κεφάλαιο. Όμοια έχουμε τα κεφάλαια K1, K2, K

Κεφάλαιο 4. μιας και αντιστοιχεί στην περίοδο μηδέν, είναι δηλαδή το αρχικό κεφάλαιο. Όμοια έχουμε τα κεφάλαια K1, K2, K Κεφάλαιο. Ανατοκισμός. Εισαγωγή Στη διαδικασία με την οποία ένα κεφάλαιο κατατίθεται στον απλό τόκο, στο τέλος κάθε περιόδου παίρνουμε τον τόκο και αφήνουμε το αρχικό κεφάλαιο να τοκιστεί. Έτσι το κεφάλαιο

Διαβάστε περισσότερα

Υπολογιστικά Συστήματα

Υπολογιστικά Συστήματα Υπολογιστικά Συστήματα Ενότητα 2: Ανάλυση Πιθανοτήτων, Σενάρια, Αναζήτηση Στόχου και Συγκεντρωτικοί Πίνακες Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 2ο ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ 7 ΚΕΦΑΛΑΙΟ 2ο ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Στα κεφάλαια που ακολουθούν θα ασχοληθούμε με την αξιολόγηση διάφορων επενδυτικών προτάσεων. Πριν από την ανάλυση των προτάσεων αυτών, είναι απαραίτητο να έχετε

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

, όταν ο χρόνος αντιστοιχεί σε ακέραιες περιόδους

, όταν ο χρόνος αντιστοιχεί σε ακέραιες περιόδους Τμήμα Διεθνούς Εμπορίου Οικονομικά Μαθηματικά Καλογηράτου Ζ. Μονοβασίλης Θ. ΑΝΑΤΟΚΙΣΜΟΣ 4.. Εισαγωγή Στον σύνθετο τόκο (ή ανατοκισμό), στο τέλος κάθε περιόδου, ο τόκος και το κεφάλαιο αθροίζονται και το

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 5: Ακολουθίες, όρια, σειρές (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

C n = D [(l + r) n - 1]/r. D = C n r/[(l + r) n - 1]

C n = D [(l + r) n - 1]/r. D = C n r/[(l + r) n - 1] Ο υπολογισμός των δόσεων που οφείλει ένας δανειζόμενος στον δανειστή του, για την εξόφληση ενός χρέους, βασίζεται στις προηγούμενες εξισώσεις και εξαρτάται από την ημερομηνία αξιολόγησης. Σε αυτές τις

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 9: ΑΝΑΤΟΚΙΣΜΟΣ Η ΣΥΝΘΕΤΟΣ ΤΟΚΟΣ ΜΕΡΟΣ Β Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creaive Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 4: Εκθετικές και λογαριθμικές συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 11: ΔΑΝΕΙΑ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο υλοποιείται

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 11: «Ασκήσεις 1» ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Χρηματοοικονομική Ι. Ενότητα 7: Μετοχικοί τίτλοι. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

Χρηματοοικονομική Ι. Ενότητα 7: Μετοχικοί τίτλοι. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι Χρηματοοικονομική Ι Ενότητα 7: Μετοχικοί τίτλοι Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Σύγχρονες μορφές Χρηματοδότησης

Σύγχρονες μορφές Χρηματοδότησης Σύγχρονες μορφές Χρηματοδότησης Ενότητα 3: Μέθοδοι Αξιολόγησης Επενδύσεων Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης Ιωάννης Τμήμα Διοίκηση Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ

ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ Ενότητα 3: Αξιολόγηση Επενδύσεων (3/5). Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 2: Τυχαίες Μεταβλητές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΚΑΙΝΟΤΟΜΙΑ. ΚΥΡΙΑΚΗ ΚΟΣΜΙΔΟΥ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ

ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΚΑΙΝΟΤΟΜΙΑ. ΚΥΡΙΑΚΗ ΚΟΣΜΙΔΟΥ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΚΑΙΝΟΤΟΜΙΑ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΥΡΙΑΚΗ ΚΟΣΜΙΔΟΥ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ kosmid@econ.auth.gr ΣΗΜΕΙΩςΕΙς ΑΠΟ ΤΟ ΒΙΒΛΙΟ: ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗςΗ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ,

Διαβάστε περισσότερα

Μικροοικονομική. Ενότητα 3: Ο καταναλωτής επιλέγει να μεγιστοποιήσει τη χρησιμότητά του. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μικροοικονομική. Ενότητα 3: Ο καταναλωτής επιλέγει να μεγιστοποιήσει τη χρησιμότητά του. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μικροοικονομική Ενότητα 3: Ο καταναλωτής επιλέγει να μεγιστοποιήσει τη χρησιμότητά του Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

(3) ... (2) Ο συντελεστής Προεξόφλησης (ΣΠΑ) υπολογίζεται από τον Πίνακα Π.2. στο Παράρτηµα.

(3) ... (2) Ο συντελεστής Προεξόφλησης (ΣΠΑ) υπολογίζεται από τον Πίνακα Π.2. στο Παράρτηµα. ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Α.Α.Δράκος 2015-2016 ΣΗΜΕΙΩΣΕΙΣ ΔΙΔΑΣΚΟΝΤΑ ΣΤΗ ΧΡΗΜΑΤΟΔΟΤΙΚΗ ΔΙΟΙΚΗΣΗ 1 1 ο ΣΕΤ. ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ ΚΑΙ ΤΡΑΠΕΖΙΚΑ ΔΑΝΕΙΑ

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 5 η : Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Θερμοδυναμική - Εργαστήριο

Θερμοδυναμική - Εργαστήριο Θερμοδυναμική - Εργαστήριο Ενότητα 1: Αριθμητικές μέθοδοι στα φαινόμενα μεταφοράς και στη θερμοδυναμική Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 4: Εκθετικές και λογαριθμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Eγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον

Eγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Eγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον Ενότητα 2 : Υπολογισμός παροχών σε δίκτυα με ελεύθερη ζήτηση Ευαγγελίδης Χρήστος Τμήμα

Διαβάστε περισσότερα

ΑΝΑΤΟΚΙΣΜΟΣ. Εύρεση παρούσας αξίας Εύρεση επιτοκίου Εύρεση χρόνου. Μέσο επιτόκιο Ισοδύναμα επιτόκια. παραδείγματα

ΑΝΑΤΟΚΙΣΜΟΣ. Εύρεση παρούσας αξίας Εύρεση επιτοκίου Εύρεση χρόνου. Μέσο επιτόκιο Ισοδύναμα επιτόκια. παραδείγματα ΑΝΑΤΟΚΙΣΜΟΣ Εύρεση παρούσας αξίας Εύρεση επιτοκίου Εύρεση χρόνου Μέσο επιτόκιο Ισοδύναμα επιτόκια παραδείγματα Ανατοκισμός Αρχικό κεφάλαιο Κο ή PV Τελικό κεφάλαιο Κ ή FV Επιτόκιο i ή r Χρόνος Ακέραιες

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 3: Νόμος του Ohm Κανόνες του Kirchhoff Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 2 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

Χρηματοοικονομική Ι. Ενότητα 8: Βασικές αρχές αποτίμησης μετοχών. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

Χρηματοοικονομική Ι. Ενότητα 8: Βασικές αρχές αποτίμησης μετοχών. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι Χρηματοοικονομική Ι Ενότητα 8: Βασικές αρχές αποτίμησης μετοχών Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.

Διαβάστε περισσότερα

Αξιολόγηση Επενδυτικών Σχεδίων

Αξιολόγηση Επενδυτικών Σχεδίων Αξιολόγηση Επενδυτικών Σχεδίων Ενότητα 1: Βασικές έννοιες Δ. Δαμίγος Μ. Μενεγάκη Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα : Ακολουθίες και Σειρές Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Commos. Για

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #8: Όριο και Συνέχεια Συνάρτησης Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 2: Δημιουργία και Επεξεργασία διανυσμάτων και πινάκων μέσω του Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ

ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ Σημειώσεις Μαθήματος Πέτρος Γ. Σολδάτος, Στέλιος Π. Ροζάκης Αθήνα 2013 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΠΕΝΔΥΣΕΙΣ... 3 1.1 Εισαγωγή...

Διαβάστε περισσότερα

Μικροοικονομική. Ενότητα 8: Τέλειος Ανταγωνισμός. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μικροοικονομική. Ενότητα 8: Τέλειος Ανταγωνισμός. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μικροοικονομική Ενότητα 8: Τέλειος Ανταγωνισμός Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 3: «ΑΝΑΛΥΣΗ ΝΕΚΡΟΥ ΣΗΜΕΙΟΥ» ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 1: ΑΠΛΟΣ ΤΟΚΟΣ Βασικές έννοιες Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #7: Μονοτονία- Ακρότατα-Αντιγραφή Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Χρονική Αξία Χρήµατος Στη Χρηµατοοικονοµική, κεφάλαιο ονοµάζουµε εκείνο το χρηµατικό ποσό που µπορούµε να διαθέσουµε σε µια επένδυση για όποιο χρονικό

Χρονική Αξία Χρήµατος Στη Χρηµατοοικονοµική, κεφάλαιο ονοµάζουµε εκείνο το χρηµατικό ποσό που µπορούµε να διαθέσουµε σε µια επένδυση για όποιο χρονικό 2. ΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ 1 Χρονική Αξία Χρήµατος Στη Χρηµατοοικονοµική, κεφάλαιο ονοµάζουµε εκείνο το χρηµατικό ποσό που µπορούµε να διαθέσουµε σε µια επένδυση για όποιο χρονικό διάστηµα θέλουµε. Εκτός

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 5: Ανέλιξη Poisson. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 5: Ανέλιξη Poisson. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 5: Ανέλιξη Poisson Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1 γ Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 7: Κανονική Κατανομή Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1. Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Μικροοικονομία. Ενότητα 5: Θεωρία της Παραγωγής. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής

Μικροοικονομία. Ενότητα 5: Θεωρία της Παραγωγής. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Μικροοικονομία Ενότητα 5: Θεωρία της Παραγωγής Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 2: ΑΠΛΟΣ ΤΟΚΟΣ Υπολογισμός Απλού Τόκου Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creatve Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 6: Kατανομή Poisson. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 6: Kατανομή Poisson. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 6: Kατανομή Poisson Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ

Διαβάστε περισσότερα