Διαδικασία σχεδιασμού Β.Δ.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διαδικασία σχεδιασμού Β.Δ."

Transcript

1 Διαδικασία σχεδιασμού Β.Δ. Σε παλαιότερα μαθήματα είπαμε ότι πριν κατασκευάσουμε κάτι θα πρέπει πρώτα να το σχεδιάσουμε. Το ίδιο ισχύει και για μια Β.Δ.. Σε αυτή την ενότητα θα περιγράψουμε λίγο πιο αναλυτικά τον τρόπο σχεδιασμού μιας Β.Δ.. Τα βήματα είναι τα εξής: Συλλογή των απαιτήσεων Στην διάρκεια αυτού του βήματος οι σχεδιαστές της Β.Δ. θα πρέπει να καταλάβουν τις απαιτήσεις των πελατών. Δηλαδή θα πρέπει να ξεκαθαριστεί για ποιο λόγο χρειάζεται αυτή η βάση και πρώτα τι δεδομένα θα αποθηκεύονται,. Ας πάρουμε το παράδειγμα μιας σχολικής Β.Δ.. Μετά από συζητήσεις, ο σχεδιαστής της Β.Δ. και οι καθηγητές του σχολείου κατέληξαν στο ότι μέσα στην βάση δεδομένων θέλουν να αποθηκεύονται πληροφορίες για τους μαθητές, τους καθηγητές, τα μαθήματα, τις τάξεις, τα τμήματα, τους βαθμούς, τις απουσίες κ.α. Αφού γίνει κατανοητό τι δεδομένα θα αποθηκεύονται στη βάση, προχωράμε στο δεύτερο βήμα. Εννοιολογική σχεδίαση Οντότητες Με βάση τις πληροφορίες που συλλέξαμε στο προηγούμενο βήμα σχετικά με το τι δεδομένα θα αποθηκεύονται στην βάση σχηματίζουμε τις οντότητες. Παρακάτω δίνουμε τον ακόλουθο ορισμό: Οντότητα είναι κάτι υπαρκτό το οποίο μπορούμε να ξεχωρίσουμε και ενδιαφερόμαστε να συλλέξουμε πληροφορίες γι αυτό. Αυτό το κάτι μπορεί να είναι αντικείμενο (π.χ. κινητό), πρόσωπο (π.χ. τραγουδιστής), γεγονός (π.χ. ποδοσφαιρικός αγώνας) ή οτιδήποτε άλλο θεωρούμε εμείς ότι έχει σημασία. Η οντότητα αντιστοιχεί στην έννοια της εγγραφής που αναφέρθηκε στα αρχεία. Στο παράδειγμα της σχολικής Β.Δ. οι οντότητες μπορεί να είναι οι εξής: Μαθητές, Καθηγητές, Μαθήματα, Τάξεις, Τμήματα, Βαθμοί, Απουσίες κτλ. Έτσι όπως ορίσαμε όμως μέχρι τώρα τις οντότητες βλέπουμε πως είναι κάτι πολύ αφηρημένο. Δηλαδή αναφερόμαστε γενικά σε μαθητές και όχι σε συγκεκριμένους μαθητές, γενικά σε μαθήματα και όχι σε συγκεκριμένα μαθήματα κτλ. Οπότε στην συνέχεια αυτού του βήματος πρέπει να προσδιορίσουμε πιο συγκεκριμένα τις οντότητες και για να γίνει αυτό θα πρέπει να αναφερθούμε στις ιδιότητές της κάθε οντότητας. Παρακάτω δίνουμε τον ακόλουθο ορισμό: Ιδιότητες οντοτήτων Ιδιότητες μιας οντότητας είναι τα ιδιαίτερα χαρακτηριστικά που περιγράφουν μια οντότητα. Οι ιδιότητες μιας οντότητας χρησιμεύουν ώστε να ξεχωρίζουν μεταξύ τους τα στοιχεία (αντικείμενα, πρόσωπα, γεγονότα κτλ.) που ανήκουν στην οντότητα. Όπως θα δούμε παρακάτω μια ιδιότητα μπορεί να παίρνει υποχρεωτικά ή όχι κάποια τιμή. Οι ιδιότητες αντιστοιχούν στην έννοια του πεδίου που αναφέρθηκε στα αρχεία. Στιγμιότυπα οντοτήτων Για να κατανοήσουμε καλύτερα τα παραπάνω ας πάμε πάλι στο παράδειγμα της σχολικής βάσης και ας πάρουμε την οντότητα Μαθητές. Έστω ότι οι ιδιότητες αυτής της οντότητας είναι το όνομα, το επώνυμο και η ημερομηνία γέννησης. Ας δώσουμε τώρα τιμές σε αυτές τις ιδιότητες: 1. Μαρία Παπαναστασίου 15/07/ Κώστας Χατζηλάμπρου 22/03/1999

2 Τώρα λοιπόν δεν έχουμε μια αφηρημένη έννοια μαθητή, αλλά συγκεκριμένους μαθητές που ξεχωρίζουν μεταξύ τους. Παρόλαυτά και οι δύο μαθητές ανήκουν στην οντότητα Μαθητές αφού έχουν τις ιδιότητες της συγκεκριμένης οντότητας (όνομα, επώνυμο, ημερομηνία γέννησης). Γι αυτό τον λόγο λέμε ότι ο κάθε μαθητής του σχολείου αποτελεί ένα στιγμιότυπο της οντότητας Μαθητές. Έχουμε λοιπόν τον ακόλουθο ορισμό: Στιγμιότυπο μιας οντότητας ονομάζουμε το κάθε διαφορετικό στοιχείο της οντότητας που μπορεί να εμφανιστεί και να έχει τις ιδιότητές της. Αφού καταλάβαμε τις έννοιες της οντότητας και των ιδιοτήτων της, το επόμενο βήμα είναι να προσδιορίσουμε με μεγαλύτερη λεπτομέρεια την κάθε ιδιότητα. Δηλαδή να αναφερθούμε στον τύπο της και στις τιμές που μπορεί να πάρει. Ας επιστρέψουμε στο προηγούμενο παράδειγμα όπου δώσαμε στην οντότητα Μαθητές τρεις ιδιότητες: το όνομα, το επώνυμο και την ηλικία. Η ανάλυση των ιδιοτήτων φαίνεται στον παρακάτω πίνακα: Οντότητα Μαθητές Ιδιότητες Τύπος Τιμές Όνομα Αλφαβητικός (μέχρι 10 χαρακτήρες) Αλφαβητικοί χαρακτήρες Επώνυμο Αλφαβητικός (μέχρι 15 χαραχτήρες) Αλφαβητικοί χαρακτήρες Ηλικία Ημερομηνίας Ημερομηνίες Κλειδιά Ας πάρουμε τώρα τέσσερα διαφορετικά στιγμιότυπα της οντότητας Μαθητής: Ονομα Επώνυμο Ημερομηνία γέννησης Μαρία Παπαναστασίου 15/07/1998 Κώστας Χατζηλάμπρου 22/03/1999 Άγγελος Βερύκιος 15/07/1998 Είπαμε προηγουμένως ότι τα στιγμιότυπα, δηλαδή οι συγκεκριμένοι μαθητές, της οντότητας θα πρέπει να ξεχωρίζουν μεταξύ τους. Στον παραπάνω πίνακα βλέπουμε ότι κάθε μαθητής διαφέρει και ως προς το όνομα και ως προς το επώνυμο. Αν λοιπόν θέλαμε να ζητήσουμε από την Β.Δ. όλα τα στοιχεία ενός μαθητή με το τάδε όνομα ή το τάδε επώνυμο, τότε αυτή θα μας επέστρεφε όντως έναν μόνο μαθητή αφού δεν υπάρχουν δύο μαθητές με το ίδιο όνομα ή το ίδιο επώνυμο. Από τον παραπάνω πίνακα βλέπουμε επίσης ότι κάτι τέτοιο δεν ισχύει για την ιδιότητα Ημερομηνία γέννησης. Για παράδειγμα αν ζητούσαμε όλα τα στοιχεία συγκεκριμένου μαθητή (έστω ότι ξεχάσαμε το ονοματεπώνυμό του) που έχει γεννηθεί στις 15/07/1998 τότε η Β.Δ. θα μας επέστρεφε δύο μαθητές, αφού δύο από αυτούς έχουν την ίδια ημερομηνία γέννησης. Ας δούμε τώρα τον επόμενο πίνακα Ονομα Επώνυμο Ημερομηνία γέννησης Μαρία Παπαναστασίου 15/07/1998 Κώστας Παπαναστασίου 22/03/1999 Μαρία Παπαναστασίου 15/07/1998 Εδώ βλέπουμε ότι η οντότητα Μαθητής έχει δύο στιγμιότυπα (μαθητές) που έχουν το ίδιο όνομα, επώνυμο και ημερομηνία γέννησης. Παρότι αυτό δεν είναι πολύ πιθανό μπορεί να συμβεί. Πώς θα ξεχωρίσουμε

3 τώρα τους δύο μαθητές. Αν το αφήσουμε έτσι δεν υπάρχει τρόπος και αυτό δεν είναι καθόλου καλό διότι πρέπει αναγκαστικά να μπορούμε να ξεχωρίσουμε δύο οποιουσδήποτε μαθητές. Φανταστείτε ότι θέλουμε να ξέρουμε τους βαθμούς του μαθητή. Δεν θα μπορούμε να καταλάβουμε ποιος είναι ο μαθητής που μας ενδιαφέρει. Συνεπώς θα πρέπει σε κάθε οντότητα να υπάρχει μια ιδιότητα όπου να έχει διαφορετική τιμή σε κάθε στιγμιότυπο (συγκεκριμένο μαθητή), έτσι ώστε να μπορούμε να ξεχωρίσουμε με βάση αυτή την ιδιότητα δύο μαθητές. Αυτή η ιδιότητα ή οι ιδιότητες της οντότητας που έχουν αυτό το χαρακτηριστικό ονομάζονται πρωτεύον κλειδί της οντότητας. Έχουμε λοιπόν τον ακόλουθο ορισμό: Πρωτεύον κλειδί μιας οντότητας ονομάζουμε μια ή περισσότερες ιδιότητες οι τιμές των οποίων είναι διαφορετικές σε κάθε στιγμιότυπο ` οντότητας. Στον ορισμό αναφέραμε για μια ή περισσότερες ιδιότητες. Ας το εξηγήσουμε λίγο. Δείτε τον παρακάτω πίνακα: Όνομα Επώνυμο Ημερομηνία γέννησης Μαρία Παπαναστασίου 18/07/1998 Κώστας Παπαναστασίου 22/03/1999 Μαρία Παπαλάμπρου 15/07/1998 Εδώ τον ρόλο του πρωτεύοντος κλειδιού μπορεί να τον παίξει μόνο η ιδιότητα Ημερομηνία γέννησης διότι μπορεί να ξεχωρίσει τους μαθητές αφού είναι διαφορετική για τον καθένα. Όμως αν παρατηρήσουμε καλύτερα το ίδιο ισχύει και για διάφορους συνδυασμούς ιδιοτήτων. Έτσι οι ιδιότητες Όνομα και Επώνυμο αν συνδυαστούν μπορούν επίσης να ξεχωρίσουν τους μαθητές αφού κανένας μαθητής/τρια δεν έχει το ίδιο ονοματεπώνυμο. Δηλαδή μπορούν να παίξουν επίσης τον ρόλο του πρωτεύοντος κλειδιού. Με βάση τα παραπάνω έχουμε τον εξής ορισμό: Σύνθετο κλειδί μιας οντότητας ονομάζουμε το πρωτεύον κλειδί που αποτελείται από δύο ή περισσότερες ιδιότητες. Αν τώρα πρέπει να διαλέξουμε ανάμεσα σε πολλά υποψήφια κλειδιά, τότε επιλέγουμε ένα από αυτά για πρωτεύον κλειδί (π.χ. το ονοματεπώνυμο) και τα υπόλοιπα τα θεωρούμε εναλλακτικά κλειδιά. Ας δούμε πάλι τον παρακάτω πίνακα: Κωδικός μαθητή Ονομα Επώνυμο Ημερομηνία γέννησης 01 Μαρία Παπαναστασίου 15/07/ Κώστας Παπαναστασίου 22/03/ Μαρία Παπαναστασίου 15/07/1998 Αν παρατηρήσουμε προσεκτικά, θα δούμε ότι καμία ιδιότητα ή συνδυασμός ιδιοτήτων δεν μπορεί να παίξει τον ρόλο του πρωτεύοντος κλειδιού. Σε αυτή την περίπτωση προσθέτουμε εμείς μια όπως φαίνεται και στον παρακάτω πίνακα: Κωδικός μαθητή Ονομα Επώνυμο Ημερομηνία γέννησης 01 Μαρία Παπαναστασίου 15/07/ Κώστας Παπαναστασίου 22/03/ Μαρία Παπαναστασίου 15/07/1998

4 Βλέπουμε λοιπόν ότι προσθέσαμε μια καινούργια ιδιότητα με όνομα κωδικός μαθητή της οποίας οι τιμές είναι διαφορετικές για κάθε στιγμιότυπο της οντότητας δηλαδή για κάθε μαθητή. Αυτή η καινούργια ιδιότητα είναι το πρωτεύον κλειδί της οντότητας. Συσχετίσεις οντοτήτων Μέχρι τώρα μιλήσαμε για τις οντότητες και τις ιδιότητές τους, όμως αυτό που μας ενδιαφέρει δεν είναι η απλή καταγραφή τους, αλλά και ο τρόπος που συνδέονται μεταξύ τους. Ας πάρουμε για παράδειγμα την σχολική βάση δεδομένων και συγκεκριμένα δύο από τις οντότητες που υπάρχουν σε αυτή: την οντότητα Μαθητές και την οντότητα Μαθήματα. Πέρα από την πληροφορία του πόσοι και ποιοι μαθητές και του πόσα και ποια μαθήματα υπάρχουν στο σχολείο, θέλουμε να ξέρουμε και ποιοι μαθητές παρακολουθούν ποια μαθήματα. Διαφορετικά θέλουμε να ξέρουμε πως συνδέονται οι οντότητες Μαθητές με τις οντότητες Μαθήματα. Έχουμε λοιπόν τον παρακάτω ορισμό: Συσχέτιση ονομάζουμε τον τρόπο με τον οποίο συνδέονται δύο ή περισσότερες οντότητες μιας βάσης δεδομένων. Αυτή η σχέση μεταξύ των οντοτήτων δεν είναι αυθαίρετη, δηλαδή δεν υπάρχει μόνο στο μοντέλο της Β.Δ. που θέλουμε να φτιάξουμε, αλλά υπάρχει στον και πραγματικό κόσμο τον οποίο η Β.Δ. προσπαθεί να περιγράψει. Δηλαδή στο πραγματικό σχολείο οι μαθητές προφανώς παρακολουθούν κάποια μαθήματα. Πως όμως εκφράζεται αυτή η συσχέτιση; Αυτό γίνεται με προτάσεις που συνήθως περιέχουν ρήματα. Για παράδειγμα λέμε: κάθε μαθητής ΠΑΡΑΚΟΛΟΥΘΕΙ πολλά μαθήματα και κάθε μάθημα το παρακολουθούν πολλοί μαθητές. Σε αυτό το παράδειγμα η συσχέτιση ανάμεσα στις οντότητες Μαθητές και Μαθήματα περιγράφεται από την υπογραμμισμένη πρόταση και το όνομά της το οποίο το γράφουμε με κεφαλαία γράμματα μέσα σε εισαγωγικά είναι: ΠΑΡΑΚΟΛΟΥΘΕΙ. Με αυτό τον τρόπο τώρα αν ρωτήσουμε την Β.Δ. ποια μαθήματα παρακολουθεί ο μαθητής με τον τάδε κωδικό, αυτή θα μας επιστρέψει την απάντηση δηλαδή τα συγκεκριμένα μαθήματα. Οι συσχετίσεις μεταξύ οντοτήτων έχουν δύο χαρακτηριστικά: 1) Βαθμός συσχέτισης ονομάζεται το πλήθος των οντοτήτων που συμμετέχουν στην συσχέτιση. Έτσι μια συσχέτιση μπορεί να έχει βαθμό 2 (διμελής), τρία (τριμελής) κτλ. 2) Τύπος συσχέτισης ονομάζεται ο τρόπος με τον οποίο συνδέονται δύο τουλάχιστον οντότητες. Υπάρχουν τριών ειδών τύποι συσχετίσεων: α) Ένα-προς-ένα (1-1). Για παράδειγμα ανάμεσα στις οντότητες Διευθυντής και Σχολείο έχουμε την εξής συσχέτιση: ένας διευθυντής ΔΙΕΥΘΥΝΕΙ ένα μόνο σχολείο και ένα σχολείο ΔΙΕΥΘΥΝΕΤΑΙ από έναν μόνο διευθυντή. β) Ένα-προς-πολλά (1-Ν). Για παράδειγμα ανάμεσα στις οντότητες ΑΘΛΗΤΗΣ και ΟΜΑΔΑ έχουμε την εξής συσχέτιση: ένας αθλητής ΑΝΗΚΕΙ σε μια μόνο ομάδα και σε μια ομάδα ΑΝΗΚΟΥΝ πολλοί αθλητές. γ) Πολλά-προς-πολλά (Μ-Ν). Για παράδειγμα ανάμεσα στις οντότητες ΠΕΛΑΤΗΣ και ΠΡΟΪΟΝ έχουμε την εξής συσχέτιση: ένας πελάτης μπορεί να ΑΓΟΡΑΣΕΙ πολλά προϊόντα και ένα προϊόν μπορεί να ΑΓΟΡΑΣΤΕΙ από πολλούς πελάτες.

5 Εφόσον έχουμε καταγράψει τις οντότητες, τις ιδιότητές τους, τα πρωτεύοντα κλειδιά τους, καθώς και τον τύπο των μεταξύ τους συσχετίσεων, στην συνέχεια ολοκληρώνουμε το στάδιο του εννοιολογικού σχεδιασμού της Β.Δ. με την κατασκευή του διαγράμματος οντοτήτων συσχετίσεων (Δ.Ο.Σ.). Διάγραμμα οντοτήτων συσχετίσεων (Δ.Ο.Σ.) Το Δ.Ο.Σ. χρησιμοποιεί μια σειρά από γραφικά στοιχεία προκειμένου να αναπαραστήσει όλα όσα έχουμε καταγράψει στο πρώτο μέρος του εννοιολογικού σχεδιασμού (οντότητες, ιδιότητες, πρωτεύοντα κλειδιά, συσχετίσεις). Στην συνέχεια θα περιγράψουμε τον τρόπο που γίνεται αυτό. Απεικόνιση οντότητας Στο Δ.Ο.Σ. οι οντότητες αναπαρίστανται από πλαίσια μέσα στα οποία αναγράφεται το όνομα της οντότητας, όπως φαίνεται στο παρακάτω σχήμα: Απεικόνιση ιδιοτήτων οντότητας Σχ. Απεικόνιση οντοτήτων στο Δ.Ο.Σ. Οι ιδιότητες απεικονίζονται μέσα στο πλαίσιο της οντότητας όπως φαίνεται στο παρακάτω σχήμα: Σχ. Απεικόνιση ιδιοτήτων οντοτήτων στο Δ.Ο.Σ. Τα σύμβολα * και μπροστά από τις ιδιότητες υποδηλώνουν την αναγκαιότητα ή μη ύπαρξης τιμής σε αυτές τις ιδιότητες όταν δημιουργείται ένα στιγμιότυπο της οντότητας. Για παράδειγμα όταν δημιουργήσουμε ένα στιγμιότυπο της οντότητας «ΕΡΓΑΖΟΜΕΝΟΣ», πρέπει υποχρεωτικά να έχει όνοματεπώνυμο και διεύθυνση και προαιρετικά ημ/νία γέννησης και τα οποία μπορούν να συμπληρωθούν αργότερα. Απεικόνιση πρωτεύοντος κλειδιού Στο Δ.Ο.Σ. το πρωτεύον κλειδί της οντότητας σημειώνεται με το σύμβολο όπως φαίνεται και στο παρακάτω σχήμα

6 Απεικόνιση συσχετίσεων οντοτήτων Σχ. Απεικόνιση πρωτεύοντος κλειδιού στο Δ.Ο.Σ. Στο Δ.Ο.Σ. οι συσχετίσεις μεταξύ οντοτήτων απεικονίζονται από μια γραμμή, που συνδέει τις δύο οντότητες. Στα δύο άκρα της γραμμής περιγράφονται οι σχέσεις μεταξύ των οντοτήτων που περιγράψαμε σε προηγούμενο μάθημα. Ας τις ξαναθυμηθούμε: α) «Ένα-προς-ένα» (1-1). Για παράδειγμα ανάμεσα στις οντότητες Διευθυντής και Σχολείο έχουμε την εξής συσχέτιση: ένας διευθυντής ΔΙΕΥΘΥΝΕΙ ένα μόνο σχολείο και ένα σχολείο ΔΙΕΥΘΥΝΕΤΑΙ από έναν μόνο διευθυντή. Στο παρακάτω σχήμα απεικονίζεται η συγκεκριμένη συσχέτιση: Διευθύνει Διευθύνεται Διευθυντής Σχολείο β) «Ένα-προς-πολλά» (1-Ν). Για παράδειγμα ανάμεσα στις οντότητες ΑΘΛΗΤΗΣ και ΟΜΑΔΑ έχουμε την εξής συσχέτιση: ένας αθλητής ΑΝΗΚΕΙ σε μια μόνο ομάδα και σε μια ομάδα ΑΝΗΚΟΥΝ πολλοί αθλητές. Στο παρακάτω σχήμα απεικονίζεται η συγκεκριμένη συσχέτιση: Ανήκει Ανήκουν Αθλητής Ομάδα Στο παραπάνω σχήμα παρατηρούμε ότι η σχέση 1-«ένα» απεικονίζεται με ένα ευθύγραμμο τμήμα στην «απέναντι» οντότητα, ενώ η σχέση Ν-«πολλά» με ένα τρίποδο στην «απέναντι» οντότητα. γ) «Πολλά-προς-πολλά» (Μ-Ν). Για παράδειγμα ανάμεσα στις οντότητες ΠΕΛΑΤΗΣ και ΠΡΟΪΟΝ έχουμε την εξής συσχέτιση: ένας πελάτης μπορεί να ΑΓΟΡΑΣΕΙ πολλά προϊόντα και ένα προϊόν μπορεί να ΑΓΟΡΑΣΤΕΙ από πολλούς πελάτες. Αγοράσει Αγοραστεί Πελάτης Προϊόν

7 Ας επιμείνουμε λίγο σε αυτή την σχέση «πολλά προς πολλά» (Μ-Ν). Όταν κατά την διάρκεια του εννοιολογικού σχεδιασμού συναντήσουμε συσχετίσεις πολλά προς πολλά θα πρέπει να τις επεξεργαστούμε λίγο παραπάνω. Αυτό συμβαίνει διότι τις περισσότερες φορές κρύβουν μέσα τους οντότητες που είναι απαραίτητες για τον σωστό σχεδιασμό της Β.Δ. Για παράδειγμα ο πελάτης Νίκος Χατζηπέτρου αγοράζει δύο μπλούζες. Τίθεται τώρα το εξής ερώτημα: η ποσότητα 2 ποιας οντότητας είναι ιδιότητα του «Πελάτη» ή του «Προϊόντος»; Είναι φανερό ότι η πληροφορία ποσότητα δεν αποτελεί ιδιότητα καμιάς από τις δύο οντότητες. Είναι πιο λογικό να αποτελεί ιδιότητα της συσχέτισης μεταξύ των δύο οντοτήτων. Δηλαδή να ανήκει περισσότερο στην ίδια της αγορά παρά σε κάποια από τις δύο μεμονωμένες οντότητες. Το πρόβλημα όμως είναι ότι οι συσχετίσεις δεν έχουν ιδιότητες. Συνεπώς αυτή η ιδιότητα (ποσότητα) πρέπει να ανήκει σε μια «κρυμμένη» Τρίτη οντότητα. Έτσι επιλύουμε το πρόβλημα εισάγοντας στον Δ.Ο.Σ. μια νέα οντότητα «Παραγγελία» την οποία ονομάζουμε οντότητα «τομής». Έτσι η συσχέτιση «πολλά προς πολλά» (Μ-Ν) μετατρέπεται σε δύο συσχετίσεις «ένα προς πολλά» (1-Ν) όπως φαίνεται και στο παρακάτω σχήμα: Σχ. Επίλυση συσχέτισης «πολλά προς πολλά» με την βοήθεια τρίτης οντότητας

8 Βλέπουμε λοιπόν ότι η νέα οντότητα «Παραγγελία» έχει ως ιδιότητα την «Ποσότητα». Όσον αφορά το πρωτεύον κλειδί της νέας οντότητας ο κανόνας είναι ο εξής: το πρωτεύον κλειδί της καινούργια οντότητας είναι ένα σύνθετο κλειδί που αποτελείται από τον συνδυασμό των πρωτευόντων κλειδιών των δύο αρχικών οντοτήτων, δηλαδή του «Κωδικού πελάτη» και του «κωδικού προϊόντος». Λογική σχεδίαση Μετά την εννοιολογική σχεδίαση ακολουθεί το στάδιο της λογικής σχεδίασης. Σε αυτό το στάδιο επιλέγουμε ένα μοντέλο δεδομένων προκειμένου να υλοποιήσουμε την βάση δεδομένων. Υπάρχουν τρία τέτοια μοντέλα: το ιεραρχικό, το δικτυωτό και το σχεσιακό. Εμείς θα επιλέξουμε το σχεσιακό που είναι και το πιο συχνά χρησιμοποιούμενο εξαιτίας των πολλών πλεονεκτημάτων που διαθέτει. Το σχεσιακό μοντέλο Στο σχεσιακό μοντέλο ο χρήστης βλέπει τις οντότητες και τις συσχετίσεις με την μορφή πινάκων ή σχέσεων (γι αυτό λέγεται και σχεσιακό). Ένας πίνακας έχει ένα μοναδικό όνομα και αποτελείται από γραμμές και στήλες. Μέσα στους πίνακες αποθηκεύονται όλες οι πληροφορίες της βάσης δεδομένων. Οι στόχοι το σχεσιακού μοντέλου είναι: Η υποστήριξη της ανεξαρτησίας των δεδομένων, δηλαδή οι αλλαγές στον τρόπο που οργανώνονται τα δεδομένα να μην επηρεάζουν τις εφαρμογές μέσω των οποίων έχουμε πρόσβαση στην βάση. Η αποφυγή της επανάληψης των δεδομένων (πλεονασμός) που συμβαίνει όταν αυτά αποθηκεύονται πολλές φορές σε διάφορες περιοχές της βάσης. Από το Δ.Ο.Σ. στο σχεσιακό μοντέλο Το σχεσιακό μοντέλο της βάσης δεδομένων προκύπτει από το διάγραμμα οντοτήτων συσχετίσεων (Δ.Ο.Σ.) που έχουμε κατασκευάσει. Για να γίνει αυτό θα πρέπει να μετατραπούν τόσο οι οντότητες όσο και οι συσχετίσεις σε πίνακες. Οι κανόνες αυτής της μετατροπής είναι οι εξής: 1. Κάθε οντότητα του Δ.Ο.Σ. γίνεται ένας πίνακας. Το όνομα του πίνακα είναι το όνομα της οντότητας. Κάθε στήλη του πίνακα ονομάζεται χαρακτηριστικό η πεδίο και αντιστοιχεί σε μια ιδιότητα της οντότητας. Κάθε γραμμή του πίνακα ονομάζεται πλειάδα ή εγγραφή και αντιστοιχεί σε ένα στιγμιότυπο της οντότητας. Το πρωτεύον κλειδί του πίνακα είναι το ίδιο με της οντότητας. 2. Κάθε συσχέτιση αποτυπώνεται και αυτή με την μορφή πινάκων. 3. Κάθε γραμμή του πίνακα είναι μοναδική. Αυτό επιτυγχάνεται μέσω του πρωτεύοντος κλειδιού. Η σειρά των γραμμών δεν έχει σημασία. 4. Η σειρά των στηλών δεν έχει σημασία σε αντίθεση με τα αρχεία για το οποία η σειρά των πεδίων μέσα στην εγγραφή έχει σημασία. 5. Η στήλη ή ο συνδυασμός των στηλών που αντιστοιχούν στο πρωτεύον κλειδί δεν πρέπει να είναι ποτέ κενή (null). Αποτύπωση των συσχετίσεων μέσω πινάκων Όπως ήδη ξέρουμε υπάρχουν τριών ειδών σχέσεις μεταξύ των οντοτήτων μιας βάσης δεδομένων: ένα προς ένα (1-1), ένα προς πολλά (1-Ν) και πολλά προς πολλά (Μ-Ν). Κάθε μια από αυτές τις συσχετίσεις αποτυπώνεται μέσω πινάκων στο σχεσιακό μοντέλο με τον τρόπο που θα περιγράψουμε παρακάτω..

9 Σχέση ένα προς ένα (1-1) Έχουμε δύο οντότητες μιας σχολικής Β.Δ. τον Διευθυντή (αριθμός μητρώου, όνομα διευθυντή, επώνυμο διευθυντή, τηλέφωνο διευθυντή) και το Σχολείο (κωδικός σχολείου, όνομα σχολείου, τύπος σχολείου, αριθμός μαθητών). Οι οντότητες αυτές συνδέονται με μια σχέση ένα προς ένα με όνομα «Διευθύνει», εφόσον ένας διευθυντής διευθύνει ένα σχολείο και ένα σχολείο διευθύνεται από έναν διευθυντή. Όπως ξέρουμε οι οντότητες αυτές γίνονται πίνακες όπου κάθε πίνακας έχει ως πεδία τις ιδιότητες της αντίστοιχης οντότητας και όνομα το όνομα της οντότητας. Παρακάτω φαίνονται οι πίνακες Διευθυντής και Σχολείο με τέσσερις εγγραφές ο καθένας. Το πρωτεύον κλειδί είναι εκείνο το πεδίο που έχει το σύμβολο #. Πίνακας 1: Διευθυντής # Αριθμός μητρώου Όνομα διευθυντή Επώνυμο διευθυντή Τηλέφωνο διευθυντή 1 Γιάννης Παπαγεωργίου Αγγελική Χρήστου Αντώνης Περίδης Κώστας Αντωνόπουλος Πίνακας 2: Σχολείο # Κωδικός σχολείου Όνομα σχολείου Τύπος σχολείου Αριθμός μαθητών 1 1 ο γυμνάσιο Γυμνάσιο ο λύκειο Λύκειο ο επάλ Λύκειο Εσπερινό Γυμνάσιο 55 Το επόμενο βήμα είναι να δημιουργήσουμε και την συσχέτιση μεταξύ των δύο πινάκων. Σε μια σχέση ένα προς ένα αυτό γίνεται δημιουργώντας έναν τρίτο πίνακα ο οποίος αναπαριστά την σχέση «διευθύνει» και έχει πεδία τα πεδία των δυο προηγούμενων πινάκων και πρωτεύον κλειδί το πρωτεύον κλειδί είτε του ενός πίνακα, είτε του άλλου. # Αριθμός μητρώου Όνομα διευθυντή Επώνυμο διευθυντή Πίνακας 3: Διευθύνει Τηλέφωνο διευθυντή Κωδικός σχολείου Όνομα σχολείου 1 ο Τύπος σχολείου Αριθμός μαθητών 1 Γιάννης Παπαγεωργίου γυμνάσιο Γυμνάσιο Αγγελική Χρήστου ο λύκειο Λύκειο Αντώνης Περίδης ο επάλ Λύκειο Κώστας Αντωνόπουλος εσπερινό Γυμνάσιο 55 Θα καταλάβουμε γιατί είναι σημαντικό να κάνουμε την σχέση πίνακα καθώς στην συνέχεια θα προσπαθήσουμε να απαντήσουμε σε τρεις ερωτήσεις. Ερώτηση 1: Ποιο είναι το τηλέφωνο του διευθυντή Γιάννη Παπαγεωργίου; Όταν κάνουμε αυτή την ερώτηση, η Β.Δ. (π.χ. Access) θα πρέπει να συμβουλευτεί τους πίνακες για να μας δώσει την απάντηση διότι μόνο εκεί υπάρχουν αποθηκευμένα τα στοιχεία. Έτσι πηγαίνει στον πίνακα Διευθυντής και όταν βρει την εγγραφή όπου στο πεδίο Όνομα διευθυντή υπάρχει η τιμή «Γιάννης» και

10 στο πεδίο Επώνυμο διευθυντή υπάρχει η τιμή «Παπαγεωργίου», τότε κοιτάει ποια είναι η τιμή του πεδίου Τηλέφωνο και μας επιστρέφει την απάντηση: « » Τι απάντηση θα μας έδινε η Access αν την ρωτούσαμε ποιος είναι ο αριθμός μητρώου του Κώστα Αντωνόπουλου και του Αντώνη Χρήστου;... Ερώτηση 2: Πόσους μαθητές έχει το Εσπερινό; Σε αυτή την περίπτωση η Access θα πάει στον πίνακα Σχολείο και όταν βρει την εγγραφή όπου στο πεδίο Όνομα σχολείου υπάρχει η τιμή «Εσπερινό», τότε κοιτάει ποια είναι η τιμή του πεδίου Αριθμός μαθητών και μας επιστρέφει την απάντηση: «55» Τι απάντηση θα μας έδινε η Access αν την ρωτούσαμε ποιο είναι το όνομα του σχολείου που έχει αριθμό μαθητών 140;... Ερώτηση 3: Ποιο σχολείο διευθύνει η Αγγελική Χρήστου; Αν δεν υπήρχε η σχέση μεταξύ των οντοτήτων δηλαδή αν στην Β.Δ. υπήρχαν δύο πίνακες ( Σχολείο, Διευθυντής ) που δεν συνδέονταν με οποιονδήποτε τρόπο, τότε η Access δεν θα μπορούσε να απαντήσει σε αυτή την ερώτηση. Αυτό διότι αν προσπαθούσε να βρει την απάντηση στον πίνακα Διευθυντής θα έβλεπε πέρα από το ονοματεπώνυμο Αγγελική Χρήστου μόνο τον Αριθμό μητρώου, και το τηλέφωνό της. Αντίστοιχα αν προσπαθούσε να βρει την απάντηση στον πίνακα Σχολείο θα έβλεπε όλες τις πληροφορίες για το κάθε σχολείο όχι όμως και το ποιος το διευθύνει. Για να μπορέσουμε λοιπόν να συνδυάσουμε τις πληροφορίες από δύο πίνακες για να απαντήσουμε σε σύνθετες ερωτήσεις πρέπει να τους συνδέσουμε. Στην πραγματικότητα βέβαια η συσχέτιση έχει γίνει από πριν με τις οντότητες, απλώς τώρα τη κάνουμε και με τους πίνακες δημιουργώντας όπως δείξαμε ένα καινούργιο πίνακα Διευθύνει. Έτσι τώρα η Access μπορεί να απαντήσει στην ερώτηση ψάχνοντας στον πίνακα Διευθύνει να βρει την εγγραφή που στο πεδίο Όνομα και Επώνυμο διευθυντή έχει την τιμή «Αγγελική Χρήστου» και πηγαίνοντας ύστερα στο πεδίο Όνομα σχολείου όπου και μας επιστρέφει την τιμή «2 ο λύκειο» Τι απάντηση θα μας έδινε η Access αν την ρωτούσαμε ποιος είναι ο τύπος του σχολείου του οποίου ο διευθυντής έχει κωδικό 3;... Εναλλακτικά η αποτύπωση σχέσεων ένα προς ένα μπορεί να γίνει και με την χρήση εξωτερικού κλειδιού που θα περιγράψουμε παρακάτω. Σχέση ένα προς πολλά (1-Ν) Έχουμε δύο οντότητες μιας σχολικής Β.Δ., τον Καθηγητή (Αριθμός μητρώου καθηγητή, Όνομα καθηγητή, Επώνυμο καθηγητή, Τηλέφωνο καθηγητή) και το Μάθημα (Τίτλος, Συγγραφέας, Ώρες ανά εβδομάδα, είδος). Αυτές οι δύο οντότητες συνδέονται με μια σχέση ένα προς πολλά με όνομα «Διδάσκει»,

11 διότι ένας καθηγητής μπορεί να διδάξει πολλά μαθήματα ενώ ένα μάθημα διδάσκεται μόνο από έναν καθηγητή. Παρακάτω βλέπουμε τους δύο πίνακες που αναπαριστούν τις οντότητες. Πίνακας 1: Καθηγητής # Αριθμός μητρώου καθηγητή Όνομα καθηγητή Επώνυμο καθηγητή Τηλέφωνο καθηγητή 1 Λεωνίδας Κοκκόλης Μαρία Μακαρούνα Αντώνης Σιλήρης Κούκας Γιώργος Πίνακας 2: Μάθημα # Τίτλος Συγγραφέας Ώρες ανά εβδομάδα Τύπος Δίκτυα Η/Υ Ι Παπαχρήστου 4 Ειδικότητας Θρησκευτικά Αντωνόπουλος 2 Γενικής παιδείας Οικονομία Βαζούρα 3 Ειδικότητας Βάσεις Δεδομένων Πουλαντζάς 4 Ειδικότητας Όπως είδαμε και στις σχέσεις ένα προς ένα έτσι και εδώ υπάρχουν απλές ερωτήσεις που μπορούν να απαντηθούν από την Β.Δ. χωρίς να υπάρχει οποιαδήποτε σύνδεση μεταξύ των δύο οντοτήτων άρα και των αντίστοιχων πινάκων. Τέτοιες ερωτήσεις θα μπορούσαν να είναι οι εξής * Ποιο είναι το τηλέφωνο του καθηγητή Κοκκόλη Λεωνίδα; * Ποιος είναι ο συγγραφέας του βιβλίου Δίκτυα Η/Υ Ι; Όταν όμως κάνουμε την ερώτηση : Ποια μαθήματα διδάσκει ο καθηγητής Κοκκόλης Λεωνίδας, τότε γίνεται φανερό ότι προκειμένου να απαντηθεί χρειάζεται να συνδυάσουμε τις πληροφορίες από τους δύο πίνακες ή αλλιώς να δημιουργήσουμε μια σύνδεση μεταξύ τους. Αυτό λοιπόν γίνεται με τον εξής τρόπο: Τοποθετούμε στον πίνακα που βρίσκεται στην σχέση από την μεριά του πολλά, δηλαδή στον πίνακα Μάθημα, ένα νέο πεδίο που θα έχει όνομα το όνομα του πεδίου που είναι πρωτεύον κλειδί στον άλλο πίνακα ( Καθηγητής ). Δηλαδή το όνομα θα είναι Αριθμός μητρώου καθηγητή. Άρα τώρα θα έχουμε δύο πίνακες στην Β.Δ.: τον πίνακα Καθηγητής και τον πίνακα Μάθημα με το καινούργιο πεδίο που θα του έχουμε προσθέσει. Το καινούργιο πεδίο που προσθέσαμε στον πίνακα Μάθημα και το οποίο είναι πρωτεύον κλειδί στον πίνακα Καθηγητής, ονομάζεται ξένο κλειδί και μέσω αυτού γίνεται η σύνδεση των δύο πινάκων Πίνακας 1: Καθηγητής # Αριθμός μητρώου καθηγητή Όνομα καθηγητή Επώνυμο καθηγητή Τηλέφωνο καθηγητή

12 1 Λεωνίδας Κοκκόλης Μαρία Μακαρούνα Αντώνης Σιλήρης Κούκας Γιώργος # Τίτλος Συγγραφέας Πίνακας 2: Μάθημα Ώρες ανά εβδομάδα Τύπος Αριθμός μητρώου καθηγητή Δίκτυα Η/Υ Ι Παπαχρήστου 4 Ειδικότητας 1 Θρησκευτικά Αντωνόπουλος 2 Γενικής παιδείας 2 Οικονομία Βαζούρα 3 Ειδικότητας 3 Βάσεις Δεδομένων Πουλαντζάς 4 Ειδικότητας 1 Εφόσον έχει πραγματοποιηθεί η σύνδεση των δύο πινάκων τώρα μπορούμε να κάνουμε και ποιο σύνθετες ερωτήσεις στην Β.Δ. : Ερώτηση 1: Ποίος είναι το τηλέφωνο του καθηγητή που κάνει το μάθημα Οικονομία; Η Access θα πάει αρχικά στον πίνακα Μάθημα και θα ψάξει την εγγραφή όπου στο πεδίο Τίτλος έχει την τιμή «Οικονομία». Όταν βρει την εγγραφή θα κοιτάξει την τιμή του πεδίου Αριθμός μητρώου καθηγητή όπου και θα βρει το «3». Αφού αποκτήσει αυτή την πληροφορία στην συνέχεια θα πάει στον πίνακα Καθηγητής και θα ψάξει να βρει την εγγραφή όπου στο πεδίο Αριθμός μητρώου καθηγητή θα υπάρχει η τιμή «3». Τέλος όταν βρει την συγκεκριμένη εγγραφή θα κοιτάξει στο πεδίο Τηλέφωνο καθηγητή και θα μας επιστρέψει την απάντηση που είναι « ». Τι θα μας επιστρέψει η Β.Δ. αν κάνουμε την ερώτηση: Ποια μαθήματα διδάσκει ο καθηγητής Κοκκόλης Λεωνίδας; Περιγράψτε τα βήματα που θα κάνει η Access για να μας δώσει την απάντηση.... Σχέση πολλά προς πολλά (Μ-Ν)

13 Όταν μιλήσαμε για το Δ.Ο.Σ. είδαμε ότι μια σχέση πολλά προς πολλά «σπάει» σε δύο σχέσεις ένα προς πολλά ανάμεσα στις δύο αρχικές οντότητες και σε μια τρίτη που δημιουργήσαμε εμείς. Ας το ξαναθυμηθούμε. Η σχέση ήταν ανάμεσα στις οντότητες Πελάτης και Προϊόν. Δημιουργώντας μια Τρίτη οντότητα Παραγγελία «σπάσαμε» την αρχική σχέση σε δύο σχέσεις πολλά προς πολλά με το πολλά να βρίσκεται στην μεριά της οντότητας Παραγγελία όπως φαίνεται παρακάτω: Επίσης είχαμε δει ότι το πρωτεύον κλειδί της καινούργιας οντότητας είναι ο συνδυασμός των πρωτευόντων κλειδιών των δύο αρχικών οντοτήτων. Οι τρεις πίνακες φαίνονται παρακάτω: Πελάτης #Κωδικός πελάτη Όνομα 1 Μαρία 2 Χρήστος Προϊόν #Κωδικός προϊόντος όνομα

14 1 Κινητό 2 Μπλούζα Παραγγελία #Κωδικός πελάτη #Κωδικός προϊόντος Ποσότητα Τώρα το αφορά το πρόβλημα της αποτύπωσης της συσχέτισης πολλά προς πολλά μέσω πινάκων έχει μετατραπεί στο πρόβλημα της αποτύπωσης των σχέσεων ένα προς πολλά μέσω πινάκων. Αυτό όμως το ζήτημα το εξετάσαμε προηγουμένως. Ας το δούμε πιο αναλυτικά. Η πρώτη σχέση πολλά προς πολλά είναι ανάμεσα στον πίνακα Πελάτης και στον πίνακα Παραγγελία. Η μεριά του πολλά είναι στον πίνακα Παραγγελία. Αυτή η σχέση αποτυπώνεται βάζοντας το πρωτεύον κλειδί του πίνακα Πελάτη ως ξένο κλειδί στον πίνακα Παραγγελία. Όμως αυτό βρίσκεται ήδη εκεί αφού είναι τμήμα του πρωτεύοντος κλειδιού του πίνακα Παραγγελία. Το ίδιο ισχύει και για την άλλη σχέση πολλά προς πολλά ανάμεσα στους πίνακες Προϊόν και Παραγγελία. Εφόσον έχει δημιουργηθεί η συσχέτιση μεταξύ των πινάκων τώρα μπορείτε να απαντήσετε στο ακόλουθο ερώτημα: Τι θα μας επιστρέψει η Β.Δ. αν κάνουμε την ερώτηση: Ποιο προϊόν έχει αγοράσει ο πελάτης με όνομα Χρήστος και σε ποια ποσότητα; Περιγράψτε τα βήματα που θα κάνει η Access για να μας δώσει την απάντηση

15 Από το Δ.Ο.Σ. στο σχεσιακό μοντέλο: ο διαγραμματικός πίνακας Μέχρι τώρα περιγράψαμε την διαδικασία μετασχηματισμού των οντοτήτων και των συσχετίσεων σε πίνακες. Τώρα θα δούμε πώς μπορούν αυτοί οι πίνακες πριν δημιουργηθούν αληθινά στον σκληρό δίσκο να αποτυπωθούν με σύμβολα όπως αποτυπώνονται με σύμβολα οι οντότητες και οι συσχετίσεις στο Δ.ΟΣ.. Η διαδικασία περιγράφεται στο παρακάτω σχήμα: Αρχικά έχουμε την οντότητα Μαθητής στο Δ.Ο.Σ. η οποία έχει τέσσερα χαρακτηριστικά. Στην συνέχεια από αυτή δημιουργείται ο διαγραμματικός πίνακας με όνομα ίδιο με της οντότητας. Βλέπουμε πως ο συγκεκριμένος πίνακας περιγράφει τον πίνακα που θα προκύψει από την οντότητα. Σε κάθε γραμμή του περιγράφεται μια στήλη του πίνακα: το όνομα της στήλης, αν είναι η όχι προαιρετική η τιμή για την στήλη και τέλος αν είναι πρωτεύον ή ξένο κλειδί. Με βάση τον διαγραμματικό πίνακα θα προκύψει και ο πραγματικός (σχεσιακός) πίνακας της βάσης δεδομένων όταν αυτή υλοποιηθεί με κάποιο Σ.Δ.Β.Δ. (πχ. Access). Ας δούμε τώρα και ένα παράδειγμα διαγραμματικού πίνακα όταν υπάρχει συσχέτιση.

16 Στο συγκεκριμένο παράδειγμα έχουμε μια σχέση ένα προς πολλά μεταξύ των οντοτήτων ΕΡΓΑΖΟΜΕΝΟΣ και ΤΜΗΜΑ. Στην συνέχεια βλέπουμε πως στον διαγραμματικό πίνακα ΕΡΓΑΖΟΜΕΝΟΙ, έχει τοποθετηθεί ως ξένο κλειδί το πρωτεύον κλειδί «κωδικός_τμήματος» του διαγραμματικού πίνακα ΤΜΗΜΑΤΑ. Με βάση αυτούς τους διαγραμματικούς πίνακες η Access θα δημιουργήσει την παρακάτω συσχέτιση:

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ - ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΒΔ - ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΟΝΤΕΛΟ ΟΝΤΟΤΗΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ - ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΒΔ - ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΟΝΤΕΛΟ ΟΝΤΟΤΗΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Χειμερινό Εξάμηνο 2013 - ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΒΔ - ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΟΝΤΕΛΟ ΟΝΤΟΤΗΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ Δρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ 1 Αρχιτεκτονική

Διαβάστε περισσότερα

Εισαγωγή στις βάσεις δεδομένων - Η ανατομία μιας βάσης δεδομένων

Εισαγωγή στις βάσεις δεδομένων - Η ανατομία μιας βάσης δεδομένων ΕΣΔ516 Τεχνολογίες Διαδικτύου Εισαγωγή στις βάσεις δεδομένων - Η ανατομία μιας βάσης δεδομένων Περιεχόμενα - Βιβλιογραφία Ενότητας Περιεχόμενα Ορισμοί Συστατικά στοιχεία εννοιολογικής σχεδίασης Συστατικά

Διαβάστε περισσότερα

(c) EΠΑΦΟΣ ΑΘΗΝΑ Νοέµβριος 2013 Απαγορεύεται η αντιγραφή του παρόντος χωρίς την έγγραφη άδεια της ΕΠΑΦΟΣ ΕΠΕ.

(c) EΠΑΦΟΣ ΑΘΗΝΑ Νοέµβριος 2013 Απαγορεύεται η αντιγραφή του παρόντος χωρίς την έγγραφη άδεια της ΕΠΑΦΟΣ ΕΠΕ. (c) EΠΑΦΟΣ ΑΘΗΝΑ Νοέµβριος 2013 Απαγορεύεται η αντιγραφή του παρόντος χωρίς την έγγραφη άδεια της ΕΠΑΦΟΣ ΕΠΕ. 2 4teachers Γρήγορος οδηγός χρήσης (Βασικά βήματα) Για να αρχίσεις κι εσύ να χρησιμοποιείς

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Εισαγωγικά ΘΕ ΠΛΗ 204-5 ONLINE ΕΡΓΑΣΙΑ E2- Η Online Εργασία Ε2- αποτελεί (όπως περιγράφεται αναλυτικότερα και στον Οδηγό Σπουδών της Θ.Ε. που σας έχει διατεθεί) συμπληρωματική άσκηση στα πλαίσια της Γραπτής

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα

PROJECT ΕΡΓΑΣΤΗΡΙΩΝ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ Ι. Τμήμα Μηχανικών Πληροφορικής Τ.Ε.

PROJECT ΕΡΓΑΣΤΗΡΙΩΝ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ Ι. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Παραδοτέα 1. Το αρχείο.mdb της βάσης δεδομένων σας σε ACCESS 2. Ένα CD που θα αναγράφει το ονοματεπώνυμο του σπουδαστή και το ΑΕΜ και θα περιέχει το αρχείο.mdb της βάσης δεδομένων καθώς και το εγχειρίδιο

Διαβάστε περισσότερα

Τ.Ε.Ι ΘΕΣΣΑΛΟΝΙΚΗΣ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΔΒΔ (ΕΡΓΑΣΤΗΡΙΟ 4) Τελευταία ενημέρωση: 11/2011. Μετασχηματισμός διαγράμματος ER σε σχεσιακό σχήμα ΒΔ

Τ.Ε.Ι ΘΕΣΣΑΛΟΝΙΚΗΣ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΔΒΔ (ΕΡΓΑΣΤΗΡΙΟ 4) Τελευταία ενημέρωση: 11/2011. Μετασχηματισμός διαγράμματος ER σε σχεσιακό σχήμα ΒΔ Μετασχηματισμός διαγράμματος ER σε σχεσιακό σχήμα ΒΔ ΣΤΟΧΟΣ Στόχο του παρόντος εργαστηρίου αποτελεί η κατανόηση και η εφαρμογή της μεθοδολογίας του μετασχηματισμού ενός διαγράμματος ER στο αντίστοιχο σχεσιακό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΠΛΗ24 «ΣΧΕΔΙΑΣΜΟΣ ΛΟΓΙΣΜΙΚΟΥ» ΣΤΟΙΧΕΙΑ ΠΟΥ ΣΥΜΠΛΗΡΩΝΕΙ Ο ΦΟΙΤΗΤΗΣ / Η ΦΟΙΤΗΤΡΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΠΡΟΫΠΗΡΕΣΙΑΣ ΩΡΟΜΗΣΘΙΩΝ ΚΑΘΗΓΗΤΩΝ, ΜΕ ΤΗΝ ΧΡΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ

ΕΥΡΕΣΗ ΠΡΟΫΠΗΡΕΣΙΑΣ ΩΡΟΜΗΣΘΙΩΝ ΚΑΘΗΓΗΤΩΝ, ΜΕ ΤΗΝ ΧΡΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ Α.Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΒΙΟΜΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΥΡΕΣΗ ΠΡΟΫΠΗΡΕΣΙΑΣ ΩΡΟΜΗΣΘΙΩΝ ΚΑΘΗΓΗΤΩΝ, ΜΕ ΤΗΝ ΧΡΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ ΠΑΡΙΣΙΔΗΣ ΙΩΑΝΝΗΣ (ΑΕΜ 561) ΝΟΕΜΒΡΙΟΣ 2010 ΕΠΟΠΤΗΣ ΚΑΘΗΓΗΤΗΣ

Διαβάστε περισσότερα

Βάσεις δεδομένων (Access)

Βάσεις δεδομένων (Access) Βάσεις δεδομένων (Access) Όταν εκκινούμε την Access εμφανίζεται το παρακάτω παράθυρο: Για να φτιάξουμε μια νέα ΒΔ κάνουμε κλικ στην επιλογή «Κενή βάση δεδομένων» στο Παράθυρο Εργασιών. Θα εμφανιστεί το

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΥΠΟΧΡΕΩΤΙΚΗΣ ΕΡΓΑΣΙΑΣ σε UML

ΕΚΦΩΝΗΣΗ ΥΠΟΧΡΕΩΤΙΚΗΣ ΕΡΓΑΣΙΑΣ σε UML ΕΚΦΩΝΗΣΗ ΥΠΟΧΡΕΩΤΙΚΗΣ ΕΡΓΑΣΙΑΣ σε UML για το µάθηµα ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 2012-2013 «Αντικειµενοστρεφής Ανάλυση Ηλεκτρονικού Καταστήµατος Προσφορών (e-shop)» Η άσκηση αφορά στη χρήση της

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. α. Πριν εμφανιστεί η τεχνολογία ISDN οι υπηρεσίες φωνής, εικόνας και δεδομένων απαιτούσαν διαφορετικά δίκτυα.

ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. α. Πριν εμφανιστεί η τεχνολογία ISDN οι υπηρεσίες φωνής, εικόνας και δεδομένων απαιτούσαν διαφορετικά δίκτυα. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ Α ΚΥΡΙΑΚΗ 04/05/2014- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΕΚΦΩΝΗΣΕΙΣ Α1. Να χαρακτηρίσετε

Διαβάστε περισσότερα

Εγχειρίδιο λειτουργιών χρήστη (αποφοίτου) στο Mathiteia4u

Εγχειρίδιο λειτουργιών χρήστη (αποφοίτου) στο Mathiteia4u Εγχειρίδιο λειτουργιών χρήστη (αποφοίτου) στο Mathiteia4u Μέσω της ηλεκτρονικής πύλης www.mathiteia4u.gov.gr δίνεται πρόσβαση σε ένα νέο πρόγραμμα για την στήριξη νέων που έχουν μόλις αποφοιτήσει από την

Διαβάστε περισσότερα

9. Τοπογραφική σχεδίαση

9. Τοπογραφική σχεδίαση 9. Τοπογραφική σχεδίαση 9.1 Εισαγωγή Το κεφάλαιο αυτό εξετάζει τις παραμέτρους, μεθόδους και τεχνικές της τοπογραφικής σχεδίασης. Η προσέγγιση του κεφαλαίου γίνεται τόσο για την περίπτωση της συμβατικής

Διαβάστε περισσότερα

Περιεχόμενο του μαθήματος

Περιεχόμενο του μαθήματος ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Απαιτήσεις Λογισμικού Περιπτώσεις χρήσης Δρ Βαγγελιώ Καβακλή Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας Πανεπιστήμιο Αιγαίου Εαρινό Εξάμηνο 2012-2013 1 Περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΡΩΤΗΜΑΤΟΣ

ΤΑΞΙΝΟΜΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΡΩΤΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΡΩΤΗΜΑΤΟΣ Η συνθήκη WHERE βάζει περιορισμούς στις εγγραφές που επιστρέφονται. Ο όρος ORDER BY ταξινομεί τις εγγραφές που επιστρέφονται. Παράδειγμα: SELECT * FROM table_name ORDER

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΟ ΣΥΣΤΗΜΑ ΥΠΟΒΟΛΗΣ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΔΕΛΤΙΟΥ

ΗΛΕΚΤΡΟΝΙΚΟ ΣΥΣΤΗΜΑ ΥΠΟΒΟΛΗΣ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΔΕΛΤΙΟΥ ΗΛΕΚΤΡΟΝΙΚΟ ΣΥΣΤΗΜΑ ΥΠΟΒΟΛΗΣ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΔΕΛΤΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΥΠΟΨΗΦΙΟΥ ΕΠΑΛ Α Έκδοση 1.0, Ιούνιος 2011 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΛΙΣΤΑ ΣΧΗΜΑΤΩΝ ΠΙΝΑΚΑΣ

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 5 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Κανονικοποίηση. Σημασιολογία Γνωρισμάτων. Άτυπες Οδηγίες. Παράδειγμα. Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ. Περιττές Τιμές και Ανωμαλίες Ενημέρωσης

Κανονικοποίηση. Σημασιολογία Γνωρισμάτων. Άτυπες Οδηγίες. Παράδειγμα. Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ. Περιττές Τιμές και Ανωμαλίες Ενημέρωσης Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ Κανονικοποίηση Παύλος Εφραιμίδης Βάσεις Δεδομένων Κανονικοποίηση 1 Πως μπορούμε να κρίνουμε εάν ένα Σχεσιακό Σχήμα είναι καλό ή αποδοτικό ή αν έχει λάθη; Σε γενικές γραμμές

Διαβάστε περισσότερα

Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος

Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος Ακολούθως αναπτύσσονται ορισμένα διευκρινιστικά σχόλια για το Σχέδιο Μαθήματος. Αφετηρία για τον ακόλουθο σχολιασμό υπήρξαν οι σχετικές υποδείξεις που μας

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ 1 (Εργαστήριο)

Προγραμματισμός Η/Υ 1 (Εργαστήριο) Προγραμματισμός Η/Υ 1 (Εργαστήριο) Ενότητα 1: Εισαγωγή στη C - Αλγόριθμοι Καθηγήτρια Εφαρμογών: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ. Γνωρίζω τον υπολογιστή

ΕΝΟΤΗΤΑ. Γνωρίζω τον υπολογιστή ΕΝΟΤΗΤΑ Γνωρίζω τον υπολογιστή . Κεφάλαιο 1 Βασικές έννοιες της Πληροφορικής Εισαγωγή Τι είναι οι πληροφορίες στις οποίες βασιζόμαστε για να παίρνουμε αποφάσεις ή για να οργανώνουμε καλύτερα τις δραστηριότητές

Διαβάστε περισσότερα

Λίγα λόγια από το συγγραφέα... 7. 91 Βάσεις δεδομένων και Microsoft Access... 9. 92 Microsoft Access... 22

Λίγα λόγια από το συγγραφέα... 7. 91 Βάσεις δεδομένων και Microsoft Access... 9. 92 Microsoft Access... 22 ΕΝΟΤΗΤΑ 5 Περιεχόμενα Λίγα λόγια από το συγγραφέα... 7 91 Βάσεις δεδομένων και Microsoft Access... 9 92 Microsoft Access... 22 93 Το σύστημα Βοήθειας του Microsoft Office... 32 94 Σχεδιασμός βάσης δεδομένων

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΜΕΣΟΛΟΓΓΙ ΗΛΕΚΤΡΟΝΙΚΟ ΕΜΠΟΡΙΟ ΕΡΓΑΣΤΗΡΙΟ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2014-2015. Διαδικασία Κατάρτησης Επιχειρηματικού Σχεδίου

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΜΕΣΟΛΟΓΓΙ ΗΛΕΚΤΡΟΝΙΚΟ ΕΜΠΟΡΙΟ ΕΡΓΑΣΤΗΡΙΟ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2014-2015. Διαδικασία Κατάρτησης Επιχειρηματικού Σχεδίου ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΜΕΣΟΛΟΓΓΙ ΗΛΕΚΤΡΟΝΙΚΟ ΕΜΠΟΡΙΟ ΕΡΓΑΣΤΗΡΙΟ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2014-2015 ΕΡΓΑΣΤΗΡΙΑΚO ΜΕΡΟΣ B Eπιχειρηματικό Σχέδιο και Σχεδίαση 1 ης Σελίδας Σκοπός: σκοπός του Β εργαστηριακού

Διαβάστε περισσότερα

1 η εξεταστική περίοδος από 20/10/2013 έως 17/11/2013. γραπτή εξέταση στο μάθημα Α ΝΑΠΤΥΞΗ ΕΦΑΡΜ Ο ΓΩ Ν ΣΕ ΠΡΟΓΡ ΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ

1 η εξεταστική περίοδος από 20/10/2013 έως 17/11/2013. γραπτή εξέταση στο μάθημα Α ΝΑΠΤΥΞΗ ΕΦΑΡΜ Ο ΓΩ Ν ΣΕ ΠΡΟΓΡ ΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ γραπτή εξέταση στο μάθημα Α ΝΑΠΤΥΞΗ ΕΦΑΡΜ Ο ΓΩ Ν ΣΕ ΠΡΟΓΡ ΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ Τάξη: Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: ΒΛΙΣΙΔΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Α Α1. Να αναφέρετε τους λόγους για τους οποίους

Διαβάστε περισσότερα

ΠΛΑΤΦΟΡΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΒΙΝΤΕΟΔΙΑΛΕΞΕΩΝ ΔΗΛΟΣ delos.uoa.gr. Εγχειρίδιο Χρήσης Μελών ΔΕΠ

ΠΛΑΤΦΟΡΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΒΙΝΤΕΟΔΙΑΛΕΞΕΩΝ ΔΗΛΟΣ delos.uoa.gr. Εγχειρίδιο Χρήσης Μελών ΔΕΠ ΠΛΑΤΦΟΡΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΒΙΝΤΕΟΔΙΑΛΕΞΕΩΝ ΔΗΛΟΣ delos.uoa.gr Εγχειρίδιο Χρήσης Μελών ΔΕΠ Αναζήτηση Δημόσιου Περιεχομένου Η διεύθυνση ιστού της νεάς πλατφόρμας διαχείρισης βιντεοδιαλέξεων Δήλος είναι: http://delos.uoa.gr

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ 1.1 Να δοθεί ο ορισμός του προβλήματος καθώς και τρία παραδείγματα

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Εργαστήριο Βάσεων Δεδομένων

Εργαστήριο Βάσεων Δεδομένων Εργαστήριο Βάσεων Δεδομένων Άσκηση 2 Σκοπός της άσκησης είναι: 1. Με δεδομένο το σχεσιακό διάγραμμα, η υλοποίηση μιας βάσης σε MySQL. 2. Η εισαγωγή δεδομένων στη βάση. Για το κείμενο των προδιαγραφών της

Διαβάστε περισσότερα

ΕΡΓΑΣΙΕΣ. Α ομάδα. Αφού επιλέξεις τρία από τα παραπάνω αποσπάσματα που σε άγγιξαν περισσότερο, να καταγράψεις τις δικές σου σκέψεις.

ΕΡΓΑΣΙΕΣ. Α ομάδα. Αφού επιλέξεις τρία από τα παραπάνω αποσπάσματα που σε άγγιξαν περισσότερο, να καταγράψεις τις δικές σου σκέψεις. Α ομάδα ΕΡΓΑΣΙΕΣ 1. Η συγγραφέας του βιβλίου μοιράζεται μαζί μας πτυχές της ζωής κάποιων παιδιών, άλλοτε ευχάριστες και άλλοτε δυσάρεστες. α) Ποια πιστεύεις ότι είναι τα μηνύματα που θέλει να περάσει μέσα

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΠΛΑΤΦΟΡΜΑΣ OPENSMS WWW.OPENSMS.GR

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΠΛΑΤΦΟΡΜΑΣ OPENSMS WWW.OPENSMS.GR ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΠΛΑΤΦΟΡΜΑΣ OPENSMS WWW.OPENSMS.GR Τηλέφωνο: 2810-211111 Διαδικασία εισόδου στο opensms Η πρόσβαση στην πλατφόρμα του opensms πραγματοποιείται με την εισαγωγή του Ονόματος χρήστη και του

Διαβάστε περισσότερα

Φύλλα εργασίας. MicroWorlds Pro. Πολυμεσικές Εφαρμογές με την χρήση της γλώσσας LOGO Στο Γυμνάσιο. Β. Χ. Χρυσοχοΐδης

Φύλλα εργασίας. MicroWorlds Pro. Πολυμεσικές Εφαρμογές με την χρήση της γλώσσας LOGO Στο Γυμνάσιο. Β. Χ. Χρυσοχοΐδης Φύλλα εργασίας MicroWorlds Pro Πολυμεσικές Εφαρμογές με την χρήση της γλώσσας LOGO Στο Γυμνάσιο Β. Χ. Χρυσοχοΐδης Πρόεδρος Συλλόγου Εκπαιδευτικών Πληροφορικής Φλώρινας 2 «Σχεδίαση και ανάπτυξη δραστηριοτήτων

Διαβάστε περισσότερα

MySchool Πρακτικές οδηγίες χρήσης

MySchool Πρακτικές οδηγίες χρήσης MySchool Πρακτικές οδηγίες χρήσης 1) Δημιουργία τμημάτων (ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ, Διαχείριση, Διαχείριση τμημάτων) Το πρώτο που πρέπει να κάνουμε στο MySchool είναι να δημιουργήσουμε τα τμήματα που υπάρχουν στο

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΟ ΣΥΣΤΗΜΑ ΥΠΟΒΟΛΗΣ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΔΕΛΤΙΟΥ

ΗΛΕΚΤΡΟΝΙΚΟ ΣΥΣΤΗΜΑ ΥΠΟΒΟΛΗΣ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΔΕΛΤΙΟΥ ΗΛΕΚΤΡΟΝΙΚΟ ΣΥΣΤΗΜΑ ΥΠΟΒΟΛΗΣ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΔΕΛΤΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΥΠΟΨΗΦΙΟΥ ΓΕΛ & ΕΠΑΛ Β Έκδοση 1.0, Ιούνιος 2012 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΛΙΣΤΑ ΣΧΗΜΑΤΩΝ

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ. Πρόγραμμα Διαχείρισης Α.Π.Δ.

ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ. Πρόγραμμα Διαχείρισης Α.Π.Δ. ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ Πρόγραμμα Διαχείρισης Α.Π.Δ. Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εγκατάσταση του προγράμματος 1 ΚΕΦΑΛΑΙΟ 2 Οδηγίες χρήσης προγράμματος με παράδειγμα 2 ΚΕΦΑΛΑΙΟ 3 Αντιγραφή Α.Π.Δ. προηγούμενης περιόδου

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΡΕΥΝΗΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

ΟΔΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΡΕΥΝΗΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΡΕΥΝΗΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΡΕΥΝΗΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΕΡΓΑΛΕΙΑ ΜΑΘΗΤΩΝ 1. Ατομικά ΑΤΟΜΙΚΟΣ ΦΑΚΕΛΟΣ Επειδή οι φάκελοι κατατίθενται στο τέλος του τετραμήνου (μαζί με την Ερευνητική Έκθεση

Διαβάστε περισσότερα

ΔΗΜΗΤΡΗΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ

ΔΗΜΗΤΡΗΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΗΤΡΗΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Απάντηση ερωτήσεων σχετικά με την οργάνωση των Ερευνητικών Εργασιών στο Γενικό Λύκειο κατά το σχολικό έτος 2012-2013 ΛΑΜΙΑ: ΣΕΠΤΕΜΒΡΙΟΣ 2012 Αγαπητοί/ες

Διαβάστε περισσότερα

ΥΠΕΥΘΥΝΗ ΑΠΟΣΠΑΣΜΕΝΗ: ΚΑΠΠΑΤΟΥ ΝΑΤΑΣΑ

ΥΠΕΥΘΥΝΗ ΑΠΟΣΠΑΣΜΕΝΗ: ΚΑΠΠΑΤΟΥ ΝΑΤΑΣΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:ΙΜΣΙΡΙΔΟΥ ΜΑΡΙΑ Α.Ε.Μ: 1986 ΕΞΑΜΗΝΟ: Ε ΘΕΜΑ: «ΣΤΑΤΙΣΤΙΚΗ-ΜΕΣΟΣ ΟΡΟΣ» ΣΧΟΛΕΙΟ: 1 Ο ΠΕΙΡΑΜΑΤΙΚΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΦΛΩΡΙΝΑΣ ΤΑΞΗ: Ε ΤΜΗΜΑ: Ε 2 ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ: ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΥΠΕΥΘΥΝΗ

Διαβάστε περισσότερα

Περίπτωση Χρήσης Use case

Περίπτωση Χρήσης Use case Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Φθινόπωρο 2007 HΥ351 Ανάλυση και Σχεδίαση Πληροφοριακών Συστημάτων Information Systems Analysis and Design Use Cases & Use Case Diagrams Περίπτωση Χρήσης

Διαβάστε περισσότερα

ΜΕΡΟΣ Α ΤΟ ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ. Το Α μέρος του βιβλίου παρουσιάζει το θεωρητικό υπόβαθρο των σχεσιακών βάσεων δεδομένων.

ΜΕΡΟΣ Α ΤΟ ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ. Το Α μέρος του βιβλίου παρουσιάζει το θεωρητικό υπόβαθρο των σχεσιακών βάσεων δεδομένων. Εισαγωγή 23 ΜΕΡΟΣ Α ΤΟ ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ Το Α μέρος του βιβλίου παρουσιάζει το θεωρητικό υπόβαθρο των σχεσιακών βάσεων δεδομένων. Στο πρώτο μέρος: αναδεικνύεται η σημασία των δεδομένων και σκιαγραφείται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΙΚΟ ΑΟΙΚΤΟ ΠΑΕΠΙΣΤΗΙΟ ΘΕ ΠΛΗ 2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ (ΓΕ2) ΕΔΕΙΚΤΙΚΗ ΕΠΙΛΥΣΗ 203-204 ΘΕΑ [45 μονάδες] Ερώτημα Α (Πρώτη εκδοχή) Ακολουθεί το προτεινόμενο σχήμα ΔΟΣ (για λόγους διευκόλυνσης της αναπαράστασης

Διαβάστε περισσότερα

Διαχείριση Δεδομένων

Διαχείριση Δεδομένων Διαχείριση Δεδομένων Βαγγελιώ Καβακλή Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας Πανεπιστήμιο Αιγαίου 1 Εαρινό Εξάμηνο 2012-13 Περιεχόμενο σημερινής διάλεξης Βάσεις Δεδομένων Ορισμοί Παραδείγματα

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

ΦΤΙΑΞΕ ΜΟΝΟΣ ΣΟΥ ΤΗ ΔΙΚΗ ΣΟΥ ΙΣΤΟΣΕΛΙΔΑ ΔΩΡΕΑΝ

ΦΤΙΑΞΕ ΜΟΝΟΣ ΣΟΥ ΤΗ ΔΙΚΗ ΣΟΥ ΙΣΤΟΣΕΛΙΔΑ ΔΩΡΕΑΝ ΦΤΙΑΞΕ ΜΟΝΟΣ ΣΟΥ ΤΗ ΔΙΚΗ ΣΟΥ ΙΣΤΟΣΕΛΙΔΑ ΔΩΡΕΑΝ Φτιάξε το Site σου σε 5 βήματα!!! Φτιάξτε τώρα μια σύγχρονη ιστοσελίδα με δυνατότητα να την ανανεώνετε μόνοι σας...με τον πιο γρήγορο και εύκολο τρόπο!!!

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ11 2014-15 Α ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ - 7 ΙΟΥΝΙΟΥ 2015 ΜΕΡΟΣ Α : ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ [ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 45 ] Σημείωση: Το σύνολο βαθμών του Μέρους Α (ερωτήσεις πολλαπλής

Διαβάστε περισσότερα

Εκτυπώσεις -> Ενσωματωμένες -> Νέες Μισθολογικές Εκτυπώσεις -> Νέα Μηνιαία Κατάσταση (3 γραμμές) Α3 (Οριζόντια) Α/Α 1037

Εκτυπώσεις -> Ενσωματωμένες -> Νέες Μισθολογικές Εκτυπώσεις -> Νέα Μηνιαία Κατάσταση (3 γραμμές) Α3 (Οριζόντια) Α/Α 1037 Εκτυπώσεις -> Ενσωματωμένες -> Νέες Μισθολογικές Εκτυπώσεις -> Νέα Μηνιαία Κατάσταση (3 γραμμές) Α3 (Οριζόντια) Α/Α 1037 Πρόκειται για εκτύπωση που απεικονίζει μία ή περισσότερες μισθοδοσίες μηνός, είτε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ VΙ - Ο ΗΓΙΕΣ ΥΠΟΒΟΛΗΣ ΠΡΟΤΑΣΗΣ

ΠΑΡΑΡΤΗΜΑ VΙ - Ο ΗΓΙΕΣ ΥΠΟΒΟΛΗΣ ΠΡΟΤΑΣΗΣ ΠΑΡΑΡΤΗΜΑ VΙ - Ο ΗΓΙΕΣ ΥΠΟΒΟΛΗΣ ΠΡΟΤΑΣΗΣ Έκδοση Εγγράφου: 1.0 Επιχειρησιακό Πρόγραµµα «Εκπαίδευση & ια Βίου Μάθηση» (ΕΚ. ι.βι.μ) Κενή σελίδα 2 Πίνακας περιεχοµένων 1 Εισαγωγή... 6 1.1 ηµιουργία πρότασης...

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo;

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Κεφάλαιο 2 Εισαγωγή Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Η Logo είναι μία από τις πολλές γλώσσες προγραμματισμού. Κάθε γλώσσα προγραμματισμού έχει σκοπό τη δημιουργία προγραμμάτων

Διαβάστε περισσότερα

Α Β (ΟΧΙ Α) Η Β Α ΚΑΙ Β Α Η Β ΨΕΥ ΗΣ ΑΛΗΘΗΣ

Α Β (ΟΧΙ Α) Η Β Α ΚΑΙ Β Α Η Β ΨΕΥ ΗΣ ΑΛΗΘΗΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 2 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

Συνέδριο Μαθηματικών ΠΠΣ Πνευματικό Κέντρο Δήμου Αθηναίων 11-12 / 4 / 2014. Μαθηματικά και ζητήματα πραγματικότητας διάκριση και σύνδεση

Συνέδριο Μαθηματικών ΠΠΣ Πνευματικό Κέντρο Δήμου Αθηναίων 11-12 / 4 / 2014. Μαθηματικά και ζητήματα πραγματικότητας διάκριση και σύνδεση Συνέδριο Μαθηματικών ΠΠΣ Πνευματικό Κέντρο Δήμου Αθηναίων 11-12 / 4 / 2014 Δημήτρης Μπίρμπας ΠΠΛ Αγίων Αναργύρων Σοφία Παππά ΠΠΛ Ζάννειο Πειραιά Μαθηματικά και ζητήματα πραγματικότητας διάκριση και σύνδεση

Διαβάστε περισσότερα

Στατιστική. Βασικές έννοιες

Στατιστική. Βασικές έννοιες Στατιστική Βασικές έννοιες Τι είναι Στατιστική; ή μήπως είναι: Στατιστική είναι ο κλάδος των εφαρμοσμένων επιστημών, η οποία βασίζεται σ ένα σύνολο αρχών και μεθοδολογιών που έχουν σκοπό: Το σχεδιασμό

Διαβάστε περισσότερα

Α2. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα τα γράμματα της Στήλης Β που τους αντιστοιχούν.

Α2. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα τα γράμματα της Στήλης Β που τους αντιστοιχούν. ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ /Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03-11-2013 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-8 και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

YourSMS User s Manual

YourSMS User s Manual YourSMS User s Manual Contents Πίνακας περιεχομένων Κεντρική οθόνη... 2 Αποστολές... 3 Αποστολή μοναδικού μηνύματος... 3 Αποστολή μαζικού μηνύματος σε ομάδα παραληπτών... 4 Αποστολή μαζικού προγραμματισμένου

Διαβάστε περισσότερα

Οδηγίες για την καταχώρηση δεδομένων στο

Οδηγίες για την καταχώρηση δεδομένων στο Οδηγίες για την καταχώρηση δεδομένων στο Μπουκουβάλας Κωνσταντίνος Εισαγωγή Το ΙΝ.Ε Γ.Σ.Ε.Ε. έχει λάβει επιβεβαίωση διαχειριστικής επάρκειας ως δικαιούχος από την Ειδική Υπηρεσία Διαχείρισης του Επιχειρησιακού

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Μοντελοποίηση Συστημάτων

Μοντελοποίηση Συστημάτων Εργασία για το μάθημα Μοντελοποίηση Συστημάτων 29 Οκτωβρίου 204 Α. Στόχος Στην εργασία αυτή θα εξοικειωθείτε με τα πρώτα στάδια σχεδιασμού λογισμικού. Συγκεκριμένα, μετά την εκπόνηση της εργασίας θα πρέπει

Διαβάστε περισσότερα

Εγκατάσταση προγράμματος 2. Διάβασμα προκήρυξης.7. Γενικές πληροφορίες.. 9. Προσφορά 10. Εισαγωγή εναλλακτικού είδους. 15.

Εγκατάσταση προγράμματος 2. Διάβασμα προκήρυξης.7. Γενικές πληροφορίες.. 9. Προσφορά 10. Εισαγωγή εναλλακτικού είδους. 15. ΠΕΡΙΕΧΟΜΕΝΑ Σελ. Εγκατάσταση προγράμματος 2 Διάβασμα προκήρυξης.7 Γενικές πληροφορίες.. 9 Προσφορά 10 Εισαγωγή εναλλακτικού είδους. 15 Εξαρτήματα 16 Συμμετέχοντες 17 Δικαιολογητικά ανά προμηθευτή. 18 Αρχείο

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΛΥΚΕΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΔΑΣΟΥΠΟΛΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 10 /6 / 2015 ΒΑΘΜΟΣ:... ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

Διαβάστε περισσότερα

Οργάνωση καθημερινών ημερίδων

Οργάνωση καθημερινών ημερίδων Οργάνωση καθημερινών ημερίδων 1) Αγώνες ζευγών 1α) Διαθέσιμες κινήσεις: Φιλοσοφία, μηχανισμοί και τα χαρακτηριστικά τους. Οι κινήσεις είναι ένα από τα βασικότερα εργαλεία που έχει ένας διαιτητής στη διάθεσή

Διαβάστε περισσότερα

Ο ξεναγός (Συνοδευτική δραστηριότητα του γύρου του ίππου)

Ο ξεναγός (Συνοδευτική δραστηριότητα του γύρου του ίππου) Ο ξεναγός (Συνοδευτική δραστηριότητα του γύρου του ίππου) Ηλικίες: Προαπαιτούμενες δεξιότητες: Χρόνος: Μέγεθος ομάδας: 8 ενήλικες Καμία 15 λεπτά για τη βασική δραστηριότητα, περισσότερο για τις επεκτάσεις

Διαβάστε περισσότερα

ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA)

ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA) ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA) ΕΙΣΑΓΩΓΗ Θεωρώντας ότι η διδακτική σας εμπειρία είναι πολύτιμη στην έρευνά μας θα σας παρακαλούσαμε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

Διαδικασι α Έκδοσης Αποτελεσμα των στο ΠΣ myschool

Διαδικασι α Έκδοσης Αποτελεσμα των στο ΠΣ myschool Διαδικασι α Έκδοσης Αποτελεσμα των στο ΠΣ myschool Με το πέρας του Διδακτικού Έτους στο Πληροφοριακό Σύστημα myschool, απαιτείται μία σειρά από βήματα για την Προαγωγή και Απόλυση των Μαθητών της Σχολικής

Διαβάστε περισσότερα

Σενάριο 15: Ενεργός Μετεωρολογικός Χάρτης

Σενάριο 15: Ενεργός Μετεωρολογικός Χάρτης Σενάριο 15: Ενεργός Μετεωρολογικός Χάρτης Ταυτότητα Σεναρίου Τίτλος : Ενεργός Μετεωρολογικός Χάρτης Γνωστικό Αντικείμενο: Εφαρμογές Πληροφορικής-Υπολογιστών Διδακτική Ενότητα: Διερευνώ - Δημιουργώ Ανακαλύπτω,

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις

Διαβάστε περισσότερα

Κεφάλαιο 6: Ζωγραφική

Κεφάλαιο 6: Ζωγραφική Κεφάλαιο 6: Ζωγραφική... Σε αυτό το κεφάλαιο: 6.1 Ζωγραφική 6.2 Απλά ζωγράφισε 6.3 Χρώμα, σκιά και μέγεθος 6.4 Παράδειγμα... «Ζωγραφίζω πράγματα που σκέφτομαι, όχι πράγματα που βλέπω!» (Πικάσο) 6.1 Ζωγραφική

Διαβάστε περισσότερα

ΠΡΩΤΟ ΜΕΡΟΣ: 13 ΚΕΦΑΛΑΙΟ

ΠΡΩΤΟ ΜΕΡΟΣ: 13 ΚΕΦΑΛΑΙΟ Περιεχόμενα ΠΡΩΤΟ ΜΕΡΟΣ: Γνώσεις Υποδομής... 13 ΚΕΦΑΛΑΙΟ 1 Επιχείρηση και Πληροφοριακό Σύστημα Διοίκησης... 15 1.1 Επιχείρηση... 16 1.1.1 Τι είναι Οργανισμός και τι είναι επιχείρηση (μια πρώτη ιδέα) 1.1.2

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Στόχοι Ο κύριος στόχος του μαθήματος είναι να βοηθήσει τους φοιτητές να αναπτύξουν πρακτικές

Διαβάστε περισσότερα

Online Τιμολόγηση Ηλεκτρονική Αίτηση Ασφάλισης Βασικές οδηγίες λειτουργίας

Online Τιμολόγηση Ηλεκτρονική Αίτηση Ασφάλισης Βασικές οδηγίες λειτουργίας Online Τιμολόγηση Ηλεκτρονική Αίτηση Ασφάλισης Βασικές οδηγίες λειτουργίας Grand Μεσίτες Ασφαλίσεων Α.Ε. Σας καλοσωρίζουμε στο σύστημα Ηλεκτρονικής Τιμολόγησης και Αποστολής Αιτήσεων (συντομ. ΗΤΑΑ) της

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Δραστηριότητα 8 ης εβδομάδας ΟΜΑΔΑΣ Α: Γ. Πολυμέρης, Χ. Ηλιούδη, Ν. Μαλλιαρός και Δ. Θεοτόκης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Περιγραφή Η συγκεκριμένη δραστηριότητα αποτελεί μια πρόταση

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Μικροϋπολογιστές

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΟΡΘΩΝ ΠΡΑΚΤΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΟ ΕΜΠΟΡΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ

ΕΓΧΕΙΡΙΔΙΟ ΟΡΘΩΝ ΠΡΑΚΤΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΟ ΕΜΠΟΡΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΟΡΘΩΝ ΠΡΑΚΤΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΟ ΕΜΠΟΡΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ σελ. 1 Κατανοώντας το Ηλεκτρονικό Εμπόριο Τι είναι; Ο όρος ηλεκτρονικό εμπόριο (e-commerce) αφορά στις επιχειρήσεις

Διαβάστε περισσότερα

Ιατρική Πληροφορική. Δρ. Π. ΑΣΒΕΣΤΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Τ. Ε. Χρήσιμοι Σύνδεσμοι

Ιατρική Πληροφορική. Δρ. Π. ΑΣΒΕΣΤΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Τ. Ε. Χρήσιμοι Σύνδεσμοι Ιατρική Πληροφορική Δρ. Π. ΑΣΒΕΣΤΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Τ. Ε. Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio103/ https://eclass.teiath.gr/courses/tio100/

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ

ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ 1 ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ Κώστας Κύρος ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Ανοίξτε το λογισμικό Google Earth και προσπαθήστε να εντοπίσετε τη θέση της Ευρώπης στη Γη. Κατόπιν για να

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΔΙΔΑΣΚΑΛΙΑΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ

ΣΤΟΙΧΕΙΑ ΔΙΔΑΣΚΑΛΙΑΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΟΙΧΕΙΑ ΔΙΔΑΣΚΑΛΙΑΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ Ονοματεπώνυμο εκπαιδευτικού: Γκουντέλα Βασιλική Ειδικότητα: Φιλόλογος (ΠΕ2) Σχολείο: 4 ο Γυμνάσιο Κομοτηνής Μάθημα: Αρχαία Ελληνικά Διάρκεια: 1 διδακτική

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΝΑΠΤΥΞΗΣ ΕΜΠΟΡΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΝΑΠΤΥΞΗΣ ΕΜΠΟΡΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Μεθοδολογία Ανάπτυξης Εμπορικών Εφαρμογών 1 ΜΕΘΟΔΟΛΟΓΙΑ ΑΝΑΠΤΥΞΗΣ ΕΜΠΟΡΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Η μεθοδολογία ανάπτυξης μιας εμπορικής εφαρμογής δίνει την δυνατότητα στην ομάδα εργασίας να έχει τον πλήρη έλεγχο

Διαβάστε περισσότερα

Μια καλή επιλογή θα ήταν www.epipla-onomasas.gr (χωρίζοντας τις λέξεις με παύλα -) ή

Μια καλή επιλογή θα ήταν www.epipla-onomasas.gr (χωρίζοντας τις λέξεις με παύλα -) ή Τι είναι ένα CMS CMS ή Σύστημα Διαχείρισης Περιεχομένου (Content Management System) ονομάζουμε ένα λογισμικό που μας βοηθά να ελέγχουμε και να διαχειριζόμαστε έναν ιστότοπο δημόσιας ή περιορισμένης πρόσβασης.

Διαβάστε περισσότερα

Βάσεις Δεδομένων. Ενότητα 6: Κανονικοποίηση. Αθανάσιος Σπυριδάκος Τμήμα Διοίκησης Επιχειρήσεων

Βάσεις Δεδομένων. Ενότητα 6: Κανονικοποίηση. Αθανάσιος Σπυριδάκος Τμήμα Διοίκησης Επιχειρήσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Βάσεις Δεδομένων Ενότητα 6: Κανονικοποίηση Αθανάσιος Σπυριδάκος Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Oικονομικές και Mαθηματικές Eφαρμογές

Oικονομικές και Mαθηματικές Eφαρμογές Το πακέτο ΕXCEL: Oικονομικές και Mαθηματικές Eφαρμογές Eπιμέλεια των σημειώσεων και διδασκαλία: Ευαγγελία Χαλιώτη* Θέματα ανάλυσης: - Συναρτήσεις / Γραφικές απεικονίσεις - Πράξεις πινάκων - Συστήματα εξισώσεων

Διαβάστε περισσότερα

Σύστημα Κεντρικής Υποστήριξης της Πρακτικής Άσκησης Φοιτητών ΑΕΙ

Σύστημα Κεντρικής Υποστήριξης της Πρακτικής Άσκησης Φοιτητών ΑΕΙ Σύστημα Κεντρικής Υποστήριξης της Πρακτικής Άσκησης Φοιτητών ΑΕΙ Οδηγός Χρήσης Εφαρμογής Γραφείων Πρακτικής Άσκησης Αφού πιστοποιηθεί ο λογαριασμός που δημιουργήσατε στο πρόγραμμα «Άτλας» ως Γραφείο Πρακτικής,

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Dcad 1.0

ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Dcad 1.0 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Dcad 1.0 20130510 ΠΕΡΙΕΧΟΜΕΝΑ 1. Εγκατάσταση προγράμματος DCAD 2 2. Ενεργοποίηση Registration 2 3. DCAD 3 3.1 Εισαγωγή σημείων 3 3.2 Εξαγωγή σημείων 5 3.3 Στοιχεία ιδιοκτησίας

Διαβάστε περισσότερα

ΟΔΗΓΟΣ ΧΡΗΣΗΣ(ΜΑΝUΑL) ΔΙΑΧΕΙΡΙΣΤΗ-ΧΡΗΣΤΗ.

ΟΔΗΓΟΣ ΧΡΗΣΗΣ(ΜΑΝUΑL) ΔΙΑΧΕΙΡΙΣΤΗ-ΧΡΗΣΤΗ. ΟΔΗΓΟΣ ΧΡΗΣΗΣ(ΜΑΝUΑL) ΔΙΑΧΕΙΡΙΣΤΗ-ΧΡΗΣΤΗ. Οδηγός Διαχειριστή Το m-learning Toolkit είναι μια ολοκληρωμένη πλατφόρμα εξ αποστάσεως εκπαίδευσης που έχει σχεδιαστεί για να υπάρχει η δυνατότητα της πρόσβασης

Διαβάστε περισσότερα

Παράδειγμα σχεδιασμού και παρουσίασης μικροδιδασκαλίας

Παράδειγμα σχεδιασμού και παρουσίασης μικροδιδασκαλίας Παράδειγμα σχεδιασμού και παρουσίασης μικροδιδασκαλίας Στο τρίτο άρθρο αυτής της σειράς, η οποία αποτελεί μια πρώτη, μικρή απάντηση στις ανάγκες των εκπαιδευτών του σεμιναρίου της 12 ης & 13 ης Ιουνίου

Διαβάστε περισσότερα

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΜΑΡΙΑ ΤΣΙΚΑΛΟΠΟΥΛΟΥ,ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΟΛΕΙΟ Δημοτικό σχολείο Σκύδρας ΣΚΥΔΡΑ,2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής Το αντικείμενο με το οποίο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙ. OpenOffice 3.x Draw

ΚΕΦΑΛΑΙΟ ΙΙ. OpenOffice 3.x Draw ΚΕΦΑΛΑΙΟ ΙΙ OpenOffice 3.x Draw Στόχοι: Με τη βοήθεια του οδηγού αυτού ο εκπαιδευόμενος θα μπορεί να: χρησιμοποιήσει τα βασικά εργαλεία του OpenOffice Draw για δημιουργία διαγραμμάτων κατασκευάσει τα δικά

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΑΔΡΑΣΤΙΚΗΣ ΔΙΑΔΙΚΤΥΑΚΗΣ ΕΦΑΡΜΟΓΗΣ ΓΙΑ ΤΗΝ ΕΞΥΠΗΡΕΤΗΣΗ ΑΣΘΕΝΩΝ ΣΥΜΒΕΒΛΗΜΕΝΟΥΣ ΜΕ ΤΟΝ Ε.Ο.Π.Υ.

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΑΔΡΑΣΤΙΚΗΣ ΔΙΑΔΙΚΤΥΑΚΗΣ ΕΦΑΡΜΟΓΗΣ ΓΙΑ ΤΗΝ ΕΞΥΠΗΡΕΤΗΣΗ ΑΣΘΕΝΩΝ ΣΥΜΒΕΒΛΗΜΕΝΟΥΣ ΜΕ ΤΟΝ Ε.Ο.Π.Υ. Τ.Ε.Ι ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΑΔΡΑΣΤΙΚΗΣ ΔΙΑΔΙΚΤΥΑΚΗΣ ΕΦΑΡΜΟΓΗΣ ΓΙΑ ΤΗΝ ΕΞΥΠΗΡΕΤΗΣΗ ΑΣΘΕΝΩΝ» ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΣΠΟΥΔΑΣΤΩΝ : ~ΔΕΛΗΓΙΑΝΝΗ ΚΥΡΙΑΚΗ, 1925~

Διαβάστε περισσότερα

Survey 123 User Manual

Survey 123 User Manual Survey 123 User Manual 1. Γενικά για το πρόγραμμα 2. Έναρξη προγράμματος 3. Ορισμός χρηστών εφαρμογής 4. Επιλογή - Άνοιγμα έρευνας 5. Δημιουργία νέας έρευνας 6. Δημιουργία έρευνας με βάση το ερωτηματολόγιο

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 3 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Οδηγός Εγγραφής και Χρήσης Εφαρμογής. Υποψήφιοι

Οδηγός Εγγραφής και Χρήσης Εφαρμογής. Υποψήφιοι Οδηγός Εγγραφής και Χρήσης Εφαρμογής Υποψήφιοι 1 Δημιουργία Λογαριασμού και Είσοδος στο Σύστημα Για να εγγραφείτε στο Γενικό Μητρώο του Πληροφοριακού Συστήματος «Απέλλα» ως Υποψήφιος θα πρέπει να δημιουργήσετε

Διαβάστε περισσότερα

ΥΔΡΟΠΕΡΑΤΟΤΗΤΑ (ΧΡΙΣΤΟΦΟΡΟΥ) Τίτλος διερεύνησης: Ποιοί παράγοντες επηρεάζουν το πόσο νερό συγκρατεί το χώμα;

ΥΔΡΟΠΕΡΑΤΟΤΗΤΑ (ΧΡΙΣΤΟΦΟΡΟΥ) Τίτλος διερεύνησης: Ποιοί παράγοντες επηρεάζουν το πόσο νερό συγκρατεί το χώμα; ΥΔΡΟΠΕΡΑΤΟΤΗΤΑ (ΧΡΙΣΤΟΦΟΡΟΥ) Τίτλος διερεύνησης: Ποιοί παράγοντες επηρεάζουν το πόσο νερό συγκρατεί το χώμα; Σύντομη περιγραφή διερεύνησης: Σκοπός αυτής της διερεύνησης ήταν να κάνουν κάποιες υποθέσεις

Διαβάστε περισσότερα