Εργαστηριακή Άσκηση 30 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εργαστηριακή Άσκηση 30 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών."

Transcript

1 Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 944 Εργαστηριακή Άσκηση 3 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών. Συνεργάτες: Καλαμαρά Αντιγόνη Υπεύθυνος Εργαστηρίου: Ημερομηνία Διεξαγωγής : 3//5 Ημερομηνία Παράδοσης : //5

2 Εισαγωγή Σκοπός αυτής της εργαστηριακής άσκησης είναι η μέτρηση του συντελεστή θερμικής αγωγιμότητας ενός καλού (ορειχάλκινη ράβδος) και ενός κακού αγωγού θερμότητας. Επιπλέον μετράμε την σταθερά χρόνου θέρμανσης καθώς και την κατανομή θερμοκρασίας της ορειχάλκινης ράβδου. Στοιχεία Θεωρίας Όταν θερμαίνουμε ένα σώμα, του προσδίδουμε ενέργεια, και για αυτό το λόγο τα άτομα του σώματος αυτού ταλαντώνονται ταχύτερα καθώς αυξάνεται η ενέργεια ταλάντωσης τους. Λόγω της αλληλεπίδρασης αυτών, όλα τα άτομα του σώματος αποκτούν μεγαλύτερη ενέργεια έως ότου επέλθει θερμική ισορροπία. Αυτό παρατηρείται ως ροή θερμότητας από τις θερμότερες στις ψυχρότερες περιοχές. Στα μέταλλα, η ύπαρξη ελεύθερων ηλεκτρονίων προκαλεί ταχύτερη διάδοση της θερμότητας και άρα ταχύτερη αποκατάσταση της θερμικής ισορροπίας. Κατανομή θερμοκρασίας κατά μήκος ράβδου Σύμφωνα με το Θεμελιώδη Νόμο της Θερμικής Αγωγιμότητας, η ποσότητα θερμότητας που ρέει ανά μονάδα χρόνου κατά μήκος μιας ομογενούς μεταλλικής ράβδου μήκους με σταθερό εμβαδόν διατομής S είναι : dq dt = λs dt dx dt όπου ο ρυθμός μεταβολής της θερμοκρασίας ανά μονάδα μήκους οι οποία dx καλείται θερμοβαθμίδα και λ ο χαρακτηριστικός για το υλικό συντελεστής θερμικής αγωγιμότητας. Αν το ένα άκρο της ράβδου που εξετάζουμε έρθει σε επαφή με σώμα μεγάλης θερμοχωρητικότητας και σταθερής θερμοκρασίας ίσης με αυτή του περιβάλλοντος, και διοχετεύσουμε στο άλλο άκρο σταθερή θερμική ισχύ P, τότε θα διαμορφωθεί στη ράβδο μια γραμμική κατανομή θερμοκρασίας της μορφής : Τ Τπ T ( x) = Τπ + x Σταθερά χρόνου θέρμανσης Η σταθερά χρόνου θέρμανσης τ που εκφράζει την εκθετική αύξηση της θερμοκρασίας σε κάθε σημείο της ράβδου έως ότου επέλθει θερμική ισορροπία, είναι ρc ανάλογη του παράγοντα : λ Συντελεστής θερμικής αγωγιμότητας καλού αγωγού P = dq dt ΔT = λs ΔΤ = λs P

3 Συντελεστής θερμικής αγωγιμότητας κακού αγωγού T = T + ( Τ Τ ) e π αρχ π λs t mca Πειραματική διάταξη Η πειραματική διάταξη αποτελείται από :. Μια μεταλλική βάση μεγάλης θερμοχωρητικότητας. Μια ορειχάλκινη ράβδο, μήκους = 7 m και διαμέτρου d = (. ±.) m. Για τη διατομή της ράβδου ισχύει : S d δ S = δd = π δd =.7 d 5 πd S =, οπότε: 4 m 5 και τελικά : S = ( 9.5 ±.7) m Το ένα άκρο της ράβδου βρίσκεται σε επαφή με τη μεταλλική βάση ενώ στο άλλο υπάρχει ένας λαμπτήρας που λειτουργεί σαν πηγή θερμότητας. Η ράβδος έχει 5 υποδοχές οι οποίες απέχουν μεταξύ τους (5. ±.) m, ενώ η πρώτη απέχει 5 m από τη μεταλλική βάση. 3. Μεταλλικός δίσκος διαμέτρου d = (59.6 ±.3) m και μάζας m = 35,5gr. Όπως παραπάνω βρίσκουμε ότι το εμβαδόν του δίσκου είναι : 5 S d = ( 7. ±.8) m 4. Τροφοδοτικό σταθερής τάσης, που παρέχει τάση -5 Watt. 5.Ψηφιακό θερμόμετρο θερμικής αδράνειας 3sec, διακριτικής ικανότητας, και σφάλματος,5. 6.Λεπτό φύλλο κακού αγωγού θερμότητας πάχους α =, ±,5mm 7.Ηλεκτρικός θερμαντήρας Μετρήσεις Σταθερά χρόνου θέρμανσης της ράβδου (P = 3W) Πίνακας T ( ),5 3 5,5 6 8, 9 3, 3, 5 3, 8 3,5 3,7 4 33, 7 33,3 3 33,3

4 Μέτρηση του συντελεστή λ του ορείχαλκου Πίνακας P (W) T ( ) T ( ) 3,,5 33,3 6, 4, 44, 9, 5,4 56,7, 7,7 68,5 5, 9,7 78,5 Εύρεση της κατανομής της θερμοκρασίας κατά μήκος της ράβδου (P = 5W) Πίνακας 3 x (cm) T(x)( ) T,5 78,5 T, 67,3 T3 3,5 55, T4 5, 4,5 T5 6,5 9,7 Μέτρηση του συντελεστή λ κακού αγωγού θερμότητας Πίνακας 4 Αέρας T ( ) 75, 3 74,6 6 73,7 9 7,9 7, 5 7,3 8 7,4 Πίνακας 5 Κακός Αγωγός T ( ) 69,3 3 65,6 6 59,9 9 53,9 48,4 5 44, 8 4,4 37,3 4 34,4 7 3,

5 3 3, 33 8,6 36 7, Επεξεργασία των μετρήσεων Σταθερά χρόνου θέρμανσης της ράβδου Λαμβάνοντας υπ όψιν μας της μετρήσεις που έχουν καταγραφεί στον Πίνακα, σχεδιάζουμε τη γραφική παράσταση της θερμοκρασίας του ελεύθερου άκρου συναρτήσει του χρόνου. Γνωρίζουμε θεωρητικά ότι σε χρόνο τ η θερμοκρασία του ελεύθερου άκρου μεταβάλλεται κατά 63% της μέγιστης μεταβολής της θερμοκρασίας. Επειδή η μέγιστη μεταβολή είναι 33,3,5 =,8 και το 63% αυτής είναι 7,43 έχουμε ότι σε χρόνο τ η θερμοκρασία θα είναι : T ( τ ) =,5 + 7,43 = 8, 93 Από τη γραφική παράσταση βρίσκουμε ότι η θερμοκρασία αυτή αντιστοιχεί σε χρόνο τ = 69 Αν ήταν τ τ = = 7 ρc, τότε επειδή το τ είναι ανάλογο του, θα ίσχυε : λ τ Άρα τ =338 = τ = 49 τ Η μεταβατική περίοδος θα διαρκούσε περίπου 5τ = 695 Μέτρηση του συντελεστή λ του ορείχαλκου Από τον Πίνακα προκύπτει ο παρακάτω πίνακας : ( T5 T ) ( ) P(W) m 3 68, , ,4 58, ,4 Με βάση τις τιμές του πίνακα αυτού σχεδιάστηκε η γραφική παράσταση της θερμοβαθμίδα συναρτήσει τις ισχύος. Με τη μέθοδο των ελαχίστων τετραγώνων βρίσκουμε την κλίση της ευθείας καθώς και το σφάλμα της. Η ευθεία είναι η y = αx + β, με α = 45, ±,4 και β = 3,7 ± 4,

6 Όπως αναπτύχθηκε παραπάνω, έχουμε Κ = λ = λs ΚS δκ δs και το σφάλμα του λ δίνεται από τη σχέση : δλ = + λ Κ S Οπότε έχουμε : λ = (34,9 ± 6,) W/m Κατανομή θερμοκρασίας κατά μήκος της ράβδου Με σταθερή ισχύ 5 W μετρήσαμε την τιμή της θερμοκρασίας σε 5 διαδοχικές θέσεις της ράβδου, όπως φαίνεται στον Πίνακα 3. Παρατηρούμε ότι η γραφική παράσταση 3 του Τ συναρτήσει του χ είναι γραμμική. Μέτρηση του συντελεστή λ κακού αγωγού θερμότητας Με βάση τον Πίνακα 5 φτιάχνουμε τον παρακάτω πίνακα : T π T ( ) ln(t- ) 69,3 3,9 3 65,6 3, ,9 3,7 9 53,9 3,54 48,4 3, , 3, 8 4,4 3,44 37,3, ,4,78 7 3,,54 3 3,, ,6,9 36 7,,54

7 Από τους Πίνακες 4 και 5 σχεδιάζουμε τη γραφική παράσταση 4 της θερμοκρασίας συναρτήσει του χρόνου στις περιπτώσεις και με βάση τον παραπάνω πίνακα σχεδιάζουμε την γραφική παράσταση 5 του ln(t- ) συναρτήσει του χρόνου. Με τη μέθοδο τον ελαχίστων τετραγώνων βρίσκουμε την κλίση της ευθείας που προκύπτει στη γραφική παράσταση 5. T π 4 Η ευθεία είναι η y = αx + β με α = (-53,3 ±,7) s και β = (39899 ± 5) 4 s 4 Άρα η κλίση είναι Κ = (-53,3 ±,7) s mca Όπως είδαμε από τη θεωρία, έχουμε λ = Κ S d και δλ ( mcαδκ) + ( Kmcδα ) + ( Κcαδm) όπου c = 37 Kmcα = + δs d S d Sd J kg K οπότε λ =(,7±,4 )W/m η ειδική θερμότητα του ορείχαλκου.

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς.

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία.

Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 9144 Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία. Συνεργάτες: Ιντζέογλου

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς.

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ VII-β Μέτρηση Θερµικής Αγωγιµότητας Μετάλλων

ΠΕΙΡΑΜΑ VII-β Μέτρηση Θερµικής Αγωγιµότητας Μετάλλων ΠΕΙΡΑΜΑ VII-β Μέτρηση Θερµικής Αγωγιµότητας Μετάλλων Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε τη διάδοση θερµότητας κατά µήκος µιας µεταλλλικής ράβδου και θα µετρήσουµε το συντελεστή θερµικής

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εργαστηριακή Άσκηση 35 Ροπή αδράνειας στερεών σωμάτων.

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εργαστηριακή Άσκηση 35 Ροπή αδράνειας στερεών σωμάτων. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 35 Ροπή αδράνειας στερεών σωμάτων. Συνεργάτες: Καλαμαρά Αντιγόνη

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Θερμική αγωγιμότητα στα στερεά Ηλεκτρική αγωγιμότητα μετάλλων Νόμος Wiedemann-Franz Αριθμός Lorenz Eιδική θερμότητα Προτεινόμενη βιβλιογραφία 1) Π. Βαρώτσος,

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 9 Χαρτογράφηση Ηλεκτρικού Πεδίου.

Εργαστηριακή Άσκηση 9 Χαρτογράφηση Ηλεκτρικού Πεδίου. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 090404 Εργαστηριακή Άσκηση 9 Χαρτογράφηση Ηλεκτρικού Πεδίου. Συνεργάτες: Καλαμαρά Αντιγόνη

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 4: ΑΓΩΓΗ ΘΕΡΜΟΤΗΤΑΣ ΣΕ ΜΟΝΤΕΛΟ ΣΠΙΤΙΟΥ [1] ΑΡΧΗ ΠΕΙΡΑΜΑΤΟΣ

ΠΕΙΡΑΜΑ 4: ΑΓΩΓΗ ΘΕΡΜΟΤΗΤΑΣ ΣΕ ΜΟΝΤΕΛΟ ΣΠΙΤΙΟΥ [1] ΑΡΧΗ ΠΕΙΡΑΜΑΤΟΣ ΠΕΙΡΑΜΑ 4: ΑΓΩΓΗ ΘΕΡΜΟΤΗΤΑΣ ΣΕ ΜΟΝΤΕΛΟ ΣΠΙΤΙΟΥ [1] ΑΡΧΗ ΠΕΙΡΑΜΑΤΟΣ Χρησιμοποιούμε ένα μοντέλο σπιτιού το οποίο διαθέτει παράθυρα/τοίχους που μπορούν να αντικατασταθούν και προσδιορίζουμε τους συντελεστές

Διαβάστε περισσότερα

Γενικό Εργαστήριο Φυσικής

Γενικό Εργαστήριο Φυσικής http://users.auth.gr/agelaker Γενικό Εργαστήριο Φυσικής Σκοπός της άσκησης είναι να βρούμε πειραματικά την ειδική θερμότητα διαφορών υλικών K dq dt c 1 m dq dt K mc Θερμοχωρητικότητα K (J/K) ενός σώματος

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΘEMA ο Επίπεδο κατακόρυφο σώµα από αλουµίνιο, µήκους 430 mm, ύψους 60 mm και πάχους

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ VIII - α Ηλεκτρικό Ισοδύναµο της Θερµότητας

ΠΕΙΡΑΜΑ VIII - α Ηλεκτρικό Ισοδύναµο της Θερµότητας ΠΕΙΡΑΜΑ VIII - α Ηλεκτρικό Ισοδύναµο της Θερµότητας Σκοπός πειράµατος Στο πείραµα αυτό θα µετρήσουµε το ηλεκτρικό ισοδύναµο της ενέργειας δηλαδή τη σχέση µεταξύ ηλεκτρικής και θερµικής ενέργειας. Θα εξετάσουµε

Διαβάστε περισσότερα

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2.1 Εισαγωγή Η θερμοκρασιακή διαφορά μεταξύ δυο σημείων μέσα σ' ένα σύστημα προκαλεί τη ροή θερμότητας και, όταν στο σύστημα αυτό περιλαμβάνεται ένα ή περισσότερα

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ VII-α Ηλεκτρικό Ισοδύναµο της Θερµότητας

ΠΕΙΡΑΜΑ VII-α Ηλεκτρικό Ισοδύναµο της Θερµότητας ΠΕΙΡΑΜΑ VII-α Ηλεκτρικό Ισοδύναµο της Θερµότητας Σκοπός πειράµατος Στο πείραµα αυτό θα µετρήσουµε το ηλεκτρικό ισοδύναµο της ενέργειας δηλαδή τη σχέση µεταξύ ηλεκτρικής και θερµικής ενέργειας. Θα εξετάσουµε

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ Multilong ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ Multilong ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ Φύλλο εργασίας Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων των ταλαντώσεων μέσω του ΣΣΛ-Α και για διαφορετικές μάζες, ο μαθητής: καλείται να κατανοήσει

Διαβάστε περισσότερα

ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 www.pmoiras.weebly.om ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς στα αέρια. Μηχανισμοί διάδοσης θερμότητας 3. Διάδοση θερμότητας

Διαβάστε περισσότερα

Κεφάλαιο 20. Θερμότητα

Κεφάλαιο 20. Θερμότητα Κεφάλαιο 20 Θερμότητα Εισαγωγή Για να περιγράψουμε τα θερμικά φαινόμενα, πρέπει να ορίσουμε με προσοχή τις εξής έννοιες: Θερμοκρασία Θερμότητα Θερμοκρασία Συχνά συνδέουμε την έννοια της θερμοκρασίας με

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 14 Μέτρηση του λόγου e/m του ηλεκτρονίου.

Εργαστηριακή Άσκηση 14 Μέτρηση του λόγου e/m του ηλεκτρονίου. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 0910404 Εργαστηριακή Άσκηση 14 Μέτρηση του λόγου e/ του ηλεκτρονίου. Συνεργάτες: Καίνιχ Αλέξανδρος

Διαβάστε περισσότερα

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΣΩΤΕΡΙΚΗ ΡΟΗ ΣΕ ΑΓΩΓΟ Σκοπός της άσκησης Σκοπός της πειραματικής

Διαβάστε περισσότερα

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Θεωρία ελαχίστων τετραγώνων (β ) Μη-γραμμικός αντιστάτης Μαρία Κατσικίνη E-mal: katsk@auth.gr Web: users.auth.gr/katsk Προσδιορισμός της νομοτέλειας Πείραμα για τη μελέτη ενός

Διαβάστε περισσότερα

Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου

Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου Σύνοψη Αυτή είναι μια από τις πρώτες ασκήσεις που κάνεις στο εργαστήριο Φυσικής Ι, γι αυτό καλό είναι να μάθεις ότι

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ VII-α Ηλεκτρικό Ισοδύναµο της Θερµότητας

ΠΕΙΡΑΜΑ VII-α Ηλεκτρικό Ισοδύναµο της Θερµότητας - &. ΠΕΙΡΑΜΑ VII-α Ηλεκτρικό Ισοδύναµο της Θερµότητας Σκοπός πειράµατος Στο πείραµα αυτό θα µετρήσουµε το ηλεκτρικό ισοδύναµο της ενέργειας δηλαδή τη σχέση µεταξύ ηλεκτρικής και θερµικής ενέργειας. Θα

Διαβάστε περισσότερα

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης)

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία - Θερμότητα (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία Ποσοτικοποιεί την αντίληψή μας για το πόσο ζεστό ή κρύο είναι

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΚΑΙ ΑΝΤΙΣΤΑΣΗ

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΚΑΙ ΑΝΤΙΣΤΑΣΗ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΚΑΙ ΑΝΤΙΣΤΑΣΗ 1 1. ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Το ηλεκτρικό ρεύμα είναι ροή ηλεκτρικών φορτίων. Θεωρούμε ότι έχουμε για συγκέντρωση φορτίου που κινείται και διέρχεται κάθετα από

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υλικών Θερμικές Ιδιότητες Callister Κεφάλαιο 20, Ashby Κεφάλαιο 12

Εισαγωγή στην Επιστήμη των Υλικών Θερμικές Ιδιότητες Callister Κεφάλαιο 20, Ashby Κεφάλαιο 12 Εισαγωγή στην Επιστήμη των Υλικών Θερμικές Ιδιότητες Callister Κεφάλαιο 20, Ashby Κεφάλαιο 12 Πως αντιδρά ένα υλικό στην θερμότητα. Πως ορίζουμε και μετράμε τα ακόλουθα μεγέθη: Θερμοχωρητικότητα Συντελεστή

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. όπου το κ εξαρτάται από το υλικό και τη θερμοκρασία.

ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. όπου το κ εξαρτάται από το υλικό και τη θερμοκρασία. Εισαγωγή Έστω ιδιότητα Ρ. ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ α) Ρ = Ρ(r, t) => μη μόνιμη, μεταβατική κατάσταση. β) P = P(r), P =/= P(t) => μόνιμη κατάσταση (μη ισορροπίας). γ) P =/= P(r), P(t) σε μακροσκοπικό χωρίο =>

Διαβάστε περισσότερα

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία)

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Διάδοση Θερμότητας (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Τρόποι διάδοσης θερμότητας Με αγωγή Με μεταφορά (με τη βοήθεια ρευμάτων) Με ακτινοβολία άλλα ΠΑΝΤΑ από το θερμότερο προς το ψυχρότερο

Διαβάστε περισσότερα

C=dQ/dT~ 6.4 cal/mole.grad

C=dQ/dT~ 6.4 cal/mole.grad ΘΕΡΜΟΤΗΤΑ Ηεσωτερικήενέργειαενόςσώµατος, είναι το σύνολο των οποιονδήποτε ενεργειών των ατόµων και των µορίων του Η θερµοκρασία είναι µέτρο της µέσης κινητικής ενέργειας των ατόµων και των µορίων Ε=3ΚΤ/2

Διαβάστε περισσότερα

Με ποιο όργανο μετριέται το βάρος;

Με ποιο όργανο μετριέται το βάρος; Φύλλο Εργασίας 3 Μετρήσεις μάζας - τα διαγράμματα Τι είναι η μάζα; H μάζα ενός σώματος εκφράζει την ποσότητα της ύλης που περιέχεται στο σώμα αυτό. Συμβολίζεται με το γράμμα m. Η μάζα ενός σώματος είναι

Διαβάστε περισσότερα

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια (παράγραφοι ά φ 3.1 31& 3.6) 36) Φυσική Γ Γυμνασίου Εισαγωγή Τα σπουδαιότερα χαρακτηριστικά της ηλεκτρικής ενέργειας είναι η εύκολη μεταφορά της σε μεγάλες αποστάσεις και

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 10 Βαθµονόµηση θερµοµέτρου

Εργαστηριακή άσκηση 10 Βαθµονόµηση θερµοµέτρου Μιχαήλ Μιχαήλ, Φυσικός 1 Εργαστηριακή άσκηση 10 Βαθµονόµηση θερµοµέτρου ΣΤΟΧΟΙ Οι στόχοι αυτής της εργαστηριακής άσκησης είναι: - Να κατασκευάζεις µια κλίµακα θερµοκρασίας Κελσίου. - Να µπορείς να χρησιµοποιείς

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΣΚΗΣΕΙΣ Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 1a-1

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2016 ΦΥΣΙΚΗ. 5 - Δεκεμβρίου Χριστόφορος Στογιάννος

ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2016 ΦΥΣΙΚΗ. 5 - Δεκεμβρίου Χριστόφορος Στογιάννος ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2016 ΦΥΣΙΚΗ 5 - Δεκεμβρίου - 2015 Χριστόφορος Στογιάννος 1 ΕΚΦΕ ΑΛΙΜΟΥ ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2016 Eξεταζόμενο μάθημα: ΦΥΣΙΚΗ ΟΜΑΔΑ..... 1 η Δραστηριότητα Σκοπός της άσκησης

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1 ο :Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Η διαφορά δυναμικού μεταξύ δύο σημείων μιας δυναμικής γραμμής, ομογενούς ηλεκτρικού

Διαβάστε περισσότερα

4.1 Εισαγωγή. Μετεωρολογικός κλωβός

4.1 Εισαγωγή. Μετεωρολογικός κλωβός 4 Θερμοκρασία 4.1 Εισαγωγή Η θερμοκρασία αποτελεί ένα μέτρο της θερμικής κατάστασης ενός σώματος, δηλ. η θερμοκρασία εκφράζει το πόσο ψυχρό ή θερμό είναι το σώμα. Η θερμοκρασία του αέρα μετράται διεθνώς

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΜΕ RTD

ΜΕΤΡΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΜΕ RTD ΜΕΤΡΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΜΕ TD ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΑΜ ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΔΙΕΞΑΓΩΓΗΣ: / / 0 ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: / / 0 ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΑΝΤΙΚΕΙΜΕΝΟ της εργαστηριακής άσκησης είναι

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 2: Αγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 2: Αγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Αγωγή Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ

Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ Σχολείο: Ονόματα των μαθητών: 1) 2)...... 3) 1 Πειραματικός προσδιορισμός

Διαβάστε περισσότερα

Όπου Q η θερμότητα, C η θερμοχωρητικότητα και Δθ η διαφορά θερμοκρασίας.

Όπου Q η θερμότητα, C η θερμοχωρητικότητα και Δθ η διαφορά θερμοκρασίας. Άσκηση Η9 Θερμότητα Joule Θερμική ενέργεια Η θερμότητα μπορεί να είναι επιθυμητή π.χ. σε σώματα θέρμανσης. Αλλά μπορεί να είναι και αντιεπιθυμητή, π.χ. στους κινητήρες ή στους μετασχηματιστές. Θερμότητα

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.4 Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού Λέξεις κλειδιά: ειδική αντίσταση, μικροσκοπική ερμηνεία, μεταβλητός αντισ ροοστάτης, ποτενσιόμετρο 2.4 Παράγοντες που επηρεάζουν την

Διαβάστε περισσότερα

Ανάλυση: όπου, με αντικατάσταση των δεδομένων, οι ζητούμενες απώλειες είναι: o C. 4400W ή 4.4kW 0.30m Συζήτηση: ka ka ka dx x L

Ανάλυση: όπου, με αντικατάσταση των δεδομένων, οι ζητούμενες απώλειες είναι: o C. 4400W ή 4.4kW 0.30m Συζήτηση: ka ka ka dx x L Κεφάλαιο 1 Εισαγωγικές Έννοιες της Μετάδοσης Θερμότητας ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΆΣΚΗΣΗ 1.1 Ένα διαχωριστικό τοίχωμα σκυροδέματος, επιφάνειας 30m, διαθέτει επιφανειακές θερμοκρασίες 5 ο C και 15 ο C, ενώ έχει

Διαβάστε περισσότερα

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται 1 2 Θερµότητα χρόνος θέρµανσης Εξάρτηση από είδος (c) του σώµατος Αν ένα σώµα θερµαίνεται από µια θερµική πηγή (γκαζάκι, ηλεκτρικό µάτι), τότε η θερµότητα (Q) που απορροφάται από το σώµα είναι ανάλογη

Διαβάστε περισσότερα

2.1 Παραμορφώσεις ανομοιόμορφων ράβδων

2.1 Παραμορφώσεις ανομοιόμορφων ράβδων ΑΞΟΝΙΚΗ ΦΟΡΤΙΣΗ 9 Αξονική φόρτιση. Παραμορφώσεις ανομοιόμορφων ράβδων. Ελαστική ράβδος ΑΒ μήκους, Γ B μέτρου ελαστικότητας Ε και / συντελεστή θερμικής διαστολής α, είναι πακτωμένη στα σημεία Α και Β και

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ B ΓΥΜΝΑΣΙΟΥ Κυριακή, 17 Μαΐου 2009 Ώρα: 10:00 12:30 Προτεινόμενες Λύσεις θεμα - 1 (5 μον.) Στον πίνακα υπάρχουν δύο στήλες με ασυμπλήρωτες προτάσεις. Στο τετράδιο των απαντήσεών

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 26 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Δεύτερη Φάση) Κυριακή, 08 Απριλίου, 2012 Ώρα: 10:00-13:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από τέσσερις (6) σελίδες και πέντε (5) θέματα. 2) Να απαντήσετε

Διαβάστε περισσότερα

6.1 Θερμόμετρα και μέτρηση θερμοκρασίας

6.1 Θερμόμετρα και μέτρηση θερμοκρασίας ΚΕΦΑΛΑΙΟ 6 ο ΘΕΡΜΟΤΗΤΑ 6.1 Θερμόμετρα και μέτρηση θερμοκρασίας 1. Τι ονομάζεται θερμοκρασία; Το φυσικό μέγεθος που εκφράζει πόσο ζεστό ή κρύο είναι ένα σώμα ονομάζεται θερμοκρασία. 2. Πως μετράμε τη θερμοκρασία;

Διαβάστε περισσότερα

Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal

Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal Θ2 Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal 1. Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί, με αφορμή τον προσδιορισμό του παράγοντα μετατροπής της

Διαβάστε περισσότερα

Άσκηση 36 Μελέτη ακουστικών κυμάτων σε ηχητικό σωλήνα

Άσκηση 36 Μελέτη ακουστικών κυμάτων σε ηχητικό σωλήνα Μιχάλης Καλογεράκης 9 ο Εξάμηνο ΣΕΜΦΕ ΑΜ:911187 Υπεύθυνος Άσκησης: Κος Πέογλος Ημερομηνία Διεξαγωγής:3/11/25 Άσκηση 36 Μελέτη ακουστικών κυμάτων σε ηχητικό σωλήνα 1) Εισαγωγή: Σκοπός και στοιχεία Θεωρίας

Διαβάστε περισσότερα

Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ

Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ Σχολείο: Ονόματα των μαθητών: 1) 2)...... 3) 1 Πειραματικός προσδιορισμός

Διαβάστε περισσότερα

1. Ρεύμα επιπρόσθετα

1. Ρεύμα επιπρόσθετα 1. Ρεύμα Ρεύμα είναι οποιαδήποτε κίνηση φορτίων μεταξύ δύο περιοχών. Για να διατηρηθεί σταθερή ροή φορτίου σε αγωγό πρέπει να ασκείται μια σταθερή δύναμη στα κινούμενα φορτία. r F r qe Η δύναμη αυτή δημιουργεί

Διαβάστε περισσότερα

ΜΕΡΟΣ Β ΔΙΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΘΕΡΜΟΤΗΤΑ ΑΠΟΡΡΟΦΗΣΗΣ ΤΩΝ ΙΝΩΝ

ΜΕΡΟΣ Β ΔΙΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΘΕΡΜΟΤΗΤΑ ΑΠΟΡΡΟΦΗΣΗΣ ΤΩΝ ΙΝΩΝ ΜΕΡΟΣ Β ΔΙΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΘΕΡΜΟΤΗΤΑ ΑΠΟΡΡΟΦΗΣΗΣ ΤΩΝ ΙΝΩΝ 2. 1. Διάδοση της θερμότητας Σύμφωνα με τον ορισμό της, θερμότητα είναι η ενέργεια που μεταβιβάζεται από ένα σώμα σε ένα άλλο μόνο λόγω διαφοράς

Διαβάστε περισσότερα

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΠΑΡΑΛΛΗΛΗ ΡΟΗ ΕΠΑΝΩ ΑΠΟ ΕΠΙΠΕΔΗ ΠΛΑΚΑ Σκοπός της άσκησης Η κατανόηση

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 1 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ B ΓΥΜΝΑΣΙΟΥ Κυριακή, 17 Απριλίου, 2005 Ώρα: 10:00-12:30 Προτεινόµενες Λύσεις ΜΕΡΟΣ Α 1. (α) Από το δεύτερο σχήµα, επειδή ο ζυγός ισορροπεί, προκύπτει

Διαβάστε περισσότερα

3. Έχουμε δύο ποτήρια, το ένα γεμάτο πάγο και το άλλο γεμάτο με νερό 80 C. Τα αφήνουμε πάνω σε ένα τραπέζι. Τι θα συμβεί καθώς περνά ο χρόνος;

3. Έχουμε δύο ποτήρια, το ένα γεμάτο πάγο και το άλλο γεμάτο με νερό 80 C. Τα αφήνουμε πάνω σε ένα τραπέζι. Τι θα συμβεί καθώς περνά ο χρόνος; 1. Τι είναι θερμότητα; Θερμότητα είναι η ενέργεια που μεταφέρεται από ένα θερμό σώμα σε ένα ψυχρό ώσπου να αποκτήσουν την ίδια θερμοκρασία. Μονάδα μέτρησης της θερμότητας είναι το 1 Joule. 2. Τι είναι

Διαβάστε περισσότερα

Επεξεργαςία πειραματικών δεδομζνων

Επεξεργαςία πειραματικών δεδομζνων Επεξεργαςία πειραματικών δεδομζνων Επεξεργασία μετρήσεων. Στα θέματα που ακολουθούν, η επεξεργασία των μετρήσεων στηρίζεται στη δημιουργία γραφημάτων α βαθμού, δηλαδή της μορφής ψ=α χ+β,και στην εξαγωγή

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου 2006 Ώρα: 10:30 13.00 Προτεινόµενες Λύσεις ΜΕΡΟΣ Α 1. α) Η πυκνότητα του υλικού υπολογίζεται από τη m m m σχέση d

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς 9.Μεταφορά Θερμότητας, Αγωγή Αγωγή Αν σε συνεχές μέσο υπάρχει βάθμωση θερμοκρασίας τότε υπάρχει ροή θερμότητας χωρίς ορατή κίνηση της ύλης.

Διαβάστε περισσότερα

Έννοιες φυσικών επιστημών Ι και αναπαραστάσεις

Έννοιες φυσικών επιστημών Ι και αναπαραστάσεις Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγικό Τμήμα Νηπιαγωγών Έννοιες φυσικών επιστημών Ι και αναπαραστάσεις Ενότητα 11: Οι ιδέες των μαθητών για θερμότητα και θερμικά φαινόμενα Καθηγητής: Καριώτογλου Πέτρος

Διαβάστε περισσότερα

Μετρήσεις μήκους - Η μέση τιμή

Μετρήσεις μήκους - Η μέση τιμή Μετρήσεις μήκους - Η μέση τιμή Τι ονομάζουμε μέγεθος; Μέγεθος ονομάζουμε κάθε ποσότητα που μπορεί να μετρηθεί. Ποια μεγέθη ονομάζονται φυσικά μεγέθη; Φυσικά μεγέθη ονομάζονται τα μεγέθη που χρησιμοποιούμε

Διαβάστε περισσότερα

Επαφές μετάλλου ημιαγωγού

Επαφές μετάλλου ημιαγωγού Δίοδος Schottky Επαφές μετάλλου ημιαγωγού Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Τι είναι Ημιαγωγός Κατασκευάζεται με εξάχνωση μετάλλου το οποίο μεταφέρεται στην επιφάνεια

Διαβάστε περισσότερα

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ )

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) Η περιστροφική αδράνεια ενός σώματος είναι το μέτρο της αντίστασης του στη μεταβολής της περιστροφικής του κατάστασης, αντίστοιχο της μάζας στην περίπτωση της μεταφορικής

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Προτεινόμενες Λύσεις Πρόβλημα-1 (15 μονάδες) Μια

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ B ΓΥΜΝΑΣΙΟΥ Κυριακή, 17 Μαΐου 2009 Ώρα: 10:00 12:30 Οδηγίες: 1) Το δοκίμιο αποτελείται από οκτώ (8) θέματα. 2) Απαντήστε σε όλα τα θέματα. 3) Επιτρέπεται η χρήση μόνο μη

Διαβάστε περισσότερα

ΔΙΕΛΑΣΗ. Το εργαλείο διέλασης περιλαμβάνει : το μεταλλικό θάλαμο, τη μήτρα, το έμβολο και το συμπληρωματικό εξοπλισμό (δακτυλίους συγκράτησης κλπ.).

ΔΙΕΛΑΣΗ. Το εργαλείο διέλασης περιλαμβάνει : το μεταλλικό θάλαμο, τη μήτρα, το έμβολο και το συμπληρωματικό εξοπλισμό (δακτυλίους συγκράτησης κλπ.). ΔΙΕΛΑΣΗ Κατά τη διέλαση (extrusion) το τεμάχιο συμπιέζεται μέσω ενός εμβόλου μέσα σε μεταλλικό θάλαμο, στο άλλο άκρο του οποίου ευρίσκεται κατάλληλα διαμορφωμένη μήτρα, και αναγκάζεται να εξέλθει από το

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Θερμοδυναμική Ορισμοί. Έργο 3. Θερμότητα 4. Εσωτερική ενέργεια 5. Ο Πρώτος Θερμοδυναμικός Νόμος 6. Αντιστρεπτή

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση α: Συντελεστής Joule Thomson (Τζουλ Τόμσον ) Αθανάσιος Τσεκούρας Τμήμα Χημείας Θεωρία 3 Μετρήσεις 6 3 Επεξεργασία Μετρήσεων 6 Σελίδα Θεωρία Η καταστατική εξίσωση

Διαβάστε περισσότερα

Θέμα 2 ο. Δίνεται Κ ηλ = Ν m 2 /C 2 και επιτάχυνση της βαρύτητας στην επιφάνεια της Γης 10 m/s 2.

Θέμα 2 ο. Δίνεται Κ ηλ = Ν m 2 /C 2 και επιτάχυνση της βαρύτητας στην επιφάνεια της Γης 10 m/s 2. Γ Γυμνασίου 7 Μαρτίου 2015 Θεωρητικό Μέρος Θέμα 1 ο Α. Ένας μαθητής φορτίζει θετικά μια μεταλλική σφαίρα. Η μάζα της σφαίρας i. παραμένει σταθερή, ii. αυξάνεται, iii. μειώνεται Επιλέξτε τη σωστή απάντηση

Διαβάστε περισσότερα

Α.1 Να προσδιορίσετε την κάθετη δύναμη (μέτρο και φορά) που ασκεί το τραπέζι στο σώμα στις ακόλουθες περιπτώσεις:

Α.1 Να προσδιορίσετε την κάθετη δύναμη (μέτρο και φορά) που ασκεί το τραπέζι στο σώμα στις ακόλουθες περιπτώσεις: ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

5. Θερμικές τάσεις και παραμορφώσεις

5. Θερμικές τάσεις και παραμορφώσεις 5. Θερμικές τάσεις και παραμορφώσεις Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 5. Θερμικές Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών 2015 1 Περιεχόμενα ενότητας Επίδραση ορθών τάσεων στη μεταβολή

Διαβάστε περισσότερα

Προσδιορισµός συντελεστή γραµµικής διαστολής

Προσδιορισµός συντελεστή γραµµικής διαστολής Θ1 Προσδιορισµός συντελεστή γραµµικής διαστολής 1. Σκοπός Στην άσκηση αυτή θα µελετηθεί το φαινόµενο της γραµµικής διαστολής και θα προσδιοριστεί ο συντελεστής γραµµικής διαστολής ορείχαλκου ή χαλκού..

Διαβάστε περισσότερα

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3.1 Εισαγωγή Η μετάδοση θερμότητας, στην πράξη, γίνεται όχι αποκλειστικά με έναν από τους τρεις δυνατούς μηχανισμούς (αγωγή, μεταφορά, ακτινοβολία),

Διαβάστε περισσότερα

Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο

Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο Στο σχήμα φαίνεται μια γνώριμη διάταξη δύο παράλληλων αγωγών σε απόσταση, που ορίζουν οριζόντιο επίπεδο, κάθετο σε ομογενές μαγνητικό πεδίο έντασης.

Διαβάστε περισσότερα

ƷƶƴƫƬƩ ƥưƺƴƶƫƭʊ ƣưƶƫƭƨƫʈƨưʊ ƷƶƴƫƬƺƯ ƬƣƵƩƥƱƳƫƣ ƲE04 ƵƱƮƱƴ ƤƘ

ƷƶƴƫƬƩ ƥưƺƴƶƫƭʊ ƣưƶƫƭƨƫʈƨưʊ ƷƶƴƫƬƺƯ ƬƣƵƩƥƱƳƫƣ ƲE04 ƵƱƮƱƴ ƤƘ . E04 & Y 2008 - 04. - ( Meissner - London - - I II - BCS - Cooper - - Josephson (dc) (ac). ( - - ). - - - S,, C, T, P (Parity).. v 9. 9.1 1 9.2 1 9.3 7 9.4 13 9.5 14 9.6 STEFAN-BOLTZMAN 18 9.7 21

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Η επιστήμη της Θερμοδυναμικής (Thermodynamics) συσχετίζεται με το ποσό της μεταφερόμενης ενέργειας (έργου ή θερμότητας) από ένα σύστημα προς ένα

Διαβάστε περισσότερα

Άσκηση 7 Υπολογισμός της ειδικής θερμότητας υλικού

Άσκηση 7 Υπολογισμός της ειδικής θερμότητας υλικού Άσκηση 7 Υπολογισμός της ειδικς θερμότητας υλικού Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο πειραματικός υπολογισμός της ειδικς θερμότητας ενός ομογενούς υλικού. Μετά τη σύγκριση της πειραματικς

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΒΟΡΕΙΑΣ ΕΛΛΑΔΑΣ

ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΒΟΡΕΙΑΣ ΕΛΛΑΔΑΣ EUSO 2015 ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΒΟΡΕΙΑΣ ΕΛΛΑΔΑΣ 1 ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΒΟΡΕΙΑΣ ΕΛΛΑΔΑΣ ΦΥΣΙΚΗ Σάββατο 7 Φεβρουαρίου 2015 ΛΥΚΕΙΟ:..... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1.. 2..... 3..... ΜΟΝΑΔΕΣ: EUSO 2015 ΠΑΝΕΛΛΗΝΙΟΣ

Διαβάστε περισσότερα

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο. ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

3ο Εργαστήριο: Ρύθμιση και έλεγχος της θερμοκρασίας μιας κτηνοτροφικής μονάδας

3ο Εργαστήριο: Ρύθμιση και έλεγχος της θερμοκρασίας μιας κτηνοτροφικής μονάδας 3ο Εργαστήριο: Ρύθμιση και έλεγχος της θερμοκρασίας μιας κτηνοτροφικής μονάδας 1 Περιεχόμενα 3.1 Παράγοντες που συνιστούν το εσωτερικό περιβάλλον ενός κτηνοτροφικού κτηρίου... 3 3.2 Θερμότητα... 4 3.3

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ

ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ Συνοπτική περιγραφή Μελετάμε την κίνηση μιας ράβδου που μπορεί να περιστρέφεται γύρω από σταθερό οριζόντιο άξονα,

Διαβάστε περισσότερα

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6-1 6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6.1. ΙΑ ΟΣΗ ΤΗΣ ΘΕΡΜΟΤΗΤΑΣ Πολλές βιοµηχανικές εφαρµογές των πολυµερών αφορούν τη διάδοση της θερµότητας µέσα από αυτά ή γύρω από αυτά. Πολλά πολυµερή χρησιµοποιούνται

Διαβάστε περισσότερα

Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Μαρούσι Καθηγητής Σιδερής Ε.

Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Μαρούσι Καθηγητής Σιδερής Ε. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 Μαρούσι 04-02-2014 Καθηγητής Σιδερής Ε. ΘΕΜΑ 1 ο (βαθμοί 4) (α) Θέλετε να κρεμάσετε μια ατσάλινη δοκό που έχει

Διαβάστε περισσότερα

Εξάρτηση της ηλεκτρικής αντίστασης από το μήκος κυλινδρικού αγωγού Μέτρηση ειδικής ηλεκτρικής αντίστασης αγωγών ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

Εξάρτηση της ηλεκτρικής αντίστασης από το μήκος κυλινδρικού αγωγού Μέτρηση ειδικής ηλεκτρικής αντίστασης αγωγών ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Ε.Κ.Φ.Ε. Αγίων Αναργύρων Προκριματικός Διαγωνισμός για τη 15 η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2017 Εξέταση στη Φυσική Σάββατο 10/12/2016 Ονοματεπώνυμα μελών ομάδας 1).... 2).... 3).... Σχολείο:...

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 12 ΜΕΤΑΤΡΟΠΗ ΦΑΣΗΣ ΒΡΑΣΜΟΣ

Εργαστηριακή άσκηση 12 ΜΕΤΑΤΡΟΠΗ ΦΑΣΗΣ ΒΡΑΣΜΟΣ Μιχαήλ Μιχαήλ, Φυσικός 1 Εργαστηριακή άσκηση 12 ΜΕΤΑΤΡΟΠΗ ΦΑΣΗΣ ΒΡΑΣΜΟΣ ΣΤΟΧΟΙ Οι στόχοι αυτής της εργαστηριακής άσκησης είναι: 1. Να επιβεβαιώνεις πειραµατικά ότι κατά τη διάρκεια του βρασµού ενός σώµατος

Διαβάστε περισσότερα

Φυσική Α Γυμνασίου. Για να καταφέρουμε λοιπόν να εξομαλύνουμε τα σφάλματα κάνουμε πολλές μετρήσεις και υπολογίζουμε την μέση τιμή.

Φυσική Α Γυμνασίου. Για να καταφέρουμε λοιπόν να εξομαλύνουμε τα σφάλματα κάνουμε πολλές μετρήσεις και υπολογίζουμε την μέση τιμή. Φυσική Α Γυμνασίου Επιμέλεια: Αγκανάκης Α. Παναγιώτης Φυσικά Μεγέθη ονομάζουμε τις ποσότητες που μπορούμε να μετρήσουμε. Η μέτρηση τους γίνεται με την χρήση διαφόρων οργάνων, τα οποία θα δούμε αναλυτικά

Διαβάστε περισσότερα

6. Να βρεθεί ο λόγος των αντιστάσεων δύο χάλκινων συρμάτων της ίδιας μάζας που το ένα έχει διπλάσια ακτίνα από το άλλο.

6. Να βρεθεί ο λόγος των αντιστάσεων δύο χάλκινων συρμάτων της ίδιας μάζας που το ένα έχει διπλάσια ακτίνα από το άλλο. 1. Από μια διατομή ενός μεταλλικού αγωγού διέρχονται 2,25 10 ηλεκτρόνια / δευτερόλεπτο. Να βρεθεί η ένταση του ρεύματος που διαρρέει τον αγωγό. [Απ. 0,36 μα] 2. Ρεύμα 5 Α διαρρέει αγωγό για 4 min. α) Πόσο

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΜΕΡΟΣ Α : Αποτελείται από 6 ερωτήσεις των 5 μονάδων η κάθε μια.

ΜΕΡΟΣ Α : Αποτελείται από 6 ερωτήσεις των 5 μονάδων η κάθε μια. ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ Ημερομηνία και ώρα εξέτασης: 6

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Απενεργοποιήστε τα κινητά σας τηλέφωνα!!! Παρακαλώ

Διαβάστε περισσότερα

Έννοιες φυσικών επιστημών Ι και αναπαραστάσεις

Έννοιες φυσικών επιστημών Ι και αναπαραστάσεις Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγικό Τμήμα Νηπιαγωγών Έννοιες φυσικών επιστημών Ι και αναπαραστάσεις Ενότητα 10: Θερμότητα και θερμοκρασία, Διαστολές, Διάδοση θερμότητας Καθηγητής: Καριώτογλου Πέτρος

Διαβάστε περισσότερα

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΗ 1 Μία θερμική μηχανή λειτουργεί μεταξύ των θερμοκρασιών T h 400 Κ και T c με T c < T h Η μηχανή έχει απόδοση e 0,2 και αποβάλλει στη δεξαμενή χαμηλής θερμοκρασίας θερμότητα

Διαβάστε περισσότερα

ΣΤΑΣΙΜΩΝ ΚΥΜΑΤΩΝ ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΧΥΤΗΤΑΣ ΗΧΟΥ ΣΤΟΝ ΑΕΡΑ

ΣΤΑΣΙΜΩΝ ΚΥΜΑΤΩΝ ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΧΥΤΗΤΑΣ ΗΧΟΥ ΣΤΟΝ ΑΕΡΑ ΕΚΦΕ Αχαρνών Υπ. Τριανταφύλλου Δημ. ΑΝΙΧΝΕΥΣΗ ΣΤΑΣΙΜΩΝ ΚΥΜΑΤΩΝ ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΧΥΤΗΤΑΣ ΗΧΟΥ ΣΤΟΝ ΑΕΡΑ Θεωρητικό υπόβαθρο Όταν σε αέρια στήλη, που περιέχεται στο εσωτερικό ενός σωλήνα που είναι ανοικτός στο

Διαβάστε περισσότερα

µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης.

µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης. 1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ () ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης. Το φύλλο εργασίας στηρίζεται στο αντίστοιχο του Παιδαγωγικού Ινστιτούτου που

Διαβάστε περισσότερα

Εναλλαγή θερμότητας. Σχ. 4.1 (α) Διάταξη εναλλάκτη θερμότητας καθ` ομορροή (πάνω) και αντίστοιχο θερμοκρασιακό προφίλ (κάτω)

Εναλλαγή θερμότητας. Σχ. 4.1 (α) Διάταξη εναλλάκτη θερμότητας καθ` ομορροή (πάνω) και αντίστοιχο θερμοκρασιακό προφίλ (κάτω) Εναλλαγή θερμότητας Σχ. 4.1 (α) Διάταξη εναλλάκτη θερμότητας καθ` ομορροή (πάνω) και αντίστοιχο θερμοκρασιακό προφίλ (κάτω) Σχ. 4.1 (β) Διάταξη εναλλάκτη θερμότητας καντ` αντιρροή (πάνω) και αντίστοιχο

Διαβάστε περισσότερα

Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού. Μανομετρικό Υψος h. Υψος h2. Ροή q

Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού. Μανομετρικό Υψος h. Υψος h2. Ροή q Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού Υψος h Μανομετρικό Υψος h Υψος h Σχήμα.4 Ροή q Ας υποθέσουμε ότι έχουμε δύο δεξαμενές που επικοινωνούν με ένα σωλήνα όπως ακριβώς

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 5. Μελέτη ευθύγραμμης ομαλής και επιταχυνόμενης κίνησης.

ΠΕΙΡΑΜΑ 5. Μελέτη ευθύγραμμης ομαλής και επιταχυνόμενης κίνησης. ΠΕΙΡΑΜΑ 5 Μελέτη ευθύγραμμης ομαλής και επιταχυνόμενης κίνησης. Σκοπός του πειράματος Σκοπός του πειράματος είvαι vα μελετηθούν τα βασικά φυσικά μεγέθη της μεταφορικής κίνησης σε μία διάσταση. Τα μεγέθη

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ 16111 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Χειμερινό Εξάμηνο 007 1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Μετρήσεις Τεχνικών Μεγεθών Χειμερινό Εξάμηνο 007 Πρόβλημα 1 Προσδιορίστε ποια από τα παρακάτω

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα). Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.

Διαβάστε περισσότερα