Σχεσιακή Άλγεβρα - Διαίρεση
|
|
- Ἀλεξανδρεύς Μιχαηλίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Σχεσιακή Άλγεβρα - Διαίρεση Ορισμός (13): Έστω σχέσεις R, S με Head(R) = {A 1, A 2, A n, B 1, B 2, B k } και Head(S) = {B 1, B 2, B k } με n,k 0. Το αποτέλεσμα της διαίρεσης R S είναι μια σχέση Τ: με σχήμα { A 1, A 2, A n } με πλειάδες t τέτοιες ώστε, για κάθε πλειάδα s S, η πλειάδα t s ανήκει στην R 1
2 Διαίρεση (1) - R S R A B C a1 b1 c1 a2 b1 c1 a1 b2 c1 a1 b2 c2 a2 b1 c2 a1 b2 c3 a1 b2 c4 a1 b1 c5 S C c1 R S A B a1 b1 a2 b1 a1 b2 Temp A B a1 b1 a2 b1 a1 b2 2
3 Διαίρεση (2) R A B C a1 b1 c1 a2 b1 c1 a1 b2 c1 a1 b2 c2 a2 b1 c2 a1 b2 c3 a1 b2 c4 a1 b1 c5 S C c1 c2 R S A B a2 b1 a1 b2 Temp A B a1 b1 a2 b1 a1 b2 3
4 Διαίρεση (3) R A B C a1 b1 c1 a2 b1 c1 a1 b2 c1 a1 b2 c2 a2 b1 c2 a1 b2 c3 a1 b2 c4 a1 b1 c5 S C c1 c2 c3 c4 R S A B a1 b2 Temp A B a1 b1 a2 b1 a1 b2 4
5 Διαίρεση (4) R A B C a1 b1 c1 a2 b1 c1 a1 b2 c1 a1 b2 c2 a2 b1 c2 a1 b2 c3 a1 b2 c4 a1 b1 c5 S B C b1 c1 R S A a1 a2 Temp A a1 a2 5
6 Διαίρεση (4) R A B C a1 b1 c1 a2 b1 c1 a1 b2 c1 a1 b2 c2 a2 b1 c2 a1 b2 c3 a1 b2 c4 a1 b1 c5 S B C b1 c1 b2 c1 R S A a1 Temp A a1 a2 6
7 Διαίρεση Η διαίρεση μπορεί να θεωρηθεί ως το αντίστροφο του καρτεσιανού γινομένου Αν T := R S τότε T S δίνει μια σχέση με σχήμα συμβατό με αυτό της R και μπορεί να ισχύει ότι T S = R Γενικά, αν T := R S τότε T είναι το μέγιστο δυνατό σύνολο πλειάδων ώστε T S R 7
8 Διαίρεση Θεώρημα 1: Έστω T, S σχέσεις με σχήματα A 1, A 2, A n και B 1, B 2, B m αντίστοιχα. Αν R = T S τότε T := R S Απόδειξη: Head(R) = {A 1, A 2, A n, B 1, B 2, B m }. Αρκεί να αποδειχτεί ότι T R S και R S T T R S. Έστω W := R S και Head(W) = {A 1, A 2, A n } = Head(T). Έστω t μια οποιαδήποτε πλειάδα της T. Τότε για κάθε πλειάδα s S, η t s ανήκει στην T S. Συνεπώς η t ανήκει στην R = T S άρα στην R S (βάσει ορισμού). Άρα η t ανήκει στην W και άρα T W. R S T.. Έστω W = R S και Έστω w οποιαδήποτε πλειάδα της W. Τότε για κάθε πλειάδα s S, η w s ανήκει στην R. Από την υπόθεση, R = T S, δηλαδή κάθε πλειάδα της R προκύπτει από τη συνένωση μιας πλειάδας της T και μιας της S. Αφού Head(W) = Head(T) τότε πρέπει να υπάρχει πλειάδα t T τέτοια ώστε t = w. Άρα η w ανήκει στην T και W T. 8
9 Διαίρεση (5) (P) Products(pid, pname,city,quantity, price) (C) Customers(cid, cname,city,discount) (O) Orders(ord,cid,aid,pid,qty, amt) «Βρείτε όλους τους κωδικούς των πελατών που έχουν κάνει παραγγελία για όλα τα προϊόντα που παραγγέλνει ο πελάτης c001» Κωδικοί προϊόντων που έχει παραγγείλει ο πελάτης c001 T1 := pid ( cid = c001 (O)) Βρείτε τους πελάτες που έχουν κάνει παραγγελία για όλα τα προηγούμενα προϊόντα T2 := cid,pid (O) T1 pid,cid (O) ( pid ( cid = c001 (O)) 9
10 Διαίρεση (5) ord cid aid pid qty amt o001 c001 a001 p Orders o002 c001 a002 p o003 c003 a003 p o004 c003 a004 p o005 c004 a004 p pid,cid (O) ( pid ( cid = c001 (O)) pid,cid (O) pid ( cid = c001 (O) pid,cid (O) ( pid ( cid = c001 (O)) cid pid pid cid c001 c001 c003 p001 p002 p001 p001 p002 c001 c003 c003 p002 c004 p001 10
11 Διαίρεση (5) (P) Products(pid, pname,city,quantity, price) (C) Customers(cid, cname,city,discount) (O) Orders(ord,cid,aid,pid,qty, amt) pid,cid (O) ( pid ( cid = c001 (O)) pid,cid (O) ( pid ( cid = c006 (O)) Σωστή λύση? pid,cid (O ( pid ( cid = c001 (O)))) 11
12 Διαίρεση (5) ord cid aid pid qty amt o001 c001 a001 p o002 c001 a002 p o003 c003 a003 p o004 c003 a004 p o005 c004 a004 p pid ( cid = c001 (O) pid p001 p002 cid ( O pid ( cid = c001 (O)) cid Η λύση cid (O ( pid ( cid = c001 (O)))) προϋποθέτει ότι οι πλειάδες που αντιστοιχούν στις παραγγελίες όλων των προϊόντων του πελάτη c001 έχουν τις ίδιες τιμές για όλα τα γνωρίσματα τα της Orders(orderid, cid, aid, qty, amt). 12
13 Διαίρεση (6) (P) Products(pid, pname,city,quantity, price) (C) Customers(cid, cname,city,discount) (O) Orders(ord,cid,aid,pid,qty, amt) «Βρείτε τα ονόματα των πελατών που παραγγέλνουν όλα τα προϊόντα» Κωδικοί προϊόντων T1 := pid (P) Πελάτες που παραγγέλνουν όλα τα προϊόντα της σχέσης T1 : T2 := pid, cid (O) T1 Ονόματα των πελατών στη σχέση T2: cname (C JOIN T2) cname ( C JOIN ( pid, cid (O) pid (P) ) ) 13
14 Διαίρεση Θεώρημα 2: Η διαίρεση μπορεί να εκφραστεί χρησιμοποιώντας τις πράξεις,,. Απόδειξη: Έστω R, S σχέσεις με σχήματα A 1, A 2, A n, B 1, B 2, B m και B 1, B 2, B m αντίστοιχα. Έστω R S := A1, A2, An (R) A1, A2, An (( A1, A2, An (R) S) R), και W := A1, A2, An (R) A1, A2, An (( A1, A2, An (R) S) R). Έστω u πλειάδα που ανήκει στην W. Τότε η u ανήκει στην A1, A2, An (R) και δεν ανήκει στην A1, A2, An (( A1, A2, An (R) S) R). Έστω ότι υπάρχει πλειάδα s S τέτοια ώστε η πλειάδα u s να μην ανήκει στην R. Αυτό σημαίνει ότι η u θα ανήκει στην A1, A2, An (( A1, A2, An (R) S) R), το οποίο είναι άτοπο. Επομένως για κάθε πλειάδα s S, η πλειάδα u s ανήκει στην R S Αντίστροφα, έστω u πλειάδα που ανήκει στην R S. Τότε ανήκει στην A1, A2, An (R) και δεν ανήκει στην A1, A2, An ( ( A1, A2, An (R) S ) R). Αν ίσχυε αυτό, θα σήμαινε ότι υπάρχει πλειάδα s S τέτοια ώστε η πλειάδα u s να ανήκει στην A1, A2, An (R) S αλλά όχι στην R. Επομένως η u θα ανήκει στην A1, A2, An (R) A1, A2, An ( ( A1, A2, An (R) S) R) 14
15 Διαίρεση (7) Παράδειγμα: R S = A,B (R) - A,B ( ( A,B (R) S) R) R T1 := A,B (R) T2 := T1 S A B C a1 b1 c1 a2 b1 c1 a1 b2 c1 a1 b2 c2 a2 b3 c2 a1 b4 c3 a1 b2 c4 a1 b1 c5 S C A B A B C a1 b1 a1 b1 c1 a2 b1 a2 b1 c1 a1 b2 a1 b2 c1 a2 b3 a2 b3 c1 a1 b4 a1 b4 c1 T3 := T2 R T4 := A,B (T3) A B C A B a2 b3 c1 a2 b3 a1 b4 c1 a1 b4 c1 15
16 Διαίρεση (7) Παράδειγμα: R S = A,B (R) - A,B ( ( A,B (R) S) R) T1 := A,B (R) A B a1 b1 a2 b1 a1 b2 a2 b3 a1 b4 T3 := T2 R A B C a2 b3 c1 a1 b4 c1 T2 := T1 S A B C a1 b1 c1 a2 b1 c1 - a1 b2 c1 a2 b3 c1 a1 b4 c1 T4 := A,B (T3) A B a2 b3 a1 b4 S C c1 T5 := T1 T4 A B a2 b3 a1 b4 16
17 Διαίρεση (7) Παράδειγμα: R S = A,B (R) - A,B ( ( A,B (R) S) R) R S Temp A B C a1 b1 c1 a2 b1 c1 a1 b2 c1 a1 b2 c2 a2 b3 c2 a1 b4 c3 a1 b2 c4 a1 b1 c5 C c1 A a1 B b1 a2 b1 a1 b2 R S A B a1 b1 a2 b1 a1 b2 a2 b3 a1 b4 17
18 Διαίρεση (8) (P) Products(pid, pname,city,quantity, price) (C) Customers(cid, cname,city,discount) (O) Orders(ord,cid,aid,pid,qty, amt) «Βρείτε τα ονόματα των πελατών που παραγγέλνουν όλα τα προϊόντα με τιμή 0.50$» Προϊόντα με τιμή 0.50$. T1 := price=0.50 (P) Κωδικοί προϊόντων T2 := pid (Τ1) Κωδικοί πελατών και προϊόντων που παραγγέλνουν T3 := cid,pid (O) Κωδικοί πελατών που παραγγέλνουν όλα τα προϊόντα στη σχέση T2: T4:=T3 T2 Ονόματα πελατών: T5 := cname (C JOIN T4) cname ( C JOIN ( pid, cid (O) pid ( price=0.50 (P)))) 18
19 Διαίρεση (9) (P) Products(pid, pname,city,quantity, price) (C) Customers(cid, cname,city,discount) (O) Orders(ord,cid,aid,pid,qty, amt) «Βρείτε τους κωδικούς των πελατών που παραγγέλνουν όλα τα προϊόντα» pid, cid (O) pid (P) «Βρείτε τους κωδικούς προμηθευτών που παίρνουν παραγγελίες από όλα τα προϊόντα που παραγγέλνει ο πελάτης c004 aid, pid (O) pid ( cid= c004 (O)) 19
20 Σχεσιακή Άλγεβρα - Παραδείγματα (P) Products(pid, pname,city,quantity, price) (C) Customers(cid, cname,city,discount) (O) Orders(orderid,cid,aid,pid,qty,$) (A) Agents (aid, aname,city,percent) «Βρείτε τα ονόματα των πελατών που δεν κάνουν καμία παραγγελία μέσω του πράκτορα a03» πελάτες που κάνουν παραγγελίες μέσω του πράκτορα a03: T1 := cid ( aid= a03 (Ο)) Υπόλοιποι πελάτες T2 := cid (C) T1 ονόματα των παραπάνω πελατών: cname (T2 JOIN C) cname ( ( cid (C) cid ( aid= a03 (Ο))) JOIN C) 20
21 Σχεσιακή Άλγεβρα - Παραδείγματα (P) Products(pid, pname,city,quantity, price) (C) Customers(cid, cname,city,discount) (O) Orders(orderid,cid,aid,pid,qty,$) (A) Agents (aid, aname,city,percent) «Βρείτε τους πελάτες που κάνουν παραγγελίες μόνο μέσω του πράκτορα a03» πελάτες που δεν κάνουν παραγγελίες μέσω του πράκτορα a03: T1 := cid ( aid a03 (Ο)) Υπόλοιποι πελάτες T2 := cid (Ο) T1 cid (O) cid ( aid a03 (Ο)) 21
22 Σχεσιακή Άλγεβρα - Παραδείγματα (P) Products(pid, pname,city,quantity, price) (C) Customers(cid, cname,city,discount) (O) Orders(orderid,cid,aid,pid,qty,$) (A) Agents (aid, aname,city,percent) «Βρείτε τα προϊόντα που δεν έχουν παραγγελθεί ποτέ από πελάτη στη Νέα Υόρκη μέσω ενός πράκτορα που έχει έδρα τη Βοστώνη» pid (P) pid ( ( city = NY (C) ) JOIN Ο JOIN ( city = Boston (A) ) ) 22
23 Σχεσιακή Άλγεβρα - Παραδείγματα (P) Products(pid, pname,city,quantity, price) (C) Customers(cid, cname,city,discount) (O) Orders(orderid,cid,aid,pid,qty,$) (A) Agents (aid, aname,city,percent) «Βρείτε τα προϊόντα που δεν παραγγέλνονται από οποιονδήποτε πελάτη ζει σε πόλη της οποίας το όνομα ξεκινάει με D. Πελάτες που ζουν σε πόλη της οποίας το όνομα ξεκινάει από D: T1 := city < E city D (C) Παραγγελίες των παραπάνω πελατών: T2 := Ο JOIN T1 Κωδικοί παραπάνω προϊόντων: T3 := pid (T2) pid (P) pid (Ο JOIN ( city E city D (C) ) ) 23
24 Σχεσιακή Άλγεβρα - Παραδείγματα (P) Products(pid, pname,city,quantity, price) (C) Customers(cid, cname,city,discount) (O) Orders(orderid,cid,aid,pid,qty,$) (A) Agents (aid, aname,city,percent) «Βρείτε τους πελάτες που παραγγέλνουν και το προϊόν p01 και το προϊόν p07. cid ( pid= p01 (O) ) cid ( pid= p07 (O) ) Η πράξη της τομής μπορεί να χρησιμοποιηθεί όταν οι συνθήκες της επιλογής αναφέρονται σε μονότιμα γνωρίσματα (π.χ. αναγνωριστικό της σχέσης). Αν οι συνθήκες της επιλογής αναφέρονται σε πλειότιμα γνωρίσματα τότε μπορεί να χρησιμοποιηθεί η πράξη της σύζευξης στη συνθήκη, όπως και η πράξη της τομής. 24
Αρχεία και Βάσεις Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 6η: Σχεσιακή Άλγεβρα - Μέρος 3ο Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Διαίρεση Ορισμός (13): Έστω σχέσεις R, S με
Αρχεία και Βάσεις Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 5η: Σχεσιακή Άλγεβρα - Μέρος 2ο Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Σχεσιακή Άλγεβρα Βασικές πράξεις άλγεβρας:,,,,,
Σχεσιακή Άλγεβρα Relational Algebra
Σχεσιακή Άλγεβρα Relational Algebra Ορίζει ένα σύνολο τελεστών που εφαρμόζονται σε μια ή σε περισσότερες σχέσεις. Οι τελεστές ορίζουν πράξεις οι οποίες διακρίνονται σε Πράξεις μεταξύ συνόλων (σχέση είναι
SQL Data Manipulation Language
Εμφωλευμένες επερωτήσεις (Nested Queries) Μια εντολή select μπορεί να περιέχει μια άλλη εντολή select αλλά υπό περιορισμούς Μια εντολή select που εμφανίζεται μέσα σε μια άλλη εντολή select ονομάζεται subselect.
Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών. Σχεσιακός Λογισμός
Σχεσιακός Λογισμός Γλώσσα βασισμένη στον Κατηγορηματικό Λογισμό 1 ης Τάξης (First Order Predicate Calculus) Οι περισσότερες γλώσσες επερώτησης σχεσιακών βάσεων δεδομένων βασίζονται στον Σχεσιακό Λογισμό
Αρχεία και Βάσεις Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 7η: Σχεσιακός Λογισμός Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Σχεσιακός Λογισμός Γλώσσα βασισμένη στον Κατηγορηματικό
Σχεσιακός Λογισμός Πλειάδων
Σχεσιακός Λογισμός Πλειάδων Μεταβλητές Σχεσιακός Λογισμός Πεδίων: μεταβλητές για τιμές γνωρισμάτων από τα ορισμένα πεδία τιμών Μεταβλητές: t 1, t 2, t k Αναφέρονται σε πλειάδες σχεσιακών πινάκων Αναφερόμαστε
SQL Data Manipulation Language
SQL Data Manipulation Language Τελεστής union συνδυάζει subselects τα οποία παράγουν συμβατές σχέσεις γενική μορφή: subselect {union [all] subselect} περιορισμός: τα subselects δεν μπορούν να περιέχουν
Αρχεία και Βάσεις Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 9η: SQL Μέρος 2ο Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Εμφωλευμένες επερωτήσεις (Nested Queries) Μια εντολή select
Αρχεία και Βάσεις Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 8η: Σχεσιακός Λογισμός Πλειάδων - SQL Μέρος 1 ο Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Σχεσιακός Λογισμός Πλειάδων
Αρχεία και Βάσεις Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 10η: SQL Μέρος 3ο Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών SQL Data Manipulation Language Τελεστής union συνδυάζει subselects
ΗΥ360: Αρχεία και Βάσεις Δεδομένων Διδάσκων: Πλεξουσάκης Δημήτρης. Φροντιστήριο Σχεσιακή Άλγεβρα Δημητράκη Κατερίνα
ΗΥ360: Αρχεία και Βάσεις Δεδομένων Διδάσκων: Πλεξουσάκης Δημήτρης Φροντιστήριο Σχεσιακή Άλγεβρα Δημητράκη Κατερίνα Αντιστοίχιση Μοντέλο Οντοτήτων Σχέσεων Σχεσιακό μοντέλο ID Customer ID Name 1928 Γιώργος
ΗΥ360 Αρχεία και Βάσεις Δεδομένων. Φροντιστήριο στην Σχεσιακή Άλγεβρα.
ΗΥ360 Αρχεία και Βάσεις Δεδομένων Φροντιστήριο στην Σχεσιακή Άλγεβρα. Σχεσιακή Άλγεβρα Εισαγωγή Σύνολο τελεστών που εφαρμόζονται σε μία ή περισσότερες σχέσεις Όλες οι πράξεις της σχεσιακής άλγεβρας επιστρέφουν
Φροντιστήριο Σχεσιακή Άλγεβρα (μέρος 2 ο ) - Σχεσιακός Λογισμός Δημητράκη Κατερίνα
ΗΥ360: Αρχεία και Βάσεις Δεδομένων Διδάσκων : Πλεξουσάκης Δημήτρης Φροντιστήριο Σχεσιακή Άλγεβρα (μέρος 2 ο ) - Σχεσιακός Λογισμός Δημητράκη Κατερίνα Σχεσιακή Άλγεβρα Εισαγωγή Σύνολο τελεστών που εφαρμόζονται
SQL: Συναρτήσεις Συνάθροισης
SQL: Συναρτήσεις Συνάθροισης Συναρτήσεις Συνάθροισης (Aggregate Functions) Εφαρμόζονται πάνω σε σύνολα τιμών γνωρισμάτων. count, max, min, avg, sum Περιορισμοί: η συνάρτηση count μπορεί να εφαρμοστεί σε
Μοντέλο Οντοτήτων Σχέσεων (Entity-Relationship Model)
Μοντέλο Οντοτήτων Σχέσεων (Entity-Relationship Model) Συνάθροιση (Aggregation) Ενας από τους περιορισμούς του μοντέλου οντοτήτων-σχέσεων είναι ότι δεν είναι δυνατός ο ορισμός σχέσεων μεταξύ σχέσεων Τέτοιες
Μετατροπή Σχήματος Ο/Σ σεσχεσιακό
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Προσοχή είτε αυτά που ακολουθούν ως παράδειγμα Μην τα ακολουθείτε τυφλά ως «μαγική συνταγή» 1 2 Οντότητες Για κάθε τύπο οντοτήτων και για κάθε τύπο συσχετίσεων δημιουργούμε
Μετατροπή Σχήματος Ο/Σ σεσχεσιακό
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Προσοχή είτε αυτά που ακολουθούν ως παράδειγμα Μην τα ακολουθείτε τυφλά ως «μαγική συνταγή» 1 2 Οντότητες Για κάθε τύπο οντοτήτων και για κάθε τύπο συσχετίσεων δημιουργούμε
Τελεστής Προβολής - Παράδειγμα. Π Πόλη, Εξάμηνο (Φοιτητές)
Σχεσιακή Άλγεβρα Προβολή, Επιλογή, Καρτεσιανό Γινόμενο, Ένωση, Διαφορά, Σύνθεση Τελεστών, Μετονομασία, Παραδείγματα Ερωτήσεων, Τομή Συνόλων, Φυσική Σύζευξη 1 Σχεσιακή Άλγεβρα Η σχεσιακή άλγεβρα (relational
Αρχεία και Βάσεις Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 3η: Μοντέλο Οντοτήτων-Συσχετίσεων / Σχεσιακό Μοντέλο Δεδομένων Τμήμα Επιστήμης Υπολογιστών Μοντέλο Οντοτήτων Σχέσεων (Entity-Relationship
Βάσεις δεδομένων. (6 ο μάθημα) Ηρακλής Βαρλάμης
Βάσεις δεδομένων (6 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr (Συνέχεια) ΣΧΕΣΙΑΚΗ ΑΛΓΕΒΡΑ 3/4/2014 2 Περιεχόμενα Συνέχεια στη Σχεσιακή άλγεβρα Συνένωση Θήτα Ισότητας Φυσική Διαίρεση Σύνθετες λειτουργίες
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό 1 Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Προσοχή είτε αυτά που ακολουθούν ως παράδειγμα Μην τα ακολουθείτε τυφλά ως «μαγική συνταγή» 2 : Μετατροπή Μοντέλου ΟΣ σε Σχεσιακό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Β. Μεγαλοοικονόμου, Δ. Χριστοδουλάκης Σχεσιακό Μοντέλο ΙΙΙ Ακ.Έτος 2008-09 (μεβάσητιςσημειώσειςτωνsilberchatz, Korth και Sudarshan και του C. Faloutsos CMU)
4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ
14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,
BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005 ΛΥΣΕΙΣ Ι. Βασιλείου -----------------------------------------------------------------------------------------------------
ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Διδάσκων: Δ. Πλεξουσάκης. Φροντιστήριο SQL Examples ΙΙ Ξένου Ρουμπίνη
ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο SQL Examples ΙΙ Ξένου Ρουμπίνη 1 SQL(DML) - Query Example 1 Query:1 Βρείτε τα ονόματα των έργων που δεν αφορούν το τμήμα research
Ένας απλός τρόπος αναπαράστασης δεδομένων: ένας διδιάστατος πίνακας που λέγεται σχέση Γνωρίσματα
Εισαγωγή Σχεσιακό Μοντέλο Σχεδιασμός μιας Β : Βήματα Ανάλυση Απαιτήσεων Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα δεδομένα, ποιες λειτουργίες είναι συχνές Εννοιολογικός Σχεδιασμός
καλών σχεσιακών σχημάτων
Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Λογικός Σχεδιασμός Σχεσιακών Σχημάτων Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης (γενική μεθοδολογία) Επιθυμητές Ιδιότητες
Ένας απλός τρόπος αναπαράστασης δεδομένων: ένας διδιάστατος πίνακας που λέγεται σχέση Γνωρίσματα
Εισαγωγή Σχεσιακό Μοντέλο Σχεδιασμός μιας Β : Βήματα Ανάλυση Απαιτήσεων Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα δεδομένα, ποιες λειτουργίες είναι συχνές Εννοιολογικός Σχεδιασμός
Βάσεις Δεδομένων : Λογικός Σχεδιασμός 1. καλών σχεσιακών σχημάτων. Λογικός Σχεδιασμός Σχεσιακών Σχημάτων. Γενικές Κατευθύνσεις.
Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Λογικός Σχεδιασμός Σχεσιακών Σχημάτων Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης (γενική μεθοδολογία) Επιθυμητές Ιδιότητες
Βάσεις Δεδομένων : Σχεσιακό Μοντέλο 1. Ένας απλός τρόπος αναπαράστασης δεδομένων: ένας διδιάστατος πίνακας που λέγεται σχέση.
Εισαγωγή Σχεσιακό Μοντέλο Ανάλυση Απαιτήσεων Σχεδιασμός μιας Β : Βήματα Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα δεδομένα, ποιες λειτουργίες είναι συχνές Εννοιολογικός Σχεδιασμός
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 09: Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός (Relational Algebra/Calculus) Ι Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: Σχεσιακή Πληρότητα Σχεσιακή Άλγεβρα
Μετατροπή Σχήµατος Ο/Σ σε Σχεσιακό
Μετατροπή Σχήµατος Ο/Σ σε Σχεσιακό Βάσεις εδοµένων 2012-2013 Ευαγγελία Πιτουρά 1 Μετατροπή Σχήµατος Ο/Σ σε Σχεσιακό Δείτε αυτά που ακολουθούν ως παραδείγματα Μην τα ακολουθείτε τυφλά ως«μαγική συνταγή»
Βάσεις Δεδομένων. Σχεσιακό Μοντέλο Δεδομένων. Βασίλειος Βεσκούκης Ορισμός Βάσης Δεδομένων Δομή Περιορισμοί
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Βάσεις Δεδομένων Βασίλειος Βεσκούκης v.vescoukis@cs.ntua.gr Βασικές πράξεις της Σχεσιακής Αλγεβρας Σχεσιακό Μοντέλο Δεδομένων Ορισμός Βάσης
Βάσεις Δεδομένων (Databases)
Βάσεις Δεδομένων (Databases) ΕΠΛ 342 Χειμερινό Εξάμηνο 2011 Διδάσκοντες Καθηγητές Γιώργος Σαμάρας (ΧΩΔ01 109) θεωρητικές Γλώσσες Ερωτήσεων (Formal Query Languages): Σχεσιακή Άλγεβρα Τελεστές Θεωρίας Συνόλων
Kεφ.2: Σχεσιακό Μοντέλο (επανάληψη) Κεφ.6.1: Σχεσιακή Άλγεβρα
Kεφ.2: Σχεσιακό Μοντέλο (επανάληψη) Κεφ.6.1: Σχεσιακή Άλγεβρα Database System Concepts, 6 th Ed. Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use Παράδειγμα Σχέσης attributes
#5. Σχεσιακό Μοντέλο
22Γ901 Βάσεις Δεδομένων και Γνώσεων 9ο Εξάμηνο Κύκλου Σπουδών ΗΥ και Μεταπτυχιακός Κύκλος Σπουδών Διδάσκων: Ν. Αβούρης Β μέρος Διαφανειών μαθήματος (2005-2006) Ν. Αβούρης- Βάσεις Δεδομένων και Γνώσεων
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις
Λογικός Σχεδιασμός Σχεσιακών Σχημάτων: Αποσύνθεση
Λογικός Σχεδιασμός Σχεσιακών Σχημάτων: Αποσύνθεση Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 1 Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Γενικές Οδηγίες Η Μέθοδος
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Σχήμα. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Σχήμα Ευαγγελία Πιτουρά 1 Τι θα δούμε σήμερα: 1. Ο/Σ -> σχεσιακό 2. Ορισμός σχεσιακής βάσης σε SQL Αρχικά ας σχεδιάσουμε μια σχεσιακή βάση δεδομένων χωρίς να σχεδιάσουμε
Πρόλογος Μέρος Ι Εισαγωγή στα συστήματα βάσεων δεδομένων Μια βόλτα στις βάσεις δεδομένων...25
Περιεχόμενα Πρόλογος... 21 Μέρος Ι Εισαγωγή στα συστήματα βάσεων δεδομένων. 23 1 Μια βόλτα στις βάσεις δεδομένων...25 1.1 Η πρώτη βάση δεδομένων... 26 1.1.1 Άλλοι τρόποι...26 1.1.2 Απαιτήσεις της εφαρμογής...29
Σχεδιασμός μιας Β : Βήματα
Σχεσιακό Μοντέλο 1 Εισαγωγή Ανάλυση Απαιτήσεων Σχεδιασμός μιας Β : Βήματα Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα δεδομένα, ποιες λειτουργίες είναι συχνές Εννοιολογικός Σχεδιασμός
Βάσεις δεδομένων. (5 ο μάθημα) Ηρακλής Βαρλάμης
Βάσεις δεδομένων (5 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Συνέχεια στη Σχεσιακή άλγεβρα Μετονομασία Καρτεσιανό γινόμενο Συνένωση Θήτα Ισότητας Φυσική 26/3/2015 Βάσεις Δεδομένων 2 (Συνέχεια)
Σχεσιακό Μοντέλο. Σχεδιασμός Βάσεων Δεδομένων Μάθημα 2 ο Μαρία Χαλκίδη
Σχεσιακό Μοντέλο Σχεδιασμός Βάσεων Δεδομένων Μάθημα 2 ο Μαρία Χαλκίδη Εισαγωγή Το σχεσιακό μοντέλο δεδομένων (relational data model) προτάθηκε από τον E. F. Codd το 1970 Aποτελεί ένα μέσο λογικής δόμησης
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Σχήμα. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Σχήμα Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Γενικά Για κάθε τύπο οντοτήτων και για κάθε τύπο συσχετίσεων δημιουργούμε ένα σχήμα σχέσης που παίρνει το όνομα του
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 2. Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων)
Σχεσιακή Άλγεβρα Βάσεις Δεδομένων 2009-2010 Ευαγγελία Πιτουρά 1 Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός
Σχεσιακό Μοντέλο Δεδομένων
Σχεσιακό Μοντέλο Δεδομένων Παύλος Εφραιμίδης Βάσεις Δεδομένων Σχεσιακό Μοντέλο Δεδομένων 1 Μοντέλα Δεδομένων Μοντέλα Δεδομένων Σχεσιακό Ιεραρχικό Δικτυακό Tο κυρίαρχο μοντέλο δεδομένων στις σύγχρονες βάσεις
Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 2. Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων)
Σχεσιακή Άλγεβρα Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 1 Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός
Σχεσιακή Άλγεβρα. Παύλος Εφραιμίδης. Βάσεις Δεδομένων Σχεσιακή Άλγεβρα 1
Σχεσιακή Άλγεβρα Παύλος Εφραιμίδης Βάσεις Δεδομένων Σχεσιακή Άλγεβρα 1 Θεμελίωση της Σχεσιακού Μοντέλου Δεδομένων Σχεσιακή Άλγεβρα Σχεσιακός Λογισμός Στο μάθημα θα πούμε για Σχεσιακή Άλγεβρα Βάσεις Δεδομένων
Θέματα ανακεφαλαίωσης
Θέματα ανακεφαλαίωσης 13 Ιουνίου 2013 1. Ορίστε την έννοια σχήμα σχέσης και αναλύστε τα στοιχεία του ορισμού σας. Υποθέστε ότι θέλουμε να αποθηκεύσουμε πληροφορίες για τα μέλη ενός πεζοπορικού συλλόγου
Βάσεις δεδομένων. (9 ο μάθημα) Ηρακλής Βαρλάμης
Βάσεις δεδομένων (9 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Βελτίωση σχεδιασμού Αποσύνθεση σχέσης Συναρτησιακές εξαρτήσεις Θεωρία κανονικών μορφών 1 η NF 2 η NF 3 η NF 2 Βελτίωση σχεδιασμού
Κεφάλαιο 10 Άλλες Πράξεις Θεωρίας Συνόλων
Κεφάλαιο 10 Άλλες Πράξεις Θεωρίας Συνόλων Σύνοψη Στο παρόν κεφάλαιο θα παρουσιαστεί η πράξη της διαίρεσης. Στο κομμάτι των ασκήσεων θα γίνει συνολική επισκόπηση ερωτημάτων που εμπλέκουν πράξεις συνόλων.
ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα
ΠΟΛΥΩΝΥΜΑ Λυμένα Παραδείγματα. Να βρεθούν οι τιμές του λ R για τις οποίες το πολυώνυμο Ρ () = (4λ -9) +(λ -λ-) +λ- είναι το μηδενικό. Το Ρ () θα είναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ
Σχεσιακή Άλγεβρα. Βάσεις Δεδομένων : Σχεσιακή Άλγεβρα 1
Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Σχεσιακού Μοντέλου) Αντιστοιχία
καλών σχεσιακών σχημάτων
Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Λογικός Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης (γενική μεθοδολογία) Επιθυμητές Ιδιότητες της Αποσύνθεσης Συνένωση Άνευ
Βάσεις Δεδομένων Ι. Παραδείγματα. Γεώργιος Ευαγγελίδης, Καθηγητής Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα # 4: Σχεσιακή Άλγεβρα Παραδείγματα Γεώργιος Ευαγγελίδης, Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που
Βάσεις Δεδομένων (Databases)
Βάσεις Δεδομένων (Databases) ΕΠΛ 342 Χειμερινό Εξάμηνο 2011 Διδάσκοντες Καθηγητές Γιώργος Σαμάρας (ΧΩΔ01 109) Σύνδεση Ισότητας (Equi-Join) Θ στην σύνδεση είναι = (=-Join) r r.ai = s.aj s =-σύνδεση του
Διοίκηση Παραγωγής και Υπηρεσιών
Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Βέλτιστη Ποσότητα Παραγγελίας (EOQ) Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Ορισμός του προβλήματος βέλτιστης ποσότητας παραγγελίας
Βάσεις Δεδομένων. Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα
Βάσεις Δεδομένων Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα Στέργιος Παλαμάς, Υλικό Μαθήματος «Βάσεις Δεδομένων», 2015-2016 Κεφάλαιο 3: Σχεσιακές Βάσεις Δεδομένων Σχεσιακή Άλγεβρα Σχεσιακή
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Σχήμα. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Σχήμα Ευαγγελία Πιτουρά 1 Γενικά Για κάθε τύπο οντοτήτων και για κάθε τύπο συσχετίσεων δημιουργούμε ένα σχήμα σχέσης που παίρνει το όνομα του αντίστοιχου τύπου. Ευαγγελία
Διάλεξη 14: Γλώσσα Επεξεργασίας Δεδομένων/ Data Manipulation Language (SQL DML) II. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 14: Γλώσσα Επεξεργασίας Δεδομένων/ Data Manipulation Language (SQL DML) II Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: Συνενώσεις με Καρτεσιανό Γινόμενο και
Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός. Σχεσιακή Άλγεβρα Σχεσιακός Λογισμός
7 Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός Σχεσιακή Άλγεβρα Σχεσιακός Λογισμός Σχεσιακή Άλγεβρα H Σχεσιακή Άλγεβρα (relational algebra) ορίζει ένα σύνολο πράξεων που εφαρμόζονται σε μία ή περισσότερες σχέσεις
Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ Ε ΟΜΕΝΩΝ Αρχεία δεδομένων συστήματος Σύστημα Βάσεων εδομένων (ΣΒ ) 2 :
f(x) = και στην συνέχεια
ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία
Σχεσιακή Άλγεβρα. Συνολοθεωρητικές Πράξεις. Εκφράσεις. Ειδικές Πράξεις. Θεμελίωση της Σχεσιακού Μοντέλου Δεδομένων. Σχεσιακός Λογισμός
Σχεσιακή Άλγεβρα Παύλος Εφραιμίδης Θεμελίωση της Σχεσιακού Μοντέλου Δεδομένων Σχεσιακή Άλγεβρα Σχεσιακός Λογισμός ΣτομάθημαθαπούμεγιαΣχεσιακή Άλγεβρα Βάσεις Δεδομένων Σχεσιακή Άλγεβρα 1 Βάσεις Δεδομένων
Βάσεις δεδομένων. (4 ο μάθημα) Ηρακλής Βαρλάμης
Βάσεις δεδομένων (4 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Επέκταση του μοντέλου ΟΣ Κληρονομικότητα Εξειδίκευση/Γενίκευση Περιορισμοί Ιεραρχίες και πλέγματα Συνάθροιση Συνέχεια στο σχεσιακό
Κανονικές Μορφές. Βάσεις Δεδομένων : Κανονικές Μορφές. ηλαδή, i = 1,.., n R i R. Σύντομη επανάληψη αποσύνθεσης.
Κανονικές Μορφές Σύντομη επανάληψη αποσύνθεσης Βάσεις Δεδομένων 2008-2009 Ευαγγελία Πιτουρά 1 Βάσεις Δεδομένων 2008-2009 Ευαγγελία Πιτουρά 2 Αλγόριθμος Σχεδιασμού Αλγόριθμος Σχεδιασμού Ένας γενικός (θεωρητικός)
Συναρτησιακές Εξαρτήσεις
Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις (Functional Dependencies) Τι είναι; Εξαρτήσεις ανάμεσα σε σύνολα από γνωρίσματα Συμβολισμός S1 S2 (όπου S1, S2 σύνολα γνωρισμάτων)
Συναρτησιακές Εξαρτήσεις
Συναρτησιακές Εξαρτήσεις Βάσεις Δεδομένων 2009-2010 Ευαγγελία Πιτουρά 1 Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις Συναρτησιακές Εξαρτήσεις (Functional Dependencies)
Κανονικοποίηση. Σημασιολογία Γνωρισμάτων. Άτυπες Οδηγίες. Παράδειγμα. Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ. Περιττές Τιμές και Ανωμαλίες Ενημέρωσης
Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ Κανονικοποίηση Παύλος Εφραιμίδης Βάσεις Δεδομένων Κανονικοποίηση 1 Πως μπορούμε να κρίνουμε εάν ένα Σχεσιακό Σχήμα είναι καλό ή αποδοτικό ή αν έχει λάθη; Σε γενικές γραμμές
Επεξεργασία Ερωτήσεων
Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008
Σχεσιακή Άλγεβρα. Προγράμματα που απαντούν σε επερωτήσεις για τον τρέχον στιγμιότυπο της βάσης δεδομένων (querying)
Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Σχεσιακού Μοντέλου) Μετατροπή
Συναρτησιακές Εξαρτήσεις
Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις Τι είναι; Εξαρτήσεις ανάμεσα σε σύνολα από γνωρίσματα Συμβολισμός S1 S2 (όπου S1, S2 σύνολα γνωρισμάτων) Τι σημαίνει: Αν
Το Σχεσιακό Μοντέλο-Σχεσιακή Άλγεβρα, Σχεσιακός Λογισμός. 06/06/2009 Μ.Χατζόπουλος 1
Το Σχεσιακό Μοντέλο-Σχεσιακή Άλγεβρα, Σχεσιακός Λογισμός 06/06/2009 Μ.Χατζόπουλος 1 Αρχιτεκτονική Τριών Σχημάτων ΕΞΩΤΕΡΙΚΟ ΕΠΙΠΕΔΟ Τελικοί Χρήστες Εξωτερική Όψη 1 Εξωτερική Όψη n ΕΝΝΟΙΟΛΟΓΙΚΟ ΕΠΙΠΕΔΟ ΕΝΝΟΙΟΛΟΓΙΚΟ
Κλείσιμο Συνόλου Γνωρισμάτων
Κλείσιμο Συνόλου Γνωρισμάτων Ο υπολογισμός του κλεισίματος ενός συνόλου από ΣΕ μας δίνει τα σύνολα όλων των γνωρισμάτων τα οποία προσδιορίζονται συναρτησιακά από άλλα σύνολα γνωρισμάτων Ο υπολογισμός αυτός
Σχεσιακή Άλγεβρα. Εισαγωγή. Εισαγωγή. Εισαγωγή. Παράδειγμα. Εισαγωγή. Ταινία Τίτλος Έτος Διάρκεια Είδος. Παίζει Όνομα-Ηθοποιού Τίτλος Έτος.
Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Σχεσιακού Μοντέλου) Αντιστοιχία
Σχεσιακή Άλγεβρα. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Σχεσιακή Άλγεβρα Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Τι έχουμε δει έως σήμερα Σχεδιασμό και Υλοποίηση Σχεσιακών Βάσεων δεδομένων Μια γλώσσα ορισμού δεδομένων ΓΟΔ (για τον ορισμό των σχημάτων)
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2018-2019 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας
Σχεσιακή Άλγεβρα Σχεδιασμός Βάσεων Δεδομένων
Σχεσιακή Άλγεβρα Σχεδιασμός Βάσεων Δεδομένων Μαρία Χαλκίδη Εισαγωγή Εννοιολογικός Σχεδιασμός Βάσεων Δεδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός Βάσεων Δεδομένων (με χρήση
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι. Ενότητα 7α: SQL (NULL, Διαίρεση) Ευαγγελίδης Γεώργιος. Τμήμα Εφαρμοσμένης Πληροφορικής ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι
Ενότητα 7α: SQL (NULL, Διαίρεση) Ευαγγελίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου
Επεξεργασία Ερωτήσεων
Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων
Επεξεργασία Ερωτήσεων
Εισαγωγή Επεξεργασία Ερωτήσεων Σ Β Βάση εδομένων Η ομή ενός ΣΒ Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 1 Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 2 Εισαγωγή Εισαγωγή ΜΕΡΟΣ 1 (Χρήση Σ Β ) Γενική
Διάλεξη 10: Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός (Relational Algebra/Calculus) ΙI
Διάλεξη 10: Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός (Relational Algebra/Calculus) ΙI Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: Σχεσιακή Άλγεβρα Τελεστές Συνένωσης
Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση
Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση Βάσεις εδοµένων 2012-2013 Ευαγγελία Πιτουρά 1 Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Γενικές Οδηγίες Η Μέθοδος
Μοντέλο Οντοτήτων-Συσχετίσεων
Μοντέλο Οντοτήτων-Συσχετίσεων 1 Εισαγωγή Σχεδιασμός μιας εφαρμογής ΒΔ: Βήματα 1. Συλλογή και Ανάλυση Απαιτήσεων (requirement analysis) Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα
Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση
Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι. Ενότητα 7β: SQL (Πρακτική Εξάσκηση 1) Ευαγγελίδης Γεώργιος. Τμήμα Εφαρμοσμένης Πληροφορικής ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι
Ενότητα 7β: SQL (Πρακτική Εξάσκηση 1) Ευαγγελίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε
Θεωρία Κανονικοποίησης
Θεωρία Κανονικοποίησης Πρώτη Κανονική Μορφή (1NF) Αποσύνθεση Συναρτησιακές Εξαρτήσεις Δεύτερη (2NF) και Τρίτη Κανονική Μορφή (3NF) Boyce Codd Κανονική Μορφή (BCNF) Καθολική Διαδικασία Σχεδίασης ΒΔ Βασική
ΜοντέλοΟντοτήτωνΣυσχετίσεων & ΔιάγραμμαΟντοτήτων Συσχετίσεων. Μοντέλο Οντοτήτων Συσχετίσεων
ΜοντέλοΟντοτήτωνΣυσχετίσεων & ΔιάγραμμαΟντοτήτων Συσχετίσεων Μοντέλο Οντοτήτων Συσχετίσεων Το Μοντέλο Οντοτήτων-Συσχετίσεων βασίζεται στην αντίληψη ότι ο πραγματικός κόσμος αποτελείται από οντότητες (entities)
Λογικός Σχεδιασμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Λογικός Σχεδιασμός 1 Ανακοινώθηκε το 2 ο Σύνολο Ασκήσεων στη σελίδα του μαθήματος Ημερομηνία Παράδοσης 6/12/2016 2 Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Μη
Συναρτησιακές Εξαρτήσεις
Συναρτησιακές Εξαρτήσεις Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 1 Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις Συναρτησιακές Εξαρτήσεις (Functional Dependencies)
Διάλεξη 13: Γλώσσα Επεξεργασίας Δεδομένων/ Data Manipulation Language (SQL DML) I. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 13: Γλώσσα Επεξεργασίας Δεδομένων/ Data Manipulation Language (SQL DML) I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: Εισαγωγή στην SQL DML SELECT, FROM, WHERE,
Σχεσιακή Άλγεβρα. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Σχεσιακή Άλγεβρα Βάσεις Δεδομένων 2017-2018 1 Τι έχουμε δει έως σήμερα Σχεδιασμό βάσεων δεδομένων μοντέλο Οντοτήτων/Συσχετίσεων σχεσιακό μοντέλο (ορισμός σχήματος) Μια γλώσσα ορισμού δεδομένων ΓΟΔ (για
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 2 η : Δεσμευμένη Πιθανότητα. Ολική Πιθανότητα-Θεώρημα Bayes, Ανεξαρτησία και Συναφείς Έννοιες. Γεώργιος Ζιούτας Τμήμα
Σχεσιακή Άλγεβρα. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Σχεσιακή Άλγεβρα 1 Ανακοινώθηκε το 1 ο Σύνολο Ασκήσεων στη σελίδα του μαθήματος Ημερομηνία Παράδοσης 3/11/2016 2 Τι έχουμε δει έως σήμερα Σχεδιασμό και Υλοποίηση Σχεσιακών Βάσεων δεδομένων Μια γλώσσα ορισμού
Σχεσιακή Άλγεβρα. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Σχεσιακή Άλγεβρα Βάσεις Δεδομένων 2018-2019 1 Τι έχουμε δει έως σήμερα Σχεδιασμό βάσεων δεδομένων μοντέλο Οντοτήτων/Συσχετίσεων σχεσιακό μοντέλο (ορισμός σχήματος) Μια γλώσσα ορισμού δεδομένων ΓΟΔ (για
Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους
Aσκήσεις1 1 Βασικά σημεία Ευκλείδεια διαίρεση πολυωνύμων Ορισμός και ιδιότητες μκδ και εκπ Ιδιότητες σχετικών πρώτων πολυωνύμων Τα ανάγωγα πολυώνυμα στο [ ] και [ ] Ασκήσεις1 Πολυώνυμα Ανάλυση πολυωνύμου
Σχεσιακή Άλγεβρα. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Σχεσιακή Άλγεβρα Ευαγγελία Πιτουρά 1 Τι έχουμε δει έως σήμερα Σχεδιασμό και Υλοποίηση Σχεσιακών Βάσεων δεδομένων Μια γλώσσα ορισμού δεδομένων ΓΟΔ (για τον ορισμό των σχημάτων) ένας μεταφραστής της ΓΟΔ
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η
Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2016-2017 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ