Κουρδίσµατα (περίληψη)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κουρδίσµατα (περίληψη)"

Transcript

1 Κουρδίσµατα (περίληψη) Ι. Αρµονική στήλη Κάθε νότα που παράγεται µε φυσικά µέσα είναι ένα πολύ σύνθετο φαινόµενο. Ως προς το τονικό ύψος, συνιστώσες του ("αρµονικοί") είναι η συχνότητα που ακούµε ("θεµελιώδης") συν τα ακέραια πολλαπλάσιά της. Με ένα χαµηλό ντο ως παράδειγµα, οι 16 πρώτοι αρµονικοί αντιστοιχούν στις εξής νότες (οι µαύρες είναι κατά προσέγγιση - στην πραγµατικότητα είναι χαµηλότερες): ΙΙ. Φυσικά διαστήµατα Οι έξι πρώτοι αρµονικοί (που είναι και αισθητότεροι) έχουν τις απλούστερες σχέσεις συχνοτήτων µεταξύ τους, και τα διαστήµατα που σχηµατίζουν είναι αυτά που χρησιµοποιήθηκαν από πολύ παλιά στη Δύση ως σταθερές (σύµφωνες) συνηχήσεις. Οι λόγοι των συχνοτήτων τους αποτελούν το φυσικό µέτρο για τα διαστήµατα αυτά (δηλαδή αυτό που το αυτί µας ακούει ως ακριβώς σωστά κουρδισµένο διάστηµα): 2/1 = οκτάβα, 3/2 = φυσική καθαρή πέµπτη, 4/3 = φυσική καθαρή τετάρτη, 5/4 = φυσική µεγάλη τρίτη, 6/5 = φυσική µικρή τρίτη. Οποιαδήποτε σκόπιµη απόκλιση από το µέτρο αυτό είναι ένας συγκερασµός. Για τη µέτρηση και τη σύγκριση διαστηµάτων και αποκλίσεων εξυπηρετεί µια πολύ µικρή µονάδα, το cent (1200 cents = 1 οκτάβα). ΙΙΙ. Το πρόβληµα του κουρδίσµατος Σε πολλά όργανα ο εκτελεστής δεν µπορεί να επέµβει στο ακριβές τονικό ύψος µιας νότας - είτε καθόλου (π.χ. µαρίµπα), είτε τουλάχιστον κατά τη διάρκεια της εκτέλεσης (π.χ. πιάνο). Εποµένως, για την κατασκευή κάποιων οργάνων και για το κούρδισµα των υπολοίπων, χρειάζεται να είναι αποφασισµένες και συµφωνηµένες οι ακριβείς σχέσεις που διέπουν το εκάστοτε φθογγικό υλικό. Όµως, όποιο φυσικό διάστηµα κι αν πάρουµε ως βάση για την παραγωγή του υλικού, τα υπόλοιπα διαστήµατα που θα παραχθούν δεν θα είναι φυσικά. Ενδεικτικά, τέσσερις επάλληλες φυσικές καθαρές 5ες από κάποια αφετηρία φτάνουν σε µιά νότα που είναι αισθητά ψηλότερη από τον πέµπτο αρµονικό της ίδιας αφετηρίας (δηλαδή µιά σύνθετη µεγάλη 3η):

2 Η µία είναι 3 4 /2 4 (= 81/16), η άλλη 5/1 (= 80/16). Η διαφορά αυτή ("συντονικό κόµµα") είναι 21,506 cents. Έτσι, κούρδισµα µε φυσικές καθαρές 5ες συνεπάγεται λάθος µεγάλες 3ες και αντίστροφα. Το πρόβληµα αυτό είναι άλυτο. Όλα τα κατά καιρούς κουρδίσµατα είναι συµβιβαστικές λύσεις, όλα µε διαφορετικά προτερήµατα και µειονεκτήµατα, όλα σε συνάρτηση µε το φθογγικό υλικό που χρησιµοποιείται περισσότερο ανά εποχή και τις µουσικές αναγκαιότητες της κάθε εποχής. ΙV. Ισοσυγκερασµός Το κούρδισµα που επικράτησε από τον 19ο αιώνα, και που µας είναι σήµερα το πιο οικείο, είναι το ισοσυγκερασµένο: υποδιαίρεση της οκτάβας σε 12 ίσα ηµιτόνια (το καθένα 100 cents). Κανένα διάστηµα δεν είναι φυσικό, αλλά οι αποκλίσεις είναι µοιρασµένες εξίσου σε όλες τις νότες της χρωµατικής κλίµακας. Έτσι, σε αντίθεση µε παλιότερα κουρδίσµατα, όλες οι καθαρές 5ες είναι ίσες µεταξύ τους, όλες οι µεγάλες 3ες είναι ίσες µεταξύ τους, κτλ., εποµένως όλες οι τονικότητες είναι όµοιες µεταξύ τους και εξίσου χρησιµοποιήσιµες. Η ισοσυγκερασµένη καθαρή 5η είναι ελαφρά µικρότερη από τη φυσική: 700 έναντι 701,955 cents. Η ισοσυγκερασµένη µεγάλη 3η είναι αρκετά µεγαλύτερη από τη φυσική: 400 cents έναντι 386,31 cents. V. Πυθαγόρειο Μέχρι και τον 13ο αιώνα, το φθογγικό υλικό είναι οι νότες ρε, µι, φα σολ, λα, σιb, σι, ντο. Ο προφανής τρόπος να οριστούν όλες ξεκινώντας από µία είναι κατά καθαρές 5ες: σιb - φα - ντο - σολ - ρε - λα - µι - σι (η καθεµία 3/2 της πρηγουµένης). Έτσι, το κούρδισµα που επικρατεί το Μεσαίωνα (όπου βασικό σύµφωνο διάστηµα εκτός από την οκτάβα είναι η καθαρή 5η, όχι ακόµα οι 3ες) είναι το Πυθαγόρειο: φυσικές καθαρές 5ες, για όσες νότες χρειάζονται στο µουσικό σύστηµα. Τον 14ο αιώνα εµφανίζονται οι προσαγωγικές οξύνσεις (προς όποιες νότες του συστήµατος δεν είχαν διατονική ηµιτονιακή προσέγγιση): φα# προς σολ, ντο# προς ρε, σολ# προς λα. Ενίοτε εµφανίζεται επίσης και µιb. Κούρδισµα µε την ίδια λογική: διαδοχικά 3/2 για τη σειρά µιb - σιb - φα - ντο - σολ - ρε - λα - µι - σι - φα# - ντο# - σολ#. Όπως είδαµε στο εδάφιο III, όταν οι καθαρές 5ες είναι φυσικές, οι µεγάλες 3ες είναι µεγαλύτερες από τις φυσικές. Εποµένως, τα διατονικά ηµιτόνια στο πυθαγόρειο είναι µικρότερα από τα χρωµατικά: ένα φα#, π.χ., είναι πιο κοντά στο σολ από ότι στο φα, και ένα σιb είναι πιο κοντά στο λα από ότι στο σι. Στο Πυθαγόρειο κούρδισµα δεν µπορεί να υπάρξει κύκλος πεµπτών: δώδεκα φυσικές καθαρές 5ες από το µιb φτάνουν σε ένα ρε# που είναι αισθητά ψηλότερο από το αντίστοιχό του µιb (επτά οκτάβες πιο πάνω από το αρχικό). Το ένα είναι 3 12 /2 12 (= /4096 = 129,746), το άλλο 2 7 /1 7 (= 128). Η διαφορά αυτή ("πυθαγόρειο κόµµα") είναι 23,46 cents. Είναι όλη συγκεντρωµένη µεταξύ του σολ# και του µιb (που είναι ένα διάστηµα πολύ µικρότερο από καθαρή 5η).

3 VΙ. Μεσοτονικό Στην Αναγέννηση η προτίµηση στράφηκε προς τις πλήρεις σύµφωνες συγχορδίες, άρα προέκυψε η ανάγκη να είναι καλά κουρδισµένες οι 3ες. Ιδιαίτερη σηµασία έχει η µεγάλη 3η µόνον (γιατί αυτή εµφανίζεται ως αισθητός αρµονικός ενός θεµελιώδη ενώ η µικρή 3η όχι). Όπως είδαµε στο εδάφιο ΙΙΙ, η 3η που προκύπτει από τέσσερις επάλληλες φυσικές καθαρές 5ες είναι ψηλότερη από τη φυσική κατά το διάστηµα που λέγεται συντονικό κόµµα. Έτσι, αν κάθε καθαρή 5η µικρύνει κατά 1/4 αυτού του κόµµατος (5,3765 cents), οι µεγάλες 3ες θα είναι φυσικές. Αυτό είναι το καθαρό µεσοτονικό κούρδισµα. Όπως και στο πυθαγόρειο κούρδισµα, ούτε και στο µεσοτονικό υπάρχει κύκλος πεµπτών. Εδώ όµως οι 12 πέµπτες που δεν κλείνουν τον κύκλο είναι µικρότερες από ότι θα χρειαζόταν, άρα το διάστηµα σολ#-µιb είναι πολύ µεγαλύτερο από καθαρή 5η (κατά 41,058 cents). Όπως είπαµε στο εδάφιο IV, η φυσική µεγάλη 3η είναι µικρότερη από την ισοσυγκερασµένη. Αυτό σηµαίνει πως, αντίθετα από ότι στο πυθαγόρειο, στο µεσοτονικό τα διατονικά ηµιτόνια είναι µεγαλύτερα από τα χρωµατικά: ένα φα#, π.χ., είναι πιο κοντά στο φα από ότι στο σολ, και ένα σιb είναι πιο κοντά στο σι από ότι στο λα.

4 Αυτό σηµαίνει επίσης πως τρεις επάλληλες φυσικές µεγάλες 3ες δεν ισούνται µε µια οκτάβα: 5 3 /4 3 (= 125/64) έναντι 2/1 (=128/64). Έτσι στο καθαρό µεσοτονικό υπάρχουν 8 φυσικές µεγάλες τρίτες και 4 πολύ λάθος (στο προηγούµενο διάγραµµα: οι χορδές που περνούν από το ρήγµα του κύκλου). Στην Αναγέννηση αυτό δεν είναι πρόβληµα: η µουσική είναι διατονική και περιορίζεται σε τρόπους αµετάφερτους ή µεταφερµένους µε µία ή το πολύ δύο υφέσεις ως οπλισµό, συν τους σχετικούς προσαγωγείς, άρα οι συγχορδίες που θα περιελάµβαναν αυτές τις λάθος 3ες κατά κανόνα δεν χρησιµοποιούνται. Στο τέλος όµως της Αναγέννησης αρχίζουν να εµφανίζονται χρωµατικές κινήσεις και συγχορδίες, ενώ στο Μπαρόκ εµφανίζονται επίσης τρόποι/τονικότητες µε διέσεις στον οπλισµό, καθώς και το φαινόµενο της µετατροπίας. Έτσι, για να µετριαστεί το πρόβληµα αυτών των λάθος τριτών, προτάθηκαν διάφορες παραλλαγές του καθαρού µεσοτονικού. Μία, που συνέχισε να χρησιµοποιείται ακόµα και µετά τον Bach, είναι να µικραίνουν οι καθαρές 5ες κατά 1/6 µόνον (αντί 1/4) του συντονικού κόµµατος. VΙΙ. Ανισοσυγκερασµός Ήδη από την Αναγέννηση έχουν αρχίσει να χρησιµοποιούνται εκφραστικά και συµβολικά οι τολµηρότερες του κανονικού αλλοιώσεις. Η τάση αυτή αναπτύχθηκε στο Μπαρόκ, και γιαυτό η επικρατέστερη κατεύθυνση είναι τα πάµπολλα ανισοσυγκερασµένα κουρδίσµατα: επιτρέπουν κύκλο πεµπτών, επιτρέπουν τη χρήση όλων (ή των περισσοτέρων) τονικοτήτων, αλλά διατηρούν και αναπτύσσουν την εκφραστικά εκµεταλλεύσιµη ιδέα ότι οι νότες και οι συγχορδίες που περιέχει η Ντο µείζων είναι φυσιολογικότερες και όσο µεταβαίνουµε προς µακρινότερες αλλοιώσεις τόσο πιο περίεργα γίνονται τα πράγµατα. Αυτά είναι τα κατά τον Werckmeister "καλά συγκερασµένα" κουρδίσµατα (όρος που δανείστηκε ο Bach, ως γνωστόν, και που δεν αναφέρεται στον ισοσυγκερασµό). Για να υπάρχει κύκλος πεµπτών, κάθε τέτοιο κούρδισµα θα πρέπει συνολικά να διορθώνει το πυθαγόρειο κόµµα (βλ. εδάφιο V). Χαρακτηριστικά δείγµατα δύο από τα κουρδίσµατα του Werckmeister. Στο Ι, τέσσερις καθαρές 5ες µικραίνουν κατά 1/4 του πυθ. κόµµατος και οι υπόλοιπες είναι φυσικές. Στο ΙΙΙ, πέντε καθαρές 5ες µικραίνουν κατά 1/4 του πυθ. κόµµατος, µία

5 µεγαλώνει κατά 1/4 του πυθ. κόµµατος, και οι υπόλοιπες είναι φυσικές. Το ποιές 5ες µικραίνουν έχει επιλεγεί µε βάση τον στόχο που αναφέρθηκε στην προηγούµενη παράγραφο (µελετήστε ποιές µεγάλες 3ες µικραίνουν και πόσο, δηλαδή σε ποιές διορθώνεται κατά το δυνατόν η υπερβολικά µεγάλη 3η που δίνουν τέσσερις φυσικές 5ες): [Σηµ.: στους πίνακες αυτούς οι αριθµοί είναι στρογγυλοποιηµένοι.] Παναγιώτης Αδάµ, Μάιος 2011

ΚΕΦΑΛΑΙΟ 9ο. Ενώ µεταξύ του ΜΙ και του ΦΑ. Η διαφορά αυτή υπάρχει γιατί η απόσταση µερικών φθόγγων από άλλων είναι διαφορετική.

ΚΕΦΑΛΑΙΟ 9ο. Ενώ µεταξύ του ΜΙ και του ΦΑ. Η διαφορά αυτή υπάρχει γιατί η απόσταση µερικών φθόγγων από άλλων είναι διαφορετική. ΚΕΦΑΛΑΙΟ 9ο 7 α) τόνοι - ηµιτόνια Αν παρατηρήσουµε τις νότες στο πιάνο θα προσέξουµε ότι µεταξύ µερικών ΙΑ ΟΧΙΚΩΝ (συνεχόµενων) φθόγγων έχουµε µαύρα πλήκτρα και άλλων όχι. λ.χ. Μεταξύ του ΝΤΟ και του ΡΕ,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 17ο. κλειδιά

ΚΕΦΑΛΑΙΟ 17ο. κλειδιά ΚΕΦΑΛΑΙΟ 17ο 5 κλειδιά Όπως είπαµε στο κεφάλαιο 1ο υπάρχουν τρία κλειδιά σε επτά διαφορετικές θέσεις. Εδώ θα ασχοληθούµε µε τα άλλα δύο κλειδιά και τις άλλες έξη διαφορετικές θέσεις ς. 1) ΚΛΕΙ Ι ΤΟΥ ΦΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 13ο. µείζονες κλίµακες

ΚΕΦΑΛΑΙΟ 13ο. µείζονες κλίµακες ΚΕΦΑΛΑΙΟ 13ο 9 µείζονες κλίµακες Kλίµακα ή σκάλα ονοµάζεται µία σειρά από τους επτά φθόγγους της µουσικής που σαν 1ο και τελευταίο φθόγγο έχει την ίδια νότα αλλά σε διαφορετικό ύψος. Τοποθετούµε τους φθόγγους

Διαβάστε περισσότερα

ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ Α. ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ-ΕΥΡΩΠΑΪΚΕΣ ΚΛΙΜΑΚΕΣ- ΜΕΙΖΟΝΑ ΚΛΙΜΑΚΑ ΤΟΥ ΝΤΟ ΑΣΚΗΣΗ ΠΡΩΤΗ Ονομ/πώνυμο:

ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ Α. ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ-ΕΥΡΩΠΑΪΚΕΣ ΚΛΙΜΑΚΕΣ- ΜΕΙΖΟΝΑ ΚΛΙΜΑΚΑ ΤΟΥ ΝΤΟ ΑΣΚΗΣΗ ΠΡΩΤΗ Ονομ/πώνυμο: 1 ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ Α. ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ-ΕΥΡΩΠΑΪΚΕΣ ΚΛΙΜΑΚΕΣ- ΜΕΙΖΟΝΑ ΚΛΙΜΑΚΑ ΤΟΥ ΝΤΟ ΑΣΚΗΣΗ ΠΡΩΤΗ Ονομ/πώνυμο: 1) Να διαβάσετε προσεκτικά και τις δύο σελίδες της θεωρίας. 2) Να μάθετε απέξω τα εξής: α) Την

Διαβάστε περισσότερα

Μουσικές Νότες και Κλίμακες Κλίμακες και Ηχοχρώματα (συγκερασμός) Η Πυθαγόρεια Κλίμακα Ισο συγκερασμένη Κλίμακα Ανορθόδοξες Κλίμακες

Μουσικές Νότες και Κλίμακες Κλίμακες και Ηχοχρώματα (συγκερασμός) Η Πυθαγόρεια Κλίμακα Ισο συγκερασμένη Κλίμακα Ανορθόδοξες Κλίμακες Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 10 Μουσικές Νότες και Κλίμακες Κλίμακες και Ηχοχρώματα (συγκερασμός) Η Πυθαγόρεια Κλίμακα Ισο συγκερασμένη Κλίμακα Ανορθόδοξες Κλίμακες Επανάληψη της Διάλεξης

Διαβάστε περισσότερα

Τετράδια κιθάρας Θεωρία της μουσικής. Τετράδια κιθάρας. Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις

Τετράδια κιθάρας Θεωρία της μουσικής. Τετράδια κιθάρας. Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις Τετράδια κιθάρας Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις Επικοινωνία : evgeniosasteris@pathfinder.gr 1 Περιεχόμενα Κλίμακες... 3 Μείζονες κλίμακες... 3 Η κλίμακα Ντο μείζονα...

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ 1 Οι ήχοι που χρησιμοποιούμε στη μουσική λέγονται νότες ή φθόγγοι και έχουν επτά ονόματα : ντο - ρε - μι - φα - σολ - λα - σι. Η σειρά αυτή επαναλαμβάνεται πολλές φορές

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. Την «Μουσική Αρµονία» θα µπορούσαµε να την δούµε κ έτσι?

ΜΕΡΟΣ Α. Την «Μουσική Αρµονία» θα µπορούσαµε να την δούµε κ έτσι? 1 Την «Μουσική Αρµονία» θα µπορούσαµε να την δούµε κ έτσι? Σήµερα η βιβλιογραφία της Αρµονίας είναι πλουσιότατη, σε πολλά επίπεδα σπουδής και σε πλήθος γλωσσών. Έτσι δεν θα πρότεινα µία από τα ίδια που

Διαβάστε περισσότερα

Απευθείας Εναρμόνιση - Πώς να χρησιμοποιήσετε το παρόν βιβλίο

Απευθείας Εναρμόνιση - Πώς να χρησιμοποιήσετε το παρόν βιβλίο Απευθείας Εναρμόνιση - Πώς να χρησιμοποιήσετε το παρόν βιβλίο Γενικές Πληροφορίες 1. Τι είναι το μάθημα της Απευθείας Εναρμόνισης στο πιάνο: Αφορά την απευθείας εκτέλεση στο πιάνο, μιας δοσμένης μελωδικής

Διαβάστε περισσότερα

1. Κύριες συγχορδίες Ι,ΙV,V

1. Κύριες συγχορδίες Ι,ΙV,V 1. Κύριες συγχορδίες Ι,ΙV,V Χρησιμοποιούνται σε ευθεία κατάσταση ( 5 3), α αναστροφή ( 6 ) και β αναστροφή ( 6 4). Διπλασιάζουμε την 1 η και την 5 η. Ποτέ την 3 η. (εκτός αν έρχεται από αντίθετη κίνηση,

Διαβάστε περισσότερα

Ιωσήφ Βαλέτ. Σημειώσεις Αρμονίας 2012-13. Οι ξένοι φθόγγοι. Ι. Βαλέτ, Σημειώσεις Αρμονίας 2012-13

Ιωσήφ Βαλέτ. Σημειώσεις Αρμονίας 2012-13. Οι ξένοι φθόγγοι. Ι. Βαλέτ, Σημειώσεις Αρμονίας 2012-13 1 2 Ιωσήφ Βαλέτ Σημειώσεις Αρμονίας 2012-13 Οι ξένοι φθόγγοι 3 4 4δμητη ή 5δμητη αρμονία (συνηχήσεις από διαδοχικές 4 ες ή 5 ες ) καθώς δεν ανήκει στο στυλ που εξετάζουμε. 1. Καθυστερήσεις 1.1 Καθυστερήσεις

Διαβάστε περισσότερα

Μουσική Πληροφορική. Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015

Μουσική Πληροφορική. Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015 Μουσική Πληροφορική Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015 Άδεια Χρήσης 2 Άδεια Χρήσης 3 Άδεια Χρήσης 4 Ήχος Κλίμακες Β & Γ Δ. Πολίτης 2 ο Μάθημα Περιεχόμενα Μέρος Α : Ανατομία και φυσιολογία του αυτιού

Διαβάστε περισσότερα

Θεωρία Μουσικής. Β εξάμηνο Θεωρία. Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός. Βιογραφικό

Θεωρία Μουσικής. Β εξάμηνο Θεωρία. Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός. Βιογραφικό Θεωρία Μουσικής Β εξάμηνο Θεωρία Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός 1 Θεωρία Μουσικής (Θ) - ΜΙΧΑ Παρασκευή 1 Μουσικολόγος, Μουσικοπαιδαγωγός Βιογραφικό Πτυχιούχος μουσικολογίας και κάτοχος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ

ΑΣΚΗΣΕΙΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ Απόστολος Σιόντας ΑΣΚΗΣΕΙΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ Η τονικότητα ΝΤΟ µείζων Πειραµατικό Μουσικό Γυµνάσιο Παλλήνης Παλλήνη 2010 Πρόλογος Καθώς θεωρούµε ότι είναι απαραίτητη η γνώση του περιεχοµένου του µουσικού

Διαβάστε περισσότερα

& percussion. Boomwhackers. Π ο τ έ έ ν α κ ρ ο υ σ τ ό δ ε ν ε ί χ ε τ έ τ ο ι ε ς δ υ ν α τ ό τ η τ ε ς

& percussion. Boomwhackers. Π ο τ έ έ ν α κ ρ ο υ σ τ ό δ ε ν ε ί χ ε τ έ τ ο ι ε ς δ υ ν α τ ό τ η τ ε ς & percussion Boomwhackers Π ο τ έ έ ν α κ ρ ο υ σ τ ό δ ε ν ε ί χ ε τ έ τ ο ι ε ς δ υ ν α τ ό τ η τ ε ς & percussion Βαλτετσίου 15, 10680 Αθήνα Τ: 210 3645147, F: 210 3645149 Ζακύνθου 7, 31100 Λευκάδα

Διαβάστε περισσότερα

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Εισαγωγή στη Θεωρία Μουσικής (Μέρος 1ο) Φροντιστήριο 03/03/2010 (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 1ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 03/03/2010 1 / 32

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΑ ΚΛΙΜΑΚΑ ΜΙΑ ΑΡΙΘΜΗΤΙΚΗ ΕΚΦΡΑΣΗ ΤΗΣ ΑΡΜΟΝΙΑΣ

ΠΥΘΑΓΟΡΕΙΑ ΚΛΙΜΑΚΑ ΜΙΑ ΑΡΙΘΜΗΤΙΚΗ ΕΚΦΡΑΣΗ ΤΗΣ ΑΡΜΟΝΙΑΣ ΠΥΘΑΓΟΡΕΙΑ ΚΛΙΜΑΚΑ ΜΙΑ ΑΡΙΘΜΗΤΙΚΗ ΕΚΦΡΑΣΗ ΤΗΣ ΑΡΜΟΝΙΑΣ Νίκος Α. Φωτιάδης ρ. Μαθηµατικών Επιµορφωτής Β επιπέδου κλάδου ΠΕ 0 Η αίσθηση της ακοής δηµιουργείται στον άνθρωπο όταν διακυµάνσεις του αέρα διεγείρουν

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 20 10 ΘΕΜΑΤΑ ΜΟΥΣΙΚΗΣ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:...

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 20 10 ΘΕΜΑΤΑ ΜΟΥΣΙΚΗΣ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:... ΛΥΚΕΙΟ ΑΡΧΙΕΠΙΣΚΟΠΟΥ ΜΑΚΑΡΙΟΥ Γ' ΔΑΣΟΥΠΟΛΗ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 Ημερομηνία: 25/05/2010 Χρόνος: 2.5 ώρες ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 20 10 ΘΕΜΑΤΑ ΜΟΥΣΙΚΗΣ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός

Διαβάστε περισσότερα

Εισαγωγή στη μουσική. Μουσικοκινητική Αγωγή. Α εξάμηνο Θεωρία 3. ΝΟΤΕΣ. 1. Μουσική 2. Μελωδία 3. Νότες 4. Ρυθμός

Εισαγωγή στη μουσική. Μουσικοκινητική Αγωγή. Α εξάμηνο Θεωρία 3. ΝΟΤΕΣ. 1. Μουσική 2. Μελωδία 3. Νότες 4. Ρυθμός Μουσικοκινητική Αγωγή Α εξάμηνο Θεωρία Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός 1 Μουσικοκινητική Αγωγή (Θ) ΜΙΧΑ Παρασκευή 1 Εισαγωγή στη μουσική 1. Μουσική 2. Μελωδία 3. Νότες 4. Ρυθμός 2 Μουσικοκινητική

Διαβάστε περισσότερα

ΡΟΜΟΙ. Η βασική νότα και η βασική συγχορδία είναι κάθε φορά η πρώτη, αυτή που εµφανίζεται µε έντονο γράµµα.

ΡΟΜΟΙ. Η βασική νότα και η βασική συγχορδία είναι κάθε φορά η πρώτη, αυτή που εµφανίζεται µε έντονο γράµµα. ΡΟΜΟΙ Όσοι έχουν κάνει µαθήµατα µουσικής σε κάποιο ωδείο, πολύ γρήγορα θα έχουν ακούσει για τις κλιµακες µατζόρε και µινόρε. Πάνω σε αυτές στηρίζεται ολόκληρο σχεδόν το οικοδόµηµα της κλασικής µουσικής

Διαβάστε περισσότερα

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο) Φροντιστήριο 17/03/2010 (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/2010 1 / 27

Διαβάστε περισσότερα

Λ. βαν Μπετόβεν ( ) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι:

Λ. βαν Μπετόβεν ( ) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι: Λ. βαν Μπετόβεν (1770-1827) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση Γενικοί Στόχοι: Πέρασμα από τον Κλασικισμό στο Ρομαντισμό. Σύγκριση Προγραμματικής και Απόλυτης Μουσικής.

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΜΟΝΟ ΓΙΑ ΠΡΟΣΒΑΣΗ. ιάρκεια εξέτασης: πέντε (5) ώρες

ΕΞΕΤΑΣΕΙΣ ΜΟΝΟ ΓΙΑ ΠΡΟΣΒΑΣΗ. ιάρκεια εξέτασης: πέντε (5) ώρες ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΜΑΘΗΜΑ: ΥΠΑΓΟΡΕΥΣΗ ΜΟΥΣΙΚΟΥ ΚΕΙΜΕΝΟΥ - ΑΡΜΟΝΙΑ ΕΞΕΤΑΣΕΙΣ ΜΟΝΟ ΓΙΑ ΠΡΟΣΒΑΣΗ ιάρκεια εξέτασης: πέντε (5) ώρες (Α) ΑΡΜΟΝΙΑ ιάρκεια εξέτασης: Τρεις (3) ώρες και τριάντα (30) λεπτά ίνονται στους

Διαβάστε περισσότερα

[ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ]

[ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ] 2013 Μουσικό Γυμνάσιο / Λύκειο Ιλίου Ευαγγελία Λουκάκη [ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ] Σημειώσεις για τις ανάγκες διδασκαλίας του μαθήματος της Αρμονίας. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ Στην Αρµονία συναντώνται συνηχήσεις-συγχορδίες

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ 1. ΣΥΓΧΟΡ ΙΕΣ: (α) Εύρεση και ορθή σύνδεση συγχορδιών (10) (β) Ορθές νότες συγχορδιών ορθοί διπλασιασµοί ( 6) (γ) Αναγνώριση και χρήση δεσπόζουσας µε εβδόµη ( 2) (δ) Αναγνώριση

Διαβάστε περισσότερα

Εξέταση Πρώτου Τετραδίου

Εξέταση Πρώτου Τετραδίου Εξέταση Πρώτου Τετραδίου Φύλλο αξιολόγησης Μέρος Ά: Θεωρία Ερώτηση Βαθμοί 1 2 3 4 5 6 7 8 9 10 11 12 Σύνολο βαθμών Μέρος Β: Πρακτική Τραγούδι Βαθμοί 1 2 3 4 Σύνολο βαθμών 1 Μέρος Ά: Θεωρία (Σύνολο βαθμών

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ι ΑΚΤΙΚΗ ΤΗΣ ΜΟΥΣΙΚΗΣ Ι

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ι ΑΚΤΙΚΗ ΤΗΣ ΜΟΥΣΙΚΗΣ Ι ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΝΗΠΙΑΓΩΓΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ι ΑΚΤΙΚΗ ΤΗΣ ΜΟΥΣΙΚΗΣ Ι ΓΕΩΡΓΙΑ ΠΑΡΠΑΡΟΥΣΗ 1. ΜΕΤΡΑ ΕΙ Η ΜΕΤΡΩΝ απλά µέτρα: 2/4, 2/8, 3/4, 3/8 2/4 q q \ e e e e \ x x x x x x x x \ εµβατήριο 2/8

Διαβάστε περισσότερα

Συνοπτική Ιστορία 1ο Μάθηµα. Η Ιστορία της Μουσικής στον Πρώιµο Μεσαίωνα

Συνοπτική Ιστορία 1ο Μάθηµα. Η Ιστορία της Μουσικής στον Πρώιµο Μεσαίωνα Συνοπτική Ιστορία 1ο Μάθηµα Η Ιστορία της Μουσικής στον Πρώιµο Μεσαίωνα Ως ξεκίνηµα της ξεχωριστής πορείας της δυτικοευρωπαϊκής µουσικής θεωρείται η δηµιουργία της Πολυφωνίας Τα πρώτα δείγµατα πολυφωνίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12ο. œ œ œ œ œ œ œ œ ΙΑΣΤΗΜΑΤΑ. ιάστηµα λέγεται η απόσταση µεταξύ δύο φθόγγων. Η 1η νότα λέγεται ΒΑΣΗ και η 2η ΚΟΡΥΦΗ.

ΚΕΦΑΛΑΙΟ 12ο. œ œ œ œ œ œ œ œ ΙΑΣΤΗΜΑΤΑ. ιάστηµα λέγεται η απόσταση µεταξύ δύο φθόγγων. Η 1η νότα λέγεται ΒΑΣΗ και η 2η ΚΟΡΥΦΗ. ΚΕΦΑΛΑΙΟ 12ο 1 ΙΑΣΤΗΜΑΤΑ ιάστηµα λέγεται η απόσταση µεταξύ δύο φθόγγων Η 1η νότα λέγεται ΒΑΣΗ και η 2η ΚΟΡΥΦΗ διάστηµα 1ης 1 1 διάστηµα 2ας 1 2 διάστηµα 3ης 1 3 1 2 3 διάστηµα 4ης 1 4 1 2 3 4 διάστηµα

Διαβάστε περισσότερα

Κεφάλαιο 13. Τα αερόφωνα με επιστόμιο

Κεφάλαιο 13. Τα αερόφωνα με επιστόμιο Κεφάλαιο 13 Τα αερόφωνα με επιστόμιο Τρόπος λειτουργίας Αξιοποιούνται οι ψηλότερες συχνότητες της αρμονικής σειράς Η τεχνική του υπερφυσήματος ανάγεται σε βασικό (ή και αποκλειστικό) τρόπο παραγωγής ήχου

Διαβάστε περισσότερα

Μέτρο 6. Μέτρο 9. Αναλυτική προσέγγιση στο έργο του Θόδωρου Αντωνίου: Two Cadenza-like Inventiones for Solo Viola.

Μέτρο 6. Μέτρο 9. Αναλυτική προσέγγιση στο έργο του Θόδωρου Αντωνίου: Two Cadenza-like Inventiones for Solo Viola. Αναλυτική προσέγγιση στο έργο του Θόδωρου Αντωνίου: Two Cadenza-like Inventiones for Solo Viola Ανδρέας Γεωργοτάς Στόχος της ανά χείρας μελέτης είναι μια προσέγγιση στο T W O C A D E N Z A L I K E I N

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013

ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΜΑΘΗΜΑ: Θέματα Μουσικής ΗΜΕΡΟΜΗΝΙΑ: 27/05/2013 ΤΑΞΗ: Β Κατεύθυνσης ΔΙΑΡΚΕΙΑ: 2:30 ΩΡΑ: 7:45 10:15 πμ Όνομα

Διαβάστε περισσότερα

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη Ο ΠΥΘΑΓΟΡΑΣ (572-500 ΠΧ) ΗΤΑΝ ΦΟΛΟΣΟΦΟΣ, ΜΑΘΗΜΑΤΙΚΟΣ ΚΑΙ ΘΕΩΡΗΤΙΚΟΣ ΤΗΣ ΜΟΥΙΣΚΗΣ. ΥΠΗΡΞΕ Ο ΠΡΩΤΟΣ ΠΟΥ ΕΘΕΣΕ ΤΙΣ ΒΑΣΕΙΣ

Διαβάστε περισσότερα

Κλινική χρήση των ήχων

Κλινική χρήση των ήχων Κλινική χρήση των ήχων Ήχοι και ακουστότητα Κύματα υπερήχων Ακουστικά κύματα, Ήχοι, Είδη ήχων Ήχους υπό την ευρεία έννοια καλούμε κάθε κύμα πίεσης που υπάρχει και διαδίδεται στο εσωτερικό των σωμάτων.

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 4 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 4 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 4 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής δεσπόζουσα μετ ενάτης

δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής δεσπόζουσα μετ ενάτης δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής δεσπόζουσα μετ ενάτης 2014 2 σημειώσεις θεωρητικών μουσικής 12 δεσπόζουσα μετ ενάτης 12.1 Γενικά 1. H V9/7 είναι μία πεντάφθογγη συγχορδία επί της 5 ης (5)

Διαβάστε περισσότερα

Οι κλίµακες της Βυζαντινής Mουσικής, κατά την Μουσική Επιτροπή του 1881

Οι κλίµακες της Βυζαντινής Mουσικής, κατά την Μουσική Επιτροπή του 1881 Οι κλίµακες της Βυζαντινής Mουσικής, κατά την Μουσική Επιτροπή του 1881 του Παναγιώτη. Παπαδηµητρίου panayiotis@analogion.net, α έκδοση: 4 Οκτωβρίου 2005 Το Οικουµενικό Πατριαρχείο στα 1881 συγκρότησε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 19ο. œ œ bœ. œ œ œ. œ œ œ œ œ œ œ œ. œ nœ. & œ. # œ œ # œ œ # œ œ. υπάρχουν όπως είπαµε διαστήµατα:

ΚΕΦΑΛΑΙΟ 19ο. œ œ bœ. œ œ œ. œ œ œ œ œ œ œ œ. œ nœ. & œ. # œ œ # œ œ # œ œ. υπάρχουν όπως είπαµε διαστήµατα: 4 ΚΕΦΑΛΑΙΟ 19ο υπάρχουν όπως είπαµε διαστήµατα: ΧΡΩΜΑΤΙΚΑ ΙΑΤΟΝΙΚΑ ΜΙΚΡΑ ΜΕΓΑΛΑ ΚΑΘΑΡΑ ΕΛΑΤΤΩΜΕΝΑ ΙΣ ΕΛΑΤΤΩΜΕΝΑ ΑΥΞΗΜΕΝΑ ΙΣ ΑΥΞΗΜΕΝΑ ΜΕΛΩ ΙΚΑ ΑΡΜΟΝΙΚΑ ΧΡΩΜΑΤΙΚΑ δηµιουργούνται από ίδιες νότες. # # ΙΑΤΟΝΙΚΑ

Διαβάστε περισσότερα

Κουιντέτο Πιάνου Η Πέστροφα του Φραντζ Σούμπερτ, 4η κίνηση: Μία αναλυτική προσέγγιση, Δρ Σ. Κοτσώνη-Brown

Κουιντέτο Πιάνου Η Πέστροφα του Φραντζ Σούμπερτ, 4η κίνηση: Μία αναλυτική προσέγγιση, Δρ Σ. Κοτσώνη-Brown Κουιντέτο Πιάνου Η Πέστροφα του Φραντζ Σούμπερτ, 4η κίνηση: Μία αναλυτική προσέγγιση, Δρ Σ. Κοτσώνη-Brown Ιστορικό Υπόβαθρο: Κατά τη ρομαντική περίοδο, το ληντ (Lied) ήταν ένα από τα πιο δημοφιλή γένη

Διαβάστε περισσότερα

ΣΟΛΩΝ ΜΙΧΑΗΛΙ ΗΣ «Ελληνική Σουίτα» για βιολοντσέλο και πιάνο 2 ο µέρος-andantino

ΣΟΛΩΝ ΜΙΧΑΗΛΙ ΗΣ «Ελληνική Σουίτα» για βιολοντσέλο και πιάνο 2 ο µέρος-andantino 1 Ελένη Κυπριανού Καθηγήτρια Μουσικής ΣΟΛΩΝ ΜΙΧΑΗΛΙ ΗΣ «Ελληνική Σουίτα» για βιολοντσέλο και πιάνο 2 ο µέρος-andantino Γενικά για το έργο H «Ελληνική σουίτα» για βιολοντσέλο και πιάνο γράφτηκε το 1966.

Διαβάστε περισσότερα

σημειώσεις αντίστιξης

σημειώσεις αντίστιξης δημήτρης συκιάς σημειώσεις αντίστιξης J.S. Bach. Ανάλυση της Invention I, BWV 772 3euk1L4 2003 / 20012 A c c I Inventio I C major, BWV 772 m m Ó V Œ 3 5 # # M # m # # 7 B m j Œ # j Œ # # V V/V 9 J Œ Œ

Διαβάστε περισσότερα

Eν φωναίς και οργάνοις ΒασΙλησ Θ. ΓρατσοΥνασ

Eν φωναίς και οργάνοις ΒασΙλησ Θ. ΓρατσοΥνασ Eν φωναίς και οργάνοις ΒασΙλησ Θ. ΓρατσοΥνασ Μεθοδική παρουσίαση των θέσεων των φθογγοσήμων στο ούτι, το πολίτικο λαούτο και τον ταμπουρά σε σχέση με τις τονικές αλλαγές. AΘΗΝΑ 1999 2 3 Iούνιος 2001 Χρωστάω

Διαβάστε περισσότερα

ΚΑΘΗΜΕΡΙΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΚΑΘΗΜΕΡΙΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΚΑΘΗΜΕΡΙΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΕΝΟΤΗΤΑ: Μελωδία Ντο Μείζων (2) ΣΧΟΛΕΙΟ/ΤΑΞΗ: ΑΡ. ΜΑΘΗΤΩΝ: ΗΜΕΡΟΜΗΝΙΑ: ΠΕΡΙΟΔΟΣ: ΣΤΟΧΟΙ και ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ: Οι μαθητές να: ο ΑΚΡΟΑΣΗΣ: Επίπεδο 1 Επίπεδο 2 Διακρίνουν τη Ακούσουν

Διαβάστε περισσότερα

ΝΟΤΕΣ. Η απεικόνιση του ύψους στο χαρτί, γίνεται με τη βοήθεια : Πενταγράμμου Κλειδιών Σημείων αλλοίωσης. Θεωρία της μουσικής

ΝΟΤΕΣ. Η απεικόνιση του ύψους στο χαρτί, γίνεται με τη βοήθεια : Πενταγράμμου Κλειδιών Σημείων αλλοίωσης. Θεωρία της μουσικής Θεωρία της μουσικής Θεωρία της μουσικής είναι η μελέτη των δομών της κατασκευασμένης μουσικής Αναλύει τις βασικές παραμέτρους ή τα στοιχεία της μουσικής: ρυθμό, αρμονική λειτουργία, μελωδία, δομή, μορφή

Διαβάστε περισσότερα

Άσπα Τσαούση, ρ. Κοινωνιολογίας, Επίκ. Καθηγήτρια ALBA

Άσπα Τσαούση, ρ. Κοινωνιολογίας, Επίκ. Καθηγήτρια ALBA Επιστηµονική Ευθύνη Συγγραφή Άσπα Τσαούση, ρ. Κοινωνιολογίας, Επίκ. Καθηγήτρια ALBA Στρόφαλης Μάριος, Νικήτας Αντώνης, Χατζηνικολάου Χρήστος, Λαµπροπούλου Ουρανία, Λαµπροπούλου Σοφία, Ψαρρός Αποστόλης,

Διαβάστε περισσότερα

ΑΚΟΥΣΤΙΚΗ ΟΡΓΑΝΟΛΟΓΙΑ II εκδοχή 1.0

ΑΚΟΥΣΤΙΚΗ ΟΡΓΑΝΟΛΟΓΙΑ II εκδοχή 1.0 4.2.4. Χάλκινα πνευστά Στα όργανα της οικογένειας των χάλκινων πνευστών η παλµική κίνηση της αέριας στήλης του σωλήνα προκαλείται από την ελαστικότητα των χειλιών του εκτελεστή που τοποθετούνται µέσα σε

Διαβάστε περισσότερα

1 η ΤΑΞΗ. Κ Ε Φ Α Λ Α Ι Ο 1 ο. 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες.

1 η ΤΑΞΗ. Κ Ε Φ Α Λ Α Ι Ο 1 ο. 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Θ Ε Ω Ρ Ι Α Α Ρ Μ Ο Ν Ι Α Σ 1 η ΤΑΞΗ Κ Ε Φ Α Λ Α Ι Ο 1 ο 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Μία σαν ΒΑΣΗ, µία σαν ΜΕΣΗ και µία σαν ΚΟΡΥΦΗ Έχουµε τρία

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΜΟΥΣΙΚΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΜΟΥΣΙΚΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ 1ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΤΡΩΝ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΜΟΥΣΙΚΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Α Β ΤΕΤΡΑΜΗΝΟ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ ΚΟΡΟΝΤΖΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΠΕ03 ΟΜΑΔΑ : ΑΝΔΡΩΝΑ ΕΙΡΗΝΗ ΚΕΦΑΛΑ ΑΘΑΝΑΣΙΑ ΜΙΛΙΔΑΚΗ ΜΕΛΙΝΑ ΖΕΡΒΑΣ ΧΡΗΣΤΟΣ

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το

Διαβάστε περισσότερα

ΑΝΟΙΚΤΗ ΘΕΣΗ συγχορδίας έχουµε όταν η απόσταση των φωνών µεταξύ ΤΕΝΟΡΟΥ και ΣΟΠΡΑΝΟ είναι

ΑΝΟΙΚΤΗ ΘΕΣΗ συγχορδίας έχουµε όταν η απόσταση των φωνών µεταξύ ΤΕΝΟΡΟΥ και ΣΟΠΡΑΝΟ είναι Θ Ε Ω Ρ Ι Α Α Ρ Μ Ο Ν Ι Α Σ Κ Ε Φ Α Λ Α Ι Ο 1 ο 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Μία σαν ΒΑΣΗ, µία σαν ΜΕΣΗ και µία σαν ΚΟΡΥΦΗ Έχουµε τρία είδη συγχορδιών

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 26 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 26 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 26 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΟΚΤΩ (8) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

Claude Debussy Prelude a l apres-midi d un faune. Πρελούδιο στο αποµεσήµερο ενός Φαύνου

Claude Debussy Prelude a l apres-midi d un faune. Πρελούδιο στο αποµεσήµερο ενός Φαύνου Claude Debussy Prelude a l apres-midi d un faune Κλωντ Ντεµπυσύ Πρελούδιο στο αποµεσήµερο ενός Φαύνου ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Χρονολογία: 1892-1894 Είδος: Συµφωνικό ποίηµα Πρελούδιο: Ένα έργο το οποίο προηγείται

Διαβάστε περισσότερα

Λ. βαν. Μπετόβεν (1770-1827) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι:

Λ. βαν. Μπετόβεν (1770-1827) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι: Λ. βαν. Μπετόβεν (1770-1827) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση Γενικοί Στόχοι: Πέρασμα από τον Κλασικισμό στο Ρομαντισμό Σύγκριση Προγραμματικής και Απόλυτης Μουσικής

Διαβάστε περισσότερα

Θεόδωρου Π. Ματθαίου, συγγραφέα

Θεόδωρου Π. Ματθαίου, συγγραφέα Νεαντερτάλιος Αυλός: Πεντατονική μουσική κλίμακα ηλικίας 40000-80000 ετών; Θεόδωρου Π. Ματθαίου, συγγραφέα ΠΕΡΙΕΧΟΜΕΝA 1. H Ανακάλυψη του Ευρήματος 2. Πιθανή Εξέλιξη της Μουσικής 3. Προσπάθεια Ανασκευής

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΡΑΦΗΣ. Η συγχορδία ΝΤΟ µείζων. Ευθεία κατάσταση α αναστροφή β αναστροφή. Απόστολος Σιόντας

ΑΣΚΗΣΕΙΣ ΓΡΑΦΗΣ. Η συγχορδία ΝΤΟ µείζων. Ευθεία κατάσταση α αναστροφή β αναστροφή. Απόστολος Σιόντας ΑΣΚΗΣΕΙΣ ΓΡΑΦΗΣ Η συγχορδία ΝΤΟ µείζων Ευθεία κατάσταση α αναστροφή β αναστροφή Απόστολος Σιόντας Πειραµατικό Μουσικό Γυµνάσιο Παλλήνης Παλλήνη 2009 Πρόλογος Θεωρώντας απαραίτητη την γνώση του περιεχοµένου

Διαβάστε περισσότερα

Κοντσέρτο για Βιολί σε Μι ελάσσονα, έργο 64

Κοντσέρτο για Βιολί σε Μι ελάσσονα, έργο 64 Φέλιξ Μέντελσον (1809-1847) Κοντσέρτο για Βιολί σε Μι ελάσσονα, έργο 64 Η ορχηστρική μουσική του πρώιμου ρομαντικού συνθέτη Φέλιξ Μέντελσον περιλαμβάνει πέντε συμφωνίες, τις συναυλιακές εισαγωγές Όνειρο

Διαβάστε περισσότερα

Τρόποι της Ελληνικής Παραδοσιακής Μουσικής

Τρόποι της Ελληνικής Παραδοσιακής Μουσικής Τρόποι της Ελληνικής Παραδοσιακής Μουσικής Δημήτρης Πυργιώτης www.music-theory.gr Εισαγωγή Η συνοπτική περιγραφή των τρόπων της ελληνικής παραδοσιακής μουσικής εξακολουθεί να είναι μια θεωρητική πρόκληση.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ

ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ Κατασκευή: Το μονόχορδο του Πυθαγόρα 2005-2006 Τόλιας Γιάννης Α1 Λ Υπεύθυνη Καθηγήτρια: Α. Τσαγκογέωργα Περιεχόμενα: Τίτλος Εργασίας Σκοπός Υπόθεση (Περιγραφή Κατασκευής) Ορισμός Μεταβλητών

Διαβάστε περισσότερα

2ο Πρόχειρο Τεστ Γ Τάξης Ενιαίου Λυκείου Συµβολή Αρµονικών Κυµάτων. Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 λεπτά Βαθµολογία % Ονοµατεπώνυµο:

2ο Πρόχειρο Τεστ Γ Τάξης Ενιαίου Λυκείου Συµβολή Αρµονικών Κυµάτων. Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 λεπτά Βαθµολογία % Ονοµατεπώνυµο: 2ο Πρόχειρο Τεστ Γ Τάξης Ενιαίου Λυκείου Συµβολή Αρµονικών Κυµάτων Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 λεπτά Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΟ ΜΟΥΣΙΚΟ ΓΥΜΝΑΣΙΟ-ΛΥΚΕΙΟ ΠΑΛΛΗΝΗΣ. Μέθοδος ταμπουρά. γ Γυμνασίου Επίπεδο Ε

ΠΕΙΡΑΜΑΤΙΚΟ ΜΟΥΣΙΚΟ ΓΥΜΝΑΣΙΟ-ΛΥΚΕΙΟ ΠΑΛΛΗΝΗΣ. Μέθοδος ταμπουρά. γ Γυμνασίου Επίπεδο Ε ΠΕΙΡΑΜΑΤΙΚΟ ΜΟΥΣΙΚΟ ΓΥΜΝΑΣΙΟ-ΛΥΚΕΙΟ ΠΑΛΛΗΝΗΣ Μέθοδος ταμπουρά γ Γυμνασίου Επίπεδο Ε ΠΑΛΛΗΝΗ 2016 γ Γυμνασίου Επίπεδο Ε Περιεχόμενα: Vibrato, Legato, τάι-τα, ανάποδη πενιά,τράβηγμα Ζεϊμπέκικη πενιά 1.

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ

ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ ΣΧΟΛΗ Ν. ΟΚΙΜΩΝ ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ Σ.Α.Ε. ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ ΕΚΕΜΒΡΙΟΣ 3 ) Αρχικό σήµα ( ) Στο παρακάτω σχήµα φαίνεται ένα περιοδικό σήµα ( ), το οποίο έχει ληφθεί από

Διαβάστε περισσότερα

Μουσικοθεωρητικό σύστημα - Αρμονική

Μουσικοθεωρητικό σύστημα - Αρμονική Μουσικοθεωρητικό σύστημα - Αρμονική Κλεονίδης, Εισαγωγή Αρμονική. Αρμονική εστίν επιστήμη θεωρητική και πρακτική. μέρη δε αυτής επτά. Περί φθόγγων Περί διαστημάτων Περί γενών Περί συστήματος Περί τόνου

Διαβάστε περισσότερα

Διάλεξη 9. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Αντίληψη συνδυασμών τόνων Μορφές ακοής Συνήχηση & παραφωνία Θεωρίες αντίληψης ύψους

Διάλεξη 9. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Αντίληψη συνδυασμών τόνων Μορφές ακοής Συνήχηση & παραφωνία Θεωρίες αντίληψης ύψους Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 9 Αντίληψη συνδυασμών τόνων Μορφές ακοής Συνήχηση & παραφωνία Θεωρίες αντίληψης ύψους Ανασκόπηση της Διάλεξης 8 Εξετάσαμε την αντίληψη του ύψους ενός καθαρού

Διαβάστε περισσότερα

ΜΟΥΣΙΚΕΣ ΣΧΟΛΕΣ ΚΑΤΆ ΤΗΝ ΕΛΛΗΝΙΚΗ ΑΡΧΑΙΟΤΗΤΑ ΑΡΙΣΤΟΞΕΝΕΙΑ ΣΧΟΛΗ ΠΥΘΑΓΟΡΕΙΑ ΣΧΟΛΗ

ΜΟΥΣΙΚΕΣ ΣΧΟΛΕΣ ΚΑΤΆ ΤΗΝ ΕΛΛΗΝΙΚΗ ΑΡΧΑΙΟΤΗΤΑ ΑΡΙΣΤΟΞΕΝΕΙΑ ΣΧΟΛΗ ΠΥΘΑΓΟΡΕΙΑ ΣΧΟΛΗ ΜΟΥΣΙΚΕΣ ΣΧΟΛΕΣ ΚΑΤΆ ΤΗΝ ΕΛΛΗΝΙΚΗ ΑΡΧΑΙΟΤΗΤΑ ΑΡΙΣΤΟΞΕΝΕΙΑ ΣΧΟΛΗ ΠΥΘΑΓΟΡΕΙΑ ΣΧΟΛΗ ΑΡΙΣΤΟΞΕΝΕΙΑ ΣΧΟΛΗ Στον τομέα της μουσικής η έρευνα του Αριστόξενου ήταν επαναστατική. Παραμέρισε τις έρευνες των πυθαγορείων

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Τµήµα Μουσικών Σπουδών Ενορχήστρωση Ι Μαρωνίδης ηµήτρης. Ενορχήστρωση Ι 1ο Μάθηµα

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Τµήµα Μουσικών Σπουδών Ενορχήστρωση Ι Μαρωνίδης ηµήτρης. Ενορχήστρωση Ι 1ο Μάθηµα Ενορχήστρωση Ι 1ο Μάθηµα 1 Εισαγωγή Συµφωνική Ορχήστρα Επίτευγµα του υτικού Πολιτισµού. Ορχήστρα Μουσικό όργανο (αυτόνοµο). Ενορχήστρωση Αρµονία, Αντίστιξη κτλ (Στυλιστική προσέγγιση). Εσωτερική Ακοή -

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ : ΚΥΜΑΤΑ (ΤΡΕΧΟΝΤΑ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:.

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ : ΚΥΜΑΤΑ (ΤΡΕΧΟΝΤΑ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ : ΚΥΜΑΤΑ (ΤΡΕΧΟΝΤΑ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:.. Αν η εξίσωση ενός αρμονικού κύματος είναι y = 0ημ(6πt - πx) στο S.I., τότε η ταχύτητα διάδοσης του κύματος είναι ίση με: α. 0m/s β. 6m/s γ. m/s δ. 3m/s..

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 29 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 29 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 29 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΟΚΤΩ (8) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

5 ΠΡΟΟΔΟΙ 5.1 ΑΚΟΛΟΥΘΙΕΣ. Η έννοια της ακολουθίας

5 ΠΡΟΟΔΟΙ 5.1 ΑΚΟΛΟΥΘΙΕΣ. Η έννοια της ακολουθίας 5 ΠΡΟΟΔΟΙ 5.1 ΑΚΟΛΟΥΘΙΕΣ Η έννοια της ακολουθίας Ας υποθέσουμε ότι καταθέτουμε στην τράπεζα ένα κεφάλαιο 10000 ευρώ με ανατοκισμό ανά έτος και με επιτόκιο 2%. Αυτό σημαίνει ότι σε ένα χρόνο οι τόκοι που

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2008 ΜΟΥΣΙΚΗ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:... Ονοματεπώνυμο:... Τμήμα:... Αρ.:...

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2008 ΜΟΥΣΙΚΗ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:... Ονοματεπώνυμο:... Τμήμα:... Αρ.:... ΛΥΚΕΙΟ ΑΡΧΙΕΠΙΣΚΟΠΟΥ ΜΑΚΑΡΙΟΥ Γ' ΔΑΣΟΥΠΟΛΗ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2007-2008 Ημερομηνία: 03/06/2008 Χρόνος: 2.5 ώρες ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2008 ΜΟΥΣΙΚΗ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:...

Διαβάστε περισσότερα

Μονάδες Ταλαντωτής εκτελεί ταυτόχρονα δύο αρμονικές ταλαντώσεις που έχουν ίσες συχνότητες, πλάτη Α1 = 1 m και A2

Μονάδες Ταλαντωτής εκτελεί ταυτόχρονα δύο αρμονικές ταλαντώσεις που έχουν ίσες συχνότητες, πλάτη Α1 = 1 m και A2 Φυσική ΘΕΜΑ A κατεύθυνσης Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις -5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΕΙΣΑΓΩΓΗ: Γνωριμία με την ΑΚΟΥΣΤΙΚΗ 1 ΜΕΡΟΣ ΠΡΩΤΟ: ΘΕΩΡΙΑ 5. 1 ος ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΤΑΛΑΝΤΩΣΕΙΣ 7 Προσδοκώμενα αποτελέσματα 8

ΠΕΡΙΕΧΟΜΕΝΑ. ΕΙΣΑΓΩΓΗ: Γνωριμία με την ΑΚΟΥΣΤΙΚΗ 1 ΜΕΡΟΣ ΠΡΩΤΟ: ΘΕΩΡΙΑ 5. 1 ος ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΤΑΛΑΝΤΩΣΕΙΣ 7 Προσδοκώμενα αποτελέσματα 8 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ: Γνωριμία με την ΑΚΟΥΣΤΙΚΗ 1 ΜΕΡΟΣ ΠΡΩΤΟ: ΘΕΩΡΙΑ 5 1 ος ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΤΑΛΑΝΤΩΣΕΙΣ 7 Προσδοκώμενα αποτελέσματα 8 1.1. Περιοδική κίνηση Περιοδικά φαινόμενα 9 1.2. Ταλάντωση - Ταλαντούμενα

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 27 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 27 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 27 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΟΚΤΩ (8) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το

Διαβάστε περισσότερα

Σημεία Προσοχής στην Παράγραφο Ε2.

Σημεία Προσοχής στην Παράγραφο Ε2. Σημεία Προσοχής στην Παράγραφο Ε2. 1. Ίσα Σύνολα Δεν αρκεί δύο σύνολα να έχουν τον ίδιο αριθμό στοιχέιων για να είναι ίσα. Πρέπει να έχουν ακριβώς τα ίδια στοιχεία. ΠΑΡΑΔΕΙΓΜΑ Έχουμε τα σύνολα Α={1,α,5}

Διαβάστε περισσότερα

ΦΟΡΜΑ ΡΙΤΟΡΝΕΛΟ ΚΑΙ ΑΡΜΟΝΙΚΗ ΜΑΚΡΟΔΟΜΗ ΣΤΑ ΚΟΝΤΣΕΡΤΑ ΤΟΥ ANTONIO VIVALDI

ΦΟΡΜΑ ΡΙΤΟΡΝΕΛΟ ΚΑΙ ΑΡΜΟΝΙΚΗ ΜΑΚΡΟΔΟΜΗ ΣΤΑ ΚΟΝΤΣΕΡΤΑ ΤΟΥ ANTONIO VIVALDI ΦΟΡΜΑ ΡΙΤΟΡΝΕΛΟ ΚΑΙ ΑΡΜΟΝΙΚΗ ΜΑΚΡΟΔΟΜΗ ΣΤΑ ΚΟΝΤΣΕΡΤΑ ΤΟΥ ANTONIO VIVALDI ΒΑΡΤΣΑΚΗΣ ΓΕΩΡΓΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επιβλέπων καθηγητής Πέτρος Βούβαρης, λέκτορας Συνεπιβλέπων καθηγητής Άννα-Μαρία Ρεντζεπέρη,

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Τµήµα Μουσικών Σπουδών Ενορχήστρωση Ι Μαρωνίδης ηµήτρης. Ενορχήστρωση Ι Μάθηµα 9ο + 10o

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Τµήµα Μουσικών Σπουδών Ενορχήστρωση Ι Μαρωνίδης ηµήτρης. Ενορχήστρωση Ι Μάθηµα 9ο + 10o Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Τµήµα Μουσικών Σπουδών Ενορχήστρωση Ι Μαρωνίδης ηµήτρης Ενορχήστρωση Ι Μάθηµα 9ο + 10o Ανακεφαλαίωση Συνοπτικοί κανόνες για την κλασσική ενορχήστρωση Ρόλος των ομάδων

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ Θα ακούσετε τον φθόγγο-αφετηρία και το μελωδικό

Διαβάστε περισσότερα

Σχέδιο Μαθήµατος: Πολυκάναλη Ηχογράφηση στο Audacity

Σχέδιο Μαθήµατος: Πολυκάναλη Ηχογράφηση στο Audacity Σχέδιο Μαθήµατος: Πολυκάναλη Ηχογράφηση στο Audacity Θεµατική Ενότητα: Μουσική Τεχνολογία Τάξη: Β Γυµνασίου Διάρκεια: 2 περίοδοι Καθηγητής: Σκοπός Με το συγκεκριµένο µάθηµα οι µαθητές θα γνωρίσουν την

Διαβάστε περισσότερα

Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται

Διαβάστε περισσότερα

FM & PM στενής ζώνης. Narrowband FM & PM

FM & PM στενής ζώνης. Narrowband FM & PM FM & PM στενής ζώνης Narrowband FM & PM Διαμόρφωση γωνίας στενής ζώνης Το διαμορφωμένο κατά γωνία σήμα μπορεί να γραφεί ως [ π φ ] st () = Acos2 ft+ () t c όπου η στιγμιαία φάση είναι φ() t c Δφxt () PM

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ «Μουσική είναι η απόλαυση που νιώθει η ανθρώπινη ψυχή, όταν µετράει χωρίς να ξέρει πως µετράει» Gottfried Leibniz

ΕΙΣΑΓΩΓΗ «Μουσική είναι η απόλαυση που νιώθει η ανθρώπινη ψυχή, όταν µετράει χωρίς να ξέρει πως µετράει» Gottfried Leibniz ΠΕΡΙΕΧΟΜΕΝΑ 1. Περιεχόµενα... 1 2. Εισαγωγή.2 3. Μαθηµατικά και Μουσική: «Η σχέση τους µέσα από το χρόνο»...4 4. Α) Σειρές Fibbonacci και χρυσή αναλογία...17 Β) Η Τριγωνοµετρία στη Μουσική και τους Ήχους.

Διαβάστε περισσότερα

ενώ το «β» μέρος είναι ένα «Μοιρολόι», αργό ρυθμικά.

ενώ το «β» μέρος είναι ένα «Μοιρολόι», αργό ρυθμικά. Το δεύτερο μέρος «Β», αντίθετο σε χαρακτήρα από αυτό που προηγήθηκε, κρύβει, μέσα από το έντονο ρυθμικό και χρωματικό του στοιχείο, την αισιοδοξία και την ελπίδα του Κύπριου για ένα καλύτερο «αύριο» για

Διαβάστε περισσότερα

Ενότητα τριακοστή πρώτη

Ενότητα τριακοστή πρώτη Ενότητα τριακοστή πρώτη Σήμερα θα γνωρίσουμε τις συγχορδίες! Η συγχορδία είναι μια ομάδα τριών νοτών που παίζονται ταυτόχρονα και έχουν κάποια αρμονική σχέση μεταξύ τους. Θυμήσου τις διφωνίες που ήταν

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

Περιεχόµενα ΕΠΛ 422: στα Συστήµατα Πολυµέσων. Βιβλιογραφία. ειγµατοληψία. ηµιουργία ψηφιακής µορφής πληροφορίας στα Συστήµατα Πολυµέσων

Περιεχόµενα ΕΠΛ 422: στα Συστήµατα Πολυµέσων. Βιβλιογραφία. ειγµατοληψία. ηµιουργία ψηφιακής µορφής πληροφορίας στα Συστήµατα Πολυµέσων Περιεχόµενα ΕΠΛ 422: Συστήµατα Πολυµέσων Ψηφιακή Αναπαράσταση Σήµατος: ειγµατοληψία Βιβλιογραφία ηµιουργία ψηφιακής µορφής πληροφορίας στα Συστήµατα Πολυµέσων Βασικές Έννοιες Επεξεργασίας Σηµάτων Ψηφιοποίηση

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Συνθεση µουσικών φθόγγων και ήχων

ΑΣΚΗΣΗ 1 Συνθεση µουσικών φθόγγων και ήχων ΑΣΚΗΣΗ 1 Συνθεση µουσικών φθόγγων και ήχων ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Μεταπτυχιακό Πρόγραµµα Σχετικές εντολές του Matlab: soun, specgram octave C 3 D 3 E 3 F 3 G 3 A 3 B 3 C 4 D 4 E 4 F 4 G 4 A 4 B 4

Διαβάστε περισσότερα

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση Λύση ΑΣΚΗΣΗ 1 α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση, προκύπτει: και Με αντικατάσταση στη θεµελιώδη εξίσωση

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ I ΕΝΔΕΙΚΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ

ΠΑΡΑΡΤΗΜΑ I ΕΝΔΕΙΚΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΑΡΑΡΤΗΜΑ I ΕΝΔΕΙΚΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΕΝΔΕΙΚΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Το Ενδεικτικό Πρόγραμμα περιλαμβάνει όλα τα μαθήματα που προσφέρονται στις τρεις Κατευθύνσεις, εκτός από κάποια μαθήματα ΥΕ που αφορούν

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Κύματα Εξισώσεις Μεθοδολογία

Κύματα Εξισώσεις Μεθοδολογία Κύματα Εξισώσεις Μεθοδολογία Η εξίσωση του κύματος που εκφράζει την απομάκρυνση y ενός σημείου του μέσου, έστω Μ, που απέχει απόσταση χ από την πηγή τη χρονική στιγμή, είναι: y A ( ) με Η ταχύτητα με την

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κύµατα - Φαινόµενο Doppler Ενδεικτικές Λύσεις - Β έκδοση Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κύµατα - Φαινόµενο Doppler Ενδεικτικές Λύσεις - Β έκδοση Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κύµατα - Φαινόµενο Doppler Ενδεικτικές Λύσεις - Β έκδοση Θέµα Α Α.. Σε ένα γραµµικό ελαστικό µέσο διαδίδονται ταυτόχρονα δύο κύµατα µε ίδιο πλάτος, ίδια συχνότητα και

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ. 1 ο ΘΕΜΑ. Α. Ερωτήσεις πολλαπλής επιλογής

ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ. 1 ο ΘΕΜΑ.  Α. Ερωτήσεις πολλαπλής επιλογής ο ΘΕΜΑ Α. Ερωτήσεις πολλαπλής επιλογής ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ. Το µήκος κύµατος δύο κυµάτων που συµβάλλουν και δηµιουργούν στάσιµο κύµα είναι λ. Η απόσταση µεταξύ δύο διαδοχικών δεσµών του στάσιµου κύµατος θα

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 1 η ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 1 η ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 1 η ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ

Διαβάστε περισσότερα

Claude Debussy Prelude a l apres-midi d un faune. Πρελούδιο στο αποµεσήµερο ενός Φαύνου

Claude Debussy Prelude a l apres-midi d un faune. Πρελούδιο στο αποµεσήµερο ενός Φαύνου Claude Debussy Prelude a l apres-midi d un faune Κλωντ Ντεµπυσύ Πρελούδιο στο αποµεσήµερο ενός Φαύνου ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Χρονολογία: 1892-1894 Είδος: Συµφωνικό ποίηµα Πρελούδιο: Ένα έργο το οποίο προηγείται

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα

Διαβάστε περισσότερα

Αναλυτική προσέγγιση στο έργο του Χρήστου Σαμαρά MONUMENT- PHOTOTRO- POS (2013) Etude for solo Viola. Ανδρέας Γεωργοτάς

Αναλυτική προσέγγιση στο έργο του Χρήστου Σαμαρά MONUMENT- PHOTOTRO- POS (2013) Etude for solo Viola. Ανδρέας Γεωργοτάς Αναλυτική προσέγγιση στο έργο του Χρήστου Σαμαρά MONUMENT- PHOTOTRO- POS (2013) Etude Ανδρέας Γεωργοτάς Η μελέτη του έργου MONUMENT- PHOTOTROPOS (2013) Etude for solo Viola του Χρήστου Σαμαρά είναι μια

Διαβάστε περισσότερα

Τετράδια κιθάρας. Ασκήσεις για εξάσκηση και ζέσταμα. Επιμέλεια: Ευγένιος Αστέρις. Επικοινωνία : evgeniosasteris@pathfinder.gr

Τετράδια κιθάρας. Ασκήσεις για εξάσκηση και ζέσταμα. Επιμέλεια: Ευγένιος Αστέρις. Επικοινωνία : evgeniosasteris@pathfinder.gr Τετράδια κιθάρας Επιμέλεια: Ευγένιος Αστέρις Επικοινωνία : evgeniosasteris@pathfinder.gr 1 Περιεχόμενα Πρόλογος...3 Ασκήσεις χωρίς την κιθάρα...4 Ασκήσεις έκτασης δαχτύλων...5 1-2-3-4 (Απλοποιημένη Εκδοχή)...5

Διαβάστε περισσότερα

ΚΑΘΗΜΕΡΙΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΕΝΟΤΗΤΑ: ΑΡΜΟΝΙΑ (ΟΣΤΙΝΑΤΟ 1) ΣΧΟΛΕΙΟ/ΤΑΞΗ: A AΡ. ΜΑΘΗΤΩΝ:

ΚΑΘΗΜΕΡΙΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΕΝΟΤΗΤΑ: ΑΡΜΟΝΙΑ (ΟΣΤΙΝΑΤΟ 1) ΣΧΟΛΕΙΟ/ΤΑΞΗ: A AΡ. ΜΑΘΗΤΩΝ: ΚΑΘΗΜΕΡΙΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΕΝΟΤΗΤΑ: ΑΡΜΟΝΙΑ (ΟΣΤΙΝΑΤΟ 1) ΣΧΟΛΕΙΟ/ΤΑΞΗ: A AΡ. ΜΑΘΗΤΩΝ: ΣΚΟΠΟΣ: ΗΜΕΡΟΜΗΝΙΑ: ΠΕΡΙΟΔΟΣ: ΣΤΟΧΟΙ:ΝΑ ΑΝΑΓΝΩΡΙΖΟΥΝ ΟΙ ΜΑΘΗΤΕΣ ΜΕΣΑ ΑΠΟ ΕΝΟΡΧΗΣΤΡΩΣΗ ΚΑΙ ΤΟ ΤΡΑΓΟΥΔΙ

Διαβάστε περισσότερα

δημήτρης συκιάς σημειώσεις αντίστιξης ένα παράδειγμα αναστρεφόμενης αντίστιξης

δημήτρης συκιάς σημειώσεις αντίστιξης ένα παράδειγμα αναστρεφόμενης αντίστιξης δημήτρης συκιάς σημειώσεις αντίστιξης ένα παράδειγμα αναστρεφόμενης αντίστιξης Φεβρουάριος 2013 http://users.otenet.gr/~dsyk/dsyk/dsykweb/welcome.html http://3euk1l4.blogspot.gr http://3euk1l4-edu.blogspot.gr

Διαβάστε περισσότερα