Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016"

Transcript

1 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ 1 ο (25 Μονάδες) (Καθ. Β.Ζασπάλης) Σε μια διεργασία ενανθράκωσης κάποιου κράματος ανθρακούχου χάλυβα η επιφανειακή συγκέντρωση του άνθρακα διατηρείται σταθερή 0.8 wt.% C. H διεργασία εκτελείται για ίδιο χρόνο s (~277.8 hr) σε δύο θερμοκρασίες 677 και 827 ο C. Tα προφίλ της συγκέντρωσης του άνθρακα παρουσιάζονται στην Εικόνα. Ι) Να υπολογιστεί η ενέργεια ενεργοποίησης της διάχυσης του άνθρακα στο συγκεκριμένο κράμα (προφανώς θεωρώντας πως στο θερμοκρασιακό διάστημα ενδιαφέροντος ο μηχανισμός διάχυσης δεν μεταβάλλεται). (15 μονάδες) ΙΙ) Πόσος πρέπει να γίνει ο χρόνος της διεργασίας ώστε στους 677 ο C να επιτύχουμε το ίδιο προφίλ με αυτό που επιτυγχάνεται μετά από s στους 827 ο C; (10 μονάδες) Ι) Επιλέγοντας δεδομένα από τις καμπύλες του προφίλ των συγκεντρώσεων και χρησιμοποιώντας την αντίστοιχη λύση του δεύτερου νόμου του Fick, μπορούμε να υπολογίσουμε τους συντελεστές διάχυσης σε κάθε θερμοκρασία. Επίσης από τα ίδια δεδομένα διαπιστώνουμε πως το κράμα έχει αρχική συγκέντρωση σε άνθρακα 0.2 wt.%. T=677 o C=950 K Παρατηρούμε πως μετά από s η συγκέντρωση του άνθρακα σε απόσταση 3mm από την επιφάνεια είναι 0.6 wt.%. Oπότε: C C = = 0.67 = 1 erf ( ) erf ( C s C Dt 2 Dt ) = 0.33 Aπό τους πίνακες της συνάρτησης λάθους έχουμε: erf(z) z =

2 Άρα: 2 Dt 2 = 0.30 Dt = D = t = ( m) D m K = s T=827 o C=1100K Mε ανάλογο τρόπο από τα δεδομένα της καμπύλης των 827 ο C υπολογίζουμε τον συντελεστή διάχυσης στους 827 ο C. Θεωρούμε, για λόγους απλότητας το δεδομένο πως μετά από χρόνο s η συγκέντρωση του άνθρακα σε απόσταση 6 mm από την επιφάνεια είναι 0.6 wt.%. C C = = 0.67 = 1 erf ( ) erf ( ) = 0.33 C s C Dt 2 Dt 2 Dt = 0.30 D = t = ( m) D m K = 1 10 s Έχοντας τον συντελεστή διάχυσης σε δύο θερμοκρασίες η ενέργεια ενεργοποίησης μπορεί να υπολογιστεί είτε μέσω επίλυσης του συστήματος των εξισώσεων της θερμικής εξάρτησης του συντελεστή διάχυσης: D 950 = D 0 e E 950R ln(d 950 ) = ln(d 0 ) E 950R D 1100 = D 0 e E 1100R ln(d 1100 ) = ln(d 0 ) E 1100R ln(d 950 ) ln(d 1100 ) = E 1100R E 950R = E R ( ) E = (ln(d 950) ln(d 1100 ))R (ln( ) ln( )) ( = 950 ) ( ) E 80.3 kj mol Είτε λαμβάνοντας κατευθείαν υπόψη την γραμμική εξάρτηση του lnd συναρτήσει του 1/Τ η οποία έχει κλίση Ε/R E R = ln(d 950 ) ln(d 1100 ) η οποία προφανώς οδηγεί στο ίδιο αποτέλεσμα. ΙΙ) Ουσιαστικά επιθυμούμε να πάρουμε το προφίλ των 827 ο C στους 677 ο C επιμηκύνοντας το χρόνο διάχυσης. Από την ισότητα των πρώτων μελών της λύσης του δεύτερου νόμου του Fick προκύπτει: D 950 t = D t = D t = D = s Δηλαδή ο χρόνος θα πρέπει περίπου να τετραπλασιαστεί.

3 ΘΕΜΑ 2 ο (25 Μονάδες) Τρεις φοιτητές στα πλαίσια μιας ομαδικής πειραματικής εργασίας εκτέλεσαν σε δύο θερμοκρασίες (μια σχετικά χαμηλή Τ1 και μια σχετική ψηλή Τ2) μετρήσεις προσδιορισμού του συντελεστή διάχυσης του Οξυγόνου σε Al2O3 συναρτήσει της συγκέντρωσης κάποιας πρόσμιξης. Οι προσμίξεις που επέλεξαν ήταν ΤiO2, Fe2O3, ΜgO και θεωρούμε πως σε όλες τις περιπτώσεις το φορτίο της κατιοντικής ατέλειας που προκύπτει εξουδετερώνεται με ιοντικές κενές θέσεις. Στο τέλος παρέδωσαν ομαδικό διάγραμμα με τα αποτελέσματά τους ξεχνώντας όμως να αναφέρουν σε ποιο σύστημα Αl2O3-πρόσμιξης αναφέρονται οι ευθείες. Ι) Σε ποια πρόσμιξη αντιστοιχεί η κάθε μια από τις ευθείες 1,2 και 3 της Εικόνας Α; Να αιτιολογήσετε την απάντησή σας. (15 μονάδες: 5 επιλογές-10 αιτιολογήσεις) ΙΙ) Στην ψηλότερη θερμοκρασία Τ2 όλοι κατέληξαν περίπου στο ίδιο αποτέλεσμα και το απέδωσαν σε σφάλμα της πειραματικής διάταξης. Συμφωνείτε ή υπάρχει και άλλη εξήγηση; (10 μον.) Ι) Οι εξισώσεις ενσωμάτωσης κάθε μιας από τις προσμίξεις με μηχανισμό κατά τον οποίο το φορτίο της ιοντικής ατέλειας που προκύπτει να αντισταθμίζεται από ιοντικές κενές θέσεις είναι: Fe2O3: Fe 2 O 3 2Fe Al +3O O (I) Al2 O 3 ΜgO: 2MgO Al2 O 3 TiO2: 3TiO 2 2Al2 O 3 2Mg Al + 2O O + V O (II) 3Ti Al + 6O O + V Al (III) Mε την εισαγωγή του Fe2O3 (λόγω μη ύπαρξης φορτίου, εξίσωση Ι) δεν δημιουργούνται ούτε ανιοντικά ούτε κατιοντικά κενά. Κατά συνέπεια η εισαγωγή της πρόσμιξης δεν επηρεάζει τη συγκέντρωση των κενών θέσεων οξυγόνου (μέσω των οποίων διαχέεται το οξυγόνο) και δεν αναμένεται να επηρεάσει και τον συντελεστή διάχυσης. Στην πρόσμιξη Fe2O3 αντιστοιχεί η ευθεία 2. Η εισαγωγή MgO δημιουργεί κενές θέσεις οξυγόνου (εξίσωση ΙΙ) και κατά συνέπεια αναμένεται να επιδρά αυξητικά στον συντελεστή διάχυσης του οξυγόνου ο οποίος είναι ανάλογος των κενών ανιοντικών θέσεων. Στην πρόσμιξη MgO αντιστοιχεί η ευθεία 1. Η εισαγωγή ΤiO2 δημιουργεί κενές κατιοντικές θέσεις (εξίσωση ΙΙΙ). Επειδή όμως παράλληλα θα πρέπει να ικανοποιείται και η ισορροπία των ενδογενών ατελειών Schottky ([V O ] 3 [V Al ] 2 = K s (T)), η αύξηση των κατιοντικών κενών θα δημιουργήσει μείωση της συγκέντρωση των κενών οξυγόνου και κατά συνέπεια μείωση του συντελεστή διάχυσης. Στην πρόσμιξη ΤiO2 αντιστοιχεί η ευθεία 3. ΙΙ) Η θερμοκρασία Τ2 είναι επαρκώς υψηλή ώστε να αντιστοιχεί στην ενδογενή περιοχή όπου κυριαρχούν οι ενδογενείς ατέλειες του διαλύτη καθιστώντας αμελητέα την παρουσία οποιασδήποτε πρόσμιξης. Επειδή και στις τρεις περιπτώσεις ο διαλύτης είναι ο ίδιος (Al2O3), φυσιολογικά και οι τρεις φοιτητές βρήκαν το ίδιο αποτέλεσμα.

4 ΘΕΜΑ 3 ο (25 Μονάδες) I) Το Ταντάλιο (Τα) είναι μέταλλο της χωροκεντρωμένης κυβικής δομής με ατομική ακτίνα nm. Πόσο θα κοστίσει το υλικό που θα προμηθευτείτε για την κατασκευή κυλινδρικής ράβδου μήκους 250mm από Ταντάλιο η οποία πρόκειται να εισαχθεί σε διάταξη όπου θα υπόκειται σε εφελκυσμό με φορτίο 270 kn και με την προδιαγραφή πως ο συντελεστής ασφαλείας θα πρέπει να είναι 2. (15 μονάδες) Με συντελεστή ασφαλείας Ν=2 η τάση εργασίας (στην οποία θα πρέπει να υποβάλλεται η ράβδος) είναι: σ w = σ y N = Pa = Pa 2 H επιφάνεια διατομής της ράβδου θα πρέπει κατά συνέπεια να είναι: O όγκος της ράβδου είναι: σ w = F A A = F N = σ w N = m 2 30 cm 2 m 2 V = A l = 30 cm 2 25 cm = 750 cm 3 H πυκνότητα του Τανταλίου υπολογίζεται από τα δεδομένα της δομής ως: ρ = H μάζα υλικού στον όγκο της ράβδου είναι: 2 at. cell g mol at. mol ( 4 3 = ) cm 3 g cm 3 ρ = m g m = ρ V = 16.7 V cm cm3 = g = kg To κόστος C αυτού του υλικού είναι: C = kg 500 Euro kg = Euro

5 II) To Tιτάνιο (Ti) έχει μέτρο ελαστικότητας Ε=110 GPa και αντοχή διαρροής 300 ΜPa. Mία κυλινδρική ράβδος Τιτανίου μήκους 250 mm και διαμέτρου 2 cm εφελκύεται με φορτίο F και επιμηκύνεται κατά 1 mm. Μπορείτε να υπολογίσετε το φορτίο F; (10 μονάδες) Η επιμήκυνση της ράβδου είναι: ε = Δl = 1 mm l mm = H επιμήκυνση της ράβδου όταν αυτή φορτιστεί στο όριο διαρροής είναι: σ y = ε y Ε ε y = σ y E = Pa = Pa Eφόσον ε>εy η ράβδος εισέρχεται στην πλαστική περιοχή για την οποία αφενός δεν ισχύει η γραμμική συμπεριφορά αφετέρου δεν έχουμε δεδομένα τάσης συναρτήσει παραμόρφωσης. Κατά συνέπεια δεν μπορεί να υπολογιστεί η τάση και, συνεπακόλουθα, ούτε και το φορτίο.

6 ΘΕΜΑ 4 ο (20 Μονάδες) Γυάλινη ράβδος ορθογώνιας διατομής υποβάλλεται σε δοκιμή κάμψης τριών σημείων και με φορτίο 200 Ν η απόκλιση δ από την αρχική θέση είναι 50 μm (Εικόνα Α). H επιφανειακή ενέργεια του γυαλιού είναι 2 J m -2. Aπό το υλικό αυτό κατασκευάστηκαν στοιχεία στα οποία μετά από μικροσκοπική μελέτη βρέθηκαν στο εσωτερικό τους σφάλματα μεγέθους 100 μm (Eικόνα Β). Ποια θα ήταν η μέγιστη εφελκυστική τάση στην οποία θα μπορούσαν να υποβληθούν τα στοιχεία αυτά χωρίς να επέλθει θραύση? : Από τη δοκιμή κάμψης μπορεί να εκτιμηθεί το μέτρο ελαστικότητας του υλικού: Ε = ( F δ ) L3 4bd 3 = 200 N m ( m) m ( m) 3 O κρίσιμος συντελεστής έντασης τάσης είναι: E = 72.9 GPa Κ ΙC = 2γΕ = 2 2 J m Pa 0.54 MPa m 1/2 Mε εσωτερικό σφάλμα 100 μm δηλαδή κρίσιμη διάσταση σφάλματος 50 μm ο συντελεστής έντασης τάσης, για να αποφευχθεί θραύση θα πρέπει να είναι το πολύ ίσος με τον κρίσιμο συντελεστή έντασης τάσης: σ f πc crit 0.54 MPa m 1/ MPa m1/2 σ f = 43 MPa π m Δηλαδή η εφελκυστική τάση στην οποία θα υποβληθούν τα στοιχεία δεν θα πρέπει να ξεπερνάει τα 43 ΜPa.

7 ΘΕΜΑ 5 ο (15 Μονάδες) Δύο κράματα Σιδήρου-Άνθρακα προήλθαν από ψύξη σε ισορροπία. Στο ένα (A) το ποσοστό του προευτηκτοειδή Φερρίτη είναι 62% ενώ στο άλλο (B) το ποσοστό του ολικού Σεμεντίτη είναι 12%. Ποιο από τα δύο είναι το πιο όλκιμο? : Εάν C1 είναι η wt.% περιεκτικότητα σε Άνθρακα του πρώτου κράματος, τότε από το δεδομένο ποσοστό του προευτηκτοειδή φερρίτη θα ισχύει: 0.76 C = 0.62 C wt. % Αντίστοιχα εάν C2 είναι η wt.% περιεκτικότητα σε Άνθρακα του δεύτερου κράματος, τότε από το δεδομένο ποσοστό του ολικού Σεμεντίτη θα ισχύει: C = 0.12 C wt. % To κράμα Α έχει μικρότερη περιεκτικότητα σε Άνθρακα από το κράμα B και σύμφωνα με την Εικόνα του συγγράμματος θα είναι και το πιο όλκιμο. Καλή επιτυχία Σ.Σ.: Το σύνολο των διαθέσιμων μονάδων είναι 110. Το άριστα συνεχίζει να είναι το 100. Οποιαδήποτε επιστημονικά τεκμηριωμένη απάντηση θεωρείται σωστή.

Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Σεπτέμβριος 2016

Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Σεπτέμβριος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) ΘΕΜΑ 1 ο (30 Μονάδες) Στην εικόνα δίνονται οι επίπεδες

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2017

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2017 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Θέμα 1 ο (25 μονάδες) Σε ένα στάδιο της διεργασίας παραγωγής ολοκληρωμένων

Διαβάστε περισσότερα

Γραπτή «επί πτυχίω» εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Ιανουάριος 2017

Γραπτή «επί πτυχίω» εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Ιανουάριος 2017 Ερώτηση 1 (10 μονάδες) - ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) Σε μια διεργασία ενανθράκωσης

Διαβάστε περισσότερα

Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Ιούνιος 2016

Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Ιούνιος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ 1 ο (25 Μονάδες) (Καθ. Β.Ζασπάλης) Δοκίμιο από PMMA (Poly Methyl MethAcrylate)

Διαβάστε περισσότερα

Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙI»-Σεπτέμβριος 2016

Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙI»-Σεπτέμβριος 2016 Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙI»-Σεπτέμβριος 016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ

Διαβάστε περισσότερα

Γραπτή «επί πτυχίω» εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιούνιος 2016

Γραπτή «επί πτυχίω» εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιούνιος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ 1 ο (25 Μονάδες) (Καθ. Β.Ζασπάλης) Ι) Να προσδιοριστούν οι δείκτες

Διαβάστε περισσότερα

Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στις Διεργασίες και Τεχνολογία Προηγμένων Υλικών ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ B ΕΞΑΜΗΝΟΥ ( )

Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στις Διεργασίες και Τεχνολογία Προηγμένων Υλικών ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ B ΕΞΑΜΗΝΟΥ ( ) Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στις Διεργασίες και Τεχνολογία Προηγμένων Υλικών ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ B ΕΞΑΜΗΝΟΥ (206-207) Συντονιστής: Διδάσκοντες: Μάθημα: ΠΡΟΗΓΜΕΝΑ ΚΕΡΑΜΙΚΑ - Ιούνιος 207

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2016

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) Θέμα 1: Ερωτήσεις (10 Μονάδες) (Σύντομη αιτιολόγηση.

Διαβάστε περισσότερα

Θέμα 1 ο (30 μονάδες)

Θέμα 1 ο (30 μονάδες) ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Θέμα 1 ο (30 μονάδες) (Καθ. Β.Ζασπάλης) Θεωρείστε ένα δοκίμιο καθαρού Νικελίου

Διαβάστε περισσότερα

Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 2017

Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 2017 Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 017 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Γραπτό τεστ (συν-)αξιολόγησης στο μάθημα: «ΔΙΑΓΝΩΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ

Διαβάστε περισσότερα

Εργαστήριο Τεχνολογίας Υλικών

Εργαστήριο Τεχνολογίας Υλικών Εργαστήριο Τεχνολογίας Υλικών Εργαστηριακή Άσκηση 07 Εφελκυσμός Διδάσκοντες: Δρ Γεώργιος Ι. Γιαννόπουλος Δρ Θεώνη Ασημακοπούλου Δρ Θεόδωρος Λούτας Τμήμα Μηχανολογίας ΑΤΕΙ Πατρών Πάτρα 2011 1 Μηχανικές

Διαβάστε περισσότερα

Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 2016

Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 2016 ΘΕΜΑ 1 ο (0 Μονάδες) ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) Το Τιτάνιο (ατομική ακτίνα RTi=0.1

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2015

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2015 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) ΘΕΜΑ 1 ο (15 Μονάδες) Πόσα γραμμάρια καθαρού κρυσταλλικού

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 6: Διάχυση. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 6: Διάχυση. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 6: Διάχυση Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Έλεγχος Ποιότητας και Τεχνολογία Δομικών Υλικών

Έλεγχος Ποιότητας και Τεχνολογία Δομικών Υλικών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Έλεγχος Ποιότητας και Τεχνολογία Δομικών Υλικών Εργαστηριακό Μέρος Ενότητα 4: Δοκιμή Εφελκυσμού Χάλυβα Οπλισμού Σκυροδέματος Ευάγγελος

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Τεχνικής Μηχανικής Διαγράμματα Ελευθέρου Σώματος (Δ.Ε.Σ.) Υπολογισμός Αντιδράσεων Διαγράμματα Φορτίσεων Διατομών (MNQ) Αντοχή Φορέα? Αντικείμενο Τεχνικής Μηχανικής Σχήμα 2 F Y A Γ B A Y B Y 1000N

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A

Διαβάστε περισσότερα

Γραπτή «επί πτυχίω» εξέταση στο μάθημα «Επιστήμη & Τεχνολογία Υλικών Ι»-Ιούνιος 2017

Γραπτή «επί πτυχίω» εξέταση στο μάθημα «Επιστήμη & Τεχνολογία Υλικών Ι»-Ιούνιος 2017 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) Στην παραπάνω Εικόνα δίνονται οι κρυσταλλικές δομές δύο

Διαβάστε περισσότερα

Έλεγχος Ποιότητας και Τεχνολογία Δομικών Υλικών

Έλεγχος Ποιότητας και Τεχνολογία Δομικών Υλικών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Έλεγχος Ποιότητας και Τεχνολογία Δομικών Υλικών Ενότητα 4: Δοκιμή Εφελκυσμού Χάλυβα Οπλισμού Σκυροδέματος Ευάγγελος Φουντουκίδης

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΜΕΤΑΛΛΩΝ I

ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΜΕΤΑΛΛΩΝ I ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΜΕΤΑΛΛΩΝ I 1. ΕΙΣΑΓΩΓΗ Μηχανική συμπεριφορά αντανακλά την σχέση παραμόρφωση ασκούμενο φορτίο/δύναμη Να γνωρίζουμε τα χαρακτηριστικά του υλικού - να αποφευχθεί υπερβολική παραμόρφωση,

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ - 2017 Β3. Κόπωση Υλικών Κώστας Γαλιώτης, καθηγητης Τμήματος Χημικών Μηχανικών galiotis@chemeng.upatras.gr Β3. Κόπωση/Μηχανική Υλικών 1 Εισαγωγή (1/2) Η κόπωση είναι μία μορφή αστοχίας

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Ιούνιος 2016-(Καθ. Β.Ζασπάλης) ΤΕΣΤ ΑΞΙΟΛΟΓΗΣΗΣ ΜΕΤΑΦΟΡΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Διαβάστε περισσότερα

1 Η ΕΡΓΑΣΤΗΡΙΑΚΗ ΜΕΛΕΤΗ ΧΑΛΥΒΕΣ

1 Η ΕΡΓΑΣΤΗΡΙΑΚΗ ΜΕΛΕΤΗ ΧΑΛΥΒΕΣ Η ΕΡΓΑΣΤΗΡΙΑΚΗ ΜΕΛΕΤΗ ΧΑΛΥΒΕΣ ΕΡΓΑΣΤΗΡΙΑΚΟ ΤΡΙΩΡΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ Α.Μ. ΗΜΕΡΟΜΗΝΙΑ ΑΣΚΗΣΗ Α. ΟΠΤΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ. Στο μεταλλογραφικό μικροσκόπιο Leitz μελετήθηκαν κατάλληλα προετοιμασμένα δοκίμια χάλυβα. 2.

Διαβάστε περισσότερα

Μηχανικές ιδιότητες υάλων. Διάγραμμα τάσης-παραμόρφωσης (stress-stain)

Μηχανικές ιδιότητες υάλων. Διάγραμμα τάσης-παραμόρφωσης (stress-stain) Μηχανικές ιδιότητες υάλων Η ψαθυρότητα των υάλων είναι μια ιδιότητα καλά γνωστή που εύκολα διαπιστώνεται σε σύγκριση με ένα μεταλλικό υλικό. Διάγραμμα τάσης-παραμόρφωσης (stress-stain) E (Young s modulus)=

Διαβάστε περισσότερα

ΔΟΜΗ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΕΡΑΜΙΚΩΝ. Χ. Κορδούλης

ΔΟΜΗ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΕΡΑΜΙΚΩΝ. Χ. Κορδούλης ΔΟΜΗ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΕΡΑΜΙΚΩΝ Χ. Κορδούλης ΚΕΡΑΜΙΚΑ ΥΛΙΚΑ Τα κεραμικά υλικά είναι ανόργανα µη μεταλλικά υλικά (ενώσεις μεταλλικών και μη μεταλλικών στοιχείων), τα οποία έχουν υποστεί θερμική κατεργασία

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ ΠΑΡΑΔΕΙΓΜΑ 1: Ο κύλινδρος που φαίνεται στο σχήμα είναι από χάλυβα που έχει ένα ειδικό βάρος 80.000 N/m 3. Υπολογίστε την θλιπτική τάση που ενεργεί στα σημεία Α και

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 οκίμια εφελκυσμού

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υλικών Διαγράμματα Φάσεων Callister Κεφάλαιο 11, Ashby Οδηγός μάθησης Ενότητα 2

Εισαγωγή στην Επιστήμη των Υλικών Διαγράμματα Φάσεων Callister Κεφάλαιο 11, Ashby Οδηγός μάθησης Ενότητα 2 Εισαγωγή στην Επιστήμη των Υλικών Διαγράμματα Φάσεων Callister Κεφάλαιο 11, Ashby Οδηγός μάθησης Ενότητα 2 Έννοιες που θα συζητηθούν Ορισμός Φάσης Ορολογία που συνοδεύει τα διαγράμματα και τους μετασχηματισμούς

Διαβάστε περισσότερα

Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών ΝΑΝΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΝΑΝΟΤΕΧΝΟΛΟΓΙΕΣ

Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών ΝΑΝΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΝΑΝΟΤΕΧΝΟΛΟΓΙΕΣ Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών ΝΑΝΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΝΑΝΟΤΕΧΝΟΛΟΓΙΕΣ Σημειώσεις ΕΝΟΤΗΤΑ Α: ΔΙΑΧΥΣΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΦΑΝΕΙΑΚΗΣ ΚΑΤΕΡΓΑΣΙΑΣ Καθ. Βασίλης Ζασπάλης Διάχυση και Διεργασίες Επιφανειακής

Διαβάστε περισσότερα

Δυναμική Αντοχή. Σύνδεση με προηγούμενο μάθημα. Περιεχόμενα F = A V = M r = J. Δυναμική καταπόνηση κόπωση. Καμπύλη Woehler.

Δυναμική Αντοχή. Σύνδεση με προηγούμενο μάθημα. Περιεχόμενα F = A V = M r = J. Δυναμική καταπόνηση κόπωση. Καμπύλη Woehler. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Μάθημα: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Δυναμική Αντοχή Σύνδεση με προηγούμενο μάθημα Καμπύλη τάσης παραμόρφωσης Βασικές φορτίσεις A V y A M y M x M I

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κεραμικών και Πολυμερικών Υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Εισαγωγή Όπως ήδη είδαμε, η μηχανική συμπεριφορά των υλικών αντανακλά

Διαβάστε περισσότερα

ΔΙΑΤΑΡΑΧΕΣ (DISLOCATIONS )

ΔΙΑΤΑΡΑΧΕΣ (DISLOCATIONS ) ΔΙΑΤΑΡΑΧΕΣ (DISLOCATIONS ) 1. ΕΙΣΑΓΩΓΉ Η αντοχή και η σκληρότητα είναι μέτρα της αντίστασης ενός υλικού σε πλαστική παραμόρφωση Σε μικροσκοπική κλίμακα, πλαστική παραμόρφωση : - συνολική κίνηση μεγάλου

Διαβάστε περισσότερα

2.1 Παραμορφώσεις ανομοιόμορφων ράβδων

2.1 Παραμορφώσεις ανομοιόμορφων ράβδων ΑΞΟΝΙΚΗ ΦΟΡΤΙΣΗ 9 Αξονική φόρτιση. Παραμορφώσεις ανομοιόμορφων ράβδων. Ελαστική ράβδος ΑΒ μήκους, Γ B μέτρου ελαστικότητας Ε και / συντελεστή θερμικής διαστολής α, είναι πακτωμένη στα σημεία Α και Β και

Διαβάστε περισσότερα

[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο

[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο [1] Να βρεθεί ο αριθμός των ατόμων του αέρα σε ένα κυβικό μικρόμετρο (κανονικές συνθήκες και ιδανική συμπεριφορά) (Τ=300 Κ και P= 1 atm) (1atm=1.01x10 5 Ν/m =1.01x10 5 Pa). [] Να υπολογισθεί η απόσταση

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΕΠΙΛΟΓΗΣ ΥΛΙΚΟΥ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΕΠΙΛΟΓΗΣ ΥΛΙΚΟΥ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΕΠΙΛΟΓΗΣ ΥΛΙΚΟΥ Τελική Χρήση/ Περιβάλλον λειτουργίας* Σχεδιασµός Μηχανολογική σχεδίαση Μεµονωµένα εξαρτήµατα Συνολική κατασκευή Επιλογή υλικού Κατασκευή Μορφοποίηση µερών Μηχανουργική κατεργασία

Διαβάστε περισσότερα

7.14 Προβλήματα για εξάσκηση

7.14 Προβλήματα για εξάσκηση 7.14 Προβλήματα για εξάσκηση 7.1 Το ορυκτό οξείδιο του αλουμινίου (Corundum, Al 2 O 3 ) έχει κρυσταλλική δομή η οποία μπορεί να περιγραφεί ως HCP πλέγμα ιόντων οξυγόνου με τα ιόντα αλουμινίου να καταλαμβάνουν

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υλικών Αστοχία: Θραύση, Κόπωση και Ερπυσμός Callister Κεφάλαιο 10 / Ashby Κεφάλαιο 8

Εισαγωγή στην Επιστήμη των Υλικών Αστοχία: Θραύση, Κόπωση και Ερπυσμός Callister Κεφάλαιο 10 / Ashby Κεφάλαιο 8 Εισαγωγή στην Επιστήμη των Υλικών Αστοχία: Θραύση, Κόπωση και Ερπυσμός Callister Κεφάλαιο 10 / Ashby Κεφάλαιο 8 Αστοχία πλοίου λόγω κυκλικής φόρτισης από τα κύματα. Εμφύτευμα ισχίου-κυκλική Φόρτιση κατά

Διαβάστε περισσότερα

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών 7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ Θεωρούµε ινώδες σύνθετο υλικό ενισχυµένο µονοδιευθυντικά µε συνεχείς ίνες. Για τη µελέτη της µηχανικής συµπεριφοράς µιας τυχαίας στρώσης, πρέπει να είναι γνωστές οι

Διαβάστε περισσότερα

20/3/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Εφελκυσμός χαλύβδινης ράβδου. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος)

20/3/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Εφελκυσμός χαλύβδινης ράβδου. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Σημειώσεις Εργαστηριακής Άσκησης Εφελκυσμός χαλύβδινης ράβδου Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Εργαστηριακή Άσκηση 1 Εισαγωγή στη Δοκιμή Εφελκυσμού Δοκίμιο στερεωμένο ακλόνητα

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Στο

Διαβάστε περισσότερα

Βασικές Αρχές Σχεδιασμού Υλικά

Βασικές Αρχές Σχεδιασμού Υλικά Βασικές Αρχές Σχεδιασμού Υλικά Δομική Μηχανική ΙΙΙ Χρ. Ζέρης Σχολή Πολιτικών Μηχανικών, ΕΜΠ Το Ευρωπαϊκό πλαίσιο Μελετών και Εκτέλεσης έργων ΕΝ 10080 Χάλυβας οπλισμού Νοέμ. 2013 Χ. Ζέρης 2 ΕΚΩΣ, ΕΝ1992:

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 7: ΚΕΡΑΜΙΚΑ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 7: ΚΕΡΑΜΙΚΑ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 7: ΚΕΡΑΜΙΚΑ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΤΑΣΚΕΥΗΣ, ΤΟΠΟΘΕΤΗΣΗΣ, ΤΣΙΜΕΝΤΕΝΕΣΗΣ, ΕΛΕΓΧΟΥ ΚΑΙ ΤΑΝΥΣΗΣ ΜΟΝΙΜΩΝ ΠΡΟΕΝΤΕΤΑΜΕΝΩΝ ΑΓKΥΡΩΣΕΩΝ.

ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΤΑΣΚΕΥΗΣ, ΤΟΠΟΘΕΤΗΣΗΣ, ΤΣΙΜΕΝΤΕΝΕΣΗΣ, ΕΛΕΓΧΟΥ ΚΑΙ ΤΑΝΥΣΗΣ ΜΟΝΙΜΩΝ ΠΡΟΕΝΤΕΤΑΜΕΝΩΝ ΑΓKΥΡΩΣΕΩΝ. ΕΚΚΑΦ ΑΤΕΕ ΔΑΣΚΑΡΟΛΗ 67-16675 ΓΛΥΦΑΔΑ, Tηλ. (+30) 210.96.33.385, Fax. (+30) 210.96.33.604, we b : ww w. ekkaf.gr ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΤΑΣΚΕΥΗΣ, ΤΟΠΟΘΕΤΗΣΗΣ, ΤΣΙΜΕΝΤΕΝΕΣΗΣ, ΕΛΕΓΧΟΥ ΚΑΙ ΤΑΝΥΣΗΣ ΜΟΝΙΜΩΝ ΠΡΟΕΝΤΕΤΑΜΕΝΩΝ

Διαβάστε περισσότερα

Διαγράμματα φάσεων-phase Diagrams

Διαγράμματα φάσεων-phase Diagrams Διαγράμματα φάσεων-phase Diagrams Φωτογραφία ηλεκτρονικού μικροσκοπίου που δείχνει την μικροκρυασταλλική δομή ανθρακούχου χάλυβα με περιεκτικότητα 0,44%C Περλίτης Φερρίτης (φερρίτης+σεμεντίτης) Φάσεις

Διαβάστε περισσότερα

6 η ΕΝΟΤΗΤΑ ΣΚΥΡΟΔΕΜΑ: ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ, ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ

6 η ΕΝΟΤΗΤΑ ΣΚΥΡΟΔΕΜΑ: ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ, ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΕΧΝΙΚΑ ΥΛΙΚΑ 6 η ΕΝΟΤΗΤΑ ΣΚΥΡΟΔΕΜΑ: ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ, ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Ε. Βιντζηλαίου (Συντονιστής), Ε. Βουγιούκας, Ε. Μπαδογιάννης Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης)

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία - Θερμότητα (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία Ποσοτικοποιεί την αντίληψή μας για το πόσο ζεστό ή κρύο είναι

Διαβάστε περισσότερα

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ 1 1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ Θα αρχίσουμε τη σειρά των μαθημάτων της Φυσικοχημείας με τη μελέτη της αέριας κατάστασης της ύλης. Η μελέτη της φύσης των αερίων αποτελεί ένα ιδανικό μέσο για την εισαγωγή

Διαβάστε περισσότερα

Έλεγχος Ποιότητας και Τεχνολογία Μεταλλικών Υλικών

Έλεγχος Ποιότητας και Τεχνολογία Μεταλλικών Υλικών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Έλεγχος Ποιότητας και Τεχνολογία Μεταλλικών Υλικών Ενότητα 3: Εργαστήριο Δρ Κάρμεν Μεντρέα Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

(a) Λεία δοκίµια, (b) δοκίµια µε εγκοπή, (c) δοκίµια µε ρωγµή

(a) Λεία δοκίµια, (b) δοκίµια µε εγκοπή, (c) δοκίµια µε ρωγµή ΜηχανικέςΜετρήσεις Βασισµένοστο Norman E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, Third Edition, 2007 Pearson Education (a) οκιµήεφελκυσµού,

Διαβάστε περισσότερα

3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ

3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΕΧΝΙΚΑ ΥΛΙΚΑ 3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ Ε. Βιντζηλαίου (Συντονιστής), Ε. Βουγιούκας, Ε. Μπαδογιάννης Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΧΑΛΥΒΑΣ ΚΑΙ ΑΛΛΑ ΜΕΤΑΛΑ ΜΕΡΟΣ Β. ΔΟΜΙΚΟΣ ΧΑΛΥΒΑΣ

ΧΑΛΥΒΑΣ ΚΑΙ ΑΛΛΑ ΜΕΤΑΛΑ ΜΕΡΟΣ Β. ΔΟΜΙΚΟΣ ΧΑΛΥΒΑΣ ΧΑΛΥΒΑΣ ΚΑΙ ΑΛΛΑ ΜΕΤΑΛΑ ΜΕΡΟΣ Β. ΔΟΜΙΚΟΣ ΧΑΛΥΒΑΣ 1 Δομικός χάλυβας ή μορφοσίδηρος Δομικά Υλικά- Χάλυβας και άλλα μέταλλα- Μέρος 2 Καραντώνη 1 4 Δομικά Υλικά- Χάλυβας και άλλα μέταλλα- Μέρος 2 Καραντώνη

Διαβάστε περισσότερα

4/11/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης

4/11/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης Βασική αρχή εργαστηριακής άσκησης Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία σύνδεσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ Περιληπτική θεωρητική εισαγωγή α) Τεχνική zchralski Η πιο συχνά χρησιμοποιούμενη τεχνική ανάπτυξης μονοκρυστάλλων πυριτίου (i), αρίστης ποιότητας,

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΤΗΣ ΑΝΤΟΧΗΣ ΤΩΝ ΥΛΙΚΩΝ ΣΕ ΚΡΟΥΣΗ

ΕΛΕΓΧΟΣ ΤΗΣ ΑΝΤΟΧΗΣ ΤΩΝ ΥΛΙΚΩΝ ΣΕ ΚΡΟΥΣΗ ΕΛΕΓΧΟΣ ΤΗΣ ΑΝΤΟΧΗΣ ΤΩΝ ΥΛΙΚΩΝ ΣΕ ΚΡΟΥΣΗ 40 ΚΡΟΥΣΗ κρούση < αρχαία ελληνική κρούσις το χτύπημα ενός αντικειμένου πάνω σε ένα άλλο (φυσική) η συνάντηση δύο σωμάτων με βίαιο και αιφνίδιο τρόπο ΓΕΝΙΚΑ Τα

Διαβάστε περισσότερα

Μηχανικές ιδιότητες των μεταλλικών υλικών. Πλαστική συμπεριφορά

Μηχανικές ιδιότητες των μεταλλικών υλικών. Πλαστική συμπεριφορά Μηχανικές ιδιότητες των μεταλλικών υλικών Πλαστική συμπεριφορά Πλαστική παραμόρφωση των μετάλλων Πλαστική παραμόρφωση σημαίνει Μόνιμη παραμόρφωση. 2 Tensile strength (TS) Fracture strength Necking Διάγραμμα

Διαβάστε περισσότερα

ΙΑΧΥΣΗ. Σχήµα 1: Είδη διάχυσης

ΙΑΧΥΣΗ. Σχήµα 1: Είδη διάχυσης ΙΑΧΥΣΗ ΟΡΙΣΜΟΣ - ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ιάχυση (diffusin) είναι ο µηχανισµός µεταφοράς ατόµων (όµοιων ή διαφορετικών µεταξύ τους) µέσα στη µάζα ενός υλικού, λόγω θερµικής διέγερσής τους. Αποτέλεσµα της διάχυσης

Διαβάστε περισσότερα

ΜΟΡΦΟΠΟΙΗΣΗ ΜΕΤΑΛΛΩΝ ΜΕ ΔΙΑΜΟΡΦΩΣΗ. Πλαστική παραμόρφωση με διατήρηση όγκου

ΜΟΡΦΟΠΟΙΗΣΗ ΜΕΤΑΛΛΩΝ ΜΕ ΔΙΑΜΟΡΦΩΣΗ. Πλαστική παραμόρφωση με διατήρηση όγκου ΜΟΡΦΟΠΟΙΗΣΗ ΜΕΤΑΛΛΩΝ ΜΕ ΔΙΑΜΟΡΦΩΣΗ Πλαστική παραμόρφωση με διατήρηση όγκου Περιοχή ευσταθούς πλαστικής παραμόρφωσης Η πλαστική παραμορφωση πέρα από το σημείο διαρροής απαιτεί την αύξηση της επιβαλλόμενης

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 30 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών.

Εργαστηριακή Άσκηση 30 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 944 Εργαστηριακή Άσκηση 3 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών. Συνεργάτες:

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 3: ΑΤΕΛΕΙΕΣ ΔΟΜΗΣ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 3: ΑΤΕΛΕΙΕΣ ΔΟΜΗΣ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 3: ΑΤΕΛΕΙΕΣ ΔΟΜΗΣ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Πειραματική Αντοχή Υλικών. Ενότητα: Μονοαξονικός Εφελκυσμός

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Πειραματική Αντοχή Υλικών. Ενότητα: Μονοαξονικός Εφελκυσμός ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Μονοαξονικός Εφελκυσμός Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΟΜΑΔΑ O

ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΟΜΑΔΑ O ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΟΜΑΔΑ O 11-2017 Προφορικές εξετάσεις: Κάθε ομάδα ετοιμάζει μία παρουσίαση στο πρόγραμμα Power Point για ~60 λεπτά. Κάθε μέλος της ομάδας παρουσιάζει ένα από τα εξής μέρη: Πρόβλημα 1 -

Διαβάστε περισσότερα

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745.

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745. 1 Παράδειγμα 101 Να υπολογίσετε τη μάζα 10 m 3 πετρελαίου, στους : α) 20 ο C και β) 40 ο C. Δίνονται η πυκνότητά του στους 20 ο C ρ 20 = 845 kg/m 3 και ο συντελεστής κυβικής διαστολής του β = 9 * 10-4

Διαβάστε περισσότερα

Ανάστροφη πόλωση της επαφής p n

Ανάστροφη πόλωση της επαφής p n Ανάστροφη πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Επαφή p n Ανάστροφη πόλωση Πολώνουμε

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υλικών Θερμικές Ιδιότητες Callister Κεφάλαιο 20, Ashby Κεφάλαιο 12

Εισαγωγή στην Επιστήμη των Υλικών Θερμικές Ιδιότητες Callister Κεφάλαιο 20, Ashby Κεφάλαιο 12 Εισαγωγή στην Επιστήμη των Υλικών Θερμικές Ιδιότητες Callister Κεφάλαιο 20, Ashby Κεφάλαιο 12 Πως αντιδρά ένα υλικό στην θερμότητα. Πως ορίζουμε και μετράμε τα ακόλουθα μεγέθη: Θερμοχωρητικότητα Συντελεστή

Διαβάστε περισσότερα

Φυσικές & Μηχανικές Ιδιότητες

Φυσικές & Μηχανικές Ιδιότητες Μάθημα 5 ο Ποιες είναι οι Ιδιότητες των Υλικών ; Φυσικές & Μηχανικές Ιδιότητες Κατεργαστικότητα & Αναφλεξιμότητα Εφελκυσμός Θλίψη Έλεγχοι των Υλικών Φορτίσεις -1 ιάτμηση Στρέψη Έλεγχοι των Υλικών Φορτίσεις

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΜΕΤΑΛΛΟΥΡΓΙΑ ΤΩΝ ΧΑΛΥΒΩΝ

ΦΥΣΙΚΗ ΜΕΤΑΛΛΟΥΡΓΙΑ ΤΩΝ ΧΑΛΥΒΩΝ ΦΥΣΙΚΗ ΜΕΤΑΛΛΟΥΡΓΙΑ ΤΩΝ ΧΑΛΥΒΩΝ Σχ. 10.1 Διάγραμμα φάσεων Fe-C Σχ. 10.2 Τμήμα του διαγράμματος φάσεων Fe-C με αντίστοιχες μικροδομές κατά την ψύξη ευτηκτοειδών, υποευτηκτοειδών και υπερευτηκτοειδών χαλύβων.

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς.

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού

Διαβάστε περισσότερα

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2.1 Εισαγωγή Η θερμοκρασιακή διαφορά μεταξύ δυο σημείων μέσα σ' ένα σύστημα προκαλεί τη ροή θερμότητας και, όταν στο σύστημα αυτό περιλαμβάνεται ένα ή περισσότερα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ. Διαμορφώσεις

ΜΗΧΑΝΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ. Διαμορφώσεις Διαμορφώσεις Σχήμα 1 Στην κατεργασία μετάλλου υπάρχουν δύο κατηγορίες διαμορφώσεων, κατεργασίες με αφαίρεση υλικού και μηχανικής διαμόρφωσης χωρίς αφαίρεση υλικού 1. Ποια η διαφορά των μηχανικών διαμορφώσεων/κατεργασιών

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Ερπυσμού. ΕργαστηριακήΆσκηση 4 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Ερπυσμού. ΕργαστηριακήΆσκηση 4 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Ερπυσμού ΕργαστηριακήΆσκηση 4 η Σκοπός Σκοπός του πειράµατος είναι ο πειραµατικός προσδιορισµός της καµπύλης ερπυσµού, υπό σταθερό εξωτερικό φορτίο και ελεγχοµένη θερµοκρασία εκτέλεσης

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΑ ΥΛΙΚΑ Ο ρ ι σ µ ο ί. Μέταλλα. Κράµατα. Χάλυβας. Ανοξείδωτος χάλυβας. Χάλυβες κατασκευών. Χάλυβας σκυροδέµατος. Χυτοσίδηρος. Ορείχαλκος.

ΜΕΤΑΛΛΙΚΑ ΥΛΙΚΑ Ο ρ ι σ µ ο ί. Μέταλλα. Κράµατα. Χάλυβας. Ανοξείδωτος χάλυβας. Χάλυβες κατασκευών. Χάλυβας σκυροδέµατος. Χυτοσίδηρος. Ορείχαλκος. 47 ΜΕΤΑΛΛΙΚΑ ΥΛΙΚΑ Ο ρ ι σ µ ο ί. Μέταλλα. Χηµικές ενώσεις χαρακτηριστικό των οποίων είναι ο µεταλλικός δεσµός. Είναι καλοί αγωγοί της θερµότητας και του ηλεκτρισµού και όταν στιλβωθούν αντανακλούν το

Διαβάστε περισσότερα

Επιστήμη και Τεχνολογία Συγκολλήσεων. Ενότητα 4: Παραμένουσες Τάσεις Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Επιστήμη και Τεχνολογία Συγκολλήσεων. Ενότητα 4: Παραμένουσες Τάσεις Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Επιστήμη και Τεχνολογία Συγκολλήσεων Ενότητα 4: Παραμένουσες Τάσεις Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας

Διαβάστε περισσότερα

Ανάστροφη πόλωση της επαφής p n

Ανάστροφη πόλωση της επαφής p n Ανάστροφη πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Επαφή p n Ανάστροφη πόλωση Πολώνουμε

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΛΟΥΜΙΝΙΟΥ (ΕΝΑΕΡΙΑ ΗΛΕΚΤΡΟΦΟΡΑ ΣΥΡΜΑΤΑ)

ΗΛΕΚΤΡΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΛΟΥΜΙΝΙΟΥ (ΕΝΑΕΡΙΑ ΗΛΕΚΤΡΟΦΟΡΑ ΣΥΡΜΑΤΑ) ΗΛΕΚΤΡΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΛΟΥΜΙΝΙΟΥ (ΕΝΑΕΡΙΑ ΗΛΕΚΤΡΟΦΟΡΑ ΣΥΡΜΑΤΑ) Οι ηλεκτρικές εφαρµογές του αλουµινίου εκµεταλλεύονται πρώτιστα την πολύ καλή ηλεκτρική αγωγιµότητα (χαµηλή ειδική αντίσταση) του µετάλλου,

Διαβάστε περισσότερα

1.2. Ο ΣΙΔΗΡΟΣ ΚΑΙ ΤΑ ΚΡΑΜΑΤΑ ΤΟΥ.

1.2. Ο ΣΙΔΗΡΟΣ ΚΑΙ ΤΑ ΚΡΑΜΑΤΑ ΤΟΥ. 1.2. Ο ΣΙΔΗΡΟΣ ΚΑΙ ΤΑ ΚΡΑΜΑΤΑ ΤΟΥ. Ο σίδηρος πολύ σπάνια χρησιμοποιείται στη χημικά καθαρή του μορφή. Συνήθως είναι αναμεμειγμένος με άλλα στοιχεία, όπως άνθρακα μαγγάνιο, νικέλιο, χρώμιο, πυρίτιο, κ.α.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΚΑΙ ΑΝΤΙΣΤΑΣΗ

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΚΑΙ ΑΝΤΙΣΤΑΣΗ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΚΑΙ ΑΝΤΙΣΤΑΣΗ 1 1. ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Το ηλεκτρικό ρεύμα είναι ροή ηλεκτρικών φορτίων. Θεωρούμε ότι έχουμε για συγκέντρωση φορτίου που κινείται και διέρχεται κάθετα από

Διαβάστε περισσότερα

Πρόχειρο Τεστ Β Τάξης Ενιαίου Λυκείου Ιδανικά Αέρια - Κινητική Θεωρία Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 90 min Κυριακή 13 Μάρτη 2016.

Πρόχειρο Τεστ Β Τάξης Ενιαίου Λυκείου Ιδανικά Αέρια - Κινητική Θεωρία Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 90 min Κυριακή 13 Μάρτη 2016. Πρόχειρο Τεστ Β Τάξης Ενιαίου Λυκείου Ιδανικά Αέρια - Κινητική Θεωρία Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 90 min Κυριακή 13 Μάρτη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

Λυγισμός Ευστάθεια (Euler και Johnson)

Λυγισμός Ευστάθεια (Euler και Johnson) Λυγισμός Ευστάθεια (Euler και Johnson) M z P z EI z P z P z z 0 και αν EI k EI P 0 z k z Η λύση της διαφορικής εξίσωσης έχει την μορφή: 1 sin z C kz C cos kz Αν οι οριακές συνθήκες είναι άρθρωση άρθρωση

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 8: Μετασχηματισμοί φάσεων στους χάλυβες. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 8: Μετασχηματισμοί φάσεων στους χάλυβες. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 8: Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

10,2. 1,24 Τυπική απόκλιση, s 42

10,2. 1,24 Τυπική απόκλιση, s 42 Ασκηση 3.1 (a) Αν μία ράβδος οπλισμού θεωρηθεί ότι λυγίζει μεταξύ δύο διαδοχικών συνδετήρων με μήκος λυγισμού το μισό της απόστασης, s w, των συνδετήρων, να υπολογισθεί η απόσταση συνδετήρων, s w, πέραν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΠΑΡΑΜΕΝΟΥΣΕΣ ΤΑΣΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΙΣ ΣΕ ΣΥΓΚΟΛΛΗΣΕΙΣ ΤΗΞΕΩΣ

ΠΑΡΑΜΕΝΟΥΣΕΣ ΤΑΣΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΙΣ ΣΕ ΣΥΓΚΟΛΛΗΣΕΙΣ ΤΗΞΕΩΣ ΠΑΡΑΜΕΝΟΥΣΕΣ ΤΑΣΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΙΣ ΣΕ ΣΥΓΚΟΛΛΗΣΕΙΣ ΤΗΞΕΩΣ Τοπική θέρμανση συγκολλούμενων τεμαχίων Ανομοιόμορφη κατανομή θερμοκρασιών, πουμεαβάλλεταιμετοχρόνο Θερμικές παραμορφώσεις στο μέταλλο προσθήκης

Διαβάστε περισσότερα

ΜΕΤΑΛΛΑ. 1. Γενικά 2. Ιδιότητες μετάλλων 3. Έλεγχος μηχανικών ιδιοτήτων

ΜΕΤΑΛΛΑ. 1. Γενικά 2. Ιδιότητες μετάλλων 3. Έλεγχος μηχανικών ιδιοτήτων ΜΕΤΑΛΛΑ 1. Γενικά 2. Ιδιότητες μετάλλων 3. Έλεγχος μηχανικών ιδιοτήτων 1. ΓΕΝΙΚΑ Τα μέταλλα παράγονται, κυρίως, από τις διάφορες ενώσεις τους, οι οποίες βρίσκονται στη φύση με τη μορφή μεταλλευμάτων. Τα

Διαβάστε περισσότερα

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές.

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές. ΜΑΘΗΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ Θέµα 1 ο α) Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί µεταβολή AB από την κατάσταση A (p, V, T ) στην κατάσταση B (p, V 1, T ). i) Ισχύει V 1 = V. ii) Η µεταβολή παριστάνεται

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣΠΟΛΛΑΠΛΩΝΕΠΙΛΟΓΩΝ

ΕΡΩΤΗΣΕΙΣΠΟΛΛΑΠΛΩΝΕΠΙΛΟΓΩΝ ΕΡΩΤΗΣΕΙΣΠΟΛΛΑΠΛΩΝΕΠΙΛΟΓΩΝ Ένας ωστενιτικός ανοξείδωτος χάλυβας δεν παρουσιάζει τάση για ευαισθητοποίηση εάν: Κατά την συγκόλληση ενός ελάσματος μεγάλου πάχους χάλυβα υψηλής αντοχής ποιοι παράγοντες μπορεί

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Α. Ασημακόπουλος

Διαβάστε περισσότερα

Ανάλυση: όπου, με αντικατάσταση των δεδομένων, οι ζητούμενες απώλειες είναι: o C. 4400W ή 4.4kW 0.30m Συζήτηση: ka ka ka dx x L

Ανάλυση: όπου, με αντικατάσταση των δεδομένων, οι ζητούμενες απώλειες είναι: o C. 4400W ή 4.4kW 0.30m Συζήτηση: ka ka ka dx x L Κεφάλαιο 1 Εισαγωγικές Έννοιες της Μετάδοσης Θερμότητας ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΆΣΚΗΣΗ 1.1 Ένα διαχωριστικό τοίχωμα σκυροδέματος, επιφάνειας 30m, διαθέτει επιφανειακές θερμοκρασίες 5 ο C και 15 ο C, ενώ έχει

Διαβάστε περισσότερα

Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά

Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Στοιχεία Μηχανών Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Ύλη μαθήματος -ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ -ΑΞΟΝΕΣ -ΚΟΧΛΙΕΣ -ΙΜΑΝΤΕΣ -ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ ΒΑΘΜΟΛΟΓΙΑ ΜΑΘΗΜΑΤΟΣ: 25% πρόοδος 15% θέμα

Διαβάστε περισσότερα

Ισοζύγια (φορτίου και μάζας) Εισαγωγική Χημεία

Ισοζύγια (φορτίου και μάζας) Εισαγωγική Χημεία Ισοζύγια (φορτίου και μάζας) Εισαγωγική Χημεία 03-4 Κατά την διάλυση C moles/l άλατος ΜΑ, το οποίο διΐσταται πλήρως στο νερό: Ισοζύγια μάζας Ισοζύγιο φορτίου Ισοζύγιο πρωτονίων Να υπολογισθούν οι συγκεντρώσεις

Διαβάστε περισσότερα

Έλεγχος Ποιότητας και Τεχνολογία Μεταλλικών Υλικών

Έλεγχος Ποιότητας και Τεχνολογία Μεταλλικών Υλικών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Έλεγχος Ποιότητας και Τεχνολογία Μεταλλικών Υλικών Ενότητα 2: Θεωρία Μέρος 2 ο Δρ Κάρμεν Μεντρέα Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Διαβάστε περισσότερα