Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 2017

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 2017"

Transcript

1 Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 017 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Το (δισθενές) Σεληνιούχο Κάδμιο (CdSe, Cadmium (ΙΙ) Selenide) κρυσταλλώνεται στο εξαγωνικό σύστημα, όπου τα ανιόντα του Σεληνίου είναι σε ΗCP διάταξη και τα κατιόντα του Καδμίου (Cd + ) καταλαμβάνουν τετραεδρικές θέσεις παρεμβολής. Η βασική μοναδιαία κυψελίδα δίνεται στη διπλανή Εικόνα. (Καθ. Β.Ζασπάλης) Θέμα 1 ο (75 μονάδες) Ι) Κατά την εξέταση του υλικού με περίθλαση ακτίνων x (με πηγή ακτινοβολίας μήκους κύματος nm) διαπιστώθηκε πως τα επίπεδα (300) και (006) δίνουν κορυφές περίθλασης σε γωνίες θ= ο και θ=8.496 ο αντίστοιχα. Να υπολογιστεί η θεωρητική πυκνότητα του Σεληνιούχου Καδμίου. (0 μονάδες) Μέσω του νόμου του Bragg μπορούν να υπολογισθούν οι αποστάσεις δύο διαδοχικών επιπέδων (300) και (006): d (300) = λ sin (θ) = nm sin ( o ) 0.14 nm λ d (006) = sin (θ) = nm nm sin ( 8.496o ) Aπό τη σχέση που συνδέει τους δείκτες Miller με τις σταθερές κυψελίδας για το εξαγωνικό σύστημα έχουμε: 1 = (3 a) = a a = 1 d (300) a = d (300) 1 d (300) Αντίστοιχα για τα (006) επίπεδα: a = 0.14nm nm 1 = 6 d (006) c c = 6 d (006) c = 6 d (006) = = 0.70 nm Για τον προσδιορισμό της πυκνότητας μπορούμε να θεωρήσουμε την εκτεταμένη εξαγωνική κυψελίδα στην οποία ο χημικός τύπος υπεισέρχεται 6 φορές. Το εμβαδόν της βάσης (Ε) κανονικού εξαγώνου θα ισούται με το εξαπλάσιο του εμβαδού ισοπλεύρου τριγώνου πλευράς α και ύψους α 3 Ε = 6 1 α 3 α = 3α 3

2 Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 017 Ο όγκος της εκτεταμένης κυψελίδας θα είναι: V cell = E c = 3α c 3 H πυκνότητα υπολογίζεται από τη σχέση: = = nm 3 = cm 3 ρ CdSe = 6 (A Cd + A Se ) 6 ( ) g = N AV V cell = cm 3 Εννοείται πως στο ίδιο αποτέλεσμα καταλήγει κανείς χρησιμοποιώντας και την βασική μοναδιαία κυψελίδα (της Εικόνας) στην οποία ο χημικός τύπος υπεισέρχεται φορές και ο όγκος της ισούται με το 1/3 της εκτεταμένης (εμβαδόν δύο ισοπλεύρων τριγώνων πλευράς α, επί το ύψος c)

3 Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 017 II) Να υποδείξετε δείκτες Μiller (hkl) επιπέδων της δομής του CdSe, οι επίπεδες ατομικές διατάξεις των οποίων (σε παράσταση διευρυμένων διατομικών αποστάσεων) έχουν τη μορφή των διατάξεων των διπλανών εικόνων Α και Β. (10 μονάδες) Εικόνα Α Εικόνα Β Απάντηση Aπό την παραπάνω εικόνα είναι σαφές πως το επίπεδο της εικόνας Α είναι το (100). Λόγω της συμμετρίας που παρουσιάζεται θα μπορούσε να είναι και το (010) ή το (001), τα οποία επίσης θεωρούνται σωστές απαντήσεις. Από την παραπάνω εικόνα προκύπτει πως το επίπεδο της εικόνας Β είναι το (001).

4 Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 017 III) Να προσδιοριστεί η γραμμική πυκνότητα κατά μήκος της κατεύθυνσης [1 10] σε αριθμό ατόμων ανά μέτρο μήκους. (10 μονάδες) Aπάντηση: H απάντηση δίνεται σχηματικά στην παραπάνω εικόνα. Θέτοντας α=0.49 nm (ερώτημα Ι) υπολογίζεται πως: LD [1 10] = at. m at. m

5 Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 017 ΙV) Στο CdSe αναπτύσσονται ατέλειες Frenkel ανιοντικού υποπλέγματος με μετάβαση στις οκταεδρικές θέσεις παρεμβολής, οι οποίες θεωρούνται και η μοναδική πηγή σημειακών ατελειών. Με κάποια τεχνική διαπιστώνουμε πως στους 1000 Κ κατά μέσο όρο ανά 500 βασικές κυψελίδες υπάρχουν 55 ανιόντα Σεληνίου (Se - ) σε ενδιάμεσες οκταεδρικές θέσεις. Να προσδιοριστεί η ενθαλπία δημιουργίας μιας ατέλειας Frenkel (αγνοείστε τυχόν επίδραση του όρου της εντροπίας). (10 μονάδες) Η εξίσωση δημιουργίας μιας ατέλειας Frenkel στο ανιοντικό υποπλέγμα είναι: Από τη σχέση ισορροπίας έχουμε: Se K FA (T) Se + V I V se + Se I Κ FA (T) = [V se ] [Se I ] [Se Se ] [V I ] Eάν οι εκφράσεις μέσα στις αγκύλες εκφράζουν κλάσματα θέσεις και θεωρώντας πως οι ατέλειες Frenkel κατά πολύ λιγότερες από τα άτομα του κρυστάλλου τότε: [Se Se ] = Ν Se S e 1 [V N I ] = N V I 1 Se N I Kαι η παραπάνω σχέση γίνεται: Κ FA (T) = [V Se ] [Se I ] = N V Se N Se I N SeSe N I Aπό τη σχέση δημιουργίας ατελειών έχουμε N VSe = N SeI και από τον μηχανισμό και την κρυσταλλική δομή (π.χ. μια οκταεδρική θέση ανά άτομο) έχουμε: N Sese = N I και η προγούμενη σχέση γίνεται: Ν SeI N I = K AF(T) e ΔΗ ΑF kt N Se I = [Se N I ] = e ΔΗ ΑF kt I (Η διαφορά με τα παραδείγματα του συγγράμματος είναι πως δεν εμφανίζεται ο παράγοντας εφόσον ο αριθμός των οκταεδρικών θέσεων είναι ίσος με τον αριθμό των ανιόντων της διάταξης) Σε 500 βασικές κυψελίδες (δηλαδή 1000 άτομα Σεληνίου σε HCP διάταξη) έχουμε 1000 οκταεδρικές θέσεις παρεμβολής οπότε: [Se I ] = N Se I N I = = Αντικαθιστώντας στην προηγούμενη σχέση έχουμε: [Se I ] = e ΔΗ ΑF kt ln([se I ]) = ΔΗ ΑF kt ΔΗ ΑF = ln([se I ])kt ΔΗ ΑF = ln(0.055) ev 1000K 0.5 ev K

6 Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 017 V) Στο CdSe προστίθεται Σεληνιούχο Θάλλιο (Tl Se) το οποίο σχηματίζει στερεό διάλυμα αντικατάστασης με μηχανισμό κατά τον οποίο η ατέλεια που δημιουργείται αντισταθμίζεται με ανιοντικές κενές θέσεις. Να γραφεί η εξίσωση ενσωμάτωσης και εάν ανά άτομο Kαδμίου κλάσμα δ αντικατασταθεί με άτομα Θαλλίου να γραφεί ο χημικός τύπος του στερεού διαλύματος που προκύπτει. (10 μονάδες) Aπάντηση: Η εξίσωση ενσωμάτωσης της πρόσμιξης είναι: Τl Se Ti CdSe Cd + Se Se + V Se Eάν ανά άτομο Καδμίου μέρος δ αντικατασταθεί από Θάλλιο θα έχουμε στο κατιοντικό υποπλέγμα 1-δ άτομα Καδμίου και δ άτομα Θαλλίου. Σύμφωνα όμως με την εξίσωση ενσωμάτωσης ανά άτομα Θαλλίου που εισέρχονται δημιουργείται μια κενή θέση Σεληνίου (για δ άτομα Θαλλίου αυτές θα είναι δ/). Άρα ο χημικός τύπος του στερεού διαλύματος θα είναι: η με κάπως μεγαλύτερη λεπτομέρεια: (Cd 1 δ Τl δ )Se 1 δ (Cd Cd,1 δ Tl Cd,δ )Se δ Se,1 V δ Se,

7 Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 017 VI) Κόνη από συμπαγή σωματίδια Σεληνιούχου Καδμίου εισάγεται σε μήτρα συμπίεσης σχήματος δακτυλίου (Εικόνα Α) και στη συνέχεια συμπιέζεται (Εικόνα Β) και εξωλκύεται (Εικόνα Γ). Εάν το πορώδες της ασυμπίεστης κόνης στη μήτρα είναι 70% (Εικόνα Α) να υπολογιστεί η σχετική πυκνότητα και το πορώδες του δείγματος μετά τη συμπίεση (Εικόνα Γ). (15 μονάδες) (Σημείωση: Στις εικόνες για λόγους κατανόησης εμφανίζεται μισός δακτύλιος. Οι υπολογισμοί να γίνουν με πλήρη δακτύλιο) Aπάντηση: Ο όγκος της μήτρας κατά την πλήρωση είναι: V T = π(r 1 R ) L = π(7 5 ) 0 = mm cm 3 O όγκος της στερεάς κόνης θα είναι: V s = V T (1 ε) = = cm 3 H μάζα της κόνης που εισέρχεται στη μήτρα θα είναι: Μ s = V s ρ s = cm 3 g 5.67 cm 3 =.57 g Εφόσον κατά τη συμπίεση η μάζα της κόνης διατηρείται και μετά τη συμπίεση ο όγκος μειώνεται κατά 50% και γίνεται 1.51/=0.755 cm 3, η ολική πυκνότητα του συμπιεσμένου δοκιμίου θα είναι: ρ Τ =.57 g cm 3 = 3.4 g cm 3 H σχετική πυκνότητα θα είναι: ρ σχ = ρ Τ ρ s = και το πορώδες: ρ σχ = 1 ε ε = 0.4 ή 40% Άλλος τρόπος (χωρίς υπολογισμούς): Ο όγκος της κόνης στη μήτρα πριν τη συμπίεση είναι: και η μάζα της: V s = V T (1 ε) Μ s = V s ρ s = V T (1 ε) ρ s Μετά τη συμπίεση ο ολικός όγκος γίνεται V T = V T και η ολική πυκνότητα: ρ Τ = Μ s V = Μ s V T T οπότε η σχετική πυκνότητα θα είναι: ρ σχ = ρ Τ = V T (1 ε) ρ s V T = (1 ε) ρ s ρ s = (1 ε) ρ s ρ s = (1 0.7) = 0.6 από όπου και συνάγεται πως το νέο πορώδες θα είναι 40% (Δηλαδή εκτός από το αρχικό πορώδες η μόνη πληροφορία που χρειάζεται είναι πως ο όγκος μετά τη συμπίεση μειώθηκε κατά 50%)

8 Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 017 Θέμα ο (5 μονάδες) Στην Εικόνα Α δίνεται το διάγραμμα συνεχούς ψύξης ένα κράματος Σιδήρου-Άνθρακα περιεκτικότητας 0.46 wt.% σε άνθρακα (Κράμα Α). Στην Εικόνα Β δίνεται το διάγραμμα συνεχούς ψύξης κράματος Σιδήρου-Άνθρακα περιεκτικότητας επίσης 0.46 wt.% σε Άνθρακα, το οποίο όμως περιέχει και 6 wt.% Βολφραμίου (W) ως στοιχείο κραμάτωσης (Κράμα Β). Στα διαγράμματα έχουν τοποθετηθεί και διάφορες διεργασίες συνεχούς ψύξης. Ι) Εάν και στα δύο κράματα μετά από πλήρη ωστενιτοποίηση εφαρμόσουμε συνεχή ψύξη με ρυθμό 8.4 ο C/min (κόκκινες γραμμές ψύξης), να προσδιοριστούν και να εκτιμηθεί η περιεκτικότητα των διάφορων μικροσυστατικών του κάθε συστήματος μετά από χρόνο χιλίων (1000) δευτερολέπτων. (10 μονάδες) Το κράμα Α είναι υποευτηκτοειδές. Μετά από 1000s έχει ολοκληρωθεί πλήρως ο σχηματισμός της προευτηκτοειδούς φάσης που είναι ο Φερρίτης και έχει ολοκληρωθεί κατά το ήμισυ ο σχηματισμός του Περλίτη. Από το διάγραμμα φάσης Σιδήρου-Άνθρακα το κλάσμα μάζας του προευτηκτοειδή Φερρίτη υπολογίζεται ως: w p,a = ή 41% Συνεπώς μετά από 1000s θα έχουμε 41% (προευτηκτοειδή) Φερρίτη, (100-41)/=9.5% Περλίτη καθώς και 9.5% Ωστενίτη ο οποίος δεν έχει ακόμη μετασχηματισθεί. Το κράμα Β περιέχει 6 wt.% Βολφράμιο ως στοιχείο κραμάτωσης. Σύμφωνα με την Εικόνα του συγγράμματος η ευτηκτοειδής συγκέντρωση αυτού του κράματος είναι 0. wt.% C. Το κράμα είναι πλέον υπερευτηκτοειδές και όπως φαίνεται και από το διάγραμμα ψύξης η προευτηκτοειδής φάση είναι ο Σεμεντίτης. Από το διάγραμμα φάσης Σιδήρου-Άνθρακα και με τη νέα ευτηκτοειδή συγκέντρωση, το κλάσμα μάζας του προευτηκτοειδή Σεμεντίτη υπολογίζεται ως:

9 Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 017 w p,c = = 0.04 ή 4% Μετά από 1000s, όπως φαίνεται και από το διάγραμμα, έχει ολοκληρωθεί πλήρως ο σχηματισμός της προευτηκτοειδούς φάσης και έχει ολοκληρωθεί κατά το ήμισυ ο σχηματισμός του Περλίτη. Συνεπώς μετά από 1000s θα έχουμε 4% (προευτηκτοειδή) Σεμεντίτη, (100-4)/=48% Περλίτη καθώς και 48% Ωστενίτη ο οποίος δεν έχει ακόμη μετασχηματισθεί. ΙΙ) Να εκτιμηθεί το ποσοστό ευτηκτοειδή Σεμεντίτη (δηλαδή του Σεμεντίτη στην περλιτική μικροδομή) σε κάθε κράμα μετά το πέρας της ψύξης. (10 μονάδες) Κράμα Α: Το κράμα είναι υποευτηκτοειδές και κατά συνέπεια ο Σεμεντίτης στην περλιτική μικροδομή θα ισούται με τον ολικό Σεμεντίτη. w C,t = ή 6.56% Κράμα Β: Το κράμα είναι υπερευτηκτοειδές με προευτηκτοειδή Σεμεντίτη 40% και ολικό Σεμεντίτη όπως και προηγουμένως (θεωρούμε πως τα άκρα του διαγράμματος δεν επηρεάζονται από το στοιχείο κραμάτωσης) 6.56%. Το ποσοστό του ευτηκτοειδούς Σεμεντίτη θα είναι: =.56% ΙΙΙ) Ποια/Ποιες από τις διεργασίες ψύξης α,β,γ και δ της Εικόνας Α (πράσινες γραμμές ψύξης) θα δώσουν προϊόν η μικροδομή του οποίου θα έχει τα χαρακτηριστικά της εικόνας Γ; (5 μονάδες) Οι διεργασίες που απεικονίζονται δίνουν ως προϊόντα Μαρτενσίτη, Μπενίτη, Φερρίτη και Περλίτη (σε διάφορες βέβαια αναλογίες). Η μικροδομή που απεικονίζεται είναι του Σφαιροειδίτη η οποία προκύπτει μόνο μετά από επαναθέρμανση σε συγκεκριμένες συνθήκες. Άρα καμιά από τις διεργασίες α,β,γ και δ δεν θα δώσει προϊόν με μικροδομή παρόμοια με αυτήν που απεικονίζεται στην Εικόνα Γ.

Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Σεπτέμβριος 2016

Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Σεπτέμβριος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) ΘΕΜΑ 1 ο (30 Μονάδες) Στην εικόνα δίνονται οι επίπεδες

Διαβάστε περισσότερα

Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 2016

Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 2016 ΘΕΜΑ 1 ο (0 Μονάδες) ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) Το Τιτάνιο (ατομική ακτίνα RTi=0.1

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2015

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2015 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) ΘΕΜΑ 1 ο (15 Μονάδες) Πόσα γραμμάρια καθαρού κρυσταλλικού

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2016

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) Θέμα 1: Ερωτήσεις (10 Μονάδες) (Σύντομη αιτιολόγηση.

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ 1 ο (25 Μονάδες) (Καθ. Β.Ζασπάλης) Σε μια διεργασία ενανθράκωσης κάποιου

Διαβάστε περισσότερα

7.14 Προβλήματα για εξάσκηση

7.14 Προβλήματα για εξάσκηση 7.14 Προβλήματα για εξάσκηση 7.1 Το ορυκτό οξείδιο του αλουμινίου (Corundum, Al 2 O 3 ) έχει κρυσταλλική δομή η οποία μπορεί να περιγραφεί ως HCP πλέγμα ιόντων οξυγόνου με τα ιόντα αλουμινίου να καταλαμβάνουν

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 3: Στερεά διαλύματα και ενδομεταλλικές ενώσεις. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 3: Στερεά διαλύματα και ενδομεταλλικές ενώσεις. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 3: Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙI»-Σεπτέμβριος 2016

Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙI»-Σεπτέμβριος 2016 Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙI»-Σεπτέμβριος 016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ

Διαβάστε περισσότερα

Το πλεονέκτημα του κράματος ως προς το καθαρό μέταλλο είναι ότι το πρώτο έχει βελτιωμένες ιδιότητες, σε κάθε επιθυμητή κατεύθυνση.

Το πλεονέκτημα του κράματος ως προς το καθαρό μέταλλο είναι ότι το πρώτο έχει βελτιωμένες ιδιότητες, σε κάθε επιθυμητή κατεύθυνση. ΑΕΝ ΑΣΠΡΟΠΥΡΓΟΥ ΜΕΤΑΛΛΟΓΝΩΣΙΑ Ε εξαμήνου ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ ΚΡΑΜΑΤΑ ΓΕΝΙΚΑ Κράμα λέγεται κάε μεταλλικό σώμα που αποτελείται από περισσότερο από ένα μέταλλα ή γενικότερα

Διαβάστε περισσότερα

Έλεγχος Ποιότητας και Τεχνολογία Μεταλλικών Υλικών

Έλεγχος Ποιότητας και Τεχνολογία Μεταλλικών Υλικών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Έλεγχος Ποιότητας και Τεχνολογία Μεταλλικών Υλικών Ενότητα 2: Θεωρία Μέρος 2 ο Δρ Κάρμεν Μεντρέα Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Διαβάστε περισσότερα

TΟ ΙΑΓΡΑΜΜΑ Fe-C ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ. ΕΙ Η ΙΑΓΡΑΜΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ Fe-C

TΟ ΙΑΓΡΑΜΜΑ Fe-C ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ. ΕΙ Η ΙΑΓΡΑΜΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ Fe-C TΟ ΙΑΓΡΑΜΜΑ Fe-C ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Ο σίδηρος (Fe) είναι αλλοτροπικό στοιχείο, µε σηµείο τήξης (σ.τ) 1539 ο C. Ανάλογα µε τη θερµοκρασία παρουσιάζεται µε τις εξής µορφές: Μέχρι τη θερµοκρασία των 910

Διαβάστε περισσότερα

Η Δομή των Μετάλλων. Γ.Ν. Χαϊδεμενόπουλος, Καθηγητής

Η Δομή των Μετάλλων. Γ.Ν. Χαϊδεμενόπουλος, Καθηγητής Η Δομή των Μετάλλων Γ.Ν. Χαϊδεμενόπουλος, Καθηγητής Τρισδιάστατο Πλέγμα Οι κυψελίδες των 14 πλεγμάτων Bravais (1) απλό τρικλινές, (2) απλό μονοκλινές, (3) κεντροβασικό μονοκλινές, (4) απλό ορθορομβικό,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΜΕΤΑΛΛΟΥΡΓΙΑ ΤΩΝ ΧΑΛΥΒΩΝ

ΦΥΣΙΚΗ ΜΕΤΑΛΛΟΥΡΓΙΑ ΤΩΝ ΧΑΛΥΒΩΝ ΦΥΣΙΚΗ ΜΕΤΑΛΛΟΥΡΓΙΑ ΤΩΝ ΧΑΛΥΒΩΝ Σχ. 10.1 Διάγραμμα φάσεων Fe-C Σχ. 10.2 Τμήμα του διαγράμματος φάσεων Fe-C με αντίστοιχες μικροδομές κατά την ψύξη ευτηκτοειδών, υποευτηκτοειδών και υπερευτηκτοειδών χαλύβων.

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ 1. ΓΕΝΙΚΑ Από τις καταστάσεις της ύλης τα αέρια και τα υγρά δεν παρουσιάζουν κάποια τυπική διάταξη ατόμων, ενώ από τα στερεά ορισμένα παρουσιάζουν συγκεκριμένη διάταξη ατόμων

Διαβάστε περισσότερα

Κρυσταλλικές ατέλειες στερεών

Κρυσταλλικές ατέλειες στερεών Κρυσταλλικές ατέλειες στερεών Χαράλαμπος Στεργίου Dr.Eng. chstergiou@uowm.gr Ατέλειες Τεχνολογία Υλικών Ι Ατέλειες Ατέλειες στερεών Ο τέλειος κρύσταλλος δεν υπάρχει στην φύση. Η διάταξη των ατόμων σε δομές

Διαβάστε περισσότερα

Φάσεις και δομές στα σιδηρούχα κράματα. Το Διάγραμμα ισορροπίας των φάσεων Fe - C

Φάσεις και δομές στα σιδηρούχα κράματα. Το Διάγραμμα ισορροπίας των φάσεων Fe - C Φάσεις και δομές στα σιδηρούχα κράματα Το Διάγραμμα ισορροπίας των φάσεων Fe - C To ΔΙΦ Fe C (1) Mε συνεχή γραμμή το μετασταθές ΔΙΦ Fe-C ή διάγραμμα Fe Fe3C (σιδήρου σεμεντίτη). Στην οριζόντια των περιεκτικοτήτων

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 8: Μετασχηματισμοί φάσεων στους χάλυβες. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 8: Μετασχηματισμοί φάσεων στους χάλυβες. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 8: Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 5: ΜΕΤΑΛΛΑ ΚΑΙ ΚΡΑΜΑΤΑ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 5: ΜΕΤΑΛΛΑ ΚΑΙ ΚΡΑΜΑΤΑ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 5: ΜΕΤΑΛΛΑ ΚΑΙ ΚΡΑΜΑΤΑ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Υλικά Ηλεκτρονικής & Διατάξεις

Υλικά Ηλεκτρονικής & Διατάξεις Τμήμα Ηλεκτρονικών Μηχανικών Υλικά Ηλεκτρονικής & Διατάξεις 3 η σειρά διαφανειών Δημήτριος Λαμπάκης Τύποι Στερεών Βασική Ερώτηση: Πως τα άτομα διατάσσονται στο χώρο ώστε να σχηματίσουν στερεά? Τύποι Στερεών

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Ιούνιος 2016-(Καθ. Β.Ζασπάλης) ΤΕΣΤ ΑΞΙΟΛΟΓΗΣΗΣ ΜΕΤΑΦΟΡΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Διαβάστε περισσότερα

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1 ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε

Διαβάστε περισσότερα

ΜΜ404 - ΦΥΣΙΚΗ ΜΕΤΑΛΛΟΥΡΓΙΑ

ΜΜ404 - ΦΥΣΙΚΗ ΜΕΤΑΛΛΟΥΡΓΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΜΜ404 - ΦΥΣΙΚΗ ΜΕΤΑΛΛΟΥΡΓΙΑ Οδηγός μαθήματος - Εαρινό εξάμηνο 2016 Διδάσκων: Γ.Ν. Χαϊδεμενόπουλος, Καθηγητής Πρόγραμμα e-mail Ώρες Γραφείου

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ

ΚΕΦΑΛΑΙΟ 9 ΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 9 ΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ ιαγράµµατα φάσεων σε Στερεά διαλύµατα συστήµατα κραµάτων ιαπλεγµατικά ή υποκατάστασης Κατανόηση της µικροδοµής (και άρα των ιδιοτήτων) ως συνάρτηση της περιεκτικότητας και

Διαβάστε περισσότερα

1. Να συγκρίνετε την ανόπτηση με την εξομάλυνση και να διατυπώσετε τα συμπεράσματά σας.

1. Να συγκρίνετε την ανόπτηση με την εξομάλυνση και να διατυπώσετε τα συμπεράσματά σας. ΑΕΝ ΑΣΠΡΟΠΥΡΓΟΥ ΜΕΤΑΛΛΟΓΝΩΣΙΑ Ε εξαμήνου ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΑΛΑΙΟΤΕΡΩΝ ΕΤΩΝ Α) Θέματα ανάπτυξης 1. Να συγκρίνετε την ανόπτηση με την εξομάλυνση και

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Φασματοφωτομετρία

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Φασματοφωτομετρία 1 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Φασματοφωτομετρία Ιωάννης Πούλιος Αθανάσιος Κούρας Ευαγγελία Μανώλη ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 54124

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ 16111 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση

Διαβάστε περισσότερα

ΔΟΜΗ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΕΡΑΜΙΚΩΝ. Χ. Κορδούλης

ΔΟΜΗ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΕΡΑΜΙΚΩΝ. Χ. Κορδούλης ΔΟΜΗ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΕΡΑΜΙΚΩΝ Χ. Κορδούλης ΚΕΡΑΜΙΚΑ ΥΛΙΚΑ Τα κεραμικά υλικά είναι ανόργανα µη μεταλλικά υλικά (ενώσεις μεταλλικών και μη μεταλλικών στοιχείων), τα οποία έχουν υποστεί θερμική κατεργασία

Διαβάστε περισσότερα

Υλικά Ηλεκτρονικής & Διατάξεις

Υλικά Ηλεκτρονικής & Διατάξεις Τμήμα Ηλεκτρονικών Μηχανικών Υλικά Ηλεκτρονικής & Διατάξεις 4 η σειρά διαφανειών Δημήτριος Λαμπάκης Ορισμός και ιδιότητες των μετάλλων Τα χημικά στοιχεία διακρίνονται σε μέταλλα (περίπου 70 τον αριθμό)

Διαβάστε περισσότερα

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ 1 1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ Θα αρχίσουμε τη σειρά των μαθημάτων της Φυσικοχημείας με τη μελέτη της αέριας κατάστασης της ύλης. Η μελέτη της φύσης των αερίων αποτελεί ένα ιδανικό μέσο για την εισαγωγή

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. β) Το Ε ΑΒΓ = 3Ε ΒΟΓ = 3 ΒΓ ΟΗ = = 2. Η κεντρική γωνία ω του κανονικού ν-γώνου δίδεται από τον τύπο:

Ερωτήσεις ανάπτυξης. β) Το Ε ΑΒΓ = 3Ε ΒΟΓ = 3 ΒΓ ΟΗ = = 2. Η κεντρική γωνία ω του κανονικού ν-γώνου δίδεται από τον τύπο: ρωτήσεις ανάπτυξης. α) πό το ορθογώνιο τρίγωνο, έχουµε: - () λλά R, R, αφού η γωνία 0. () γίνεται: (R) - R R - R R Άρα R cm H πλευρά α του ισοπλεύρου τριγώνου είναι α 6 cm. β) Το 6 7 cm. B A H O. κεντρική

Διαβάστε περισσότερα

Έλεγχος Ποιότητας και Τεχνολογία Μεταλλικών Υλικών

Έλεγχος Ποιότητας και Τεχνολογία Μεταλλικών Υλικών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Έλεγχος Ποιότητας και Τεχνολογία Μεταλλικών Υλικών Ενότητα 1: Θεωρία Μέρος 1 ο Δρ Κάρμεν Μεντρέα Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ λ + λ = + = + = = = λ.

ΚΕΦΑΛΑΙΟ λ + λ = + = + = = = λ. ΚΦΑΛΑΙΟ 11. Παραθέτουμε για εύκολη αναφορά το πινακάκι με την αντιστοιχία χορδών-αποστημάτων-τόξων που χρειάζεται σε όλες σχεδόν τις παρακάτω ασκήσεις Κανονικό εξάγωνο Πλευρά λν Χορδή λ = Απόστημα α =

Διαβάστε περισσότερα

, όπου Α, Γ, l είναι σταθερές με l > 2.

, όπου Α, Γ, l είναι σταθερές με l > 2. Φυσική Στερεάς Κατάστασης: Εισαγωγή Θέμα 1 Η ηλεκτρική χωρητικότητα ισούται με C=Q/V όπου Q το φορτίο και V η τάση. (α) Εκφράστε τις διαστάσεις του C στις βασικές διαστάσεις L,M,T,I. (β) Σφαίρα είναι φορτισμένη

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 19 Ταλαντώσεις Απλή αρμονική κίνηση ΦΥΣ102 1 Ταλαντώσεις Ελατηρίου Όταν ένα αντικείμενο

Διαβάστε περισσότερα

ΙΑΧΥΣΗ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΟΜΗΣ ΧΑΛΥΒΩΝ ΣΕ ΣΤΕΡΕΑ ΚΑΤΑΣΤΑΣΗ ΙΑΓΡΑΜΜΑΤΑ TTT ΚΑΙ CCT

ΙΑΧΥΣΗ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΟΜΗΣ ΧΑΛΥΒΩΝ ΣΕ ΣΤΕΡΕΑ ΚΑΤΑΣΤΑΣΗ ΙΑΓΡΑΜΜΑΤΑ TTT ΚΑΙ CCT ΙΑΧΥΣΗ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΟΜΗΣ ΧΑΛΥΒΩΝ ΣΕ ΣΤΕΡΕΑ ΚΑΤΑΣΤΑΣΗ ΙΑΓΡΑΜΜΑΤΑ TTT ΚΑΙ CCT ΙΑΧΥΣΗ ΟΡΙΣΜΟΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ιάχυση είναι ο µηχανισµός µεταφοράς ατόµων (όµοιων ή διαφορετικών µεταξύ τους) µέσα στη µάζα

Διαβάστε περισσότερα

Α Π Α Ν Τ Η Σ Ε Ι Σ - Υ Π Ο Δ Ε Ι Ξ Ε Ι Σ Σ Τ Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ

Α Π Α Ν Τ Η Σ Ε Ι Σ - Υ Π Ο Δ Ε Ι Ξ Ε Ι Σ Σ Τ Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Α Π Α Ν Τ Η Σ Ε Ι Σ - Υ Π Ο Δ Ε Ι Ξ Ε Ι Σ Σ Τ Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ 60 Κεφάλαιο ο Ι. ΣΥΝΑΡΤΗΣΕΙΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ. Σ 0. i) Σ. Σ. Σ 0. ii) Σ 3. Σ 3. Σ. Σ 4. Λ 4. Λ. Λ 5.

Διαβάστε περισσότερα

ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ

ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ Αποδείξαμε πειραματικά, με τη βοήθεια του φαινομένου της περίθλασης, ότι τα ηλεκτρόνια έχουν εκτός από τη σωματιδιακή και κυματική φύση. Υπολογίσαμε τις σταθερές πλέγματος του γραφίτη

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΜΑ 2 1. Β.2 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση 1 atm και θερμοκρασία 27 C). Το μπαλόνι με κάποιο τρόπο ανεβαίνει σε

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm.

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Ερωτήσεις ανάπτυξης 1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο (A = 90 ) και πλευρές = 3 cm, = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Να βρείτε: α) Το εµβαδό Ε Π της παράπλευρης επιφάνειας.

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ 5 η ΕΚ 1. Οι πλευρές ενός τριγώνου σε cm είναι = 3x 3, = 3x + 1 και = x και η περίµετρος Π του τριγώνου είναι Π = 8cm. Να βρείτε τα µήκη των πλευρών του τριγώνου. Να δείξτε ότι το τρίγωνο

Διαβάστε περισσότερα

Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012

Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012 Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012 1) Ποιο φυσικό φαινόμενο βοηθάει στην αυτοσυναρμολόγηση μοριακών συστημάτων? α) Η τοποθέτηση μοριων με χρήση μικροσκοπίου σάρωσης δείγματος

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: , ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ ΔΙΔΑΚΤΩΡ ΕΜΠ KENTΡΟ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Γενική Φυσική V (Σύγχρονη Φυσική) Φυσική Ακτίνων-Χ και Αλληλεπίδραση Ακτίνων-Χ και Ηλεκτρονίων με την Ύλη

Γενική Φυσική V (Σύγχρονη Φυσική) Φυσική Ακτίνων-Χ και Αλληλεπίδραση Ακτίνων-Χ και Ηλεκτρονίων με την Ύλη Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Εργαστήριο Εφαρμοσμένης Φυσικής Γενική Φυσική V (Σύγχρονη Φυσική) Φυσική Ακτίνων-Χ και Αλληλεπίδραση Ακτίνων-Χ και Ηλεκτρονίων με την Ύλη Περιεχόμενα

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 4-5 (Α. Χημική Θερμοδυναμική) η Άσκηση Από τα δεδομένα του πίνακα που ακολουθεί και δεχόμενοι ότι όλα τα αέρια είναι ιδανικά, να υπολογίσετε: α)

Διαβάστε περισσότερα

lim lim lim f (x) δ) lim lim lim lim 1- x 1- lim lim lim lim lim Ερωτήσεις ανάπτυξης

lim lim lim f (x) δ) lim lim lim lim 1- x 1- lim lim lim lim lim Ερωτήσεις ανάπτυξης Ερωτήσεις ανάπτυξης. ** Η γραφική παράσταση της συνάρτησης f είναι αυτή που φαίνεται στο διπλανό σχήμα. Να βρεθούν τα παρακάτω όρια: α) γ) ε) ζ) - f () β) f () δ) f () f () στ) - - - f () f () f () - y

Διαβάστε περισσότερα

2. H ΔΟΜΗ ΤΩΝ ΜΕΤΑΛΛΩΝ

2. H ΔΟΜΗ ΤΩΝ ΜΕΤΑΛΛΩΝ 2. H ΔΟΜΗ ΤΩΝ ΜΕΤΑΛΛΩΝ ΠΕΡΙΛΗΨΗ Τα μέταλλα είναι κρυσταλλικά στερεά, έχουν δηλαδή κρυσταλλική δομή, διότι η σύνταξη των ατόμων που τα αποτελούν παρουσιάζει περιοδικότητα και στις τρεις διευθύνσεις του

Διαβάστε περισσότερα

Κεφάλαιο 2 Χημικοί Δεσμοί

Κεφάλαιο 2 Χημικοί Δεσμοί Κεφάλαιο 2 Χημικοί Δεσμοί Σύνοψη Παρουσιάζονται οι χημικοί δεσμοί, ιοντικός, μοριακός, ατομικός, μεταλλικός. Οι ιδιότητες των υλικών τόσο οι φυσικές όσο και οι χημικές εξαρτώνται από το είδος ή τα είδη

Διαβάστε περισσότερα

11. Υγρά και Στερεά ΣΚΟΠΟΣ

11. Υγρά και Στερεά ΣΚΟΠΟΣ 11. Υγρά και Στερεά ΣΚΟΠΟΣ Σκοπός αυτού του κεφαλαίου είναι να γνωρίσουμε τις άλλεςδύοκαταστάσειςτηςύλης, την υγρή και τη στερεά, να μελετήσουμε και να ερμηνεύσουμε τις ιδιότητες των υγρών, να δούμε τους

Διαβάστε περισσότερα

οµή των στερεών ιάλεξη 4 η

οµή των στερεών ιάλεξη 4 η οµή των στερεών ιάλεξη 4 η Ύλη τέταρτου µαθήµατος Οι καταστάσεις της ύλης, Γιατί τις µελετάµε; Περιοδική τοποθέτηση των ατόµων, Κρυσταλλική και άµορφη δοµή, Κρυσταλλικό πλέγµα κρυσταλλική κυψελίδα, Πλέγµατα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Η εξίσωση α + βy = γ 1. Υπάρχουν προβλήματα που η επίλυση τους οδηγεί σε μια γραμμική εξίσωση με δύο αγνώστους, y και η οποία είναι της μορφής

Διαβάστε περισσότερα

ΕΦΕΛΚΥΣΜΟΣ ΚΡΑΜΑΤΩΝ ΜΕ ΜΝΗΜΗΣ ΣΧΗΜΑΤΟΣ

ΕΦΕΛΚΥΣΜΟΣ ΚΡΑΜΑΤΩΝ ΜΕ ΜΝΗΜΗΣ ΣΧΗΜΑΤΟΣ ΕΦΕΛΚΥΣΜΟΣ ΚΡΑΜΑΤΩΝ ΜΕ ΜΝΗΜΗΣ ΣΧΗΜΑΤΟΣ Το φαινόµενο της µνήµης σχήµατος συνδέεται µε τη δυνατότητα συγκεκριµένων υλικών να «θυµούνται» το αρχικό τους σχήµα ακόµα και µετά από εκτεταµένες παραµορφώσεις

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 01. Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές

Εργαστηριακή άσκηση 01. Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές Εργαστηριακή άσκηση 01 Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές Ηλίας Χατζηθεοδωρίδης Οκτώβριος / Νοέμβριος 2004 Τι περιλαμβάνει η άσκηση Θα μάθετε τα 7 κρυσταλλογραφικά συστήματα και πως

Διαβάστε περισσότερα

Ορισμός Το εμβαδόν κυκλικού δίσκου ακτίνας ρ, ισούται µε. Ε = πρ 2.

Ορισμός Το εμβαδόν κυκλικού δίσκου ακτίνας ρ, ισούται µε. Ε = πρ 2. ΜΕΡΟΣ Β 3.5 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ 345 3.5 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ Ορισμός Το εμβαδόν κυκλικού δίσκου ακτίνας ρ, ισούται µε. ρ Χωρίζουμε τον κύκλο σε πιο μικρά μέρη και σχηματίζεται ένα ορθογώνιο με διαστάσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο

Διαβάστε περισσότερα

1bar. bar; = = y2. mol. mol. mol. P (bar)

1bar. bar; = = y2. mol. mol. mol. P (bar) Τµήµα Χηµείας Μάθηµα: Φυσικοχηµεία Ι Εξέταση: Περίοδος Σεπτεµβρίου -3 (7//4). Σηµειώστε µέσα στην παρένθεση δίπλα σε κάθε µέγεθος αν είναι εντατικό (Ν) ή εκτατικό (Κ): όγκος (Κ), θερµοκρασία (Ν), πυκνότητα

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

2.7. ր ց ց ր. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1. H παράγωγος µιας συνάρτησης f είναι. f (x) > 0 3(x 1 ) 3 (x 2 ) 2 (x 3) > 0

2.7. ր ց ց ր. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1. H παράγωγος µιας συνάρτησης f είναι. f (x) > 0 3(x 1 ) 3 (x 2 ) 2 (x 3) > 0 .7 Ασκήσεις σχολικού βιβλίου σελίδας 67 7 A Οµάδας. H παράγωγος µιας συνάρτησης είναι () = ( ) ( ) ( ) Για ποιες τιµές του η παρουσιάζει τοπικό µέγιστο και για ποιες τοπικό ελάχιστο; D = R, όπου και παραγωγίζεται.

Διαβάστε περισσότερα

Εργασία 4, ΦΥΕ 24, N. Κυλάφης

Εργασία 4, ΦΥΕ 24, N. Κυλάφης Εργασία ΦΥΕ - N Κυλάφης Λύσεις Άσκηση : Θεωρήστε ότι στα σηµεία υπάρχουν τέσσερα φορτία το καθένα Α Να βρεθεί το ηλεκτρικό δυναµικό που δηµιουργείται σε τυχόν σηµείο του άξονα Β Να βρεθεί η ένταση του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

4. ΤΟ ΙΑΓΡΑΜΜΑ ΦΑΣΕΩΝ ΣΙ ΗΡΟΥ - ΑΝΘΡΑΚΑ

4. ΤΟ ΙΑΓΡΑΜΜΑ ΦΑΣΕΩΝ ΣΙ ΗΡΟΥ - ΑΝΘΡΑΚΑ 1 4. ΤΟ ΙΑΓΡΑΜΜΑ ΦΑΣΕΩΝ ΣΙ ΗΡΟΥ - ΑΝΘΡΑΚΑ 4.1 ιαγράμματα ισορροπίας των φάσεων Αν αφήσουμε ένα δοχείο γεμάτο με οινόπνευμα μέσα σε ένα δωμάτιο, θα παρατηρήσουμε μετά από λίγο ότι η στάθμη του οινοπνεύματος

Διαβάστε περισσότερα

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ . ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 1. Σε µια ισόθερµη µεταβολή : α) Το αέριο µεταβάλλεται µε σταθερή θερµότητα β) Η µεταβολή της εσωτερικής ενέργειας είναι µηδέν V W = PV ln V γ) Το έργο που παράγεται δίνεται

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη ενέργεια Gibbs. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη ενέργεια Gibbs. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΒΙΟΜΗΧΑΝΙΚΑ ΚΡΑΜΑΤΑ ΜΕΡΟΣ Α : ΣΙ ΗΡΟΥΧΑ ΚΡΑΜΑΤΑ

ΒΙΟΜΗΧΑΝΙΚΑ ΚΡΑΜΑΤΑ ΜΕΡΟΣ Α : ΣΙ ΗΡΟΥΧΑ ΚΡΑΜΑΤΑ ΓΕΝΙΚΑ ΒΙΟΜΗΧΑΝΙΚΑ ΚΡΑΜΑΤΑ ΜΕΡΟΣ Α : ΣΙ ΗΡΟΥΧΑ ΚΡΑΜΑΤΑ B. ΧYΤΟΣΙ ΗΡΟΙ Είναι κράµατα Fe-C-Si. Η µικροδοµή και οι ιδιότητές τους καθορίζονται από τις π(c), π(si) και τους ρυθµούς απόψυξης. Οι χυτοσίδηροι

Διαβάστε περισσότερα

Ομογενή Χημικά Συστήματα

Ομογενή Χημικά Συστήματα Ομογενή Χημικά Συστήματα 1. Πειραματικός Προσδιορισμός Τάξης Αντιδράσεων 2. Συνεχείς Αντιδραστήρες (Ι) Πειραματική Μελέτη Ρυθμού Αντίδρασης Μέθοδοι Λήψης και Ερμηνείας Δεδομένων (ΙΙ) Τύποι Συνεχών Αντιδραστήρων:

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ ΧΑΛΥΒΩΝ

ΘΕΡΜΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ ΧΑΛΥΒΩΝ ΘΕΡΜΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ ΧΑΛΥΒΩΝ ΑΝΟΠΤΗΣΗ - ΒΑΦΗ - ΕΠΑΝΑΦΟΡΑ ΓΕΝΙΚΑ Στο Σχ. 1 παρουσιάζεται µια συνολική εικόνα των θερµικών κατεργασιών που επιδέχονται οι χάλυβες και οι περιοχές θερµοκρασιών στο διάγραµµα

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ. και η συνάρτηση f είναι παραγωγίσιμη στο x. την παράγωγο f' ( x. 0 ) (ή και στιγμιαίο ρυθμό μεταβολής).

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ. και η συνάρτηση f είναι παραγωγίσιμη στο x. την παράγωγο f' ( x. 0 ) (ή και στιγμιαίο ρυθμό μεταβολής). Ρυθμός μεταβολής Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ i Αν δύο μεταβλητά μεγέθη x, y συνδέονται με τη σχέση y = f( x) και η συνάρτηση f είναι παραγωγίσιμη στο x τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ Περιληπτική θεωρητική εισαγωγή α) Τεχνική zchralski Η πιο συχνά χρησιμοποιούμενη τεχνική ανάπτυξης μονοκρυστάλλων πυριτίου (i), αρίστης ποιότητας,

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ- ΙΟΥΝΙΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ. Ονοματεπώνυμο :.. Τμήμα :...

ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ- ΙΟΥΝΙΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ. Ονοματεπώνυμο :.. Τμήμα :... ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ- ΙΟΥΝΙΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ Ημερομηνία:28/05/2013 Βαθμός :.. 100. 20 Διάρκεια: 2,5 ώρες Υπογραφή καθηγητή : Ονοματεπώνυμο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ

ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ Ι 5 Δομή ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Κρυσταλλικά υλικά Άμορφα υλικά Κρύσταλλος είναι ένα υλικό που παρουσιάζει τρισδιάστατη περιοδική τάξη ατόμων,

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 06 Διατήρηση της ενέργειας

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 06 Διατήρηση της ενέργειας Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 06 Διατήρηση της ενέργειας ΦΥΣ102 1 Δυναμική Ενέργεια και διατηρητικές δυνάμεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ. Δύο ομάδες Ο, Ο παίζουν μεταξύ τους σε μια σχολική ποδοσφαιρική συνάντηση (οι αγώνες δεν τελειώνουν ποτέ με ισοπαλία). Νικήτρια θεωρείται η ομάδα που θα νικήσει

Διαβάστε περισσότερα

Κεφάλαιο 3 Κρυσταλλογραφία

Κεφάλαιο 3 Κρυσταλλογραφία Κεφάλαιο 3 Κρυσταλλογραφία Σύνοψη Μελετάται ο σχηματισμός των κρυστάλλων με τα αντίστοιχα στάδια ανάπτυξης αυτών, τα κρυσταλλικά συστήματα, τα κρυσταλλικά πλέγματα, η μελέτη των κρυσταλλικών δομών μεγίστης

Διαβάστε περισσότερα

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ 1 4.4 Η ΠΥΡΜΙ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΗΣ ΘΕΩΡΙ 1. Πυραµίδα Ονοµάζεται ένα στερεό του οποίου µία έδρα είναι ένα οποιοδήποτε πολύγωνο και όλες οι άλλες έδρες του είναι τρίγωνα µε κοινή κορυφή. ύο πυραµίδες φαίνονται

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.ii) 1.iii) 1.iv) Ποιο είναι το πεδίο ορισµού της συνάρτησης f(x) = ln(1.

Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.ii) 1.iii) 1.iv) Ποιο είναι το πεδίο ορισµού της συνάρτησης f(x) = ln(1. .. Ασκήσεις σχολικού βιβλίου σελίδας 45 48 A Οµάδας.i) Ποιο είναι το πεδίο ορισµού της συνάρτησης () + 3+ Οι ρίζες του τριωνύµου 3 + είναι και. Πρέπει 3 + 0 και Άρα D (, ) (, ) (, + ).ii) Ποιο είναι το

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του.

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. Ερωτήσεις ανάπτυξης 1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. 2. ** Υπάρχει κανονικό πολύγωνο εγγεγραµµένο σε κύκλο ακτίνας

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ» ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ». 1. Να υπολογίσετε τα εμβαδά των σχημάτων,, χρησιμοποιώντας ως μονάδα μέτρησης εμβαδών το. Τι παρατηρείτε; ρίσκουμε ότι τα εμβαδά των,, είναι : 5,

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ

Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Ποια η σημασία των παρακάτω μεγεθών; Αναφερόμαστε στην κυκλική κίνηση. Α. Επιτρόχια επιτάχυνση: Β. Κεντρομόλος επιτάχυνση: Γ. Συχνότητα: Δ. Περίοδος: 2. Ένας τροχός περιστρέφεται

Διαβάστε περισσότερα

Κατασκευή θερμικού διαγράμματος ισορροπίας διμερούς κράματος Α,Β σύνθετου ευτηκτικού τύπου. Οδηγίες για την κατασκευή του διαγράμματος

Κατασκευή θερμικού διαγράμματος ισορροπίας διμερούς κράματος Α,Β σύνθετου ευτηκτικού τύπου. Οδηγίες για την κατασκευή του διαγράμματος Μεταλλογνωσία Εργασίες μέσα στην τάξη σελίδα 1 ΜΕΤΑΛΛΟΓΝΩΣΙΑ Γ. Δ. ΠΛΑΪΝΑΚΗΣ Εργασία 01 Κατασκευή θερμικού διαγράμματος ισορροπίας διμερούς κράματος Α,Β σύνθετου ευτηκτικού τύπου για την κατασκευή του

Διαβάστε περισσότερα

[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο

[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο [1] Να βρεθεί ο αριθμός των ατόμων του αέρα σε ένα κυβικό μικρόμετρο (κανονικές συνθήκες και ιδανική συμπεριφορά) (Τ=300 Κ και P= 1 atm) (1atm=1.01x10 5 Ν/m =1.01x10 5 Pa). [] Να υπολογισθεί η απόσταση

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Η πειραματική διάταξη φαίνεται στο ακόλουθο σχήμα: Θα χρησιμοποιήσουμε: Ένα φακό Laser κόκκινου χρώματος. Ένα φράγμα περίθλασης. Μια οθόνη που φέρει πάνω

Διαβάστε περισσότερα

Εργαστήριο Τεχνολογίας Υλικών

Εργαστήριο Τεχνολογίας Υλικών Εργαστήριο Τεχνολογίας Υλικών Εργαστηριακή Άσκηση 01 Κατηγοριοποιήση υλικών-επίδειξη δοκιμίων Διδάσκοντες: Δρ Γεώργιος Ι. Γιαννόπουλος Δρ Θεώνη Ασημακοπούλου Δρ ΘεόδωροςΛούτας Τμήμα Μηχανολογίας ΑΤΕΙ Πατρών

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

Ασκήσεις Ακ. Έτους 2014 15 (επιλύθηκαν συζητήθηκαν κατά τη διδασκαλία) Όπου χρειάζεται ο Αριθμός Avogadro λαμβάνεται 0.6023 1024

Ασκήσεις Ακ. Έτους 2014 15 (επιλύθηκαν συζητήθηκαν κατά τη διδασκαλία) Όπου χρειάζεται ο Αριθμός Avogadro λαμβάνεται 0.6023 1024 Ασκήσεις Ακ. Έτους 014 15 (επιλύθηκαν συζητήθηκαν κατά τη διδασκαλία) Όπου χρειάζεται ο Αριθμός Avoadro λαμβάνεται 0.603 10 4 και τα ατομικά βάρη θεωρείται ότι ταυτίζονται με τον μαζικό αριθμό σε 1. Το

Διαβάστε περισσότερα

ΤΕΧΝΙΚΑ ΥΛΙΚΑ ( ) (Βαρύτητα θέματος 25%)

ΤΕΧΝΙΚΑ ΥΛΙΚΑ ( ) (Βαρύτητα θέματος 25%) ΤΕΧΝΙΚΑ ΥΛΙΚΑ (2013-2014) (Βαρύτητα θέματος 25%) Άσκηση 1 (α) Κατασκευάστε το διάγραμμα φάσεων Ag-Cu χρησιμοποιώντας τα παρακάτω δεδομένα (υποθέστε ότι όλες οι γραμμές είναι ευθείες): Σημείο τήξης Ag:

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σκαρτσιούνη Ρωξάνη ΑΕΜ: Επιβλέπων: Καθηγητής Στέφανος Σκολιανός

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σκαρτσιούνη Ρωξάνη ΑΕΜ: Επιβλέπων: Καθηγητής Στέφανος Σκολιανός ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Μελέτη παραμέτρων θερμικών κατεργασιών στις μηχανικές ιδιότητες και τη μικροδομή χάλυβα χαμηλής κραμάτωσης για αντιτριβικές εφαρμογές. Σκαρτσιούνη Ρωξάνη ΑΕΜ: 4117 Επιβλέπων: Καθηγητής

Διαβάστε περισσότερα