ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ. ( ) 1, αν Ι(i,j)=k hk ( ), διαφορετικά

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ. ( ) 1, αν Ι(i,j)=k hk ( ), διαφορετικά"

Transcript

1 ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ Αντικείμενο: Εξαγωγή ιστογράμματος εικόνας, απλοί μετασχηματισμοί με αυτό, ισοστάθμιση ιστογράμματος. Εφαρμογή βασικών παραθύρων με την βοήθεια του ΜΑΤLAB και εφαρμογές στην βελτίωση εικόνας. 1. Εισαγωγή. Ένα από τα πιο χαρακτηριστικά στοιχεία μιας εικόνας που προσεγγίζει ένα φυσικό μοντέλο χρώματος είναι η φωτεινότητά της. Ένα δυνατός τρόπος αναπαράστασης και επεξεργασίας της πληροφορίας αυτής χρησιμοποιεί την έννοια του ιστογράμματος της εικόνας. Το ιστόγραμμα μιας εικόνας είναι εύκολο να προσδιοριστεί καθώς δεν είναι τίποτα άλλο από την κατανομή Η(pix_val) των εντάσεων των φωτεινοτήτων των εικονοστοιχείων μιας εικόνας. Σε κανονικοποιημένη μορφή κάθε τιμή του αρχικού ιστογράμματος διαιρείται με το πλήθος των στοιχείων της εικόνας ώστε το συσσωρευτικό ιστόγραμμα να κανονικοποιείται στην μονάδα. Η μορφή του ιστογράμματος παρέχει αρκετές και σημαντικές πληροφορίες σχετικά με τα χαρακτηριστικά της εικόνας και απεικονίζεται με ένα γράφημα που στον οριζόντιο άξονα έχει τις φωτεινότητες από (ή 1 στην περίπτωση που η εικόνα είναι τύπου double (8 bytes) ή single (4bytes)) και στον κατακόρυφο άξονα έχει το πλήθος των εικονοστοιχείων που λαμβάνουν την τιμή της φωτεινότητας. Συγκεκριμένα ένα ιστόγραμμα h(k) μιας εικόνας NxM με αποχρώσεις του γκρί στην περιοχή [0, L-1] μπορεί να προσδιοριστεί ως: hk ( ) 1, αν Ι(i,j)=k hk ( ) (1) hk ( ), διαφορετικά Όπου {i, j}{0, 1, L-1} Ένα ιστόγραμμα με σχετικά μικρή διασπορά (στενό) χαρακτηρίζει μια εικόνα χαμηλής διαφοροποίησης του υποβάθρου από το περιεχόμενο. Αντίθετα, μια εικόνα υψηλής διασποράς, ιδιαιτέρως όταν έχει τουλάχιστον δύο λοβούς χαρακτηρίζει μια εικόνα με σημαντική πληροφορία σε αρκετές αποχρώσεις του γκρί. Τέλος η σημασία του ιστογράμματος

2 γίνεται φανερή καθώς αυτό παραμένει σχετικά αμετάβλητο σε παραμορφώσεις της εικόνας όπως η περιστροφή, η μερική μετατόπιση και η αντανάκλαση. Η επεξεργασία του ιστογράμματος μιας εικόνας αποτελεί την πιο απλή μέθοδο επεξεργασίας εικόνας χωρίς όμως η πράξη αυτή να υπολείπεται σε σπουδαιότητα. Αποτελεί μετασχηματισμό σημείου, δηλαδή πρόκειται για μια πράξη της μορφής h( k) T[ h( k)] όπου η συνάρτηση [] περιγράφει τον μετασχηματισμό ιστογράμματος δηλαδή τον τρόπο με τον οποίο απεικονίζουμε την φωτεινότητα της εισόδου h( ) σε μία άλλη τιμή φωτεινότητας εξόδου h ( ). Ιδιαίτερως, οι τεχνικές τροποποίησης ιστογράμματος μετασχηματίζουν την αρχική ζώνη φωτεινότητας με την βοήθεια μιας γραμμικής ή μη συνάρτησης μετασχηματισμού []. Με αυτόν τον τρόπο οι φωτεινότητες της εικόνας απεικονίζονται σε μια νέα ζώνη και προκύπτει ένα νέο ιστόγραμμα από την σχέση: h( k) T[ h( k)], k 0,..., L 1 (2) έτσι ώστε h( k) {0,..., L 1}. Συνοπτικά μπορούμε να διακρίνουμε τους κυριότερους μετασχηματισμούς φωτεινότητας στις παρακάτω κύριες κατηγορίες: α) Γραμμικοί και μη μετασχηματισμοί φωτεινότητας στους οποίους συμπεριλαμβάνονται: Η αρνητική εικόνα. Η Μεταβολή της αντίθεσης. Ο μετασχηματισμός-γ (gama intensity transformation). Ο λογαριθμικός και εκθετικός μετασχηματισμός. β) Ισοστάθμιση ιστογράμματος (histogram equalization) κατά τον οποίο το ιστόγραμμα τείνει να προσεγγίσει την ομοιόμορφη κατανομή. ΕΡΓΑΣΤΗΡΙΑΚΗ ΔΙΑΔΙΚΑΣΙΑ 1. Υπολογισμός ιστογράμματος. α) Χρησιμοποιείστε το MATLAB και υπολογίστε την κατανομή των pixels στις διάφορες στάθμες (τιμές) της εικόνας cameraman.tif. Χρησιμοποιείστε την συνάρτηση stem έτσι ώστε να το απεικονίσετε στην οθόνη σας. Στην συνέχεια χρησιμοποιείστε την εσωτερική συνάρτηση του MATLAB imhist για να απεικονίσετε το ιστόγραμμα. Προβείτε σε συγκρίσεις μεταξύ τους. Τι παρατηρείτε; 2

3 2. Γραμμικοί και μη μετασχηματισμοί ιστογράμματος. α) Για την εικόνα cameraman χρησιμοποιείστε την σχέση: lumout ( lumin ) που αντιστοιχεί σε γραμμικές διαδικασίες μεταβολής ιστογράμματος ώστε να μετακινήσετε κάθε pixel φωτεινότητας z-( lum in ) της εικόνας που βρίσκεται στο διάστημα [α,β] γραμμικά στο διάστημα [γ,δ] της μεταβλητής z'-( lum out ). Συγκεκριμένα εκτελέστε τα ακόλουθα βήματα: Συμπιέσατε αυτές στο διάστημα [0, 127] Στην συνέχεια συμπιέσατε αυτές στο διάστημα [128, 255] Τέλος, αντιστρέψατε αυτές συμμετρικά ώς πρός το 128 (το αρχικό ιστόγραμμα). Για κάθε μια από τις παραπάνω εργασίες απεικονίστε την προκύπτουσα εικόνα και παρουσιάστε το προκύπτων ιστόγραμμα. Τι παρατηρείτε στην περίπτωση που ο μετασχηματισμός του ιστογράμματος είναι γραμμικός; β) Χρησιμοποιείστε τον Μετασχηματισμό έντασης γ δηλαδή μεταβάλλετε την τιμή των pixel εξόδου σύμφωνα με την σχέση: (pixel_εξόδου)=(pixel_εισόδου) 1/γ όπου η τιμή του γ λαμβάνει τις τιμές γ={0.5 2, 2.5, 3, 5}. Απεικονίστε την προκύπτουσα εικόνα. Θεωρείστε ότι στην συγκεκριμένη περίπτωση η μέγιστη τιμή της εικόνας είναι 1 (λευκό) ώστε να μην έχουμε φαινόμενα κόρου. Ένα χαρακτηριστικό παράδειγμα απεικόνισης της εικόνας όταν γ=1.7 απεικονίζεται στην εικόνα 1. Τι παρατηρείτε στην περίπτωση που ο μετασχηματισμός του ιστογράμματος δεν είναι γραμμικός; Εικόνα 1. Αρχική εικόνα και τελική με γ=1.7 β) Χρησιμοποιείστε τον λογαριθμικό μετασχηματισμό ( g) bln(1 a g) όπου ο συντελεστής b χρησιμοποιείται για την κλιμάκωση των φωτεινοτήτων εξόδου. Ο συντελεστής a συνήθως ισούται με την μονάδα. Αν θεωρήσουμε ως προυπόθεση ότι πρέπει [0] 0, Τ[255]=255 τότε η τιμή του b θα πρέπει να γίνει ίση με: 255 b (3) ln(1 255 a) 3

4 3. Ισοστάθμιση ιστογράμματος. Αλγοριθμικά η μέθοδος υπολογισμού της ισοστάθμισης ιστογράμματος έχει ως εξής: Υπολογισμός του επιθυμητού αριθμού n των εικονοστοιχείων (pixels) τής διαμέρισης του τελικού ιστογράμματος ως εξής: Συνολικός αριθμός pixels N n Αριθμός σταθμών εντάσεως Μετατροπή του ιστογράμματος της αρχικής εικόνας σε αθροιστικό ιστόγραμμα. Αυτό επιτυγχάνετε θεωρώντας ως C J τον αριθμό των εικονοστοιχείων από την στάθμη 0 έως την j δηλαδή το συσσωρευτικό ιστόγραμμα. C j Υπολογισμός του ακεραίου μέρους N. Το μέγεθος αυτό αποτελεί την νέα τιμή εντάσεως που θα έχει η αρχική κλάση j. Ένας τρόπος αναπαράστασης της μεθόδου απεικονίζεται στον παρακάτω πίνακα 1 για μία υποθετική εικόνα με μέγεθος 512x512 και αρχικό ιστόγραμμα Η 1. Πίνακας 1. Ισοστάθμιση ιστογράμματος. Τελικές τιμές Αρχικές Ιστόγραμμα Συσσωρευτικό Εικονοστοιχείων τιμές Η εικονοστοιχείων 1 Ιστόγραμμα (C J ) C j N

5 Με βάση τον παραπάνω αλγόριθμο: α) Απεικονίστε στο MATLAB την εικόνα synth_imag_hist_eq.bmp. Εξετάστε το ιστόγραμμά της με την βοήθεια της imhist και δημιουργείστε το συσσωρευτικό ιστόγραμμα της εικόνας. Στην συνέχεια δημιουργείστε κώδικα ώστε να ισοσταθμίσετε το ιστόγραμμα της εικόνας. Απεικονίστε την εικόνα, το ιστόγραμμά της καθώς και το συσσωρευτικό ιστόγραμμα της. Ένα χαρακτηριστικό παράδειγμα εικόνας πρίν και μετά την ισοστάθμιση απεικονίζεται στην εικόνα 2. Απεικονίστε το νέο ιστόγραμμα της εικόνας μετά την ισοστάθμιση. Εικόνα 2. Αρχική και εξισορροπημένη γκρί εικόνα. β) Ισοσταθμίστε το ιστόγραμμα στην έγχρωμη εικόνα football.jpg. Συγκεκριμένα, μετασχηματίστε τις RGB συνιστώσες της εικόνας στις ΥΙQ συνιστώσες και προβείτε στην ισοστάθμιση ιστογράμματος της συνιστώσας φωτεινότητας. Στην συνέχεια μετασχηματίστε τις συνιστώσες ΥΙQ στις συνιστώσες RGB. Για τις μετατροπές των συστημάτων (RGB, YIQ) xρησιμοποιείστε τις έτοιμες συναρτήσεις βιβλιοθήκης του MATLAB rgb2ntsc και ntsc2rgb. Ένα χαρακτηριστικό παράδειγμα εικόνας πρίν και μετά την ισοστάθμιση απεικονίζεται στην εικόνα 3. Εικόνα 3. Αρχική και εξισορροπημένη έγχρωμη εικόνα. 5

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ Ψηφιακή Επεξεργασία Εικόνας ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση (Segmentation)

Διαβάστε περισσότερα

DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης

DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης DIP_04 Σημειακή επεξεργασία ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός μιας τέτοιας τεχνικής μπορεί να είναι: η βελτιστοποίηση της οπτικής εμφάνισης μιας εικόνας όπως την αντιλαμβάνεται ο άνθρωπος, η τροποποίηση

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Ψηφιακή Επεξεργασία Εικόνας Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 ΒΑΣΙΚΑ ΚΑΙ ΣΥΝΘΕΤΑ ΣΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ - ΕΙΚΟΝΑΣ

ΑΣΚΗΣΗ 2 ΒΑΣΙΚΑ ΚΑΙ ΣΥΝΘΕΤΑ ΣΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ - ΕΙΚΟΝΑΣ ΑΣΚΗΣΗ 2 ΒΑΣΙΚΑ ΚΑΙ ΣΥΝΘΕΤΑ ΣΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ - ΕΙΚΟΝΑΣ Αντικείμενο: Κατανόηση και αναπαράσταση των βασικών σημάτων δύο διαστάσεων και απεικόνισης αυτών σε εικόνα. Δημιουργία και επεξεργασία των διαφόρων

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΒΑΣΙΚΟΙ ΧΕΙΡΙΣΜΟΙ ΕΙΚΟΝΑΣ Αντικείμενο: Εισαγωγή στις βασικές αρχές της ψηφιακής επεξεργασίας εικόνας χρησιμοποιώντας το MATLAB και το πακέτο Επεξεργασίας Εικόνας. Περιγραφή και αναπαράσταση

Διαβάστε περισσότερα

Group (JPEG) το 1992.

Group (JPEG) το 1992. Μέθοδοι Συμπίεσης Εικόνας Πρωτόκολλο JPEG Συμπίεση Εικόνας: Μείωση αποθηκευτικού χώρου Ευκολία στη μεταφορά αρχείων Δημιουργήθηκε από την ομάδα Joint Photographic Experts Group (JPEG) το 1992. Ονομάστηκε

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

DIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης

DIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης DIP_04 Βελτιστοποίηση εικόνας ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός µιας τέτοιας τεχνικής µπορεί να είναι: η βελτιστοποίηση της οπτικής εµφάνισης µιας εικόνας όπως την αντιλαµβάνεται ο άνθρωπος, η τροποποίηση

Διαβάστε περισσότερα

Παρουσίαση Νο. 5 Βελτίωση εικόνας

Παρουσίαση Νο. 5 Βελτίωση εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 5 Βελτίωση εικόνας Εισαγωγή Η βελτίωση γίνεται σε υποκειμενική βάση Η απόδοση εξαρτάται από την εφαρμογή Οι τεχνικές είναι συνήθως ad hoc Τονίζει

Διαβάστε περισσότερα

Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων

Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Ιωάννης Φαρασλής Τηλ : 24210-74466,

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές βελτίωσης εικόνας

Διαβάστε περισσότερα

Τηλεπισκόπηση - Φωτοερμηνεία

Τηλεπισκόπηση - Φωτοερμηνεία ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 10: Ραδιομετρική Ενίσχυση Χωρική Επεξεργασία Δορυφορικών Εικόνων. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση 12 η. Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση 12 η. Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση 12 η Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων Εισαγωγή (1) Το χρώμα είναι ένας πολύ σημαντικός παράγοντας περιγραφής, που συχνά απλουστεύει κατά

Διαβάστε περισσότερα

. Βάθος χρώματος: Πραγματικό χρώμα. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 8bit. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 1bit.

. Βάθος χρώματος: Πραγματικό χρώμα. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 8bit. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 1bit. Α ΤΕΙ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: A ΧΕΙΜΕΡΙΝΟ 2011-2012 ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ ΚΑΙ ΗΧΟΣ (7-2-2012) Διάρκεια εξέτασης: 2.0 ώρες (08:00 10:30)

Διαβάστε περισσότερα

Εικόνες και γραφικά. Τεχνολογία Πολυµέσων 05-1

Εικόνες και γραφικά. Τεχνολογία Πολυµέσων 05-1 Εικόνες και γραφικά Περιγραφή στατικών εικόνων Αναπαράσταση γραφικών Υλικό γραφικών Dithering και anti-aliasing Σύνθεση εικόνας Ανάλυση εικόνας Μετάδοση εικόνας Τεχνολογία Πολυµέσων 05-1 Περιγραφή στατικών

Διαβάστε περισσότερα

Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1

Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1 Εικόνα Εισαγωγή Ψηφιακή αναπαράσταση Κωδικοποίηση των χρωμάτων Συσκευές εισόδου και εξόδου Βάθος χρώματος και ανάλυση Συμβολική αναπαράσταση Μετάδοση εικόνας Σύνθεση εικόνας Ανάλυση εικόνας Τεχνολογία

Διαβάστε περισσότερα

DIP_01 Εισαγωγή στην ψηφιακή εικόνα. ΤΕΙ Κρήτης

DIP_01 Εισαγωγή στην ψηφιακή εικόνα. ΤΕΙ Κρήτης DIP_01 Εισαγωγή στην ψηφιακή εικόνα ΤΕΙ Κρήτης Πληροφορίες Μαθήματος ιαλέξεις Πέμπτη 12:15 15:00 Αιθουσα Γ7 ιδάσκων:. Κοσμόπουλος Γραφείο: Κ23-0-15 (ισόγειο( κλειστού γυμναστηρίου) Ωρες γραφείου Τε 16:00

Διαβάστε περισσότερα

Έγχρωµο και Ασπρόµαυρο Φως

Έγχρωµο και Ασπρόµαυρο Φως Έγχρωµο και Ασπρόµαυρο Φως Χρώµα: κλάδος φυσικής, φυσιολογίας, ψυχολογίας, τέχνης. Αφορά άµεσα τον προγραµµατιστή των γραφικών. Αν αφαιρέσουµε χρωµατικά χαρακτηριστικά, λαµβάνουµε ασπρόµαυρο φως. Μόνο

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab

Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab ΑΣΚΗΣΗ 8 Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab 1. Περιγραφή του προτύπου DICOM Η ψηφιακή επεξεργασία ιατρικής εικόνας ξεκίνησε παράλληλα με την ανάπτυξη ενός προτύπου για τη μεταφορά

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 2: Βελτιστοποίηση Εικόνας.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 2: Βελτιστοποίηση Εικόνας. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 2: Βελτιστοποίηση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΜΕ ΧΡΗΣΗ MATLAB ΑΘΑΝΑΣΙΑ ΚΟΛΟΒΟΥ (Ε.Τ.Ε.Π.) 2012 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ο σκοπός αυτού

Διαβάστε περισσότερα

Εργαλεία Προγραμματισμού Ψηφιακής Επεξεργασίας Εικόνας: Το Matlab Image Processing Toolbox

Εργαλεία Προγραμματισμού Ψηφιακής Επεξεργασίας Εικόνας: Το Matlab Image Processing Toolbox ΚΕΣ 03 Αναγνώριση προτύπων και ανάλυση εικόνας Εργαλεία Προγραμματισμού Ψηφιακής Επεξεργασίας Εικόνας: Το Matlab Image Processing Toolbox Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήμιο Πελοποννήσου

Διαβάστε περισσότερα

Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση

Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση Εντοπισμός ενός σήματος STOP σε μια εικόνα. Περιγράψτε τη διαδικασία με την οποία μπορώ να εντοπίσω απλά σε μια εικόνα την ύπαρξη του παρακάτω

Διαβάστε περισσότερα

ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ

ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΤΕΙ 2.2.2.3ζ ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΓΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ Εγχειρίδιο χρήσης λογισμικού ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ: ΣΤΡΟΥΘΟΠΟΥΛΟΣ ΧΑΡΑΛΑΜΠΟΣ ΣΕΡΡΕΣ, ΜΑΙΟΣ 2007 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 1 : Εισαγωγικές έννοιες Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Εξετάσεις Προσομοίωσης 06/04/2015 Θέμα Α Α1. Να γράψετε στο τετράδιο σας τον αριθμό κάθε πρότασης και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή και ΛΑΘΟΣ αν

Διαβάστε περισσότερα

Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα

Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα Βασικές Έννοιες Διεργασίες στο πεδίο του χώρου f(x, y) : εικόνα εισόδου g(x, y) : εικόνα εισόδου g x, y = T f(x, y) T : τελεστής που εφαρµόζεται

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ Εργαστήριο Ηλεκτρακουστικής Ι Άσκηση 1 - Σελίδα 1 ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΗΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 1. ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ/ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΗΛΕΚΤΡΟΑΚΟΥΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Αρχικά, για την καλύτερη κατανόηση

Διαβάστε περισσότερα

Θεωρία μετασχηματισμών

Θεωρία μετασχηματισμών Μήτρα Μετασχηματισμού Η γεωμετρία ενός αντικειμένου μπορεί να παρουσιαστεί από ένα σύνολο σημείων κατανεμημένων σε διάφορα επίπεδα. Έτσι λοιπόν ένα πλήθος δεδομένων για κάποιο αντικείμενο μπορεί να αναπαρασταθεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 1: Εισαγωγή στην Ψηφιακή Επεξεργασία Εικόνας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 1: Εισαγωγή στην Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 1: Εισαγωγή στην Ψηφιακή Επεξεργασία Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες

Διαβάστε περισσότερα

Η άσκηση μπορεί να γίνει με συνεργασία το πολύ δυο φοιτητών, οι οποίοι θα λάβουν τον ίδιο βαθμό στην εργασία.

Η άσκηση μπορεί να γίνει με συνεργασία το πολύ δυο φοιτητών, οι οποίοι θα λάβουν τον ίδιο βαθμό στην εργασία. Άσκηση #4 Η άσκηση μπορεί να γίνει με συνεργασία το πολύ δυο φοιτητών, οι οποίοι θα λάβουν τον ίδιο βαθμό στην εργασία. Βαθμολογούνται: 1. Η αποτελεσματική επίλυση του προβλήματος. Δηλ σωστή υλοποίηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 5: Μετασχηματισμοί Εικόνας.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 5: Μετασχηματισμοί Εικόνας. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 5: Μετασχηματισμοί Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

Πανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον Άρεως, Βόλος

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ 1.1 ΕΙΣΑΓΩΓΗ 1.1 1.2 ΤΙ ΕΙΝΑΙ ΜΙΑ ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ 1.2 1.3 ΠΛΗΘΟΣ BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.4 1.4 ΕΥΚΡΙΝΕΙΑ ΕΙΚΟΝΑΣ 1.5 1.5 ΕΠΙΠΕ Α BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.8 1.6 Η ΦΥΣΗ ΤΟΥ ΧΡΩΜΑΤΟΣ

Διαβάστε περισσότερα

Advances in Digital Imaging and Computer Vision

Advances in Digital Imaging and Computer Vision Advances in Digital Imaging and Computer Vision Lecture and Lab 3 27/3/2017 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Σημειακή Επεξεργασία Εικόνας (point processing), μετασχηματισμοί

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΩΝ (E-CAD) ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ Χ. Βέργος Καθηγητής

ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΩΝ (E-CAD) ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ Χ. Βέργος Καθηγητής ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΩΝ (E-CAD) ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013 2014 Χ. Βέργος Καθηγητής ΕΡΓΑΣΙΑ ΕΞΑΜΗΝΟΥ Σκοπός της φετινής εργασίας εξαμήνου είναι η σχεδίαση ενός Συστήματος Απεικόνισης Χαρακτήρων

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

Βιοϊατρική τεχνολογία

Βιοϊατρική τεχνολογία Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοϊατρική τεχνολογία Ενότητα 3: Επεξεργασία σημείων Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr

Διαβάστε περισσότερα

DIP_06 Συμπίεση εικόνας - JPEG. ΤΕΙ Κρήτης

DIP_06 Συμπίεση εικόνας - JPEG. ΤΕΙ Κρήτης DIP_06 Συμπίεση εικόνας - JPEG ΤΕΙ Κρήτης Συμπίεση εικόνας Το μέγεθος μιας εικόνας είναι πολύ μεγάλο π.χ. Εικόνα μεγέθους Α4 δημιουργημένη από ένα σαρωτή με 300 pixels ανά ίντσα και με χρήση του RGB μοντέλου

Διαβάστε περισσότερα

Επεξεργασία Χαρτογραφικής Εικόνας

Επεξεργασία Χαρτογραφικής Εικόνας Επεξεργασία Χαρτογραφικής Εικόνας Διδάσκων: Αναγνωστόπουλος Χρήστος Κώδικες μετρήσεων αντικειμένων σε εικόνα Χρωματικά μοντέλα: Munsell, HSB/HSV, CIE-LAB Κώδικες μετρήσεων αντικειμένων σε εικόνες Η βασική

Διαβάστε περισσότερα

Συστήματα Πολυμέσων. Ενότητα 7: Συμπίεση Εικόνας κατά JPEG. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων. Ενότητα 7: Συμπίεση Εικόνας κατά JPEG. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Συμπίεση Εικόνας κατά JPEG Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Γραφικά με Η/Υ / Εισαγωγή

Γραφικά με Η/Υ / Εισαγωγή Γραφικά με Η/Υ Εισαγωγή Πληροφορίες μαθήματος (1/4) Υπεύθυνος μαθήματος: Μανιτσάρης Αθανάσιος, Καθηγητής ιδάσκοντες: Μανιτσάρης Αθανάσιος: email: manits@uom.gr Μαυρίδης Ιωάννης: email: mavridis@uom.gr

Διαβάστε περισσότερα

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics)

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics) Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics) 1. Οργάνωση και Γραφική παράσταση στατιστικών δεδομένων 2. Αριθμητικά περιγραφικά μέτρα Εφαρμοσμένη Στατιστική Μέρος 1 ο Κ. Μπλέκας (1/13) στατιστικών

Διαβάστε περισσότερα

ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ

ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εισαγωγή Σχηματισμός Εικόνας

Διαβάστε περισσότερα

β α β α β α α α β α β α β α α γ α β α) β β β αβ α β β β α β α β μ μ μ μ μ μ μ α β α μ α β αβ α β α α β α α α α αβ α β α β α β α α β α α α α α α α α α α α α α α α α α β β γδ β αβ α α β β β β β β

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιστογράμματα δορυφορικών εικόνων

Κεφάλαιο 6 Ιστογράμματα δορυφορικών εικόνων Κεφάλαιο 6 Ιστογράμματα δορυφορικών εικόνων Κωνσταντίνος Γ. Περάκης Σύνοψη Μία γενική επισκόπηση με εστίαση στη χρήση των ιστογραμμάτων στην Τηλεπισκόπηση και περιγραφές ειδικών εικόνων με τα χαρακτηριστικά

Διαβάστε περισσότερα

Μέθοδοι Αναπαράστασης Περιοχών

Μέθοδοι Αναπαράστασης Περιοχών KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μέθοδοι Αναπαράστασης Περιοχών ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Χαρακτηριστικά χώρου Χαρακτηριστικά από µετασχηµατισµό

Διαβάστε περισσότερα

DIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης

DIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης DIP_05 Τμηματοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τμηματοποίηση εικόνας είναι η διαδικασία με την οποία διαχωρίζεται μία εικόνα σε κατάλληλες περιοχές ή αντικείμενα. Για την τμηματοποίηση

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 11 η : θεωρία Χρώματος & Επεξεργασία Έγχρωμων Εικόνων

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 11 η : θεωρία Χρώματος & Επεξεργασία Έγχρωμων Εικόνων Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 11 η : θεωρία Χρώματος & Επεξεργασία Έγχρωμων Εικόνων Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή

Διαβάστε περισσότερα

Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων

Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων Δειγµατοληψία και Κβαντισµός: Μια εικόνα (µπορεί να) είναι συνεχής τόσο ως προς τις συντεταγµένες x, y όσο και ως προς το πλάτος. Για να τη µετατρέψουµε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Εισαγωγή /4 Το σχήμα και το μέγεθος των δισδιάστατων αντικειμένων περιγράφονται με τις καρτεσιανές συντεταγμένες x, y. Με εφαρμογή γεωμετρικών μετασχηματισμών στο μοντέλο

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 5: Εικόνα Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 5: Εικόνα Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 5: Εικόνα Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

> μεγαλύτερο <= μικρότερο ή ίσο < μικρότερο == ισότητα >= μεγαλύτερο ή ίσο!= διαφορετικό

> μεγαλύτερο <= μικρότερο ή ίσο < μικρότερο == ισότητα >= μεγαλύτερο ή ίσο!= διαφορετικό 5 ο Εργαστήριο Λογικοί Τελεστές, Δομές Ελέγχου Λογικοί Τελεστές > μεγαλύτερο = μεγαλύτερο ή ίσο!= διαφορετικό Οι λογικοί τελεστές χρησιμοποιούνται για να ελέγξουμε

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη

Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη Επεξεργασία Εικόνας Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη Μπαρμπούτης Παναγιώτης Α) ΦΙΛΤΡΑ ΟΞΥΝΣΗΣ Αρχικά θα μελετήσουμε την εικόνα από το MRI αρχείο της

Διαβάστε περισσότερα

Τηλεπισκόπηση. Ψηφιακή Ανάλυση Εικόνας Η ΒΕΛΤΙΩΣΗ εικόνας

Τηλεπισκόπηση. Ψηφιακή Ανάλυση Εικόνας Η ΒΕΛΤΙΩΣΗ εικόνας Τηλεπισκόπηση Ψηφιακή Ανάλυση Εικόνας Η ΒΕΛΤΙΩΣΗ εικόνας Η βελτίωση εικόνας ασχολείται με την τροποποίηση των εικόνων ώστε να είναι πιο κατάλληλες για την ανθρώπινη όραση. Ανεξάρτητα από το βαθμό της ψηφιακής

Διαβάστε περισσότερα

Απλή αρμονική ταλάντωση με χρήση Multilog

Απλή αρμονική ταλάντωση με χρήση Multilog 1 Εργαστηριακή Διδασκαλία των Φυσικών εργασιών στα Γενικά Λύκεια Περίοδος 2006 2007 Φυσική Κατεύθυνσης Γ Λυκείου Ενδεικτική προσέγγιση της εργαστηριακή δραστηριότητας : Απλή αρμονική ταλάντωση με χρήση

Διαβάστε περισσότερα

(Computed Tomography, CT)

(Computed Tomography, CT) Υπολογιστική Τοµογραφία (Computed Tomography, CT) Κωσταρίδου Ελένη Αναπληρώτρια Καθηγήτρια Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής, Τµήµα Ιατρικής, Πανεπιστήµιο Πατρών Περιεχόµενα µαθήµατος Φυσικό

Διαβάστε περισσότερα

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Εκθετική Παράσταση (Exponential Notation) Οι επόµενες είναι ισοδύναµες παραστάσεις του 1,234 123,400.0

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Θέµα Α A1. Για δυο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδείξετε ότι: Ρ( Α Β) = Ρ(Α) + Ρ(Β) Ρ( Α Β) Α. Πότε µια συνάρτηση f µε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ (Y2204) Βασιλάκης Εµµανουήλ Λέκτορας Τηλεανίχνευσης

ΑΡΧΕΣ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ (Y2204) Βασιλάκης Εµµανουήλ Λέκτορας Τηλεανίχνευσης ΑΡΧΕΣ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ (Y2204) Βασιλάκης Εµµανουήλ Λέκτορας Τηλεανίχνευσης Διακριτική ικανότητα δεδοµένων τηλεπισκόπησης Χωρική (Spatial resolution) πόσα µέτρα? Χρονική (Temporal resolution) πόσος χρόνος?

Διαβάστε περισσότερα

2.2.1. Ανοίξτε την εικόνα Hel_MDSGEO και δημιουργήστε δύο έγχρωμα σύνθετα ένα σε πραγματικό χρώμα (True color) και ένα σε ψευδοέχρωμο υπέρυθρο (CIR)

2.2.1. Ανοίξτε την εικόνα Hel_MDSGEO και δημιουργήστε δύο έγχρωμα σύνθετα ένα σε πραγματικό χρώμα (True color) και ένα σε ψευδοέχρωμο υπέρυθρο (CIR) ΕΡΓΑΣΤΗΡΙΟ 2 ο : Φασματικές υπογραφές 2.1. Επανάληψη από τα προηγούμενα 2.2.1. Ανοίξτε την εικόνα Hel_MDSGEO και δημιουργήστε δύο έγχρωμα σύνθετα ένα σε πραγματικό χρώμα (True color) και ένα σε ψευδοέχρωμο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 Ανάκτηση Εικόνας βάσει Περιεχομένου (Content-based Image Retrieval)

ΑΣΚΗΣΗ 7 Ανάκτηση Εικόνας βάσει Περιεχομένου (Content-based Image Retrieval) ΑΣΚΗΣΗ 7 Ανάκτηση Εικόνας βάσει Περιεχομένου Content-base Iage Retreval Σκοπός της άσκησης αυτής είναι η ανάκτηση εικόνας μέσα από μια βάση δεδομένων χρησιμοποιώντας χαρακτηριστικά χαμηλού επιπέδου με

Διαβάστε περισσότερα

Τι θα απαντούσατε αλήθεια στην ίδια ερώτηση για την περίπτωση της επόμενης εικόνας;

Τι θα απαντούσατε αλήθεια στην ίδια ερώτηση για την περίπτωση της επόμενης εικόνας; Κίνηση με συντεταγμένες Στην προηγούμενη υποενότητα είδαμε πως μπορούμε να κάνουμε το χαρακτήρα σας να κινηθεί με την εντολή κινήσου...βήματα που αποτελεί και την απλούστερη εντολή της αντίστοιχης παλέτας

Διαβάστε περισσότερα

Επεξεργασία Έγχρωµων Εικόνων

Επεξεργασία Έγχρωµων Εικόνων ΤΨΣ 150 Ψηφιακή Επεξεργασία Εικόνας Επεξεργασία Έγχρωµων Εικόνων Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας Εισαγωγή - Βασικά

Διαβάστε περισσότερα

Γραφικά με υπολογιστές

Γραφικά με υπολογιστές Γραφικά με Υπολογιστές Ενότητα # 3: Εισαγωγή Φοίβος Μυλωνάς Τμήμα Πληροφορικής Φοίβος Μυλωνάς Γραφικά με υπολογιστές 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Η χρήση του χρώµατος στη χαρτογραφία και στα ΣΓΠ

Η χρήση του χρώµατος στη χαρτογραφία και στα ΣΓΠ Η χρήση του χρώµατος στη χαρτογραφία και στα ΣΓΠ Συµβατική χρήση χρωµάτων στους τοπογραφικούς χάρτες 1/31 Μαύρο: Γκρι: Κόκκινο, πορτοκαλί, κίτρινο: Μπλε: Σκούρο µπλε: Ανοιχτό µπλε: βασικές τοπογραφικές

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων ΘΕ ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες που αφορούν την

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:

Διαβάστε περισσότερα

Ηχρήση του χρώµατος στους χάρτες

Ηχρήση του χρώµατος στους χάρτες Ηχρήση του χρώµατος στους χάρτες Συµβατική χρήση χρωµάτων σε θεµατικούς χάρτες και «ασυµβατότητες» Γεωλογικοί χάρτες: Χάρτες γήινου ανάγλυφου: Χάρτες χρήσεων γης: Χάρτες πυκνότητας πληθυσµού: Χάρτες βροχόπτωσης:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

Διακριτός Μετασχηματισμός Fourier

Διακριτός Μετασχηματισμός Fourier Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Μ.ΠΗΛΑΚΟΥΤΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Μ.ΠΗΛΑΚΟΥΤΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΓΡΑΦΙΚΕΣ ΣΚΟΠΟΣ Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή συμπερασμάτων σχετικά με την ποιοτική

Διαβάστε περισσότερα

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο.

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διάλεξη # Δ Μετασχηματισμοί (γενικά) Γραμμικοί Μετασχηματισμοί Απλοί Συσχετισμένοι

Διαβάστε περισσότερα

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα. Η δομή Επιλογής στη PASCAL. H δομή Επανάληψης στη PASCAL. Η εντολή επανάληψης for

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα. Η δομή Επιλογής στη PASCAL. H δομή Επανάληψης στη PASCAL. Η εντολή επανάληψης for Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL Η εντολή επανάληψης for Σκοπός Η εντολή επανάληψης while. 1 ΕΡΓΑΣΤΗΡΙΟ 6 Εισαγωγή στο

Διαβάστε περισσότερα

DIP_05 Τµηµατοποίηση εικόνας. ΤΕΙ Κρήτης

DIP_05 Τµηµατοποίηση εικόνας. ΤΕΙ Κρήτης DIP_05 Τµηµατοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τµηµατοποίηση εικόνας είναι η διαδικασία µε την οποία διαχωρίζεται µία εικόνα σε κατάλληλες περιοχές ή αντικείµενα. Για την τµηµατοποίηση εικόνας

Διαβάστε περισσότερα

Οδηγός ποιότητας εκτύπωσης

Οδηγός ποιότητας εκτύπωσης Σελίδα 1 από 17 Οδηγός ποιότητας εκτύπωσης Κενές ή λευκές σελίδες α Αφαιρέστε και επανατοποθετήστε τη μονάδα απεικόνισης ή το κιτ απεικόνισης. εκτεταμένη έκθεση στο φως μπορεί να προκαλέσει προβλήματα

Διαβάστε περισσότερα

Γραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 22D D σχημάτων (ευθεία

Γραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 22D D σχημάτων (ευθεία Γραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 2D σχημάτων (ευθεία) Σχεδίαση ευθείας θί με σάρωση (παρουσίαση προβλήματος) σχεδίαση ευθείας AB, με σάρωση, όπου A=(0,1) και B=(5,4) ποιο είναι το επόμενο pixel

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα

Βίντεο. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 06-1

Βίντεο. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 06-1 Βίντεο Εισαγωγή Χαρακτηριστικά του βίντεο Απόσταση θέασης Μετάδοση τηλεοπτικού σήματος Συμβατικά τηλεοπτικά συστήματα Ψηφιακό βίντεο Εναλλακτικά μορφότυπα Τηλεόραση υψηλής ευκρίνειας Κινούμενες εικόνες

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

Διάλεξη 2 - Σημειώσεις

Διάλεξη 2 - Σημειώσεις Διάλεξη 2 - Σημειώσεις Συναρτήσεις 1. Συνάρτηση: μία συνάρτηση είναι ένας κανόνας που αναθέτει σε κάθε στοιχείο του συνόλου ακριβώς ένα στοιχείο του συνόλου. Το σύνολο καλείται πεδίο ορισμού της συνάρτησης

Διαβάστε περισσότερα

Οδηγίες σχεδίασης στο περιβάλλον Blender

Οδηγίες σχεδίασης στο περιβάλλον Blender Οδηγίες σχεδίασης στο περιβάλλον Blender Στον πραγματικό κόσμο, αντιλαμβανόμαστε τα αντικείμενα σε τρεις κατευθύνσεις ή διαστάσεις. Τυπικά λέμε ότι διαθέτουν ύψος, πλάτος και βάθος. Όταν θέλουμε να αναπαραστήσουμε

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΒΥΡΩΝΑΣ ΝΑΚΟΣ ΑΘΗΝΑ 2006 ΠΕΡΙΕΧΟΜΕΝΑ Περιεχόμενα 1. Εισαγωγή 1 2. Μέθοδοι σταθερών

Διαβάστε περισσότερα

Κατάτµηση εικόνας σε οµοιόµορφες περιοχές

Κατάτµηση εικόνας σε οµοιόµορφες περιοχές KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση εικόνας σε οµοιόµορφες περιοχές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη

Διαβάστε περισσότερα

Εισαγωγή στα Σήματα. Κυριακίδης Ιωάννης 2011

Εισαγωγή στα Σήματα. Κυριακίδης Ιωάννης 2011 Εισαγωγή στα Σήματα Κυριακίδης Ιωάννης 2011 Τελευταία ενημέρωση: 11/11/2011 Τι είναι ένα σήμα; Ως σήμα ορίζουμε το σύνολο των τιμών που λαμβάνει μια ποσότητα (εξαρτημένη μεταβλητή) όταν αυτή μεταβάλλεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες: Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. Προσφορά των Αγαθών

ΚΕΦΑΛΑΙΟ 4. Προσφορά των Αγαθών ΚΕΦΑΛΑΙΟ 4 Προσφορά των Αγαθών Καμπύλη Προσφοράς Υποθέσεις 1. Η επιχείρηση είναι αποδέκτης τιμών (price taker) και όχι διαμορφωτής τιμών (price maker). 2. H επιχείρηση στοχεύει στην μεγιστοποίηση του κέρδους.

Διαβάστε περισσότερα