Κωνσταντίνος Θ. Κώτσης ΠΤΔΕ Πανεπιστημίου Ιωαννίνων,

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κωνσταντίνος Θ. Κώτσης ΠΤΔΕ Πανεπιστημίου Ιωαννίνων, kkotsis@cc.uoi.gr"

Transcript

1 ΔΙΔΑΚΤΙΚΗ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΝΕΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΠΡΑΚΤΙΚΑ 5 ου ΠΑΝΕΛΛΗΝΙΟΥ ΣΥΝΕΔΡΙΟΥ, ΤΕΥΧΟΣ Α Οι Φυσικές Επιστήμες στην Πρωτοβάθμια Εκπαίδευση Η ικανοποιητική δεξιότητα των τυφλών μαθητών στη διαδικασία της μέτρησης, σε αντίθεση με τους βλέποντες, τεκμήριο ορθότερης αντίληψης διαστάσεων αντικειμένων και εννοιών της φυσικής Κωνσταντίνος Θ. Κώτσης ΠΤΔΕ Πανεπιστημίου Ιωαννίνων, Περίληψη: Στην εργασία αυτή επισημαίνεται η σημασία της εκπαίδευσης και της δεξιότητας των μαθητών του Δημοτικού Σχολείου στη διαδικασία της μέτρησης μεγεθών μιας σημαντικής διαδικασίας της επιστημονικής μεθόδου των φυσικών επιστήμων. Η απόκτηση δεξιοτήτων στην διαδικασία της μέτρησης οδηγεί σε καλύτερη κατανόηση εννοιών της φυσικής, οι οποίες μελετήθηκαν και αυτό αποδεικνύεται με εμπειρικές έρευνες που έχουν γίνει σε τυφλούς και βλέποντες μαθητές, όπου οι πρώτοι εμφανίζουν επιστημονικά ορθότερες αντιλήψεις από τους δεύτερους. Το συμπέρασμα της εργασίας είναι ότι οι μαθητές με προβλήματα όρασης αποκτούν ικανές δεξιότητες στην διαδικασία της μέτρησης, λόγου της αναπηρίας τους, με αποτέλεσμα να αντιλαμβάνονται σωστά βασικές έννοιες της φυσικής και κατά συνέπεια θα πρέπει οι βλέποντες μαθητές να εκπαιδευτούν στην διαδικασία της μέτρησης, ώστε να επιτύχουν το ίδιο μαθησιακό αποτέλεσμα. Εισαγωγή Η διδασκαλία των μαθητών για τις φυσικές επιστήμες, σημαίνει κάτι παραπάνω από απλή επιστημονική γνώση. Εκτός από το περιεχόμενο της επιστήμης και τις βασικές αρχές της, εμπεριέχονται οι διαδικασίες και η μεθοδολογία που ακολουθεί η ίδια η επιστήμη, δηλαδή οι διαδικασίες της επιστημονικής μεθόδου, την οποία ακολουθούν οι επιστήμονες κατά τη διάρκεια της επιστημονικής έρευνας. Από τη στιγμή που το αντικείμενο των φυσικών επιστημών είναι να θέτει ερωτήματα και να δίνει απαντήσεις σε αυτά τα ερωτήματα με μια συγκεκριμένη μεθοδολογία, η ίδια ακριβώς μεθοδολογία απαιτείται (Penick, et all 1996) για να βρεθούν οι απαντήσεις στα ερωτήματα της καθημερινής ζωής. Όταν διδάσκονται οι μαθητές να χρησιμοποιούν τις διαδικασίες της επιστημονικής μεθόδου, ουσιαστικά διδάσκονται δεξιότητες για να τις εφαρμόζουν στο μέλλον σε όλο το εύρος της καθημερινής τους ζωής (Klionsky 23). Τόσο η επιστημονική μέθοδος, όσο και οι αρχές της επιστήμης, στοχεύουν στην προσπάθεια επίλυσης των ερωτημάτων, κάνοντας χρήση των ήδη γνωστών επιστημονικών αποδείξεων και αναγνωρίζοντας τη σημασία του συνεχούς επανέλεγχου των δεδομένων και κατανοώντας ότι η επιστημονική γνώση και οι θεωρίες μπορούν να αλλάξουν με την πάροδο του χρόνου, καθώς όλο και περισσότερες επιστημονικές πληροφορίες προκύπτουν. Η σύγχρονη διδακτική των φυσικών επιστημών αποδέχεται ότι για τη μάθηση εννοιών και αρχών των φυσικών επιστημών, πρωταρχικό ρόλο διαδραματίζουν οι ιδέες-αντιλήψεις που έχουν τα παιδιά για τις έννοιες και τα φυσικά φαινόμενα πριν ακόμα τα διδαχτούν στο σχολείο. Πάνω από είκοσι πέντε χρόνια οι ερευνητές ερευνούν συστηματικά τις ιδέες των παιδιών για έννοιες και φαινόμενα των φυσικών επιστημών και έχουν συνδέσει τη μάθηση του γνωστικού αντικειμένου των φυσικών επιστημών με τη νοητική ανάπτυξη τους. Στην βιβλιογραφία υπάρχουν πλήθος ερευνών, όπου παρουσιάζονται οι αντιλήψεις των μαθητών όλων των βαθμίδων της εκπαίδευσης, σε έννοιες των Φυσικών Επιστημών (Driver 1993) και

2 15 ΚΩΝΣΤΑΝΤΙΝΟΣ Θ. ΚΩΤΣΗΣ το πώς αυτές επιδρούν στην διδασκαλία της επιστημονικής γνώσης. Οι αντιλήψεις των παιδιών είναι συχνά διαφορετικές από το επιστημονικό πρότυπο, όπως αυτό παρουσιάζεται στα σχολικά εγχειρίδια. Ωστόσο, οι αντιλήψεις αυτές είναι χρήσιμες και λογικές (Κόκκοτας 1989), επειδή αποτελούν το σκελετό της ερμηνείας των σχετικών φαινομένων. Πολλές φορές οι μαθητές δίνουν αντιφατικές εξηγήσεις και ερμηνείες για τα φαινόμενα, χωρίς να τα γνωρίζουν πραγματικά. Επίσης, ένας μαθητής μπορεί να έχει διαφορετικές αντιλήψεις για ένα φαινόμενο. Κι αυτό γιατί, χρησιμοποιώντας διαφορετικά επιχειρήματα, οδηγείται σε αντίθετες προβλέψεις για ισοδύναμες καταστάσεις. Η γνωστική σύγκρουση και η αντικατάσταση των εναλλακτικών ιδεών των μαθητών με τις ορθές από επιστημονικής άποψης γνώσεις απαιτεί, σύμφωνα με το εποικοδομητικό μοντέλο της διδασκαλίας των Φυσικών Επιστημών, την εξοικείωση των μαθητών με τις διαδικασίες της επιστημονικής μεθόδου. Σε αντίθετη περίπτωση ο μαθητής ασκείται μόνο σε μια στείρα αποστήθιση εννοιών και αρχών, χωρίς να κατανοεί και να οικοδομεί τις γνώσεις του. Υπάρχουν μελέτες (Κώτσης 22) όπου ενώ οι μαθητές έχουν διδαχθεί σε όλες τις βαθμίδες της εκπαίδευσης, τις ίδιες έννοιες και φαινόμενα της φυσικής, εξακολουθούν να έχουν παρανοήσεις ακόμα και όταν γίνονται φοιτητές και μάλιστα αυτές οι παρανοήσεις είναι πολλές φορές ίδιες με τα παιδιά πριν πάνε στο Δημοτικό Σχολείο. Οι βασικές διαδικασίες της επιστημονικής μεθοδολογίας (Παρατήρηση, Επικοινωνία, Ταξινόμηση, Μέτρηση, Συμπέρασμα, Υπόθεση-Πρόβλεψη και Πείραμα) μπορούν να διδαχτούν στους μαθητές για να αποκτήσουν τις αντίστοιχες δεξιότητες, αν η εκπαίδευση τους γίνει με μια σειρά, ανάλογα με τη νοητική ανάπτυξη του παιδιού. Η εκπαίδευση μπορεί να αρχίσει από νωρίς στο σχολείο, ακόμη και αν οι μαθητές θα μάθουν να χρησιμοποιούν όλες μαζί τις δεξιότητες σε μεγαλύτερες ηλικίες. Στις μικρές ηλικίες οι μαθητές μπορούν να εκπαιδευτούν για να αποκτήσουν δεξιότητες όπως η παρατήρηση και η επικοινωνία. Σε μεγαλύτερες ηλικίες οι μαθητές μπορούν να εκπαιδευτούν σε δεξιότητες όπως η διατύπωση συμπερασμάτων και προβλέψεων. Η ταξινόμηση και η μέτρηση είναι δεξιότητες στις οποίες οι μαθητές πρέπει να εκπαιδεύονται σταδιακά ανάλογα της νοητικής ανάπτυξης τους. Αυτό συμβαίνει, όσον αφορά την ταξινόμηση επειδή υπάρχουν διαφορετικοί τρόποι ταξινόμησης, από τον απλό, ο οποίος στηρίζεται στο διαχωρισμό των στοιχείων σε δύο ομάδες με βάση ένα χαρακτηριστικό, μέχρι το σύνθετο τρόπο, ο οποίος στηρίζεται στο διαχωρισμό των στοιχείων σε περισσότερες ομάδες εξετάζοντας πιο πολλά χαρακτηριστικά. Το ίδιο ισχύει και για τη δεξιότητα της μέτρησης, διότι η μέθοδος της μέτρησης και τα μετρικά συστήματα μονάδων πρέπει να εισαχθούν βαθμιαία στα παιδιά κατά τη διάρκεια της νοητικής ανάπτυξής τους. Η ενσωμάτωση όλων μαζί των βασικών δεξιοτήτων της επιστημονικής μεθοδολογίας, πρέπει να γίνεται σταδιακά για να αναπτυχθούν οι ικανότητές των μαθητών στο σχεδιασμό των απλών πειραμάτων της καθημερινής ζωής, δίνοντας έμφαση σε διαδοχικά επίπεδα δυσκολίας και αυτό είναι δυνατόν να αρχίσει να γίνεται τουλάχιστο σε μαθητές δέκα ετών. Για παράδειγμα, σε αυτή την ηλικία μπορεί να περιλαμβάνεται η διατύπωση των υποθέσεων και ο προσδιορισμός των μεταβλητών σε απλά πειράματα. Σε αυτή την ηλικία οι μαθητές μπορούν να αρχίζουν να θέτουν ερωτήματα και να απαντούν σε αυτά με έναν επιστημονικό τρόπο. Σύμφωνα με αυτό το πνεύμα έχουν προταθεί και χρησιμοποιούνται σήμερα τα νέα σχολικά εγχειρίδια για τις Φυσικές Επιστήμες της Ε τάξης (ΟΕΔΒ 26α) και Στ (ΟΕΔΒ 26β) του Δημοτικού Σχολείου, τα οποία περιλαμβάνουν πειράματα με απλά καθημερινά υλικά. Είναι ευνόητο ότι η εκτέλεση και η κατανόηση των πειραμάτων απαιτεί το ότι ο μαθητής έχει αποκτήσει δεξιότητες στις προηγούμενες διαδικασίες, πριν το πείραμα, της επιστημονικής μεθοδολογίας σε προηγούμενες τάξεις στο Δημοτικό Σχολείο. Μέχρι σήμερα στην Ελληνική πραγματικότητα δύσκολα διακρίνει κανείς, σε ποιο σημείο της εκπαίδευσή του, ο μαθητής αποκτά ουσιαστικές δεξιότητες σε αυτές τις διαδικασίες στο Δημοτικό Σχολείο, όπως στην παρατήρηση, στη μέτρηση κ.λ.π. Π.χ. για την μέτρηση περισσότερο αποστηθίζει ο μαθητής τις μονάδες του μήκους και μαθαίνει τις αναλογίες για να εκτελεί μαθηματικές πράξεις, παρά

3 ΟΙ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ 151 μαθαίνει και εξοικειώνεται με αυτή καθεαυτή τη μέτρηση. Ο Έλληνας μαθητής του Δημοτικού Σχολείου δεν μαθαίνει να μετρά. Επί πλέον όμως έχει διαπιστωθεί (Κώτσης, 25α) ότι δεν γίνονται πειράματα στο Δημοτικό Σχολείο με αποτέλεσμα οι μαθητές να μην μεταβάλλουν τις εσφαλμένες αντιλήψεις τους. Ανασκόπηση ερευνητικών δεδομένων Στην μελέτη αυτή αναδεικνύεται το πώς μαθητές, οι οποίοι είναι εξοικειωμένοι με τη διαδικασία της μέτρησης, έχουν ορθότερες αντιλήψεις σε έννοιες της φυσικής, σε σχέση με μαθητές που δεν έχουν αυτήν την εξοικείωση. Τα δεδομένα της παρούσας μελέτης, στηρίζονται σε ανασκόπηση ευρημάτων εργασιών των δύο τελευταίων ετών, των Κώτση και Ανδρέου, οι οποίες ερευνούν την ικανότητα εκτίμησης διαστάσεων και τις αντιλήψεις σε έννοιες της φυσικής, τυφλών και βλεπόντων μαθητών του Δημοτικού Σχολείου. Οι εργασίες αυτές έχουν στηριχθεί σε εμπειρικές έρευνες, οι οποίες πραγματοποιήθηκαν σε 78 μαθητές, ηλικίας 9 μέχρι 13 ετών. Το δείγμα της έρευνας αποτέλεσαν τυφλοί και βλέποντες μαθητές. Την πρώτη ομάδα αποτέλεσαν είκοσι τρεις τυφλοί μαθητές οι οποίοι φοιτούν στο Κέντρο Εκπαίδευσης και Αποκατάστασης Τυφλών στην Αθήνα (ΚΕΑΤ). Τα περισσότερα από τα παιδιά που φοιτούν στο ΚΕΑΤ, και ιδιαίτερα αυτά τα οποία δεν συνοδεύονται από άλλες αναπηρίες, παρακολουθούν μαθήματα στις αντίστοιχες τάξεις του κανονικού σχολείου και το απόγευμα στηρίζονται φροντιστηριακά από τους καθηγητές του ΚΕΑΤ. Δουλεύουν με ανάγλυφα σχεδιαγράμματα και ειδικά όργανα ιδιαίτερα στα μαθηματικά, φυσική και χημεία Σωστό Λάθος Δεν ξέρω Σχήμα 1. Η κατανομή των απαντήσεων των παιδιών στην ερώτηση «Πόσα βήματα νομίζεις ότι είναι από τη πόρτα της αίθουσας της τάξης σου έως την απέναντι πλευρά της;». Τα είκοσι τρία τυφλά παιδιά είναι μαθητές της Γ, Δ, Ε, ΣΤ του Δημοτικού, ηλικίας 9,,11 και 12 ετών, δηλαδή το σύνολο των παιδιών του Δημοτικού, τα οποία φοιτούν στο ΚΕΑΤ. Τη δεύτερη ομάδα αποτέλεσαν πενήντα πέντε (55) βλέποντες μαθητές της Δ, Ε, και ΣΤ, τάξης, Δημοτικού Σχολείου της πόλης των Ιωαννίνων, ηλικίας, 11, και 12 ετών. Η επιλογή του σχολείου έγινε με απλή τυχαία δειγματοληψία. Για τη συλλογή του απαραίτητου ερευνητικού υλικού, χρησιμοποιήθηκε το γραπτό ερωτηματολόγιο το οποίο περιλαμβάνει ερωτήσεις κλειστού τύπου, το οποίο το συμπλήρωνε παρουσία του ερευνητή. Στην εργασία των Andreou and Kotsis το 25α, διαπιστώθηκε ότι οι τυφλοί μαθητές έχουν μια καλύτερη αντίληψη των διαστάσεων του καθημερινού τους χώρου σε αντίθεση με τους βλέποντες μαθητές και μπορούσαν να εκτιμήσουν ορθότερα τις διαστάσεις των αντικειμένων, με τα οποία ερχόντουσαν σε καθημερινή επαφή. Στους μαθητές είχε ζητηθεί να εκτιμήσουν το μήκος της πόρτας της αίθουσάς τους, το μήκος του κρεβατιού τους, το

4 152 ΚΩΝΣΤΑΝΤΙΝΟΣ Θ. ΚΩΤΣΗΣ εμβαδόν του θρανίου τους και να συγκρίνουν το εμβαδόν και τον όγκο αντικειμένων με τα οποία έρχονται σε επαφή, π.χ. το κάθισμα τους, το ποτήρι που πίνουν το γάλα τους κ.λ.π. Ειδικά με το μήκος της αίθουσάς τους, όπως προκύπτει από την εργασία των Κώτση και Ανδρέου του 24α, οι τυφλοί μαθητές, σε ποσοστό 9%, εκτιμούσαν σωστά το μήκος, με μονάδες μέτρησης τα βήματά τους, ενώ οι βλέποντες μόνο σε 65% (σχήμα 1). Όταν τους ζητήθηκε η εκτίμηση να γίνει σε μονάδες μήκους το μέτρο (σχήμα 2), τότε πάλι οι τυφλοί μαθητές έδωσαν ορθές απαντήσεις σε ποσοστό 4%, ενώ αντιθέτως οι βλέποντες μόνο σε ποσοστό 26 % Σωστό Λάθος Δεν ξέρω Σχήμα 2. Η κατανομή των απαντήσεων των παιδιών στην ερώτηση : «Πόσα μέτρα νομίζεις ότι είναι από τη πόρτα της αίθουσας της τάξης σου έως την απέναντι πλευρά της;» Είναι σημαντικό να αναφερθεί ότι οι λανθασμένες απαντήσεις των τυφλών είναι σχεδόν 2% και οφείλεται στους μικρότερους μαθητές της Τρίτης Δημοτικού, ενώ οι λανθασμένες εκτιμήσεις των βλεπόντων μαθητών ξεπερνά το 6%. Ο μαθητής που βλέπει, θεωρεί ότι μπορεί με την όρασή του να εκτιμήσει τα πάντα και δεν διστάζει να απαντά, χωρίς να αντιλαμβάνεται ότι μπορεί να κάνει λάθος. Είναι γνωστό άλλωστε ότι η όραση είναι ένας παράγοντας δημιουργίας πολλών εσφαλμένων αντιλήψεων των μαθητών σε έννοιες της φυσικής (Κώτσης 25β). Αφενός η ασφάλεια της όρασης και αφετέρου η παντελής έλλειψη διαδικασίας που να οδηγεί στην επιβεβαίωση ή απόρριψη των ορατών ερεθισμάτων, η οποία είναι δυνατόν να γίνει μόνο με τη διαδικασία της μέτρησης, οδηγεί σε τόσο υψηλά ποσοστά εσφαλμένων εκτιμήσεων τους βλέποντες μαθητές. Απεναντίας ο τυφλός μαθητής, χωρίς την ασφάλεια της όρασης αναγκάζεται για να κινηθεί και για να προσανατολισθεί, να βρίσκει μηχανισμούς μέτρησης, με αποτέλεσμα η διαδικασία της μέτρησης να είναι μέρος της επιβίωσής του. Σε ανάλογα συμπεράσματα καταλήγει κανείς αν εξετάσει τις απαντήσεις των τυφλών και βλεπόντων μαθητών (Κώτσης και Ανδρέου 24α), για την εκτίμηση του μήκους του κρεβατιού τους ή το πλάτος της πόρτας της αίθουσάς τους. Αξίζει όμως να αναφερθούν δύο σημαντικές παρατηρήσεις κατά την διάρκεια της έρευνας. Πρώτον όταν ο τυφλός μαθητής επρόκειτο να απαντήσει το πόσα μέτρα είναι η αίθουσά του και δεν το γνώριζε από προηγούμενη εμπειρία του, δήλωνε, ή ότι δεν ξέρει, ή ζητούσε την άδεια να το μετρήσει εκείνη την στιγμή. Σε αντίθεση κανείς από τους βλέποντες μαθητές δεν μπήκε στην διαδικασία να προτείνει κάτι ανάλογο. Δεύτερον όταν οι βλέποντες μαθητές επρόκειτο να απαντήσουν πόσα βήματα είναι οι αίθουσά τους, μονάδα μέτρησης ασυνήθιστη για αυτούς, τότε κοιτούσαν το μήκος και προσπαθούσαν νοητικά να κάνουν την διαδικασία της μέτρησης. Αυτό όμως είναι δυνατόν να γίνει, εφόσον το παιδί έχει αντίληψη του μήκους του βήματός του. Στην περίπτωση όμως, όπου ερωτάται με μονάδα μέτρησης το μέτρο, ο μαθητής δεν έχει την ανάλογη εμπειρία αφού κανείς δεν του την έχει μάθει, με αποτέλεσμα να απαντά λάθος. Οι δύο αυτές παρατηρήσεις οδηγούν στο ίδιο συμπέρασμα, ότι και οι

5 ΟΙ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ 153 τυφλοί και οι βλέποντες μαθητές κατανοούσαν εκείνη την στιγμή ότι έπρεπε να κάνουν την διαδικασία της μέτρησης για να απαντήσουν στην ερώτηση. Η διαφορά είναι ότι οι τυφλοί μαθητές ήταν εξοικειωμένοι σε αυτή την διαδικασία, ενώ οι βλέποντες όχι. Σε αντίθεση με τα τυφλά παιδιά τα οποία χρησιμοποιούν τη διαδικασία της μέτρησης στην καθημερινή τους ζωή τα βλέποντα έρχονται σε πρώτη επαφή με τις μονάδες βασικών μεγεθών θεωρητικά, χωρίς να μπαίνουν στη διαδικασία της μέτρησης και της σύγκρισης, επομένως είναι πιο δύσκολο γι αυτά να αντιληφθούν ποια απόσταση ή μήκος εκφράζει το μέτρο ή πόσα βήματα είναι το μήκος μιας συγκεκριμένης απόστασης. Επιπλέον οι βλέποντες δεν χρειάζεται να προβούν σε μετρήσεις ή να συγκρατήσουν στη μνήμη τους μεγέθη για να προσανατολιστούν στο χώρο, γιατί βλέπουν άμεσα και ολικά τα διάφορα αντικείμενα. Γι αυτό και δυσκολεύονται απ ότι φάνηκε να συγκρίνουν κάποιο μέγεθος με μονάδα μέτρησης τα βήματα τους. Αν η ορθή εκτίμηση του μήκους ενός αντικειμένου απαιτεί την εξοικείωση με την διαδικασία της μέτρησης, τότε η εκτίμηση του εμβαδού μιας επιφανείας την απαιτεί ακόμη περισσότερο, διότι ο υπολογισμός του χρειάζεται τη μέτρηση δύο διαστάσεων. Σε ανάλογη έρευνα μεταξύ τυφλών και βλεπόντων μαθητών (Κώτσης και Ανδρέου 24β), οι τυφλοί μαθητές παρουσιάζουν καλύτερη εκτίμηση από αυτή των βλεπόντων (σχήμα 3) Μικρότερο του σωστού Σωστό 18 Μεγαλύτερο του σωστού Δεν ξέρω Σχήμα 3. Η κατανομή των απαντήσεων των παιδιών στην ερώτηση: «Πόση νομίζεις ότι είναι η επιφάνεια του θρανίου σου;». Οι τυφλοί μαθητές εκτιμούν σε ποσοστό το 52% σωστά το εμβαδόν του θρανίου τους και σε ποσοστό 38% δηλώνει ότι δεν ξέρει, ενώ οι βλέποντες μαθητές μόνο σε ποσοστό 37% δίνει τη σωστή απάντηση και το 26% απαντά ότι δεν ξέρει. Και εδώ οι τυφλοί μαθητές εκτιμούν ορθά τις διαστάσεις μια επιφανείας. Ο προσδιορισμός του εμβαδού μιας επιφάνειας είναι μια σύνθετη διαδικασία, διότι περιέχει από τον ορισμό της, τον προσδιορισμό του μήκους σε δύο διαστάσεις. Ενώ οι βλέποντες μαθητές για την σύγκριση του εμβαδού δύο επιφανειών χρησιμοποιούν απλά και μόνο την όρασή τους, οι τυφλοί μαθητές χωρίς να έχουν αυτήν την δυνατότητα, έχουν στο ίδιο βαθμό σωστή εκτίμηση του εμβαδού. Ο κύριος λόγος του ορθού προσδιορισμού του εμβαδού, είναι ότι οι τυφλοί μαθητές καθημερινά μετρούν τα αντικείμενα με τα οποία έρχονται σε επαφή, γιατί είναι ο μόνος τρόπος για να τα «δουν». Όταν ζητείται από τους μαθητές να συγκρίνουν το εμβαδόν δύο επιφανειών τότε τόσο οι τυφλοί μαθητές όσο και οι βλέποντες μπορούν να δώσουν την σωστή απάντηση (Κώτσης και Ανδρέου 24β). Στην περίπτωση όμως, όπου ζητείται από τους μαθητές να δώσουν αριθμητικά το εμβαδόν μιας επιφάνειας, οι τυφλοί μαθητές το καταφέρνουν καλύτερα. Ο αριθμητικός προσδιορισμός του εμβαδού δεν είναι αρκετό να γίνει μόνο με την βοήθεια της όρασης, όπως συμβαίνει με τους βλέποντες μαθητές, αλλά χρειάζεται η αξιοποίηση των αποτελεσμάτων της μέτρησης, την οποία από καθημερινή ανάγκη κάνουν οι τυφλοί μαθητές. Αφού έχουν εκτιμήσει τις δύο

6 154 ΚΩΝΣΤΑΝΤΙΝΟΣ Θ. ΚΩΤΣΗΣ διαστάσεις τότε μπορούν να υπολογίσουν το εμβαδόν μια επιφανείας. Απαιτείται, δηλαδή και η εκτέλεση της πράξης του πολλαπλασιασμού μεταξύ των δύο μετρήσεων. Έτσι προχωρά ο μαθητής σε επόμενο στάδιο της επιστημονικής μεθοδολογίας, μετά τη διαδικασία της μέτρησης, για την εξαγωγή του συμπεράσματος. Έτσι οι τυφλοί μαθητές επειδή κατέχουν την διαδικασία της μέτρησης, εμφανίζουν καλύτερες αντιλήψεις σε νοητικές αναπαραστάσεις που στηρίζονται σε μετρήσεις. Με τον τρόπο αυτό οι τυφλοί μαθητές επιτυγχάνουν καλύτερη ανάπτυξη των βασικών μαθηματικών εννοιών (Andreou and Kotsis, 25β), επειδή έχουν εξοικειωθεί με την μέτρηση. Η εξοικείωση των τυφλών μαθητών του ΚΕΑΤ, στην διαδικασία της μέτρησης, τους έχει οδηγήσει σε ορθότερες αντιλήψεις σε έννοιες της Φυσικής (Andreou and Kotsis, 25γ). Έχουν ορθότερες αντιλήψεις για την έννοια της κίνησης, της δύναμης και του βάρους. Χαρακτηριστικά παρουσιάζονται τα εξής δεδομένα για το βάρος από την έρευνα των Κώτση και Ανδρέου το 25. Στο σχήμα 4 παρουσιάζονται οι απαντήσεις των μαθητών για το τι είναι βάρος Δύναμη Ιδιότητα του σώματος Η μάζα του σώματος Κανένα από τα πιο πάνω Σχήμα 4. Η κατανομή των απαντήσεων των παιδιών στην ερώτηση: «Το βάρος ενός σώματος είναι:» Αν και ένα σημαντικό ποσοστό μαθητών, το 33% των τυφλών και το 42% των βλεπόντων, συγχέουν τις έννοιες βάρος και μάζα (Ruggiero et al, 1985) και τις θεωρούν ταυτόσημες, υπάρχει ένα 5%, από τους τυφλούς μαθητές, που δίνει την σωστή απάντηση, ενώ από τους βλέποντες το ποσοστό αυτό ανέρχεται μόνο στο 28%. Είναι γεγονός ότι οι τυφλοί μαθητές κάνουν επιπρόσθετα μαθήματα στο ΚΕΑΤ, όπου ο διευθυντής του κέντρου, ο κ. Εμμανουήλ Ευδοκάκης, τυφλός ο ίδιος και με την ιδιότητα του φυσικού, προσεγγίζει με διαφορετικό τρόπο διδακτικά αυτές τις έννοιες. Επειδή ο τυφλός μαθητής δεν βλέπει, πρέπει να αγγίξει το αντικείμενο για να το αντιληφθεί. Όταν το αγγίζει, του διευκρινίζεται ότι αυτό που το τραβά προς τα κάτω είναι η δύναμη της βαρύτητας και ότι αυτό είναι το βάρος του αντικειμένου. Ο τυφλός μαθητής μπαίνει στην διαδικασία της μέτρησης για να συγκρίνει διάφορα αντικείμενα και γνωρίζει ότι όταν το κάνει, μετρά τη δύναμη του βάρους και όχι της μάζας. Έτσι μπορεί και δίνει ορθότερες απαντήσεις σε πιο σύνθετες ερωτήσεις όπως τι γίνεται με το βάρος όταν κολυμπάς στο νερό (σχήμα 5).

7 ΟΙ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ Γίνεται μεγαλύτερο στο νερό Γίνεται μικρότερο στο νερό Δεν αλλάζει Σχήμα 5. Η κατανομή των απαντήσεων των παιδιών στην ερώτηση: «όταν κολυμπάς το βάρος σου:» Η πλειοψηφία των τυφλών παιδιών, δηλαδή το 6%, αποδέχεται ότι το βάρος δεν αλλάζει στο νερό, ενώ από τους βλέποντες αποδέχεται την άποψη αυτή μόνο το 17%. Η πλειοψηφία των βλεπόντων, δηλαδή το 58%, διατηρεί την αντίληψη ότι το βάρος μικραίνει στο νερό. Από τους τυφλούς μαθητές, συμφωνεί με αυτή την άποψη το 3%. Ανάλογα συμπεράσματα προκύπτουν και από ερωτήσεις για την δύναμη και την κίνηση σε τυφλούς και βλέποντες μαθητές (Andreou and Kotsis, 25γ). Συμπεράσματα Το παιδί με προβλήματα όρασης αναπτύσσει ιδιαίτερους μηχανισμούς και τρόπους αντίληψης των φυσικών εννοιών και του περιβάλλοντος γενικότερα. Αντιλαμβάνεται την έννοια του χώρου και της χρονικής τάξης αισθητηριακά, κατανοεί το χώρο συσχετίζοντας τον με το σώμα του μέσω της αφής. Για να προσανατολιστεί στο χώρο είναι αναγκασμένο να χρησιμοποιήσει τη διαδικασία της μέτρησης. Η έννοια της απόστασης για παράδειγμα μπορεί ν αποκτηθεί εκτιμώντας το χρόνο που χρειάζεται για να διανύσει διάφορες αποστάσεις ή μετρώντας το μήκος με μονάδα μέτρησης τα βήματα του. Σε αντίθεση με τα τυφλά παιδιά τα οποία χρησιμοποιούν τη διαδικασία της μέτρησης στην καθημερινή τους ζωή τα βλέποντα έρχονται σε πρώτη επαφή με τις μονάδες βασικών μεγεθών θεωρητικά, χωρίς να μπαίνουν στη διαδικασία της μέτρησης και της σύγκρισης, επομένως είναι πιο δύσκολο για αυτά να αντιληφθούν ποια απόσταση ή μήκος εκφράζει το μέτρο ή πόσα βήματα είναι το μήκος μιας συγκεκριμένης απόστασης. Επιπλέον οι βλέποντες δεν χρειάζεται να προβούν σε μετρήσεις ή να συγκρατήσουν στη μνήμη τους μεγέθη για να προσανατολιστούν στο χώρο, γιατί βλέπουν άμεσα και ολικά τα διάφορα αντικείμενα. Για αυτό και δυσκολεύονται απ ότι φάνηκε να συγκρίνουν κάποιο μέγεθος με την μονάδα μέτρησης του. Το παιδί με προβλήματα όρασης αναπτύσσει ορθότερους μηχανισμούς και τρόπους αντίληψης των φυσικών εννοιών αφού έχει εξοικειωθεί με την διαδικασία της μέτρησης. Οι ορθότερες αντιλήψεις των τυφλών μαθητών έναντι των βλεπόντων στις απλές έννοιες της φυσικής, συνδέονται με το γεγονός ότι οι τυφλοί χρησιμοποιούν τη διαδικασία της μέτρησης στην καθημερινή ζωή τους, με αποτέλεσμα να έχουν καλύτερη εκτίμηση των διαστάσεων και όταν διδάσκονται τις έννοιες αυτές να έχουν ορθότερη αντίληψη των φυσικών εννοιών. Για να αντιληφθούν τις έννοιες αυτές κατά τη διδασκαλία τους πρέπει να χρησιμοποιηθούν όργανα (Baughman and Zoliman, 1977), με τα οποία μετρούν και

8 156 ΚΩΝΣΤΑΝΤΙΝΟΣ Θ. ΚΩΤΣΗΣ συγκρίνουν, τα οποία υποκαθιστούν την έλλειψη της όρασης, ώστε ο τυφλός μαθητής να «ΒΛΕΠΕΙ» τις έννοιες αυτές. Αντίθετα οι βλέποντες μαθητές δεν χρειάζεται να προβούν σε μετρήσεις ή να συγκρατήσουν στη μνήμη τους μεγέθη για να προσανατολιστούν στο χώρο, γιατί βλέπουν άμεσα και ολικά τα διάφορα αντικείμενα. Αποτέλεσμα της όρασης είναι ότι δεν παρατηρούν, δεν μετρούν και όταν χρειάζεται να γνωρίσουν τις διάφορες έννοιες της φυσικής, απλώς τις απομνημονεύουν, χωρίς να έχουν την ικανότητα να τις αφομοιώσουν. Επιπλέον, τα τυφλά παιδιά είναι αναγκασμένα, να κάνουν καλύτερη χρήση των δυνατοτήτων των υπόλοιπων αισθήσεων (Kingsley 1997) λόγω της ανάγκης να μην παραβλέπουν ακόμη και λεπτομέρειες του περιβάλλοντος, κάτι που δεν συμβαίνει με τα βλέποντα. Είναι αναγκασμένα να καλλιεργήσουν την ικανότητα να θυμούνται πολλές λεπτομέρειες με τις ενέργειες τους (οι οποίες εμπεριέχουν τη διαδικασία της μέτρησης) ώστε να μπορούν να αντιλαμβάνονται το χώρο και το περιβάλλον τους. Ουσιαστικά το παιδί με προβλήματα όρασης, έχει μάθει να παρατηρεί και να μετράει. Σε αντίθεση ο μαθητής χωρίς προβλήματα όρασης δεν ξέρει ούτε να παρατηρεί, ούτε να μετράει. Η επαφή του με τη δεξιότητας της μέτρησης γίνεται μόνο κατά τη διδασκαλίας του στα μαθηματικά. Θα πρέπει να αναπτυχθεί περισσότερο αυτή η δεξιότητα με την εισαγωγή μαθημάτων ιδιαίτερα όταν διδάσκονται τις φυσικές επιστήμες για να αντιληφθούν την διάσταση των μονάδων και όχι να τις αντιμετωπίζουν ως πολλαπλάσια ή υποπολλαπλάσια ενός αριθμού. Είναι ιδιαίτερα σημαντική η ανάπτυξη της δεξιότητας αυτής, διότι είναι η βάση του σημαντικού εργαλείου της διδασκαλίας των φυσικών επιστημών, το πείραμα. Πιστεύουμε ότι θα πρέπει και οι βλέποντες μαθητές στο πλαίσιο της εκπαίδευσης τους στο Δημοτικό Σχολείο να αποκτήσουν αυτήν την ικανότητα, την οποία αποκτούν λόγω της αναπηρίας τους, τα παιδιά με προβλήματα όρασης. Είναι ιδιαίτερη σημαντική η απόκτηση δεξιοτήτων στην διαδικασία της μέτρησης, τόσο για την διδασκαλία εννοιών της Φυσικής, όσο και για την καθημερινή ζωή. Είναι ένα αντικείμενο διδασκαλίας και μάθησης το οποίο θα βοηθήσει ιδιαίτερα τους μαθητές στην περαιτέρω γνωριμία τους με τις Φυσικές Επιστήμες. Ευχαριστίες Ο συγγραφέας αισθάνεται την ανάγκη να ευχαριστήσει τον Διευθυντή του Κ.Ε.Α.Τ. κ. Εμμανουήλ Ευδοκάκη, για τη συνεργασία και τη βοήθεια που του προσέφερε. Παραπομπές Κόκκοτας Π. (1989), Διδακτική των Φυσικών Επιστημών, Εκδόσεις Γρηγόρης, Αθήνα Κώτσης Θ. Κ., (22), Κοινά χαρακτηριστικά των αντιλήψεων των φοιτητών Π.Τ.Δ.Ε. για τις δυνάμεις του βάρους, της τριβής, της άνωσης των υγρών και της αντίστασης του αέρα, Θέματα στην Εκπαίδευση, 3:2-3, Κώτσης Κ. και Ανδρέου Γ., (25), Συγκριτική μελέτη μεταξύ τυφλών και βλεπόντων μαθητών στην αντίληψη της έννοιας του βάρους, Επιστημονική Επετηρίδα ΠΤΔΕ Πανεπιστημίου Ιωαννίνων, 18, Κώτσης Κ. και Ανδρέου Γ., (24α), Η εκτίμηση του μήκους από τυφλούς και βλέποντες μαθητές, Επιστημονική Επετηρίδα ΠΤΔΕ Πανεπιστημίου Ιωαννίνων, 17, Κώτσης Κ., (25α), Διδασκαλία της Φυσικής και Πείραμα, Εκδόσεις Πανεπιστημίου Ιωαννίνων, Ιωάννινα Κώτσης Κ., (25β), Η επίδραση της έλλειψης της όρασης στις αντιλήψεις των μαθητών σε απλές έννοιες της φυσικής, Θέματα στην Εκπαίδευση, 6 2-3, Ο.Ε.Δ.Β. (26α), Βιβλίο μαθητή Ε τάξης «Ερευνώ και ανακαλύπτω» Υπουργείο Εθνικής Παιδείας και Θρησκευμάτων, Παιδαγωγικό Ινστιτούτο, Αθήνα

9 ΟΙ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ 157 Ο.Ε.Δ.Β. (26β), Βιβλίο μαθητή ΣΤ τάξης «Ερευνώ και ανακαλύπτω» Υπουργείο Εθνικής Παιδείας και Θρησκευμάτων, Παιδαγωγικό Ινστιτούτο, Αθήνα. Andreou Y. and Kotsis K., (25β), Mathematical Concept Development in Blind and Sighted Children International Journal of Learning, Vo 12-7, Andreou Y. and Kotsis K., (25γ), The Perception of Basic Science Concepts by Blind and Sighted Children International Journal of Learning, Vo 12-1, Andreou Y. and Kotsis K., (25α), The estimation of length, surface area and volume by blind and sighted children, International Congress Series, 1282, Vision 25, Elsevier, Amsterdam, Baughman, J. and Zoliman, D. (1977), Physics Lab for the Blind, The Physics Teacher 15, pp Driver, R., Guesne, Ε., and Tiberghien, Α., (1993). Οι ιδέες των παιδιών στις φυσικές επιστήμες. Ελληνική μετάφραση, έκδοση της Ένωσης Ελλήνων Φυσικών και Τροχαλίας. Αθήνα Kingsley M. (1997), The effects of a visual Loss. David Fulton Publishers, London. Klionsky, D. J. (23), Why the scientific method matters: A cautionary tale, Teach. Prof. 17: 4. Penick, J. E., Crow, L. W., and Bonnstetter, R. J. (1996), Questions are the answer, The Science Teacher, January Ruggiero S, Cartielli A, Dupre F. and Vicentini-Missoni M. (1985), Weight, gravity and air pressure: mental representations by Italian middle-scholl pupils, European Journal of Science Education 7(2):

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Διδακτική των Φυσικών Επιστημών Ενότητα 2: Βασικό Εννοιολογικό Πλαίσιο

Διδακτική των Φυσικών Επιστημών Ενότητα 2: Βασικό Εννοιολογικό Πλαίσιο Διδακτική των Φυσικών Επιστημών Ενότητα 2: Βασικό Εννοιολογικό Πλαίσιο Χρυσή Κ. Καραπαναγιώτη Τμήμα Χημείας Αντικείμενο και Αναγκαιότητα Μετασχηματισμός της φυσικοεπιστημονικής γνώσης στη σχολική της εκδοχή.

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΑΡΘΡΟΥ ΜΕ ΘΕΜΑ: ΟΙ ΙΔΕΕΣ ΤΩΝ ΠΑΙΔΙΩΝ ΣΧΕΤΙΚΑ ΜΕ ΤΟ

ΑΝΑΛΥΣΗ ΑΡΘΡΟΥ ΜΕ ΘΕΜΑ: ΟΙ ΙΔΕΕΣ ΤΩΝ ΠΑΙΔΙΩΝ ΣΧΕΤΙΚΑ ΜΕ ΤΟ ΑΝΑΛΥΣΗ ΑΡΘΡΟΥ ΜΕ ΘΕΜΑ: ΟΙ ΙΔΕΕΣ ΤΩΝ ΠΑΙΔΙΩΝ ΣΧΕΤΙΚΑ ΜΕ ΤΟ ΦΩΣ ΚΑΙ ΤΗΝ ΟΡΑΣΗ. Το άρθρο αυτό έχει ως σκοπό την παράθεση των αποτελεσμάτων πάνω σε μια έρευνα με τίτλο, οι ιδέες των παιδιών σχετικά με το

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την 1 ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την παλαιότερη γνώση τους, σημειώνουν λεπτομέρειες, παρακολουθούν

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΤΙΤΛΟΣ ΣΕΝΑΡΙΟΥ: Προπαίδεια - Πίνακας Πολλαπλασιασμού του 6 ΕΠΙΜΟΡΦOYMENH: ΠΗΛΕΙΔΟΥ ΚΩΝΣΤΑΝΤΙΝΑ

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Σχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές

Σχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές Σχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές Φοιτητής: Σκαρπέντζος Γεώργιος Καθηγήτρια: Κολέζα Ευγενία ΠΕΡΙΕΧΟΜΕΝΑ Βασικές θεωρίες σχεδιασμού της διδασκαλίας Δραστηριότητες και κατανόηση εννοιών

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής ΙΙ

Διδακτική της Πληροφορικής ΙΙ Διδακτική της Πληροφορικής ΙΙ Ομάδα Γ Βότσης Ευστάθιος Γιαζιτσής Παντελής Σπαής Αλέξανδρος Τάτσης Γεώργιος Προβλήματα που αντιμετωπίζουν οι αρχάριοι προγραμματιστές Εισαγωγή Προβλήματα Δυσκολίες Διδακτικό

Διαβάστε περισσότερα

ΜΑΘΗΤΕΣ ΜΕ ΧΡΟΝΙΑ ΝΟΣΗΜΑΤΑ ΚΑΙ Η ΔΙΑΜΟΡΦΩΣΗ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΤΗΣ ΣΥΝΕΚΠΑΙΔΕΥΣΗΣ ΣΤΟ ΕΛΛΗΝΙΚΟ ΣΧΟΛΕΙΟ

ΜΑΘΗΤΕΣ ΜΕ ΧΡΟΝΙΑ ΝΟΣΗΜΑΤΑ ΚΑΙ Η ΔΙΑΜΟΡΦΩΣΗ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΤΗΣ ΣΥΝΕΚΠΑΙΔΕΥΣΗΣ ΣΤΟ ΕΛΛΗΝΙΚΟ ΣΧΟΛΕΙΟ ΜΑΘΗΤΕΣ ΜΕ ΧΡΟΝΙΑ ΝΟΣΗΜΑΤΑ ΚΑΙ Η ΔΙΑΜΟΡΦΩΣΗ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΤΗΣ ΣΥΝΕΚΠΑΙΔΕΥΣΗΣ ΣΤΟ ΕΛΛΗΝΙΚΟ ΣΧΟΛΕΙΟ Κων/νος Καλέμης, Άννα Κωσταρέλου, Μαρία Αγγελική Καλέμη Εισαγωγή H σύγχρονη τάση που επικρατεί

Διαβάστε περισσότερα

Νέες τάσεις στη διδακτική των Μαθηματικών

Νέες τάσεις στη διδακτική των Μαθηματικών Νέες τάσεις στη διδακτική των Μαθηματικών Μέχρι πριν λίγα χρόνια ηαντίληψη που επικρατούσε ήταν ότι ημαθηματική γνώση είναι ένα αγαθό που έχει παραχθεί και καλούνται οι μαθητές να το καταναλώσουν αποστηθίζοντάς

Διαβάστε περισσότερα

Αντιλήψεις πρωτοετών φοιτητών επτά τμημάτων του Πανεπιστημίου Ιωαννίνων σχετικά με έννοιες της Νευτώνειας Μηχανικής

Αντιλήψεις πρωτοετών φοιτητών επτά τμημάτων του Πανεπιστημίου Ιωαννίνων σχετικά με έννοιες της Νευτώνειας Μηχανικής ΔΙΔΑΚΤΙΚΗ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΝΕΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΠΡΑΚΤΙΚΑ 5 ου ΠΑΝΕΛΛΗΝΙΟΥ ΣΥΝΕΔΡΙΟΥ, ΤΕΥΧΟΣ B Διδακτική και Διδασκαλία της Φυσικής Αντιλήψεις πρωτοετών φοιτητών επτά τμημάτων του Πανεπιστημίου

Διαβάστε περισσότερα

Φοιτήτρια: Τσαρκοβίστα Βικτώρια (Α.Μ. 12517) Επιβλέπων καθηγητής: Χριστοδουλίδης Παύλος

Φοιτήτρια: Τσαρκοβίστα Βικτώρια (Α.Μ. 12517) Επιβλέπων καθηγητής: Χριστοδουλίδης Παύλος Φοιτήτρια: Τσαρκοβίστα Βικτώρια (Α.Μ. 12517) Επιβλέπων καθηγητής: Χριστοδουλίδης Παύλος Tα παιδιά με ειδικές μαθησιακές δυσκολίες παρουσιάζουν προβλήματα στις βασικές ψυχολογικές διαδικασίες που περιλαμβάνονται

Διαβάστε περισσότερα

Διδακτικές Τεχνικές (Στρατηγικές)

Διδακτικές Τεχνικές (Στρατηγικές) Διδακτικές Τεχνικές (Στρατηγικές) Ενδεικτικές τεχνικές διδασκαλίας: 1. Εισήγηση ή διάλεξη ή Μονολογική Παρουσίαση 2. Συζήτηση ή διάλογος 3. Ερωταποκρίσεις 4. Χιονοστιβάδα 5. Καταιγισμός Ιδεών 6. Επίδειξη

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΤΙΤΛΟΣ ΣΕΝΑΡΙΟΥ: Οι κλασματικές μονάδες και οι απλοί κλασματικοί αριθμοί ΕΠΙΜΟΡΦOYMENH:

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Δημοτικό

Διδάσκοντας Φυσικές Επιστήμες στο Δημοτικό Διδάσκοντας Φυσικές Επιστήμες στο Δημοτικό Πρακτικές εκπαιδευτικών Πρωτοβάθμιας Εκπαίδευσης στη διδασκαλία της Φυσικής (Β Μέρος) Γιώργος Στύλος, Κωνσταντίνος Κώτσης και Αναστάσιος Εμβαλωτής Εισαγωγή Η

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

Μαθηματικά Ε Δημοτικού

Μαθηματικά Ε Δημοτικού Μαθηματικά Ε Δημοτικού Πέτρος Κλιάπης 2014 Πέτρος Κλιάπης 12η Περιφέρεια Θεσσαλονίκης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

ΟΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ ΠΟΥ ΕΦΑΡΜΟΖΟΥΝ ΟΙ ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΤΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΦΑΙΝΟΜΕΝΩΝ ΕΞΑΤΜΙΣΗΣ ΚΑΙ ΥΓΡΟΠΟΙΗΣΗΣ

ΟΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ ΠΟΥ ΕΦΑΡΜΟΖΟΥΝ ΟΙ ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΤΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΦΑΙΝΟΜΕΝΩΝ ΕΞΑΤΜΙΣΗΣ ΚΑΙ ΥΓΡΟΠΟΙΗΣΗΣ Δημοκρίτειο Πανεπιστήμιο Θράκης Τμήμα Επιστημών Αγωγής Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Τομέας Θετικών Επιστημών ΟΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ ΠΟΥ ΕΦΑΡΜΟΖΟΥΝ ΟΙ ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΓΑΛΛΙΚΩΝ ΣΠΟΥΔΩΝ ΓΑΛ 102 Προφορικός λόγος 6 ΓΑΛ 103 Γραπτός λόγος I 6 ΓΑΛ 170 e-french 6 ΓΑΛ 100-299 Μάθημα περιορισμένης επιλογής 6

ΠΡΟΓΡΑΜΜΑ ΓΑΛΛΙΚΩΝ ΣΠΟΥΔΩΝ ΓΑΛ 102 Προφορικός λόγος 6 ΓΑΛ 103 Γραπτός λόγος I 6 ΓΑΛ 170 e-french 6 ΓΑΛ 100-299 Μάθημα περιορισμένης επιλογής 6 πρώτο δεύτερο ΠΡΟΓΡΑΜΜΑ ΓΑΛΛΙΚΩΝ ΣΠΟΥΔΩΝ ΓΑΛ 102 Προφορικός λόγος ΓΑΛ 103 Γραπτός λόγος I ΓΑΛ 170 e-french ΓΑΛ 100-299 Μάθημα περιορισμένης επιλογής ΓΑΛ 104 Γραπτός λόγος II ΓΑΛ 111 Φωνητική ΓΑΛ 1 Από

Διαβάστε περισσότερα

Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης

Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης Δρ. Χαράλαμπος Μουζάκης Διδάσκων Π.Δ.407/80 Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Στόχοι ενότητας Το λογισμικό

Διαβάστε περισσότερα

ΠΡΟΣ: Οι Υπουργοί Εσωτερικών, Αποκέντρωσης και Ηλεκτρονικής Διακυβέρνησης Παιδείας, Δια Βίου Μάθησης και Θρησκευμάτων

ΠΡΟΣ: Οι Υπουργοί Εσωτερικών, Αποκέντρωσης και Ηλεκτρονικής Διακυβέρνησης Παιδείας, Δια Βίου Μάθησης και Θρησκευμάτων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ. ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΕΙΔΙΚΗΣ ΑΓΩΓΗΣ ΤΜΗΜΑ Β, ΠΡΟΣΩΠΙΚΟΥ -----

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ

ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ ΕΙΣΑΓΩΓΙΚΑ Αποτελεί ένα από τα τέσσερα τμήματα της Σχολής Κοινωνικών Επιστημών και Επιστημών της Αγωγής. Υπήρξε το πολυπληθέστερο σε φοιτητές τμήμα. Έχει παραδώσει στην κοινωνία

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα

Διαβάστε περισσότερα

Το ΔΕΠΠΣ- ΑΠΣ των Φυσικών Επιστημών της Ε και Στ Δημοτικού Τα Νέα Διδακτικά Βιβλία των Φυσικών Επιστημών της Ε και Στ Δημοτικού

Το ΔΕΠΠΣ- ΑΠΣ των Φυσικών Επιστημών της Ε και Στ Δημοτικού Τα Νέα Διδακτικά Βιβλία των Φυσικών Επιστημών της Ε και Στ Δημοτικού Το ΔΕΠΠΣ- ΑΠΣ των Φυσικών Επιστημών της Ε Τα Νέα Διδακτικά Βιβλία των Φυσικών Επιστημών της Ε Ειδικοί σκοποί ΑΠΣ Κατανόηση: φυσικού κόσμου νόμων που τον διέπουν φυσικών φαινομένων διαδικασιών που οδηγούν

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ 2011 ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ Τα σύγχρονα

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΣΧΕΤΙΚΑ ΜΕ ΤΟ ΠΡΟΣ ΔΙΔΑΣΚΑΛΙΑ ΠΕΡΙΕΧΟΜΕΝΟ ΤΩΝ ΓΝΩΣΤΙΚΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.. ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ Π.

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΣΧΕΤΙΚΑ ΜΕ ΤΟ ΠΡΟΣ ΔΙΔΑΣΚΑΛΙΑ ΠΕΡΙΕΧΟΜΕΝΟ ΤΩΝ ΓΝΩΣΤΙΚΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.. ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ Π. ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΣΧΕΤΙΚΑ ΜΕ ΤΟ ΠΡΟΣ ΔΙΔΑΣΚΑΛΙΑ ΠΕΡΙΕΧΟΜΕΝΟ ΤΩΝ ΓΝΩΣΤΙΚΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.. ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ Π.Ε ΔΙΕΥΘΥΝΣΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ.. ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΔΙΕΥΘΥΝΣΗΣ ΔΙΑΡΚΕΙΑ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-2015 ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΓΥΜΝΑΣΙΟΥ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-2015 ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΓΥΜΝΑΣΙΟΥ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 014-015 ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΓΥΜΝΑΣΙΟΥ ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 014-15 ΕΙΣΑΓΩΓΗ: Στο πλαίσιο του εκσυγχρονισμού του Εκπαιδευτικού

Διαβάστε περισσότερα

Εξ αποστάσεως υποστήριξη του έργου των Εκπαιδευτικών μέσω των δικτύων και εργαλείων της Πληροφορικής

Εξ αποστάσεως υποστήριξη του έργου των Εκπαιδευτικών μέσω των δικτύων και εργαλείων της Πληροφορικής Εξ αποστάσεως υποστήριξη του έργου των Εκπαιδευτικών μέσω των δικτύων και εργαλείων της Πληροφορικής Ε. Κολέζα, Γ. Βρέταρος, θ. Δρίγκας, Κ. Σκορδούλης Εισαγωγή Ο εκπαιδευτικός κατά τη διάρκεια της σχολικής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΟΜΗΝΙΑ ΔΙΔΑΣΚΑΛΙΑΣ: 13/1/2009 ΣΧΟΛΕΙΟ: 2ο Πειραματικό Δημοτικό Σχολείο

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο Φυσική Α Γυμνασίου: το πρώτο βήμα Ανδρέας Βαλαδάκης Σε πρώτη ενημερωτική συνάντηση με γονείς μαθητών της Α Γυμνασίου καθηγητής Φυσικής εξηγεί ότι το μάθημα φέτος

Διαβάστε περισσότερα

Copyright: ISBN: 960 631 539 8. 1 601 00. 23510 33535, 6946967552 E-mail: gperdikis@kat.forthnet.gr ,,.2121/1993,. 100/1975., , 51. 2121/1993.

Copyright: ISBN: 960 631 539 8. 1 601 00. 23510 33535, 6946967552 E-mail: gperdikis@kat.forthnet.gr ,,.2121/1993,. 100/1975., , 51. 2121/1993. 2006 Copyright: - / 1 601 00. 23510 33535, 6946967552 E-mail: gperdikis@kat.forthnet.gr ISBN: 960 631 539 8,,.2121/1993,. 100/1975.,,,,, 51. 2121/1993. , ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ......σελ. 11 ΚΕΦΑΛΑΙΟ 1 1.

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

Η Μάθηση και η Διδασκαλία με Χάρτες

Η Μάθηση και η Διδασκαλία με Χάρτες Η Μάθηση και η Διδασκαλία με Χάρτες Διάλεξη 7α: Νοητικοί Χάρτες Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης, Πανεπιστήμιο Αιγαίου Ευανθία Μιχαηλίδου Στόχος εκπαίδευσης Κατανόηση γεωγραφικού χώρου Οπτική αντίληψη

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΣΤΙΣ ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 6 ΟΥ ΕΞΑΜΗΝΟΥ 19-03-2015 (5 Ο ΜΑΘΗΜΑ)

ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΣΤΙΣ ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 6 ΟΥ ΕΞΑΜΗΝΟΥ 19-03-2015 (5 Ο ΜΑΘΗΜΑ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΗΣ ΑΓΩΓΗΣ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΣΤΙΣ ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 6 ΟΥ ΕΞΑΜΗΝΟΥ 19-03-2015 (5 Ο ΜΑΘΗΜΑ) Αντιμετώπιση των ΜΔ δια των ΣΤΡΑΤΗΓΙΚΩΝ Σωτηρία

Διαβάστε περισσότερα

Απόστολος Μιχαλούδης

Απόστολος Μιχαλούδης ΔΙΔΑΣΚΑΛΙΑ ΦΥΣΙΚΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΠΡΟΣΟΜΟΙΩΣΕΩΝ Ανάπτυξη και εφαρμογή διδακτικών προσομοιώσεων Φυσικής σε θέματα ταλαντώσεων και κυμάτων Απόστολος Μιχαλούδης υπό την επίβλεψη του αν. καθηγητή Ευριπίδη Χατζηκρανιώτη

Διαβάστε περισσότερα

Ενδιάμεση Έκθεση: Ποσοτικά Ευρήματα Έρευνας απόψεων Σχολικών Συμβούλων για τα Γνωστικά Αντικείμενα του Δημοτικού

Ενδιάμεση Έκθεση: Ποσοτικά Ευρήματα Έρευνας απόψεων Σχολικών Συμβούλων για τα Γνωστικά Αντικείμενα του Δημοτικού Ενδιάμεση Έκθεση: Ποσοτικά Ευρήματα Έρευνας απόψεων Σχολικών Συμβούλων για τα Γνωστικά Αντικείμενα του Δημοτικού ΣΚΟΠΟΣ ΤΗΣ ΕΡΕΥΝΑΣ Η παρούσα έρευνα έχει σκοπό τη συλλογή εμπειρικών δεδομένων σχετικά με

Διαβάστε περισσότερα

Η σχέση Ιστορίας και Φιλοσοφίας των Επιστημών με την Εκπαίδευση στις Φυσικές Επιστήμες Κωνσταντίνα Στεφανίδου, PhD

Η σχέση Ιστορίας και Φιλοσοφίας των Επιστημών με την Εκπαίδευση στις Φυσικές Επιστήμες Κωνσταντίνα Στεφανίδου, PhD Η σχέση Ιστορίας και Φιλοσοφίας των Επιστημών με την Εκπαίδευση στις Φυσικές Επιστήμες Κωνσταντίνα Στεφανίδου, PhD Εργαστήριο Διδακτικής, Επιστημολογίας Φυσικών Επιστημών και Εκπαιδευτικής Τεχνολογίας,

Διαβάστε περισσότερα

"Ερευνώ και Ανακαλύπτω" την ΗλεκτροΜαγνητική Επαγωγή στην Πρωτοβάθμια Εκπαίδευση Από τον Ηλεκτρισμό στο Μαγνητισμό, από το Μαγνητισμό στον Ηλεκτρισμό

Ερευνώ και Ανακαλύπτω την ΗλεκτροΜαγνητική Επαγωγή στην Πρωτοβάθμια Εκπαίδευση Από τον Ηλεκτρισμό στο Μαγνητισμό, από το Μαγνητισμό στον Ηλεκτρισμό ΔΙΔΑΚΤΙΚΗ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΝΕΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΠΡΑΚΤΙΚΑ 5 ου ΠΑΝΕΛΛΗΝΙΟΥ ΣΥΝΕΔΡΙΟΥ, ΤΕΥΧΟΣ Α ΣΥΜΠΟΣΙΟ / ΕΡΓΑΣΤΗΡΙΟ: Πρωτοβάθμια Εκπ-Παίδευση στις-με τις Φυσικές επιστήμες - H Βέλτιστη

Διαβάστε περισσότερα

Αξιολόγηση Εκτελεστικών Λειτουργιών

Αξιολόγηση Εκτελεστικών Λειτουργιών Αξιολόγηση Εκτελεστικών Λειτουργιών Εισαγωγή: οκιμασίες Εκτελεστικών Λειτουργιών και η Συμβολή τους στην Επαγγελματική σας Επιλογή Η σημασία της αξιολόγησης των γνωστικών δεξιοτήτων Οι γνωστικές ικανότητες

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΑ ΤΑΞΗ Α «ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ» ΣΥΝΤΑΚΤΗΣ:ΚΑΤΣΑΔΗΜΑ ΓΕΩΡΓΙΑ ΠΕ15 2014-15

ΓΕΩΓΡΑΦΙΑ ΤΑΞΗ Α «ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ» ΣΥΝΤΑΚΤΗΣ:ΚΑΤΣΑΔΗΜΑ ΓΕΩΡΓΙΑ ΠΕ15 2014-15 ΓΕΩΓΡΑΦΙΑ ΤΑΞΗ Α «ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ» ΣΥΝΤΑΚΤΗΣ:ΚΑΤΣΑΔΗΜΑ ΓΕΩΡΓΙΑ ΠΕ15 2014-15 Τίτλος παρέμβασης: «ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ» (Α 1.1) Χρόνος διάρκεια: 1 διδακτική ώρα. Τάξη: Α Γυμνασίου Γνωστικό

Διαβάστε περισσότερα

ΧΡΟΝΟΜΕΤΡΗΤΗΣ ΒΑΣΙΚΗ ΣΥΣΚΕΥΗ ΣΤΗΝ ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟΝ ΧΡΟΝΟΜΕΤΡΗΤΗ

ΧΡΟΝΟΜΕΤΡΗΤΗΣ ΒΑΣΙΚΗ ΣΥΣΚΕΥΗ ΣΤΗΝ ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟΝ ΧΡΟΝΟΜΕΤΡΗΤΗ ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΧΡΟΝΟΜΕΤΡΗΤΗΣ ΒΑΣΙΚΗ ΣΥΣΚΕΥΗ ΣΤΗΝ ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟΝ ΧΡΟΝΟΜΕΤΡΗΤΗ Τι είναι ο χρονομετρητής ; Ο χρονομετρητής : αξιοποιείται στους

Διαβάστε περισσότερα

Παρακολούθηση Διδασκαλίας στη βάση του Δυναμικού Μοντέλου Εκπαιδευτικής Αποτελεσματικότητας. Μαργαρίτα Χριστοφορίδου 28 Νοεμβρίου 2013

Παρακολούθηση Διδασκαλίας στη βάση του Δυναμικού Μοντέλου Εκπαιδευτικής Αποτελεσματικότητας. Μαργαρίτα Χριστοφορίδου 28 Νοεμβρίου 2013 Παρακολούθηση Διδασκαλίας στη βάση του Δυναμικού Μοντέλου Εκπαιδευτικής Αποτελεσματικότητας Μαργαρίτα Χριστοφορίδου 28 Νοεμβρίου 2013 Σκοπός τη σημερινής παρουσίασης: αναγνώριση της παρατήρησης ως πολύτιμη

Διαβάστε περισσότερα

Δομώ - Οικοδομώ - Αναδομώ

Δομώ - Οικοδομώ - Αναδομώ Δομώ - Οικοδομώ - Αναδομώ Χριστίνα Τσακαρδάνου Εκπαιδευτικός Πανθομολογείται πως η ανάπτυξη του παιδιού ορίζεται τόσο από τα γενετικά χαρακτηριστικά του, όσο και από το πλήθος των ερεθισμάτων που δέχεται

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ: ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ

ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ: ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ Πανεπιστήμιο Θεσσαλίας ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ: ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Σκοπός του Μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη

Διαβάστε περισσότερα

Δ Φάση Επιμόρφωσης. Υπουργείο Παιδείας και Πολιτισμού Παιδαγωγικό Ινστιτούτο Γραφείο Διαμόρφωσης Αναλυτικών Προγραμμάτων. 15 Δεκεμβρίου 2010

Δ Φάση Επιμόρφωσης. Υπουργείο Παιδείας και Πολιτισμού Παιδαγωγικό Ινστιτούτο Γραφείο Διαμόρφωσης Αναλυτικών Προγραμμάτων. 15 Δεκεμβρίου 2010 Επιμόρφωση Εκπαιδευτικών Δημοτικής, Προδημοτικής και Ειδικής Εκπαίδευσης για τα νέα Αναλυτικά Προγράμματα (21-22 Δεκεμβρίου 2010 και 7 Ιανουαρίου 2011) Δ Φάση Επιμόρφωσης Υπουργείο Παιδείας και Πολιτισμού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ

Διαβάστε περισσότερα

Αξιολόγηση του Προγράμματος Ταχύρρυθμης Εκμάθησης της Ελληνικής στη Μέση Εκπαίδευση (Ιούνιος 2010)

Αξιολόγηση του Προγράμματος Ταχύρρυθμης Εκμάθησης της Ελληνικής στη Μέση Εκπαίδευση (Ιούνιος 2010) Αξιολόγηση του Προγράμματος Ταχύρρυθμης Εκμάθησης της Ελληνικής στη Μέση Εκπαίδευση (Ιούνιος 2010) 1. Ταυτότητα της Έρευνας Με απόφαση του Υπουργικού Συμβουλίου της 29 ης Ιουλίου, 2008, τέθηκε σε εφαρμογή

Διαβάστε περισσότερα

Οι μαθηματικές δραστηριότητες ως εργαλείο Διδασκαλίας και Αξιολόγησης. Ε.Κολέζα

Οι μαθηματικές δραστηριότητες ως εργαλείο Διδασκαλίας και Αξιολόγησης. Ε.Κολέζα Οι μαθηματικές δραστηριότητες ως εργαλείο Διδασκαλίας και Αξιολόγησης Ε.Κολέζα Η μαθηματική δραστηριότητα Α) Υλοποιεί τους στόχους του Π.Σ. Στόχους περιεχομένου (στο τέλος του μαθήματος οι μαθητές θα

Διαβάστε περισσότερα

Αξιολόγηση Προγράμματος Αλφαβητισμού στο Γυμνάσιο Πρώτο Έτος Αξιολόγησης (Ιούλιος 2009)

Αξιολόγηση Προγράμματος Αλφαβητισμού στο Γυμνάσιο Πρώτο Έτος Αξιολόγησης (Ιούλιος 2009) Αξιολόγηση Προγράμματος Αλφαβητισμού στο Γυμνάσιο Πρώτο Έτος Αξιολόγησης (Ιούλιος 2009) 1. Ταυτότητα της Έρευνας Το πρόβλημα του λειτουργικού αναλφαβητισμού στην Κύπρο στις ηλικίες των 12 με 15 χρόνων

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Γ Δημοτικού Πέτρος Κλιάπης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση της προϋπάρχουσας

Διαβάστε περισσότερα

Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας

Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας A. Montgomery Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας Καρολίνα Δουλουγέρη, ΜSc Υποψ. Διαδάκτωρ Σήμερα Αναζήτηση βιβλιογραφίας Επιλογή μεθοδολογίας Ερευνητικός σχεδιασμός Εγκυρότητα και αξιοπιστία

Διαβάστε περισσότερα

Βασικές Αρχές Ψηφιακής Τεχνολογίας: Πρακτικές ιδέες για τη διδασκαλία ενός θεωρητικού μαθήματος

Βασικές Αρχές Ψηφιακής Τεχνολογίας: Πρακτικές ιδέες για τη διδασκαλία ενός θεωρητικού μαθήματος Βασικές Αρχές Ψηφιακής Τεχνολογίας: Πρακτικές ιδέες για τη διδασκαλία ενός θεωρητικού μαθήματος Πάσχου Αικατερίνη 1 katpas@sch.gr 1 Εκπαιδευτικός Πληροφορικής, 2 ο ΕΠΑ.Λ. Καρδίτσας Περίληψη Το μάθημα Βασικές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

Η αβεβαιότητα στη μέτρηση.

Η αβεβαιότητα στη μέτρηση. Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη

Διαβάστε περισσότερα

Η Διδασκαλία του Προγραμματισμού Η/Υ στη Δευτεροβάθμια Εκπαίδευση ως Διαδικασία Ανάπτυξης Πνευματικών Δεξιοτήτων

Η Διδασκαλία του Προγραμματισμού Η/Υ στη Δευτεροβάθμια Εκπαίδευση ως Διαδικασία Ανάπτυξης Πνευματικών Δεξιοτήτων Η Διδασκαλία του Προγραμματισμού Η/Υ στη Δευτεροβάθμια Εκπαίδευση ως Διαδικασία Ανάπτυξης Πνευματικών Δεξιοτήτων Μία Πρόταση Βασισμένη στη Δημιουργία Βάσης Ασκήσεων Γνωστής Δυσκολίας Β. Γεωργίου, Α. Τζιμογιάννης

Διαβάστε περισσότερα

ΛΟΓΟΙ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ. Μιχάλης Αργύρης

ΛΟΓΟΙ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ. Μιχάλης Αργύρης ΛΟΓΟΙ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ Μιχάλης Αργύρης 1 Λόγοι και αναλογίες Περίληψη Οι μαθητές έχουν στη διάθεσή τους μια υπολογιστική οντότητα, ένα καγκουρό του οποίου το μέγεθος μπορούν

Διαβάστε περισσότερα

Η εκμάθηση μιας δεύτερης/ξένης γλώσσας. Ασπασία Χατζηδάκη, Επ. Καθηγήτρια Π.Τ.Δ.Ε 2011-12

Η εκμάθηση μιας δεύτερης/ξένης γλώσσας. Ασπασία Χατζηδάκη, Επ. Καθηγήτρια Π.Τ.Δ.Ε 2011-12 Η εκμάθηση μιας δεύτερης/ξένης γλώσσας Ασπασία Χατζηδάκη, Επ. Καθηγήτρια Π.Τ.Δ.Ε 2011-12 Βασικοί όροι και έννοιες- Δεύτερη # Ξένη γλώσσα Δεύτερη γλώσσα είναι οποιαδήποτε γλώσσα κατακτά ή μαθαίνει ένα άτομο

Διαβάστε περισσότερα

Τίτλος μαθήματος: ΔΙΔΑΣΚΑΛΙΑ ΚΑΙ ΠΑΙΔΑΓΩΓΙΚΗ ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΣΤΗ ΣΧΟΛΙΚΗ ΤΑΞΗ. Ενότητα 3 Η ΕΡΩΤΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ

Τίτλος μαθήματος: ΔΙΔΑΣΚΑΛΙΑ ΚΑΙ ΠΑΙΔΑΓΩΓΙΚΗ ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΣΤΗ ΣΧΟΛΙΚΗ ΤΑΞΗ. Ενότητα 3 Η ΕΡΩΤΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ Τίτλος μαθήματος: ΔΙΔΑΣΚΑΛΙΑ ΚΑΙ ΠΑΙΔΑΓΩΓΙΚΗ ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΣΤΗ ΣΧΟΛΙΚΗ ΤΑΞΗ Ενότητα 3 Η ΕΡΩΤΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ Οι ερωτήσεις στη διδασκαλία Α) Η ερώτηση του εκπαιδευτικού Β) Η ερώτηση του μαθητή Α) Η

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ Γνωστικό αντικείμενο Επίπεδο ΦΥΣΙΚΗ Α Λυκείου Ταυτότητα Στόχος Περιγραφή Προτεινόμενο ή υλοποιημένο Λογισμικό Λέξεις κλειδιά Δημιουργοί α) Γνώσεις για τον κόσμο: Οι δυνάμεις εμφανίζονται

Διαβάστε περισσότερα

ΑΝΑΓΝΩΣΤΙΚΗ ΚΑΤΑΝΟΗΣΗ-Η ΤΕΧΝΙΚΗ ΤΗΣ ΠΡΟΒΛΕΨΗΣ Δρ. Ζαφειριάδης Κυριάκος Η ακαδημαϊκή επιτυχία συνδέεται με την αναγνωστική ικανότητα καθώς και με τις

ΑΝΑΓΝΩΣΤΙΚΗ ΚΑΤΑΝΟΗΣΗ-Η ΤΕΧΝΙΚΗ ΤΗΣ ΠΡΟΒΛΕΨΗΣ Δρ. Ζαφειριάδης Κυριάκος Η ακαδημαϊκή επιτυχία συνδέεται με την αναγνωστική ικανότητα καθώς και με τις ΑΝΑΓΝΩΣΤΙΚΗ ΚΑΤΑΝΟΗΣΗ-Η ΤΕΧΝΙΚΗ ΤΗΣ ΠΡΟΒΛΕΨΗΣ Δρ. Ζαφειριάδης Κυριάκος Η ακαδημαϊκή επιτυχία συνδέεται με την αναγνωστική ικανότητα καθώς και με τις ικανότητες του γραμματισμού. Έτσι, οι μαθητές με αναπτυγμένες

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ: ΘΕΜΑ: Οδηγίες διδασκαλίας του μαθήματος βασικών ικανοτήτων «Πολιτειακή Παιδεία» της Α τάξης ημερησίων ΕΠΑ.Λ.

ΠΡΟΣ: ΚΟΙΝ: ΘΕΜΑ: Οδηγίες διδασκαλίας του μαθήματος βασικών ικανοτήτων «Πολιτειακή Παιδεία» της Α τάξης ημερησίων ΕΠΑ.Λ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθμός Προτεραιότητας: Μαρούσι, 18-04-2013 Αριθ. Πρωτ. 53600/Γ2 ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ

Διαβάστε περισσότερα

Διαφοροποιημένη Διδασκαλία. Ε. Κολέζα

Διαφοροποιημένη Διδασκαλία. Ε. Κολέζα Διαφοροποιημένη Διδασκαλία Ε. Κολέζα Τι είναι η διαφοροποιημένη διδασκαλία; Είναι μια θεώρηση της διδασκαλίας που βασίζεται στην προϋπόθεση ότι οι δάσκαλοι πρέπει να προσαρμόσουν τη διδασκαλία τους στη

Διαβάστε περισσότερα

Μαθηματικά Β Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Β Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Β Δημοτικού Πέτρος Κλιάπης Ο μαθητής σε μια σύγχρονη τάξη μαθηματικών: Δεν αντιμετωπίζεται ως αποδέκτης μαθηματικών πληροφοριών, αλλά κατασκευάζει δυναμικά τη μαθηματική γνώση μέσα από κατάλληλα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Γώγουλος Γ., Κοτσιφάκης Γ., Κυριακάκη Γ., Παπαγιάννης Α., Φραγκονικολάκης Μ., Χίνου Π. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ

Διαβάστε περισσότερα

ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ

ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Τι είναι Μαθηματικά; Ποια είναι η αξία τους καθημερινή ζωή ανάπτυξη λογικής σκέψης αισθητική αξία και διανοητική απόλαυση ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ

Διαβάστε περισσότερα

Η διδασκαλία της Ελληνικής ως δεύτερης /ξένης γλώσσας

Η διδασκαλία της Ελληνικής ως δεύτερης /ξένης γλώσσας Η διδασκαλία της Ελληνικής ως δεύτερης /ξένης γλώσσας Εισαγωγικά Μαρία Παπαλεοντίου, Φιλόλογος Π.Ι.Κ. Προβληματιζόμαστε... Τι εννοούμε με τον όρο Τεχνολογίες Πληροφορίας και Επικοινωνίας (Τ.Π.Ε.) και τι

Διαβάστε περισσότερα

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη Σχολείο Δεύτερης Ευκαιρίας Ιωαννίνων Αριθμητικός Γραμματισμός Εισηγήτρια : Σεντελέ Καίτη ΘΕΜΑ ΕΙΣΗΓΗΣΗΣ «Προγραμματισμός-Οργάνωση και υλοποίηση μιας διδακτικής ενότητας στον Αριθμητικό Γραμματισμό» ΠΡΟΣΘΕΣΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΕΠΙΜΕΛΕΙΑ: Νάκου Αλεξάνδρα Εισαγωγή στις Επιστήμες της Αγωγής Ο όρος ΕΠΙΣΤΗΜΕΣ ΤΗΣ ΑΓΩΓΗΣ δημιουργεί μία αίσθηση ασάφειας αφού επιδέχεται πολλές εξηγήσεις. Υπάρχει συνεχής διάλογος και προβληματισμός ακόμα

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ -ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ -ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Σχέδιο Διδασκαλίας Τάξη: Β Γυμνασίου Μάθημα: Νεοελληνική Γλώσσα Θέμα: Η συνοχή ενός ευρύτερου Κειμένου Διάρκεια: Μία περίοδος Στην τέταρτη ενότητα ο προγραμματισμός προβλέπει έξι περιόδους. Η συγκεκριμένη

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ. Οι αριθμοί πέρα απ τους κανόνες

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ. Οι αριθμοί πέρα απ τους κανόνες ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ Οι αριθμοί πέρα απ τους κανόνες Οι αριθμοί πέρα απ τους κανόνες Γιάννης Καραγιαννάκης Copyright Γιάννης Καραγιαννάκης Eκδότης: Διερευνητική Μάθηση, Αθήνα 2012 Επιμέλεια: Γιάννης Καραγιαννάκης

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η Ευκλείδεια Γεωμετρία σε σχέση με Θεωρία van Hiele Οι τρεις κόσμοι του Tall

Διαβάστε περισσότερα

από ευχάριστες δραστηριότητες, όπως εκείνες της προανάγνωσης,, ενώ παράλληλα συνειδητοποιούν το φωνημικό χαρακτήρα της γλώσσας και διακρίνουν τα

από ευχάριστες δραστηριότητες, όπως εκείνες της προανάγνωσης,, ενώ παράλληλα συνειδητοποιούν το φωνημικό χαρακτήρα της γλώσσας και διακρίνουν τα ΔΕΥΤΕΡΑ Προσέλευση νηπίων και αυθόρμητες δραστηριότητες στις οργανωμένες γωνιές της τάξης. Το ελεύθερο παιχνίδι είτε ατομικό,είτε ομαδικό σε ελκυστικά οργανωμένες γωνιές επιτρέπει στα παιδιά να χρησιμοποιούν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: «Χαράξεις με χάρακα και διαβήτη. Ορθές γωνίες» (Κεφάλαιο : 16 ο ) Σχολείο:

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον)

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) ΔΡΑΣΤΗΡΙΟΤΗΤΑ: ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ με τη βοήθεια του λογισμικού Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Νοέμβριος 2013 0 ΤΙΤΛΟΣ ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

Διαβάστε περισσότερα

PATHWAY. D2.1 The basic features of the inquiry learning and teaching. A short review for the Greek teachers. Author: Christos Ragiadakos

PATHWAY. D2.1 The basic features of the inquiry learning and teaching. A short review for the Greek teachers. Author: Christos Ragiadakos PATHWAY D2.1 The basic features of the inquiry learning and teaching A short review for the Greek teachers Author: Christos Ragiadakos [It will be distributed to the Greek teachers during the Training

Διαβάστε περισσότερα

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Dr. Anthony Montgomery Επίκουρος Καθηγητής Εκπαιδευτικής & Κοινωνικής Πολιτικής antmont@uom.gr Ποιός είναι ο σκοπός του μαθήματος μας? Στο τέλος του σημερινού μαθήματος,

Διαβάστε περισσότερα

10. ΟΔΗΓΙΕΣ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΤΗΝ ΥΠΟΧΡΕΩΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

10. ΟΔΗΓΙΕΣ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΤΗΝ ΥΠΟΧΡΕΩΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ 10. ΟΔΗΓΙΕΣ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΤΗΝ ΥΠΟΧΡΕΩΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ο σκοπός της διδασκαλίας των Φυσικών Επιστημών εντάσσεται στους γενικούς σκοπούς της εκπαίδευσης. Για την αρμονική ένταξη του

Διαβάστε περισσότερα

Χημεία Β Λυκείου Γενικής Παιδείας: Όλα τα πειράματα σε προσομοίωση

Χημεία Β Λυκείου Γενικής Παιδείας: Όλα τα πειράματα σε προσομοίωση ΝΕΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΠΡΑΚΤΙΚΑ 5 ου ΠΑΝΕΛΛΗΝΙΟΥ ΣΥΝΕΔΡΙΟΥ, ΤΕΥΧΟΣ Γ Διδασκαλία τη Χημείας Με Νέες Τεχνολογίες Χημεία Β Λυκείου Γενικής Παιδείας: Όλα τα πειράματα σε προσομοίωση Γεώργιος Ξεντές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ Μάθημα: Εφαρμοσμένη Διδακτική των Φυσικών Επιστημών (Πρακτικές Ασκήσεις Β Φάσης) για φοιτητές του ΤΕΠΑΕΣ ΜΙΧΑΗΛ ΣΚΟΥΜΙΟΣ Λέκτορας στο

Διαβάστε περισσότερα

ΙΙΙ. ΙΔΙΑΙΤΕΡΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΞΕΝΩΝ ΜΑΘΗΤΩΝ.

ΙΙΙ. ΙΔΙΑΙΤΕΡΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΞΕΝΩΝ ΜΑΘΗΤΩΝ. ΙΙΙ. ΙΔΙΑΙΤΕΡΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΞΕΝΩΝ ΜΑΘΗΤΩΝ. Είδαμε πως το 4.2% των μαθητών στο δείγμα μας δεν έχουν ελληνική καταγωγή. Θα μπορούσαμε να εξετάσουμε κάποια ειδικά χαρακτηριστικά αυτών των ξένων μαθητών

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΘΕΑΤΡΙΚΗΣ ΑΓΩΓΗΣ ΔΗΜΟΤΙΚΟΥ Ι. ΠΕΡΙΕΧΟΜΕΝΟ ΚΑΙ ΔΟΜΗ ΤΟΥ ΒΙΒΛΙΟΥ

ΜΑΘΗΜΑ ΘΕΑΤΡΙΚΗΣ ΑΓΩΓΗΣ ΔΗΜΟΤΙΚΟΥ Ι. ΠΕΡΙΕΧΟΜΕΝΟ ΚΑΙ ΔΟΜΗ ΤΟΥ ΒΙΒΛΙΟΥ ΜΑΘΗΜΑ ΘΕΑΤΡΙΚΗΣ ΑΓΩΓΗΣ ΔΗΜΟΤΙΚΟΥ Ι. ΠΕΡΙΕΧΟΜΕΝΟ ΚΑΙ ΔΟΜΗ ΤΟΥ ΒΙΒΛΙΟΥ Το μάθημα της Θεατρικής Αγωγής θα διδάσκεται από φέτος στην Ε και Στ Δημοτικού. Πρόκειται για μάθημα βιωματικού χαρακτήρα, με κύριο

Διαβάστε περισσότερα

ΔΕΠΠΣ. ΔΕΠΠΣ και ΝΕΑ ΒΙΒΛΙΑ

ΔΕΠΠΣ. ΔΕΠΠΣ και ΝΕΑ ΒΙΒΛΙΑ ΔΕΠΠΣ ΔΕΠΠΣ και ΝΕΑ ΒΙΒΛΙΑ Διαθεματικό Ενιαίο Πλαίσιο Προγραμμάτων Σπουδών ΔΕΠΠΣ Φ.Ε.Κ., 303/13-03-03, τεύχος Β Φ.Ε.Κ., 304/13-03-03, τεύχος Β Ποιοι λόγοι οδήγησαν στην σύνταξη των ΔΕΠΠΣ Γενικότερες ανάγκες

Διαβάστε περισσότερα

Περιεχόμενο και μέθοδος προσέγγισης των Φυσικών Επιστημών στην Προσχολική και Πρώτη Σχολική ηλικία

Περιεχόμενο και μέθοδος προσέγγισης των Φυσικών Επιστημών στην Προσχολική και Πρώτη Σχολική ηλικία Περιεχόμενο και μέθοδος προσέγγισης των Φυσικών Επιστημών στην Προσχολική και Πρώτη Σχολική ηλικία Πέτρος Π. Καριώτογλου Περίληψη Στο άρθρο αυτό προτείνονται οι διαδικασίες των επιστημονικών μεθόδων (παρατήρηση,

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες

Διδάσκοντας Φυσικές Επιστήμες Η Φυσική δεν είναι μόνο εννοιολογικό περιεχόμενο, είναι επίσης μεθοδολογία λύσης (καθημερινών) προβλημάτων και στάση ζωής Παναγιώτης Κουμαράς Το 1909 ο Dewey στην ομιλία του «Οι Φυσικές Επιστήμες ως περιεχόμενο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΠΕ ΓΙΑ ΤΗΝ ΕΝΕΡΓΕΙΑ

ΠΡΟΓΡΑΜΜΑ ΠΕ ΓΙΑ ΤΗΝ ΕΝΕΡΓΕΙΑ ΠΡΟΓΡΑΜΜΑ ΠΕ ΓΙΑ ΤΗΝ ΕΝΕΡΓΕΙΑ ΜΟΡΦΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΕΝΕΡΓΕΙΑΣ Το Πρόγραμμα αναφέρεται στην Ενέργεια και τις μορφές της, καθώς και τις εφαρμογές της σε τοπική, εθνική και παγκόσμια κλίμακα. Η επεξεργασία

Διαβάστε περισσότερα

Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015

Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015 Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015 Μάθηση και γνώση: μια συνεχής και καθοριστική αλληλοεπίδραση Αντώνης Λιοναράκης Στην παρουσίαση που θα ακολουθήσει θα μιλήσουμε

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

Αναλυτικό Πρόγραμμα Σπουδών (ΑΠΣ) Curriculum Γεωλογίας - Γεωγραφίας Κική Μακρή, Γεωλόγος M.Sc Υπ. Διδάκτορας Διδασκαλίας της Γεωλογίας kmakri@geo.auth.gr Η δομή του Ελληνικού Εκπαιδευτικού Συστήματος Η

Διαβάστε περισσότερα

Εισαγωγή στην έννοια του Αλγορίθμου

Εισαγωγή στην έννοια του Αλγορίθμου Εισαγωγή στην έννοια του Αλγορίθμου ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Νίκος Μιχαηλίδης, Πληροφορικός ΠΕ19 ΣΧΟΛΕΙΟ 2 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Θεσσαλονίκη, 24 Φεβρουαρίου 2015 1. Συνοπτική περιγραφή της

Διαβάστε περισσότερα