ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG"

Transcript

1 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 Α. ΣΤΟΧΟΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG Η πραγματοποίηση αρμονικής ταλάντωσης μικρού πλάτους με τη χρήση μάζας δεμένης σε ελατήριο. Η εφαρμογή θεωρητικών γνώσεων στον πειραματικό προσδιορισμό της περιόδου και άλλων στοιχείων της ταλάντωσης. Η εξοικείωση με τη χρήση λογισμικού, που δίνει επιλογές προχωρημένης επεξεργασίας, είτε μέσα από το πρόγραμμα του MultiLog, είτε μέσα από το Excel. Η εξοικείωση με τη χρήση των αισθητήρων απόστασης και δύναμης του MultiLog. Η κατανόηση και αξιοποίηση της απεικόνισης της σχέσης μεταξύ ποσοτήτων σε διάγραμμα. Η κατανόηση της σημασίας των εξιδανικεύσεων και προσεγγίσεων κατά την ποσοτική περιγραφή ενός φυσικού φαινομένου. Η κατανόηση της έννοιας του σφάλματος κατά τη μέτρηση. Β. ΘΕΜΑ Η καταγραφή των πειραματικών καμπύλων θέσης χρόνου (x t) και δύναμης χρόνου (F t). Ο υπολογισμός της περιόδου, της συχνότητας και του πλάτους της ταλάντωσης σώματος προσδεμένου στην ελεύθερη άκρη ελαστικού ελατηρίου, καθώς και ο υπολογισμός της διαφοράς φάσης μεταξύ δύναμης επαναφοράς και απομάκρυνσης του σώματος από τα γραφήματα x t και F t. Ο υπολογισμός της σταθεράς k του ελατηρίου από την κλίση της ευθείας F x : α) μέσω του MultiLog, β) με το νόμο του Hooke. Ο θεωρητικός υπολογισμός της περιόδου της ταλάντωσης. Η επιβεβαίωση της διατήρησης της ενέργειας στην απλή αρμονική ταλάντωση. Γ. ΟΡΓΑΝΑ ΚΑΙ ΣΥΣΚΕΥΕΣ Ορθοστάτης με αντίστοιχους συνδέσμους Ελατήριο Κύλινδρος μάζας ~ 1 kg Ζυγός DB-Lab ή ΣΣΛΑ (Σύστημα Σύγχρονης Λήψης και Απεικόνισης) με αισθητήρες θέσης και δύναμης Δ. ΕΙΣΑΓΩΓΙΚΕΣ ΓΝΩΣΕΙΣ Για την πραγματοποίηση και κατανόηση της άσκησης χρειάζονται οι παρακάτω γνώσεις από το σχολικό βιβλίο Κατεύθυνσης της Γ τάξης Γενικού Λυκείου : Ενότητα 1.2 : Περιοδικά φαινόμενα Ενότητα 1.3 : Απλή αρμονική ταλάντωση Ε. ΘΕΩΡΗΤΙΚΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ Στο ελεύθερο άκρο κατακόρυφου ελατηρίου δένουμε σώμα μάζας m, το οποίο ισορροπεί. Εκτρέπουμε το σώμα από τη θέση της ισορροπίας του, πάνω στην κατακόρυφη που διέρχεται από αυτό, και το αφήνουμε ελεύθερο. Tο σώμα θα κάνει ελεύθερη αρμονική ταλάντωση (οι τριβές θεωρούνται αμελητέες). H περίοδος Τ μιας ταλάντωσης μπορεί να υπολογιστεί αν γνωρίζουμε τον χρόνο t ολ που χρειάζεται για Ν επαναλήψεις από τη σχέση :

2 2 ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG Τ = t Η συχνότητα f και η κυκλική συχνότητα ω των ταλαντώσεων υπολογίζονται από την περίοδο Τ με τις σχέσεις : f = 1 / Τ ( 2α ) ω = 2 π / Τ ( 2β ) H περίοδος Τ της ταλάντωσης σχετίζεται με τη μάζα m του σώματος και τη σταθερά k του ε- λατηρίου μέσω της σχέσης : m Τ = 2 π ( 3 ) k Η διαφορά φάσης Δφ μεταξύ της δύναμης επαναφοράς και της απομάκρυνσης του σώματος υ- πολογίζεται από τη σχέση : t Δφ = 360 ο ( 4 ) Η κλίση α της ευθείας F x είναι ίση με τη σταθερά k του ελατηρίου : ( 1 ) F κλίση α = = k ( 5 ) x Η σταθερά k του ελατηρίου μπορεί επίσης να υπολογιστεί πειραματικά από το νόμο του Hooke, αρκεί το ελατήριο να βρεθεί στην περιοχή ελαστικότητας, δηλαδή να ξεκολλήσουν οι σπείρες του: k = F / x ( 6 ) Η μέγιστη ταχύτητα ταλάντωσης μπορεί να υπολογιστεί από τη διατήρηση της ενέργειας ταλάντωσης : 1 k A 2 1 = m 2 max ή υ max = A k / m = A ω ( 7 ) 2 2 ΣΤ. ΣΥΝΑΡΜΟΛΟΓΗΣΗ ΤΗΣ ΠΕΙΡΑΜΑΤΙΚΗΣ ΔΙΑΤΑΞΗΣ Προετοιμασία της πειραματικής διάταξης : 1. Συναρμολογούμε την πειραματική διάταξη που εικονίζεται στο σχήμα 1. Κρεμάμε το ένα άκρο του ελατηρίου μέσω του αισθητήρα της δύναμης από σταθερό σημείο και στο ελεύθερο άκρο του ελατηρίου κρεμάμε τον κύλινδρο μάζας 1 kg. Προετοιμασία του συστήματος ΣΣΛΑ DB-Lab : 2. Συνδέουμε τον καταγραφέα (σε κατάσταση OFF) στη σειριακή θύρα του Η/Υ ή σε θύρα USB μέσω του κατάλληλου μετατροπέα. 3. Συνδέουμε τους αισθητήρες θέσης και δύναμης στις δύο πρώτες θύρες του καταγραφέα. ΠΡΟΣΟΧΗ : Η ελάχιστη απόσταση του ταλαντούμενου σώματος από τον αισθητήρα θέσης πρέπει να είναι 40 cm. Η μέγιστη δύναμη που ασκείται στον αισθητήρα δύναμης δεν πρέπει να υπερβαίνει τα 50 Ν (ο κύλινδρος του 1 kg ασκεί δύναμη 9,81 Ν). Ο επιλογέας του αισθητήρα δύναμης στην περίπτωσή μας πρέπει να είναι στη θέση «50N». Βαθμονόμηση του αισθητήρα δύναμης (γίνεται μία φορά σε κάθε σύστημα DB-Lab) : Για ακρίβεια στις μετρήσεις δύναμης εκτελούμε την παρακάτω βαθμονόμηση, η οποία αποθηκεύεται για πάντα. Αργότερα μπορούμε να επαναφέρουμε το σύστημα στην αρχική του κατάσταση. 4. Όταν το σύστημα ελατήριο σώμα δεν είναι κρεμασμένο από τον αισθητήρα δύναμης, τότε θεωρούμε m 1 = 0 και καταχωρούμε την τιμή της στον ΠΙΝΑΚΑ βαθμονόμησης. 5. Υπολογίζουμε την πραγματική τιμή της δύναμης στον αισθητήρα που είναι Β 1 = 0 και καταχωρούμε την τιμή του στον ΠΙΝΑΚΑ βαθμονόμησης.

3 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 3 6. Χωρίς να έχουμε κρεμάσει το σύστημα ελατήριο σώμα από τον αισθητήρα δύναμης, θέτουμε τον καταγραφέα στη θέση ΟΝ. Αφού αυτορυθμιστεί, ενεργοποιούμε το λογισμικό του συστήματος ΣΣΛΑ (DBLAB) από το αντίστοιχο εικονίδιο. Επιλέγουμε από το μενού εντολών τα εξής : α) «Καταγραφέας» / «Πίνακας ελέγχου» και στο παράθυρο που ανοίγει θέτουμε : β) «Είσοδος 1» : Διάστημα γ) «Είσοδος 2» : Force_50 δ) Θέτουμε «Σημεία» : 10 και «Ρυθμός» : 1 / sec (δεν χρειάζονται μεγαλύτερες τιμές) ε) «Λήψη Δεδομένων» Στην οθόνη του Η/Υ αρχίζει να δημιουργείται αυτόματα το γράφημα x t ταυτόχρονα με το γράφημα F t, που είναι και τα δύο οριζόντιες ευθείες διαφορετικού χρώματος. 7. Χρησιμοποιώντας τον δείκτη (αριστερό κλικ πάνω στο γράφημα F t) παίρνουμε την τιμή F 1 που μετράει ο αισθητήρας για Β 1 = 0. Καταχωρούμε την τιμή της στον ΠΙΝΑΚΑ βαθμονόμησης. 8. Ζυγίζουμε το σύστημα ελατήριο σώμα και καταχωρούμε τη μάζα του m 2 στον ΠΙΝΑΚΑ βαθμονόμησης. 9. Υπολογίζουμε το βάρος B 2 = m 2 g και καταχωρούμε την τιμή του στον ΠΙΝΑΚΑ βαθμονόμησης. 10. Αναρτούμε το σύστημα ελατήριο σώμα από τον αισθητήρα δύναμης και αφού ισορροπήσει το σύστημα ξεκινάμε τη διαδικασία μέτρησης δύναμης, όπως προηγουμένως. Χρησιμοποιώντας τον δείκτη, παίρνουμε την τιμή F 2 που μετράει ο αισθητήρας για βάρος Β 2 και την καταχωρούμε στον ΠΙΝΑΚΑ βαθμονόμησης. ΠΙΝΑΚΑΣ ΒΑΘΜΟΝΟΜΗΣΗΣ ΑΙΣΘΗΤΗΡΑΣ ΔΥΝΑΜΗΣ Μάζα συστήματος Πραγματική τιμή Δύναμης Τιμή Αισθητήρα Δύναμης Χωρίς ελατήριο σώμα m 1 = 0 Β 1 = 0 F 1 = Ν Με ελατήριο σώμα m 2 = kg B 2 =.. Ν F 2 = Ν 11. Από το μενού εντολών επιλέγουμε : α) «Καταγραφέας» / «Βαθμονόμηση αισθητήρων» και στο παράθυρο που ανοίγει επιλέγουμε : β) «Δύναμη (SFS)» και αντικαθιστούμε τις υπάρχουσες τιμές στα παράθυρα με τις τιμές του ΠΙ- ΝΑΚΑ βαθμονόμησης, όπως παρακάτω : Πραγματική Αναγραφόμενη τιμή τιμή (Ν) (Ν) Τιμή # 1 Β 1 F 1 Τιμή # 2 B 2 F 2 γ) Πατάμε «ΟΚ» οπότε η βαθμονόμηση έχει τελειώσει και αποθηκεύεται στο σύστημα, μέχρι να το αλλάξουμε. Επαναφορά του αισθητήρα δύναμης στην αρχική κατάσταση : Αν θέλουμε να επαναφέρουμε το σύστημα στην αρχική του κατάσταση (κατάργηση της δικής μας βαθμονόμησης), τότε θέτουμε τον καταγραφέα στη θέση ΟΝ και αφού αυτορυθμιστεί, ενεργοποιούμε το λογισμικό του συστήματος ΣΣΛΑ (DB-Lab) από το αντίστοιχο εικονίδιο. Επιλέγουμε από το μενού εντολών τα εξής : α) «Καταγραφέας» / «Βαθμονόμηση αισθητήρων» και στο παράθυρο που ανοίγει : β) «Δύναμη (SFS)» γ) «Επιλογή προκαθορισμένων τιμών» δ) «ΟΚ»

4 4 ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG Ζ. ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ α. Λήψη μετρήσεων 1. Ζυγίζουμε τον κύλινδρο και καταχωρούμε τη μάζα του m στον ΠΙΝΑΚΑ Θέτουμε τον καταγραφέα στη θέση ΟΝ. Αφού αυτορυθμιστεί, ενεργοποιούμε το λογισμικό του συστήματος ΣΣΛΑ (DBLAB) από το αντίστοιχο εικονίδιο. Επιλέγουμε από το μενού εντολών τα εξής : α) «Καταγραφέας» / «Πίνακας ελέγχου» και στο παράθυρο που ανοίγει θέτουμε : β) «Είσοδος 1» : Διάστημα γ) «Είσοδος 2» : Force_50 δ) «Σημεία» : 500 ε) «Ρυθμός» : 50 / sec ( δηλ. η μελέτη του φαινομένου θα διαρκέσει 10 s) στ) Κρατάμε ανοικτό το παράθυρο. Γράφημα x, F t με το σύστημα σε ηρεμία και λήψη μετρήσεων : 3. Με το σύστημα ελατήριο σώμα σε ηρεμία και στο ίδιο παράθυρο ενεργοποιούμε το πλήκτρο : «Λήψη Δεδομένων», οπότε αρχίζει να δημιουργείται αυτόματα στην οθόνη του Η/Υ το γράφημα x t ταυτόχρονα με το γράφημα F t, που είναι και τα δύο οριζόντιες ευθείες. 4. Χρησιμοποιώντας τον δείκτη μετράω την αρχική θέση x ο της μάζας σε σχέση με τον αισθητήρα θέσης και καταχωρούμε την τιμή της στον ΠΙΝΑΚΑ Χρησιμοποιώντας τον δείκτη μετράω την αρχική δύναμη F ο πάνω στη μάζα και καταχωρούμε την τιμή της στον ΠΙΝΑΚΑ Κρατάμε ανοικτό το παράθυρο. ΠΙΝΑΚΑΣ 1 ΜΕΤΡΗΣΕΙΣ ( το σύστημα σε ηρεμία ) Μάζα κυλίνδρου ( ~ 1 kg ) m kg Αρχική θέση x ο m Αρχική δύναμη F o N Αρχικό γράφημα x, F t με το σύστημα σε ταλάντωση : 7. Θέτουμε το σώμα σε ταλάντωση πλάτους 5-7 cm και στο ίδιο παράθυρο ενεργοποιούμε το πλήκτρο : «Λήψη Δεδομένων», οπότε αρχίζει να δημιουργείται αυτόματα στην οθόνη του Η/Υ το γράφημα x t ταυτόχρονα με το γράφημα F t. Εμφάνιση του γραφήματος x t : 8. Επιλέγουμε από το μενού εντολών : α) «Ανάλυση» / «Περισσότερα» και στο παράθυρο που ανοίγει θέτουμε : β) «G1» / «Επιλέξατε» : «Διάστημα» γ) «Συνάρτηση» : «Γραμμική» δ) «C2» εισάγουμε στο παράθυρο την τιμή x ο (από τον ΠΙΝΑΚΑ 1) ε) «ΟΚ» και εμφανίζεται το γράφημα x t (το γράφημα τώρα αρχίζει από το μηδέν) Εμφάνιση του γραφήματος F t : 9. Επιλέγουμε από το μενού εντολών : α) «Ανάλυση» / «Περισσότερα» και στο παράθυρο που ανοίγει θέτουμε : β) «G1» / «Επιλέξατε» : «Force» γ) «Συνάρτηση» : «Γραμμική» δ) «C2» εισάγουμε στο παράθυρο την τιμή F ο (από τον ΠΙΝΑΚΑ 1) ε) «ΟΚ» και εμφανίζεται το γράφημα F t (το γράφημα τώρα αρχίζει από το μηδέν)

5 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 5 Νέο γράφημα x, F t : 10. Αντιγράφουμε το γράφημα x t πάνω στο γράφημα F t χρησιμοποιώντας από το μενού εντολών : α) «Αντιγραφή» ( με επιλεγμένο το γράφημα x t ) β) «Επικόλληση» ( με επιλεγμένο το γράφημα F t ) και εμφανίζεται ένα νέο γράφημα του F και του x (Εικόνα 2), από το οποίο μπορούμε να υπολογίσουμε διάφορα μεγέθη. (ή κατ ευθείαν : «Γραμμή εργαλείων» / κουμπί «Αντιγραφή» και «Επικόλληση»). Εικόνα 2 Επιλογή μέρους του γραφήματος x, F t και μεγέθυνσή του : 11. Χρησιμοποιώντας τους δείκτες επιλέγω π.χ. 5 περιόδους 12. Μεγεθύνουμε την επιλεγμένη περιοχή από το μενού εντολών «Προβολή» / «Μεγέθυνση» (ή κατ ευθείαν : «Γραμμή εργαλείων» / κουμπί «Μεγέθυνση»). Λήψη μετρήσεων από το μεγεθυσμένο γράφημα x, F t : Με βάση το μεγεθυσμένη πειραματικό γράφημα x, F t ( που είναι και μεγενθυμένο ) κάνουμε τις παρακάτω εργασίες : 13. Χρησιμοποιώντας τους δείκτες στο πειραματικό γράφημα x t μετράμε για Ν επαναλήψεις τον χρόνο t ολ που διαρκούν και καταχωρούμε τις τιμές αυτές στον ΠΙΝΑΚΑ Χρησιμοποιώντας τους δείκτες στο πειραματικό γράφημα x t μετράμε από κορυφή σε κορυφή το πλάτος 2 Α της ταλάντωσης και καταχωρούμε την τιμή του στον ΠΙΝΑΚΑ Χρησιμοποιώντας τους δείκτες στο πειραματικό γράφημα x t μετράμε τη χρονική διαφορά Δt μεταξύ μίας μέγιστης τιμής της απομάκρυνσης x του σώματος και της επόμενης μέγιστης τιμής της δύναμης επαναφοράς F και καταχωρούμε την τιμή της στον ΠΙΝΑΚΑ 2 (ο δεύτερος δείκτης εμφανίζεται στο ίδιο γράφημα που έχει τοποθετηθεί ο πρώτος, οπότε πρέπει να τοποθετηθεί στο κατάλληλο αντίστοιχο σημείο). 16. Χρησιμοποιώντας τον δείκτη στο πειραματικό γράφημα F t μετράμε τη μέγιστη τιμή του μέτρου της δύναμης F max, που ασκεί το ελατήριο στο σώμα, και καταχωρούμε την τιμή στον ΠΙ- ΝΑΚΑ 2. Γράφημα F x και κλίση της ευθείας : 17. Κάνουμε τη γραφική παράσταση F x επιλέγοντας : α) «Προβολή» / «Απεικόνιση Υ(Χ)» / «Επιλέξατε Χ» και στο παράθυρο που ανοίγει επιλέγουμε : β) «Διάστημα» ( ή κατ ευθείαν «Γραμμή εργαλείων» / «ΧΥ» ) Εικόνα Επιλέγουμε από το μενού εντολών : α) «Ανάλυση» / «Γραμμική Παλινδρόμηση» και στο παράθυρο που ακολουθεί επιλέγουμε : β) «Force» / ΟΚ οπότε εμφανίζονται ( Εικόνα 3) : το γράφημα της ευθείας F x και η αντίστοιχη συνάρτηση της μορφής y = α x + β κάτω από το γράφημα, η οποία διέρχεται από τα σημεία ( F o, x o ) 19. Μεταφέρουμε στον ΠΙΝΑΚΑ 2 την εξίσωση της ευθείας που αναγράφεται κάτω από το γράφημα F x. 20. Διαβάζουμε την κλίση α της ευθείας από την εξίσωσή της και την καταχωρούμε στον ΠΙΝΑΚΑ 2. Εφαρμογή του νόμου του Hooke ( κλασσική μέθοδος εύρεσης του k του ελατηρίου ) : 21. Κρεμάμε από το ελατήριο ένα μικρό σώμα ώστε να προκαλέσει μικρή αρχική επιμήκυνση στο ελατήριο (το ελατήριο τώρα βρίσκεται στην περιοχή Hooke). 22. Μετράμε την απόσταση x 1 μεταξύ σώματος πάγκου εργασίας και καταχωρούμε την τιμή της στον ΠΙΝΑΚΑ Κρεμάμε επιπλέον τη μεγάλη μάζα m 1 kg, την οποία έχουμε καταχωρήσει στον ΠΙΝΑΚΑ 1.

6 6 ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG 24. Μετράμε τη νέα απόσταση x 2 μεταξύ σώματος πάγκου εργασίας και καταχωρούμε την τιμή της στον ΠΙΝΑΚΑ 2, ώστε να υπολογίσουμε την επιμήκυνση του ελατηρίου. ΠΙΝΑΚΑΣ 2 ΜΕΤΡΗΣΕΙΣ ( το σύστημα σε ταλάντωση ) Αριθμός επαναλήψεων N επαν. Ολικός χρόνος Ν επαναλήψεων t ολ s Πλάτος ταλάντωσης από κορυφή σε κορυφή 2 Α m Χρόνος Δt μεταξύ μιας κορυφής της x και της επόμενης της F Δt s Εξίσωση της ευθείας y = α x + β Μέγιστη δύναμη F max (1) Ν Κλίση της ευθείας F x α N/m Αρχική θέση του άκρου του ελατηρίου με μικρή μάζα x 1 m Τελική θέση του άκρου του ελατηρίου με μικρή και μεγάλη μάζα x 2 m ΣΗΜΕΙΩΣΗ : Για να κάνουμε μόνοι μας οποιαδήποτε επεξεργασία των μετρήσεων, μπορούμε να μεταφέρουμε τα πειραματικά δεδομένα από το λογισμικό του ΣΣΛΑ σε φύλλο Excel ως εξής : α) Επιλέγουμε «Αρχείο» / «Εξαγωγή». β) Αποθηκεύουμε τα δεδομένα σε αρχείο της μορφής (*.cvs). γ) Ανοίγουμε το αρχείο (*.cvs) με το Excel και το αποθηκεύουμε σε μορφή (*.xls). β. Επεξεργασία μετρήσεων Κινηματική προσέγγιση : 1. Υπολογίζουμε την περίοδο Τ 1 από τη σχέση (1) και καταχωρούμε την τιμή της στον ΠΙΝΑΚΑ Υπολογίζουμε τη συχνότητα f και την κυκλική συχνότητα ω της ταλάντωσης από τις σχέσεις (2) χρησιμοποιώντας την περίοδο που υπολογίσαμε και καταχωρούμε τις τιμές στον ΠΙΝΑΚΑ Υπολογίζουμε το πλάτος Α της ταλάντωσης και καταχωρούμε την τιμή του στον ΠΙΝΑΚΑ Υπολογίζουμε την μέγιστη ταχύτητα ταλάντωσης υ max και καταχωρούμε την τιμή της στον ΠΙ- ΝΑΚΑ Υπολογίζουμε την μέγιστη επιτάχυνση ταλάντωσης α max και καταχωρούμε την τιμή της στον ΠΙΝΑΚΑ 3. ΠΙΝΑΚΑΣ 3 ΥΠΟΛΟΓΙΣΜΟΙ ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Περίοδος Τ = t ολ / Ν Τ 1 s Συχνότητα f = 1 / Τ f Hz Κυκλική συχνότητα ω = 2 π / Τ ω r/s Πλάτος ταλάντωσης Α = (2 Α) / 2 Α m Μέγιστη ταχύτητα ταλάντωσης υ max = A ω υ max m/s Μέγιστη επιτάχυνση ταλάντωσης α max = Α ω 2 α max m/s 2 Δυναμική προσέγγιση : 6. Υπολογίζουμε τη σταθερά k 1 του ελατηρίου από την κλίση α της ευθείας F x και καταχωρούμε την τιμή της στον ΠΙΝΑΚΑ 4.

7 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 7 7. Υπολογίζουμε την περίοδο Τ 2 της ταλάντωσης από τη σχέση (3) με βάση τη μάζα m και την πειραματική τιμή του k που υπολογίσαμε και καταχωρούμε την τιμή της στον ΠΙΝΑΚΑ Υπολογίζουμε το σφάλμα σ T % ανάμεσα στις δύο τιμές της περιόδου που υπολογίσαμε και καταχωρούμε την τιμή του στον ΠΙΝΑΚΑ 4 [ σ % = (Τ 1 Τ 2 ) / Τ % ]. 9. Υπολογίζουμε την επιπλέον δύναμη Β που προκαλεί η μάζα m = 1 kg στο ελατήριο και καταχωρούμε την τιμή της στον ΠΙΝΑΚΑ 4 (g = 9,81 m/s 2 ). 10. Υπολογίζουμε τη σταθερά του ελατηρίου από το νόμο του Hooke μέσω της σχέσης (6) και καταχωρούμε την τιμή της k 2 στον ΠΙΝΑΚΑ Υπολογίζουμε το σφάλμα σ k % ανάμεσα στις δύο τιμές της σταθεράς του ελατηρίου που υπολογίσαμε και καταχωρούμε την τιμή του στον ΠΙΝΑΚΑ 4 [ σ % = (k 1 k 2) / k % ]. 12. Υπολογίζουμε τη μέγιστη δύναμη F max (2) και καταχωρούμε την τιμή της στον ΠΙΝΑΚΑ Υπολογίζουμε το σφάλμα σ F % ανάμεσα στις δύο μέγιστες τιμές της δύναμης του ελατηρίου που μετρήσαμε στον ΠΙΝΑΚΑ 2 και υπολογίσαμε στον ΠΙΝΑΚΑ 4 και καταχωρούμε την τιμή του στον ΠΙΝΑΚΑ 4 [ σ % = ( F 1 F 2 / F 1 ) 100 % ]. 14. Υπολογίζουμε τη διαφορά φάσης μεταξύ της απομάκρυνσης και της δύναμης επαναφοράς, χρησιμοποιώντας την τιμή του Δt από τον ΠΙΝΑΚΑ 2 και καταχωρούμε την τιμή της Δφ στον ΠΙ- ΝΑΚΑ 4. ΠΙΝΑΚΑΣ 4 ΥΠΟΛΟΓΙΣΜΟΙ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Σταθερά ελατηρίου (από κλίση ευθείας) k 1 = α k 1 N/m Περίοδος Τ = 2 π m / k Τ 2 s Σφάλμα περιόδου σ = ( Τ 1 Τ 2 ) / Τ 1 σ Τ % Βάρος μάζας 1 kg Β = m g Β Ν Σταθερά ελατηρίου (από νόμο Hooke) k 2 = Β / (x 1 x 2) k 2 N/m Σφάλμα σταθεράς ελατηρίου σ = ( k 1 k 2 ) / k 1 σ k % Μέγιστη δύναμη F max = m α max F max (2) N Σφάλμα μεταξύ μέγιστων δυνάμεων 100% σ = ( F 1 F 2 ) / F 1 σ F max % % Διαφορά φάσης μεταξύ x και F Δφ = (Δt / T) 360 ο Δφ ( ο ) Ενεργειακή προσέγγιση : 15. Υπολογίζουμε τη μέγιστη δυναμική ενέργεια U max της ταλάντωσης και καταχωρούμε την τιμή της στον ΠΙΝΑΚΑ Υπολογίζουμε τη μέγιστη κινητική ενέργεια Κ max της ταλάντωσης και καταχωρούμε την τιμή της στον ΠΙΝΑΚΑ Υπολογίζουμε το σχετικό σφάλμα σ Ε % ανάμεσα στις δύο μέγιστες τιμές ενέργειας ταλάντωσης και καταχωρούμε την τιμή του στον ΠΙΝΑΚΑ 5 [ σ % = ( U K / U ) 100 % ]. ΠΙΝΑΚΑΣ 5 ΥΠΟΛΟΓΙΣΜΟΙ ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ Μέγιστη Δυναμική ενέργεια ταλάντωσης : U max = (1/2) k 1 A 2 U max J Μέγιστη Κινητική ενέργεια ταλάντωσης : Κ max = (1/2) m Σφάλμα μεταξύ U max και K max : 100% σ = ( U max K max / U max ) 2 max Κ max J σ Ε % %

8 8 ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG Η. ΕΡΩΤΗΣΕΙΣ 1. Που οφείλεται η διαφορά στις δύο τιμές της μέγιστης δύναμης F max ; 2. Που οφείλεται η διαφορά στις δύο τιμές της περιόδου Τ της ταλάντωσης ; 3. Που οφείλεται η διαφορά στις δύο τιμές της σταθεράς k του ελατηρίου ; 4. Που οφείλεται η διαφορά στις δύο τιμές μέγιστης ενέργειας κινητικής και δυναμικής ;

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG )

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG ) 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG ) Α. ΣΤΟΧΟΙ Η εφαρμογή των νόμων της Μηχανικής στη μελέτη της κίνησης σώματος,

Διαβάστε περισσότερα

Απλή αρμονική ταλάντωση με χρήση Multilog

Απλή αρμονική ταλάντωση με χρήση Multilog 1 Εργαστηριακή Διδασκαλία των Φυσικών εργασιών στα Γενικά Λύκεια Περίοδος 2006 2007 Φυσική Κατεύθυνσης Γ Λυκείου Ενδεικτική προσέγγιση της εργαστηριακή δραστηριότητας : Απλή αρμονική ταλάντωση με χρήση

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ Multilong ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ Multilong ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ Φύλλο εργασίας Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων των ταλαντώσεων μέσω του ΣΣΛ-Α και για διαφορετικές μάζες, ο μαθητής: καλείται να κατανοήσει

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Ε. Τσιτοπούλου, Ι.

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Ε. Τσιτοπούλου, Ι. ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Ε. Τσιτοπούλου, Ι. Χριστακόπουλος] Για τον καθηγητή Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων

Διαβάστε περισσότερα

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ Α. ΣΤΟΧΟΙ Η εξοικείωση με τη χρήση απλών πειραματικών διατάξεων. Η εξοικείωση με

Διαβάστε περισσότερα

(Σύστημα συγχρονικής λήψης και απεικόνισης)

(Σύστημα συγχρονικής λήψης και απεικόνισης) 1 i Μελέτη απλής αρμονικής ταλάντωσης με Multilog (Σύστημα συγχρονικής λήψης και απεικόνισης) Όργανα και υλικά 1. Βάση ορθογώνια ράβδος 1m σύνδεσμοι ράβδος 30 cm 2. Αισθητήρες δύναμης και απόστασης Σύστημα

Διαβάστε περισσότερα

Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων των ταλαντώσεων µέσω του ΣΣΛ-Α ο µαθητής αποκτά δεξιότητες στο:

Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων των ταλαντώσεων µέσω του ΣΣΛ-Α ο µαθητής αποκτά δεξιότητες στο: 1 ο & ο ΕΚΦΕ ΗΡΑΚΛΕΙΟΥ ελλατόλας Στέλιος - Λεβεντάκης Γιάννης ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ Για τον καθηγητή Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων των ταλαντώσεων µέσω

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17-10-11 ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ Α Θέµα 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας. ΜΑΘΗΜΑ / Προσανατολισμός / ΤΑΞΗ ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΦΥΣΙΚΗ/ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / Γ ΛΥΚΕΙΟΥ 1 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ) ΘΕΜΑ Α A1. Στις ερωτήσεις

Διαβάστε περισσότερα

Προσδιορισμός της σταθεράς ενός ελατηρίου.

Προσδιορισμός της σταθεράς ενός ελατηρίου. Μ3 Προσδιορισμός της σταθεράς ενός ελατηρίου. 1 Σκοπός Στην άσκηση αυτή θα προσδιοριστεί η σταθερά ενός ελατηρίου χρησιμοποιώντας στην ακολουθούμενη διαδικασία τον νόμο του Hooke και τη σχέση της περιόδου

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 24/07/2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 24/07/2014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 4/07/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2 1) Ένα κινητό εκτελεί συγχρόνως δύο απλές αρμονικές ταλαντώσεις που γίνονται στην ίδια διεύθυνση και γύρω από την θέση ισορροπίας με εξισώσεις : x 1 = 3 ημ [(2 π) t] και x 2 = 4 ημ [(2 π) t + φ], (S.I.).

Διαβάστε περισσότερα

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς 1. Δύο σώματα ίδιας μάζας εκτελούν Α.Α.Τ. Στο διάγραμμα του σχήματος παριστάνεται η συνισταμένη δύναμη που ασκείται σε κάθε σώμα σε συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

T 4 T 4 T 2 Τ Τ Τ 3Τ Τ Τ 4

T 4 T 4 T 2 Τ Τ Τ 3Τ Τ Τ 4 ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 29 ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Σηµειακό αντικείµενο εκτελεί απλή αρµονική ταλάντωση. Η αποµάκρυνση χ από τη θέση ισορροπίας του είναι: α. ανάλογη του χρόνου. β. αρµονική συνάρτηση

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί

Διαβάστε περισσότερα

Φυσική κατεύθυνσης Γ Λυκείου. MultiLog Pro

Φυσική κατεύθυνσης Γ Λυκείου. MultiLog Pro Φυσική κατεύθυνσης Γ Λυκείου Πειραµατική µελέτη της απλής αρµονικής ταλάντωσης µε το: MultiLog Pro Ε.Κ.Φ.Ε ΛΕΣΒΟΥ Σχολικό έτος 2009-2010 Ε.Κ.Φ.Ε ΛΕΣΒΟΥ Σελίδα 2 / 12 ver. 1.0 Όργανα υο µάζες των 500 g

Διαβάστε περισσότερα

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 11/09/2016 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα

Διαβάστε περισσότερα

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο.

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 9/0/06 ΘΕΜΑ Α Στις ερωτήσεις 7 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Mια μικρή σφαίρα προσκρούει

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ)

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ) α (cm/s ) ΚΕΦΑΛΑΙΟ 3 Κατηγορία Α ΤΑΛΑΝΤΩΣΕΙΣ (3 ΠΕΡΙΟΔΟΙ) 1. Να προσδιορίσετε ποια από τα πιο κάτω φυσικά μεγέθη μπορεί να έχουν την ίδια κατεύθυνση για ένα απλό αρμονικό ταλαντωτή: α. θέση και ταχύτητα,

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ Α. ΣΤΟΧΟΙ Η συνειδητή χρήση των κανόνων ασφαλείας στο εργαστήριο. Η εξοικείωση στη χρήση του υποδεκάμετρου και του διαστημόμετρου

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 1. Ένα σώμα μάζας m= 2 kg εκτελεί απλή αρμονική ταλάντωση σε οριζόντια διεύθυνση. Στη θέση με απομάκρυνση x 1 =+2m το μέτρο της ταχύτητας του είναι u 1 =4m /s, ενώ στη θέση με απομάκρυνση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12 ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα

Διαβάστε περισσότερα

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/09/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλαντώσεις Ονοματεπώνυμο Μαθητή: Ημερομηνία: 7-11-2016 Επιδιωκόμενος Στόχος: 80/100 Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης.

µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης. 1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ () ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης. Το φύλλο εργασίας στηρίζεται στο αντίστοιχο του Παιδαγωγικού Ινστιτούτου που

Διαβάστε περισσότερα

γ. Πόση επιτάχυνση θα έχει το σώμα τη στιγμή που έχει απομάκρυνση 0,3 m;

γ. Πόση επιτάχυνση θα έχει το σώμα τη στιγμή που έχει απομάκρυνση 0,3 m; ΘΕΜΑ Γ 1. Ένα σώμα εκτελεί αρμονική ταλάντωση με εξίσωση 0,6 ημ 8 S.I.. α. Να βρείτε την περίοδο και τον αριθμό των ταλαντώσεων που εκτελεί το σώμα σε ένα λεπτό της ώρας. β. Να γράψετε τις εξισώσεις της

Διαβάστε περισσότερα

Σάββατο 12 Νοεμβρίου Απλή Αρμονική Ταλάντωση - Κρούσεις. Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες. Θέμα Α.

Σάββατο 12 Νοεμβρίου Απλή Αρμονική Ταλάντωση - Κρούσεις. Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες. Θέμα Α. Γ Τάξης Γενικού Λυκείου Σάββατο 1 Νοεμβρίου 016 Απλή Αρμονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες Ονοματεπώνυμο: Θέμα Α. Στις ημιτελείς προτάσεις Α.1 Α.4 να γράψετε

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΟΥ OHM ( σε αντιστάτη και λαμπτήρα )

ΝΟΜΟΣ ΤΟΥ OHM ( σε αντιστάτη και λαμπτήρα ) 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΝΟΜΟΣ ΤΟΥ OHM ( σε αντιστάτη και λαμπτήρα ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης απλών πειραματικών κυκλωμάτων του ηλεκτρικού ρεύματος. Η εξοικείωση με το

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ 1. Κατακόρυφο ελατήριο σταθεράς k=1000 N /m έχει το κάτω άκρο του στερεωμένο σε ακίνητο σημείο. Στο πάνω άκρο του ελατηρίου έχει προσδεθεί σώμα Σ 1 μάζας m 1 =8 kg, ενώ ένα δεύτερο

Διαβάστε περισσότερα

ΜΕΡΟΣ 1: ΠΡΟΕΤΟΙΜΑΣΙΑ ΤΗΣ ΠΕΙΡΑΜΑΤΙΚΗΣ ΙΑΤΑΞΗΣ

ΜΕΡΟΣ 1: ΠΡΟΕΤΟΙΜΑΣΙΑ ΤΗΣ ΠΕΙΡΑΜΑΤΙΚΗΣ ΙΑΤΑΞΗΣ Εργαστηριακό Κέντρο Φυσικών Επιστηµών Αγίων Αναργύρων /0/08 Υπεύθυνος Εργ. Κέντρου: Καλλίνικος Χαρακόπουλος Επιµέλεια - Παρουσίαση : Θεοχαρόπουλος Γιάννης MEΛETH AΠΛΗΣ ΑΡΜΟΝΙΚΗΣ ΤΑΛΑΝΤΩΣΗΣ ΜΕ ΣΥΣΤΗΜΑ ΣΥΓΧΡΟΝΙΚΗΣ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις ~ Διάρκεια: 3 ώρες ~ Θέμα Α Α1. Η ορμή συστήματος δύο σωμάτων που συγκρούονται διατηρείται: α. Μόνο στην πλάγια κρούση. β. Μόνο στην έκκεντρη

Διαβάστε περισσότερα

α. Από τη μάζα του σώματος που ταλαντώνεται. β. Μόνο από τα πλάτη των επιμέρους απλών αρμονικών ταλαντώσεων.

α. Από τη μάζα του σώματος που ταλαντώνεται. β. Μόνο από τα πλάτη των επιμέρους απλών αρμονικών ταλαντώσεων. ιαγώνισμα στη φυσική θετικού προσανατολισμού Ύλη: μηχανικές ταλαντώσεις ιάρκεια 3 ώρες ΘΕΜΑ Α Στις προτάσεις Α1 έως Α8 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΥΓΧΡΟΝΙΚΗΣ ΛΗΨΗΣ ΚΑΙ ΑΠΕΙΚΟΝΙΣΗΣ (MBL) DBLAB 3.2 ΤΗΣ FOURIER.

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΥΓΧΡΟΝΙΚΗΣ ΛΗΨΗΣ ΚΑΙ ΑΠΕΙΚΟΝΙΣΗΣ (MBL) DBLAB 3.2 ΤΗΣ FOURIER. ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΥΓΧΡΟΝΙΚΗΣ ΛΗΨΗΣ ΚΑΙ ΑΠΕΙΚΟΝΙΣΗΣ (MBL) DBLAB 3.2 ΤΗΣ FOURIER. Γενική περιγραφή και χρήση Το DBLAB 3.2 είναι ένα σύστηµα λήψης και επεξεργασίας µετρήσεων ποικίλων φυσικών

Διαβάστε περισσότερα

1 η Εργαστηριακή Άσκηση: Απλή Αρµονική Ταλάντωση

1 η Εργαστηριακή Άσκηση: Απλή Αρµονική Ταλάντωση Ονοµατεπώνυµο: µήµα: Επιµέλεια: Παναγιώτης Παζούλης Φυσική Γ Λυκείου θετικής εχνολογικής Κατεύθυνσης 1 η Εργαστηριακή Άσκηση: Απλή Αρµονική αλάντωση Α) Εισαγωγικές έννοιες. Περιοδική κίνηση ονοµάζεται

Διαβάστε περισσότερα

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Προσδιορισμός της σταθεράς ενός ελατηρίου. Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Προσδιορισμός της σταθεράς ενός ελατηρίου. Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 4: Προσδιορισμός της σταθεράς ενός ελατηρίου Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 24/09/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 24/09/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 017-018 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 4/09/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη 1. Δίσκος μάζας Μ=1 Kg είναι στερεωμένος στο πάνω άκρο κατακόρυφου ελατηρίου, σταθεράς k=200 N/m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο σε οριζόντιο δάπεδο. Πάνω στο δίσκο κάθεται ένα πουλί με μάζα

Διαβάστε περισσότερα

ΘΕΜΑ Α. (Μονάδες 5) (Μονάδες 5)

ΘΕΜΑ Α. (Μονάδες 5) (Μονάδες 5) ΘΕΜΑ Α 1) Σύστημα ελατηρίου-σώματος με μάζα m εκτελεί απλή αρμονική ταλάντωση με σταθερά επαναφοράς k. Αν η μάζα του σώματος τετραπλασιαστεί τότε: α/ το πλάτος της ταλάντωσης θα τετραπλασιαστεί β/ η περίοδος

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO Ε.Κ.Φ.Ε. Νέας Σμύρνης

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO Ε.Κ.Φ.Ε. Νέας Σμύρνης ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 14-15 Ε.Κ.Φ.Ε. Νέας Σμύρνης Εξέταση στη Φυσική ΛΥΚΕΙΟ: Τριμελής ομάδα μαθητών: 1.. 3. Αναπληρωματικός: Θέματα: Ηλ. Μαυροματίδης Β Σειρά Θεμάτων (Φυσική) Μέτρηση της

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 19 Ταλαντώσεις Απλή αρμονική κίνηση ΦΥΣ102 1 Ταλαντώσεις Ελατηρίου Όταν ένα αντικείμενο

Διαβάστε περισσότερα

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα.

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα. Γενικές ασκήσεις Θέματα εξετάσεων από το 1ο κεφάλαιο ΚΕΦΑΛΑΙΟ 1 1 Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα α Να βρείτε

Διαβάστε περισσότερα

ΘΕΜΑ Α. Α.1. Ένα σύστηµα ελατηρίου-µάζας εκτελεί απλή αρµονική ταλάντωση πλάτους Α.

ΘΕΜΑ Α. Α.1. Ένα σύστηµα ελατηρίου-µάζας εκτελεί απλή αρµονική ταλάντωση πλάτους Α. ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α 1 Α 6 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. Α.1. Ένα σύστηµα ελατηρίου-µάζας

Διαβάστε περισσότερα

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι. ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου

Διαβάστε περισσότερα

5. Ένα σώµα ταλαντώνεται µεταξύ των σηµείων Α και Ε. Στο σχήµα φαίνονται πέντε θέσεις Α,Β,Γ, και Ε, οι οποίες ισαπέχουν µεταξύ 1

5. Ένα σώµα ταλαντώνεται µεταξύ των σηµείων Α και Ε. Στο σχήµα φαίνονται πέντε θέσεις Α,Β,Γ, και Ε, οι οποίες ισαπέχουν µεταξύ 1 1. Σώµα 10g εκτελεί α.α.τ. γύρω από σηµείο Ο και η αποµάκρυνση δίνεται από τη σχέση: x=10ηµπt (cm), ζητούνται: i) Πόσο χρόνο χρειάζεται για να πάει από το Ο σε σηµείο Μ όπου x=5cm ii) Ποια η ταχύτητά του

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς του ελατηρίου

Υπολογισμός της σταθεράς του ελατηρίου Άσκηση 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός: Ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: 1. Από την κλίση μιας πειραματικής καμπύλης 2. Από τον τύπο της περιόδου

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Στο παρακάτω διάγραμμα απομάκρυνσης-χρόνου φαίνονται οι γραφικές παραστάσεις για δύο σώματα 1 και 2 τα οποία εκτελούν Α.Α.Τ. Να βρείτε τη σχέση που συνδέει τις μέγιστες επιταχύνσεις

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ: ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: η (ΘΕΡΙΝ) ΗΜΕΡΟΜΗΝΙ: /0/ ΘΕΜ ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗΣ ΓΛ ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗΣ ΓΛ ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗΣ ΓΛ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1- Α5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τις συμπληρώνει

Διαβάστε περισσότερα

Περι-Φυσικής. Θέµα 1ο. 2ο ιαγώνισµα - Απλή Αρµονική Ταλάντωση. Ονοµατεπώνυµο: Βαθµολογία %

Περι-Φυσικής. Θέµα 1ο. 2ο ιαγώνισµα - Απλή Αρµονική Ταλάντωση. Ονοµατεπώνυµο: Βαθµολογία % 2ο ιαγώνισµα - Απλή Αρµονική Ταλάντωση Ηµεροµηνία : Σεπτέµβρης 2012 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα 1ο Στις ερωτήσεις 1.1 1.4 επιλέξτε την σωστη απάντηση (4 5 = 20 µονάδες ) 1.1. Σύστηµα

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΟΦΟΙΤΟΙ ΗΜΕΡΟΜΗΝΙΑ: /10/1 ΘΕΜΑ 1 ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

µεγιστη θετικη αποµακρυνση του τοτε εχει αρχικη φαση ιση µε µηδεν.

µεγιστη θετικη αποµακρυνση του τοτε εχει αρχικη φαση ιση µε µηδεν. Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ. ΚΑΤΕΥΘΥΝΣΗΣ Ερωτησεις AAT 1) Ένα σωµα εκτελει ΑΑΤ και κάθε 2 δευτερολεπτα διερχεται από τη θεση ισορροπιας της ταλαντωσης του 10 φορες. Α) Η συχνοτητα της ταλαντωσης

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ

ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς ελατηρίου

Υπολογισμός της σταθεράς ελατηρίου Εργαστηριακή Άσκηση 6 Υπολογισμός της σταθεράς ελατηρίου Βαρσάμης Χρήστος Στόχος: Υπολογισμός της σταθεράς ελατηρίου, k. Πειραματική διάταξη: Κατακόρυφο ελατήριο, σειρά πλακιδίων μάζας m. Μέθοδος: α) Εφαρμογή

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΟΥ OHM ( αντιστάτης και λαμπτήρας )

ΝΟΜΟΣ ΤΟΥ OHM ( αντιστάτης και λαμπτήρας ) 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΝΟΜΟΣ ΤΟΥ OHM ( αντιστάτης και λαμπτήρας ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης απλών πειραματικών κυκλωμάτων του ηλεκτρικού ρεύματος. Η εξοικείωση με το τροφοδοτικό

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ στις αμείωτες μηχανικές ΤΑΛΑΝΤΩΣΕΙΣ- ΚΡΟΥΣΕΙΣ (1) ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ στις αμείωτες μηχανικές ΤΑΛΑΝΤΩΣΕΙΣ- ΚΡΟΥΣΕΙΣ (1) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ στις αμείωτες μηχανικές ΤΑΛΑΝΤΩΣΕΙΣ- ΚΡΟΥΣΕΙΣ (1) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΘΕΜΑ Α Α1.Ένα σώμα μάζας m είναι δεμένο και ισορροπεί στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k 1 του

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Τζ. Τσιτοπούλου, Ι. Χριστακόπουλος] Για

Διαβάστε περισσότερα

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ 0077 -- 00 Θέμα ο. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: α. έχει την ίδια φάση με την επιτάχυνση α. β. είναι μέγιστη στις ακραίες

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Φυσικής Γ Λυκείου Κρούσεις-Ταλαντώσεις-Κύματα

Επαναληπτικό Διαγώνισμα Φυσικής Γ Λυκείου Κρούσεις-Ταλαντώσεις-Κύματα Επαναληπτικό Διαγώνισμα Φυσικής Γ Λυκείου Κρούσεις-Ταλαντώσεις-Κύματα Θέμα Α 1) Η ιδιοσυχνότητα ενός συστήματος που εκτελεί εξαναγκασμένη ταλάντωση χωρίς τριβή είναι 20 Hz. Το πλάτος της ταλάντωσης γίνεται

Διαβάστε περισσότερα

1.1 Κινηματική προσέγγιση

1.1 Κινηματική προσέγγιση 1.1 Κινηματική προσέγγιση ΣΑ 1.8: Η απομάκρυνση από τη θέση ισορροπίας ενός σώματος που κάνει αατ δίνεται σε συνάρτηση με το χρόνο από τη σχέση x=10 ημ(π/4t) (x σε cm και t σε s). Να βρείτε: Α) το πλάτος

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 1: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου)

Εργαστηριακή άσκηση 1: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Εργαστηριακή άσκηση 1: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) ΣΤΟΧΟΙ Με τη βοήθεια των γραφικών

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΜΕΡΟΣ 2. έχει το φυσικό του μήκος και η πάνω άκρη του είναι δεμένη σε σταθερό σημείο.

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΜΕΡΟΣ 2. έχει το φυσικό του μήκος και η πάνω άκρη του είναι δεμένη σε σταθερό σημείο. ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΜΕΡΟΣ. Ένα ιδανικό ελατήριο σταθεράς = 00 N/ που έχει τον άξονα του κατακόρυφο έχει το φυσικό του μήκος και η πάνω άκρη του είναι δεμένη σε

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΟΙ ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ( ΕΠΑΛΗΘΕΥΣΗ ΤΗΣ ΚΑΤΑΣΤΑΤΙΚΗΣ ΕΞΙΣΩΣΗΣ )

ΟΙ ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ( ΕΠΑΛΗΘΕΥΣΗ ΤΗΣ ΚΑΤΑΣΤΑΤΙΚΗΣ ΕΞΙΣΩΣΗΣ ) 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΟΙ ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ( ΕΠΑΛΗΘΕΥΣΗ ΤΗΣ ΚΑΤΑΣΤΑΤΙΚΗΣ ΕΞΙΣΩΣΗΣ ) Α. ΣΤΟΧΟΙ Η εξοικείωση με τη χρήση απλών πειραματικών διατάξεων. Η εξοικείωση σε μετρήσεις θερμοκρασίας,

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ.

ΕΡΓΑΣΙΑ ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΕΡΓΑΣΙΑ ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΕΡΩΤΗΣΗ 1 Στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k = 400 N/m είναι κρεμασμένο σώμα μάζας m = 1 kg. Το σύστημα ελατήριο-σώμα εξαναγκάζεται

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΓΡΑΠΤΕΣ ΔΟΚΙΜΑΣΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 2009

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΓΡΑΠΤΕΣ ΔΟΚΙΜΑΣΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 2009 ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΓΡΑΠΤΕΣ ΔΟΚΙΜΑΣΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 009 Θέμα 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από

Διαβάστε περισσότερα

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο.

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο. ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ 33 0077 -- 00 Θέμα ο. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: α. έχει την ίδια φάση με την επιτάχυνση α. β. είναι μέγιστη στις ακραίες

Διαβάστε περισσότερα

ΖΥΓΟΣ ΡΕΥΜΑΤΟΣ Επαλήθευση βασικών σχέσεων του ηλεκτρομαγνητισμού

ΖΥΓΟΣ ΡΕΥΜΑΤΟΣ Επαλήθευση βασικών σχέσεων του ηλεκτρομαγνητισμού 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΖΥΓΟΣ ΡΕΥΜΑΤΟΣ Επαλήθευση βασικών σχέσεων του ηλεκτρομαγνητισμού Α. ΣΤΟΧΟΙ Η εξοικείωση με τη δημιουργία μικρών βαρών από λεπτό σύρμα μετρώντας το μήκος του.

Διαβάστε περισσότερα

vi) Η δύναµη που δέχεται το σώµα στο σηµείο Ν έχει µέτρο 4Ν και

vi) Η δύναµη που δέχεται το σώµα στο σηµείο Ν έχει µέτρο 4Ν και Ταλαντώσεις 1) Σώµα 10g εκτελεί α.α.τ. γύρω από σηµείο Ο και η αποµάκρυνση δίνεται από τη σχέση: x=10ηµπt (cm), ζητούνται: i) Πόσο χρόνο χρειάζεται για να πάει από το Ο σε σηµείο Μ όπου x=5cm ii) Ποια

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΕΛΑΤΗΡΙΩΝ. Α. Μελέτη του νόμου του Hooke

ΜΕΛΕΤΗ ΕΛΑΤΗΡΙΩΝ. Α. Μελέτη του νόμου του Hooke Σκοπός της άσκησης Σε αυτή την άσκηση θα μελετήσουμε την συμπεριφορά ελατηρίων. Θα μελετηθεί ο νόμος του Hooke και θα χρησιμοποιηθεί αυτός ώστε να προσδιοριστεί η σταθερά του ελατηρίου. Η σταθερά του ελατηρίου

Διαβάστε περισσότερα

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις 3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις Σύνολο Σελίδων: επτά (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ 1. Ελατήριο σταθεράς K τοποθετείται κατακόρυφα με το πάνω άκρο του στερεωμένο σε ακλόνητο σημείο. Ένα σώμα μάζας M=1 kg δένεται στο κάτω άκρο του ελατηρίου και η επιμήκυνση που προκαλεί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης, Κυριτσάκας Βαγγέλης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Κυριακή 17-10-2010

Διαβάστε περισσότερα

1. Να σχεδιάσετε το κύκλωµα διακοπής ρεύµατος σε πηνίο.

1. Να σχεδιάσετε το κύκλωµα διακοπής ρεύµατος σε πηνίο. ΙΑΚΟΠΗ ΡΕΥΜΑΤΟΣ ΣΕ ΠΗΝΙΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Τάξη και τµήµα: Ηµεροµηνία: Όνοµα µαθητή: 1. Να σχεδιάσετε το κύκλωµα διακοπής ρεύµατος σε πηνίο. 2. Η ένταση του ρεύµατος που µετράει το αµπερόµετρο σε συνάρτηση

Διαβάστε περισσότερα

Φάσμα & Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

Φάσμα & Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. σύγχρονο Φάσμα & Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. μαθητικό φροντιστήριο 1. 25ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ 50.27.990 50.20.990 2. 25ης Μαρτίου 74 Πλ. ΠΕΤΡΟΥΠΟΛΗΣ 50.50.658 50.60.845 3. Γραβιάς 85 ΚΗΠΟΥΠΟΛΗ

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα.

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα. 1ο Κριτήριο αξιολόγησης στα κεφ. 1-2 Θέμα 1 Ποια από τις παρακάτω προτάσεις είναι σωστή; 1. Ένα σώμα μάζας m είναι δεμένο στην ελεύθερη άκρη κατακόρυφου ιδανικού ελατηρίου σταθεράς k και ηρεμεί στη θέση

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΜΑ 1ο Στις προτάσεις 1.1 έως 1.4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΠΡΟΕΤΟΙΜΑΣΙΑ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ ΚΑΤΑΓΡΑΦΗΣ. (Η έκδοση που χρησιμοποιήθηκε είναι η )

ΠΡΟΕΤΟΙΜΑΣΙΑ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ ΚΑΤΑΓΡΑΦΗΣ. (Η έκδοση που χρησιμοποιήθηκε είναι η ) ΕΚΦΕ ΛΕΥΚΑΔΑΣ ΝΟΕΜΒΡΙΟΣ 2012 ΜΕΛΕΤΗ ΤΗΣ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG. ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Α. Στόχοι: Η απεικόνιση της θέσης ενός σώματος που εκτελεί

Διαβάστε περισσότερα

b. η ταλάντωση του σώματος παρουσιάζει διακρότημα.

b. η ταλάντωση του σώματος παρουσιάζει διακρότημα. ΘΕΜΑ 1 Ο 1) Το σώμα μάζας m του σχήματος εκτελεί εξαναγκασμένη ταλάντωση μέσα σε ρευστό από το οποίο δέχεται δύναμη της μορφής με =σταθ. Ο τροχός περιστρέφεται με συχνότητα f. Αν η σταθερά του ελατηρίου

Διαβάστε περισσότερα

. Μητρόπουλος Ταλαντώσεις Σ 1 Σ 2 V

. Μητρόπουλος Ταλαντώσεις Σ 1 Σ 2 V Ταλάντωση πάνω σε βαγονέτο Π Σ 1 Π Σ 2 V Το εικονιζόµενο βαγονέτο Σ 2 έχει πάνω του κατάλληλα στηριγµένο οριζόντιο ιδανικό ελατήριο, σταθεράς k = 1N/m. Στο άλλο άκρο του ελατηρίου είναι δεµένο σώµα Σ 1

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2013 Γ Λυκείου Θετική & Τεχνολογική Κατεύθυνση ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1. Σώμα

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ

ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ Συνοπτική περιγραφή Μελετάμε την κίνηση μιας ράβδου που μπορεί να περιστρέφεται γύρω από σταθερό οριζόντιο άξονα,

Διαβάστε περισσότερα

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις 1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Οµάδα Β Στις ηµιτελείς

Διαβάστε περισσότερα

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις 1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Οµάδα Α Στις ηµιτελείς

Διαβάστε περισσότερα

Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Διαβάστε περισσότερα

1. Ένα σώμα μάζας είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο.

1. Ένα σώμα μάζας είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο. 1. Ένα σώμα μάζας είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου σταθεράς, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο. Το σώμα εκτελεί απλή αρμονική ταλάντωση, κατά τη διεύθυνση του άξονα

Διαβάστε περισσότερα