ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ"

Transcript

1 ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ (ΠΕ03)

2 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Αριθμός σελίδας ΠΕΡΙΕΧΟΜΕΝΑ ΤΑΥΤΟΤΗΤΑ ΕΡΓΑΣΙΑΣ - ΔΙΔΑΚΤΙΚΗΣ ΠΡΟΤΑΣΗΣ Γνωστική περιοχή 1.2. Θέμα 1.3. Βασική ιδέα 1.4. Τεχνολογικά εργαλεία 1.5. Στόχοι της δραστηριότητας 2. ΣΚΕΠΤΙΚΟ ΤΗΣ ΕΡΓΑΣΙΑΣ Καινοτομίες και Προστιθέμενη αξία 2.2. Θεωρητικό πλαίσιο 2.3. Γνωστικά και διδακτικά προβλήματα 2.4. Επεκτάσεις 2.5. Σύνδεση με το αναλυτικό πρόγραμμα 3. Η ΥΛΟΠΟΙΗΣΗ Σε ποιούς απευθύνεται 3.2. Χρόνος υλοποίησης 3.3. Χώρος υλοποίησης 3.4. Προαπαιτούμενες γνώσεις των μαθητών 3.5. Απαιτούμενα βοηθητικά υλικά και εργαλεία 3.6. Κοινωνική ενορχήστρωση της τάξης 4. ΑΞΙΟΛΟΓΗΣΗ ΜΕΤΑ ΤΗΝ ΕΦΑΡΜΟΓΗ Ως προς τις επιδιώξεις του σεναρίου 1

3 4.2. Ως προς τα εργαλεία 4.3. Ως προς την διαδικασία υλοποίησης 4.4. Ως προς την προσαρμογή και επεκτασιμότητα 5. ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΕΝΑΡΙΟ Ταυτότητα σεναρίου 5.2. Περιγραφή - Ροή εφαρμογής δραστηριοτήτων 5.3. Επεκτάσεις του σεναρίου 6. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ ΑΝΑΦΟΡΕΣ ΠΑΡΑΠΟΜΠΕΣ- ΒΙΒΛΙΟΓΡΑΦΙΑ 16 2

4 1. ΤΑΥΤΟΤΗΤΑ ΕΡΓΑΣΙΑΣ Η ΔΙΔΑΚΤΙΚΗΣ ΠΡΟΤΑΣΗΣ 1.1. Γνωστική περιοχή: ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑ.Λ. ΚΕΦΑΛΑΙΟ 3 : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 1.2. Θέμα: Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ Α) ΠΕΙΡΑΜΑΤΙΚΗ ΕΥΡΕΣΗ ΤΩΝ ΠΛΕΥΡΙΚΩΝ ΟΡΙΩΝ Β) ΥΠΑΡΞΗ ΤΟΥ ΟΡΙΟΥ 1.3. Βασική ιδέα Η τάση μιας συνάρτησης f() προς έναν αριθμό l καθώς το τείνει σε κάποιο 0 είναι μια μαθηματική απεικόνιση που γίνεται με σημείο προς σημείο αναπαράσταση της τάσης της f(), μεταβάλλοντας το με κατάλληλο τρόπο. Καθιστά, λοιπόν, την εξέλιξη του φαινομένου ιδανική για διαδραστική αισθητοποίηση μέσω δυναμικών λογισμικών. Με την βοήθεια του υπολογιστή, οι μαθητές μπορούν να μεταβάλλουν σταδιακά το και να παρακολουθήσουν την συνάρτηση να διαγράφει την γραφική της παράσταση. Έτσι θα διαπιστώσουν αν υπάρχει το όριο και να αναγνωρίζουν πότε είναι πιθανό να μην υπάρχει Τεχνολογικά εργαλεία Αρχικά απαιτείται ο υπολογιστής του διδάσκοντα και ο προβολέας οθόνης του. Χρειάζεται επίσης, τουλάχιστον ένας υπολογιστής ανά 2-3 μαθητές. Οι υπολογιστές είναι απαραίτητο να έχουν εγκατεστημένο το λογισμικό GEOGEBRA έκδοσης 4 και νεώτερης, που με την σειρά του απαιτεί την ανάλογη ενημερωμένη έκδοση Java Στόχοι της διδακτικής πρότασης Να γίνει κατανοητή η έννοια της προσέγγισης ενός σημείου 0 με διαδοχικές τιμές, είτε εκ δεξιών είτε εξ αριστερών. 3

5 Να αισθητοποιηθεί, με διαδραστικό τρόπο η «κίνηση» των τιμών της συνάρτησης προς μια τιμή, καθώς το κινείται προς το 0. Να γίνει αντιληπτό τι ονομάζουμε «όριο εκ δεξιών» και «όριο εξ αριστερών» για μια συνάρτηση. Να επιβεβαιωθεί η θεωρητική προσέγγιση της ύπαρξης του ορίου, δηλαδή ότι υπάρχει το όριο της συνάρτησης όταν τα πλευρικά όρια τείνουν στον ίδιο αριθμό. Να γίνει συνειδητό ότι το όριο της f() όταν το τείνει στο 0, μπορεί να υπάρχει ακόμη και αν η f() δεν ορίζεται στο 0. Παράλληλα, είναι σημαντική η εξάσκηση και εφαρμογή των δυνατοτήτων του μαθητή στην συνεργατική μάθηση και την «συνανακάλυψη» φαινομένων και σχέσεων. Τέλος, δεν ξεχνάμε τον στόχο που διατρέχει την διδασκαλία των μαθηματικών με την βοήθεια των ΤΠΕ. Ο μαθητής πρέπει να μάθει να χρησιμοποιεί και να αξιοποιεί τις δυνατότητες που παρέχουν η τεχνολογία και το περιβάλλον μάθησης που διαμορφώνεται, ώστε να αναβαθμίσει το μαθησιακό του αποτέλεσμα. 2. ΣΚΕΠΤΙΚΟ ΤΗΣ ΕΡΓΑΣΙΑΣ 2.1. Καινοτομίες και προστιθέμενη αξία. Η γραφική αναπαράσταση των γραφικών παραστάσεων των συναρτήσεων είναι ιδανικό πεδίο δράσης για τα λογισμικά δυναμικής γεωμετρίας. Με την χρήση δρομέων μεταβολής παραμέτρων μπορούμε δημιουργήσουμε αναπαραστάσεις της εξέλιξης των συνεπειών της μεταβολής. Συγκεκριμένα στην περίπτωσή μας, χρειαζόμαστε μεταβολή του με τρόπο ώστε κάθε νέα τιμή να πλησιάζει περισσότερο στον αριθμό 0. Δημιουργούμε, λοιπόν μια κινούμενη αναπαράσταση των διαδοχικών τιμών του. Αντίστοιχα, δημιουργείται, σαν αποτέλεσμα μια κίνηση των τιμών f(). Η παρατήρηση του φαινομένου αντιστοιχεί νοητικά με τον καλύτερο τρόπο στην έννοια του ρήματος «τείνω». 4

6 Ο μαθητής θα έχει την ευκαιρία 1) να παρακολουθήσει παραδείγματα έτοιμων συναρτήσεων και 2) να διερευνήσει παραδείγματα δικών του συναρτήσεων ως προς την τάση της f(). Επίσης, μπορεί να εμβαθύνει στην εξέλιξη της αποτύπωσης των τιμών της f(), κινώντας αντίστροφα τους δρομείς, επαναλαμβάνοντας την εξέλιξη με δική του επιλογή ταχύτητας μεταβολής. Παράλληλα, θα έχει την ευκαιρία να διασταυρώσει τα αποτελέσματα των υπολογισμών των τιμών της συνάρτησης δουλεύοντας σε φύλλο εργασίας και εξετάζοντας την όλη διαδικασία και από άλλες οπτικές γωνίες Θεωρητικό πλαίσιο Η διαδικασία που ακολουθείται είναι η ανακάλυψη της γνώσης βήμα προς βήμα, μέσα από παρατήρηση της δυναμικά εξελισσόμενης μορφής της διδασκαλίας. Η εξέλιξη των βημάτων γίνεται σε ένα πλαίσιο αλληλεπίδρασης μαθητή με μαθητή, υπολογιστή με μαθητή, με την καθοδήγηση του καθηγητή και την δουλειά σε φύλλο εργασίας. Επειδή ο στόχος είναι η βασική έννοια του ορίου, δεν θα ασχοληθούμε με θεωρητικές λεπτομέρειες και υποπεριπτώσεις (π.χ. όριο συνάρτησης στο άκρο του πεδίου ορισμού) Θα λέγαμε, λοιπόν, ότι κινούμαστε σε σκηνικό ομαδοσυνεργατικής μάθησης των περιοχών της κοινωνιογνωστικής θεωρίας, με στόχο την ανακαλυπτική μάθηση. Μπορούμε να πούμε δε, ότι σχετίζεται με την «σπειροειδή μάθηση σε ομόκεντρους κύκλους» που προτείνει ο Bruner Γνωστικά και διδακτικά προβλήματα: Όπως πάντα αναφέρω στις εργασίες που απευθύνονται στην Τεχνική Εκπαίδευση, οι μαθητές των ΕΠΑ.Λ. έχουν διαφορετικά μαθησιακά δεδομένα από αυτά των Γενικών Λυκείων. Μεταξύ αυτών είναι και η χαμηλή ενσωμάτωση των μαθηματικών γνώσεων των προηγουμένων τάξεων. Στην περίπτωσή μας, πρέπει να αναμένουμε σημαντικές ελλείψεις στα θέματα γραφική αναπαράστασης συναρτήσεων. Η σημαντική εμπειρία του γράφοντος στον συγκεκριμένο χώρο της διδασκαλίας των μαθηματικών σε ΕΠΑ.Λ., επιβεβαιώνει κατά σχεδόν απόλυτο τρόπο την συγκεκριμένη έλλειψη. 5

7 Υπάρχει, όμως, μια καλή εμπειρία σε θέματα πειραματικής κατασκευής φαινομένων βήμα προς βήμα, ιδιαίτερα σε τεχνικές ειδικότητες (ηλεκτρονικοί, πληροφορικοί, μηχανολόγοι, κλπ). Σε αυτές τις εμπειρίες μπορούμε να βασιστούμε για την θεωρητική προσέγγιση της έννοιας του ορίου της συνάρτησης. 2.4 Επεκτάσεις Το σενάριο με λίγα βήματα μόνο είναι έτοιμο να εξελιχθεί σε σενάριο διδασκαλίας της συνέχειας συνάρτησης σε σημείο 0. Μένει μόνο να συγκριθούν τα ευρήματα για το εκ δεξιών και εξ αριστερών όριο της f(), με την τιμή f( 0 ). 2.5 Σύνδεση με το αναλυτικό πρόγραμμα. Το σενάριο αναφέρεται στην παράγραφο 3.1 του Κεφαλαίου 3: «Όριο συνέχεια συνάρτησης» του σχολικού βιβλίου της Γ τάξης του ΕΠΑ.Λ. 3. Η ΥΛΟΠΟΙΗΣΗ 3.1. Σε ποιους απευθύνεται: Στους μαθητές της Γ τάξης των Επαγγελματικών Λυκείων 3.2. Χρόνος υλοποίησης: 2 διδακτικές ώρες 3.3. Χώρος Υλοποίησης: Το εργαστήριο πληροφορικής Προαπαιτούμενες γνώσεις: Πεδίο ορισμού και σύνολο τιμών συνάρτησης. Σύστημα καρτεσιανών συντεταγμένων. Γραφική αναπαράσταση συνάρτησης. Κλαδωτή συνάρτηση. «Εκ δεξιών» και «εξ αριστερών» προσέγγιση μιας τιμής. Ορισμός ορίου «εκ δεξιών» και «εξ αριστερών» μιας 6

8 συνάρτησης. Ύπαρξη ορισμού του ορίου μιας συνάρτησης όταν το τείνει σε ένα σημείο Απαιτούμενα βοηθητικά εργαλεία: Εκτός από τον υπολογιστή τον βιντεοπροβολέα και το λογισμικό (Geogebra, Java), υπάρχει το φύλλο εργασίας, το τετράδιο για σημειώσεις και το βιβλίο του μαθήματος, κυρίως για αναδρομή στα προαπαιτούμενα. Επιθυμητή η χρήση διαδραστικού πίνακα Κοινωνική ενορχήστρωση της τάξης: Ομάδες των δύο ή τριών ατόμων σε ένα υπολογιστή, καλούνται να απαντήσουν στα ερωτήματα ενός κοινού φύλλου εργασίας. Οι απαντήσεις προκύπτουν από τις παρατηρήσεις που προκύπτουν στην εξέλιξη του σεναρίου. 4. ΑΞΙΟΛΟΓΗΣΗ ΜΕΤΑ ΤΗΝ ΕΦΑΡΜΟΓΗ 4.1. Ως προς τις επιδιώξεις του σεναρίου. Θα πρέπει να ελεγχθεί η πραγματοποίηση των γνωστικών στόχων που αναφέρονται στην παράγραφο 1.5. μέσα από τις απαντήσεις του φύλλου εργασίας, αλλά και από τα προκύπτοντα κατά την διάρκεια της υλοποίησης: ερωτήσεις, δυσκολίες στην συμπλήρωση των φύλλων εργασίας, γενική εντύπωση Ως προς τα εργαλεία. Πρέπει να αξιολογηθεί η επάρκεια του φύλλου εργασίας και η επιτυχής εκτέλεση των δραστηριοτήτων. Επίσης, κατά πόσο οι προτεινόμενες δραστηριότητες συνέβαλλαν στην επίτευξη των γνωστικών και διδακτικών στόχων Ως προς την διαδικασία υλοποίησης. 7

9 Να διαπιστωθεί αν η διάρκεια της διδασκαλίας ήταν η καταλληλότερη, αν το ενδιαφέρον εκ μέρους των μαθητών ήταν επαρκές, αν υπήρξαν απροσδόκητες εξελίξεις και μη αναμενόμενες απορίες. 5. ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΕΝΑΡΙΟ 5.1 Ταυτότητα σεναρίου Συγγραφέας: Ιωάννης Κουτίδης Γνωστική περιοχή: Μαθηματικά Κατεύθυνσης Γ Λυκείου. Σε ποιους απευθύνεται: Γ τάξη των Επαγγελματικών Λυκείων Χρόνος υλοποίησης: 2 διδακτικές ώρες Χώρος Υλοποίησης: Το εργαστήριο πληροφορικής. Προαπαιτούμενες γνώσεις: Πεδίο ορισμού και σύνολο τιμών συνάρτησης. Σύστημα καρτεσιανών συντεταγμένων. Γραφική αναπαράσταση συνάρτησης. Κλαδωτή συνάρτηση. «Εκ δεξιών» και «εξ αριστερών» προσέγγιση μιας τιμής. Ορισμός ορίου «εκ δεξιών» και «εξ αριστερών» μιας συνάρτησης. Ύπαρξη ορισμού του ορίου μιας συνάρτησης όταν το τείνει σε ένα σημείο 0. Απαιτούμενα βοηθητικά εργαλεία: Υπολογιστής, βιντεοπροβολέας, λογισμικό (Geogebra, Java), φύλλο εργασίας, τετράδιο για σημειώσεις και το βιβλίο του μαθήματος. Ένας υπολογιστής ανά 2 με 3 μαθητές στο εργαστήριο. 8

10 Επιθυμητή η χρήση διαδραστικού πίνακα Περιγραφή - Ροή εφαρμογής δραστηριοτήτων ΔΡΑΣΤΗΡΙΟΤΗΤΑ 1 η : Ανακάλυψη του εξ αριστερών ορίου της συνάρτησης. 1. Ανοίγουμε το αρχείο Προσέγγιση αριστερά-δεξιά.ggb 2. Καλούνται οι επιμορφούμενοι να συμπληρώσουν τους πίνακας διαδοχικής προσέγγισης του σημείου 0 = 1 εξ αριστερών και να εικάσει το όριο της συνάρτησης f() εξ αριστερών όταν το -> 0 με τιμές μικρότερες του Τσεκάροντας το πρώτο τετραγωνάκι επιλογής εμφανίζεται ο δρομέας που θέτει σε κίνηση το προς το 0. Έτσι μπορούμε να μελετήσουμε το φαινόμενο του εξ αριστερών ορίου της f(). 9

11 ΔΡΑΣΤΗΡΙΟΤΗΤΑ 2 η : Ανακάλυψη του εκ δεξιών ορίου της συνάρτησης. 1. Με το δεύτερο τετραγωνάκι επιβεβαιώνουμε της μαθηματική έκφραση του μελετώμενου ορισμού. 2. Με την ίδια διαδικασία μελετάμε το εκ δεξιών όριο της g(). Συμπληρώνουμε τον πίνακα και μελετάμε την αναπαραστάσή της, με τα δεξιά κουτάκια επιλογής. ΔΡΑΣΤΗΡΙΟΤΗΤΑ 3 η : Μελέτη των εξ αριστερών και εκ δεξιών ορίου της κλαδωτής συνάρτησης. 10

12 1. Τέλος, τσεκάροντας όλα τα τετραγωνάκια, θεωρούμε μια κλαδωτή συνάρτηση που έχει τις τιμές της f() αριστερά από το 0 και τις τιμές της g() δεξιά του. Έτσι έχουμε τον πλήρη ορισμό του ορίου της συνάρτησης ΔΡΑΣΤΗΡΙΟΤΗΤΑ 4 η : Παραδείγματα μελέτης του ορίου διαφόρων συναρτήσεων. 1. Ανοίγουμε το αρχείο Όρια διαφόρων συναρτήσεων.ggb 2. Τσεκάροντας τα διαδοχικά τετράγωνα επιλογής παρακολουθούμε το όριο σε περίπτωση διαφόρων συναρτήσεων. 11

13 6. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ 12

14 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑ 1 η : Ανακάλυψη των εξ αριστερών ορίου της συνάρτησης. 1. Ανοίγουμε το αρχείο Προσέγγιση αριστερά-δεξιά.ggb 2. Συμπληρώστε τον πίνακα για την συνάρτηση f() = ,5 0,075 0,9000 0,9900 0,9990 0,9999 f() 3. Από τους πίνακας διαδοχικής προσέγγισης του σημείου 0 = 1 εξ αριστερών απαντήστε τα παρακάτω που αφορούν το όριο της συνάρτησης f() εξ αριστερών όταν το -> 0 με τιμές μικρότερες του 1. Προς ποιό αριθμό τείνει το ;. Προς ποιό αριθμό τείνει το f();. f() Συμπληρώστε: lim1 4. Τσεκάρετε το τετράγωνο επιλογής της f(). Μεταβάλλετε τον δρομέα a και παρακολουθήστε το και το f(). Τσεκάρετε το τετράγωνο επιλογής του συμπεράσματος της f(). 13

15 ΔΡΑΣΤΗΡΙΟΤΗΤΑ 2 η : Ανακάλυψη του εκ δεξιών ορίου της συνάρτησης Συμπληρώστε τον πίνακα για την συνάρτηση g() = 1 X 2,0000 1,5500 1,2000 1,1000 1,0999 1,0099 1,0009 g() 6. Από τους πίνακας διαδοχικής προσέγγισης του σημείου 0 = 1 εκ δεξιών απαντήστε τα παρακάτω που αφορούν το όριο της συνάρτησης f() εκ δεξιών όταν το -> 0 με τιμές μεγαλύτερες του 1. Προς ποιό αριθμό τείνει το ;. Προς ποιό αριθμό τείνει το g();. g() Συμπληρώστε: lim1 7. Ακυρώστε το τετράγωνο επιλογής της f(). Μεταβάλλετε τον δρομέα b και παρακολουθήστε το και το g(). Τσεκάρετε το τετράγωνο επιλογής του συμπεράσματος της g(). ΔΡΑΣΤΗΡΙΟΤΗΤΑ 3 η : Μελέτη των εξ αριστερών και εκ δεξιών ορίου της κλαδωτής συνάρτησης. 8. Θεωρήστε την συνάρτηση h ( ) _

16 Με βάση τα προηγούμενα βρείτε : lim 1 h() lim 1 h() lim1 h() Τσεκάρετε όλα τα τετράγωνα επιλογής για την επιβεβαίωση των συμπερασμάτων σας. ΔΡΑΣΤΗΡΙΟΤΗΤΑ 4 η : Παραδείγματα μελέτης του ορίου διαφόρων συναρτήσεων. 10. Ανοίξτε το αρχείο Όρια διαφόρων συναρτήσεων.ggb 11. Εμφανίζοντας και αποκρύπτοντας τις συναρτήσεις απαντήστε: Ποια είναι τα παρακάτω όρια. lim 1 ( ) lim 0 g( ) lim ( ) 1 lim 0 g( ) lim g( ) 0 ΝΕΑ ΕΡΩΤΗΜΑΤΑ ΠΟΥ ΠΡΟΕΚΥΨΑΝ: 15

17 7. ΑΝΑΦΟΡΕΣ ΠΑΡΑΠΟΜΠΕΣ- ΒΙΒΛΙΟΓΡΑΦΙΑ 1. Αναλυτικά προγράμματα ΕΠΑ.Λ ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ 2ος Κύκλος Α' Τάξη Μαθηματικά Γενικής Παιδείας Π.ΒΛΑΜΟΣ, Α.ΔΟΥΝΑΒΗΣ, Δ.ΖΕΡΒΑΣ ΟΕΔΒ,

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Νέες

Διαβάστε περισσότερα

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Η λογαριθµική συνάρτηση και οι ιδιότητές της ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα

Διαβάστε περισσότερα

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II. 9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ

ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ Γνωστική Περιοχή: Γεωμετρία Β Λυκείου Θέμα Το Πυθαγόρειο Θεώρημα είναι γνωστό στους μαθητές από το Γυμνάσιο. Το προτεινόμενα θέμα αφορά την

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Β ΕΠΙΠΕΔΟΥ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΚΣΕ 4 ου ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ ΕΠΙΜΟΡΦΩΤΗΣ: ΜΗΤΡΟΓΙΑΝΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ Κατακόρυφη - Οριζόντια

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra. 9.3. Σενάριο 9. Μελέτη της συνάρτησης f(x) = αx +βx+γ Γνωστική περιοχή: Άλγεβρα Α Λυκείου. Η συνάρτηση ψ= αχ +βχ+γ (γραφική παράσταση, μονοτονία, ακρότατα). Θέμα: Το προτεινόμενο θέμα αφορά την κατασκευή

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Εκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου

Εκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου Εκπαιδευτικό Σενάριο: Αναλογίες Ιανουάριος 2011 1. Τίτλος Αναλογίες 2. Ταυτότητα Συγγραφέας: Γνωστική περιοχή των μαθηματικών: Άλγεβρα, Γεωμετρία Θέμα: Αναλογίες Συντεταγμένες στο επίπεδο 3. Σκεπτικό 2

Διαβάστε περισσότερα

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον

Διαβάστε περισσότερα

Σε ποιους απευθύνεται: Χρόνος υλοποίησης: Χώρος υλοποίησης: Κοινωνική ενορχήστρωση της τάξης Στόχοι:... 4

Σε ποιους απευθύνεται: Χρόνος υλοποίησης: Χώρος υλοποίησης: Κοινωνική ενορχήστρωση της τάξης Στόχοι:... 4 Περιεχόμενα Νικόλαος Μανάρας... 2 Σενάριο για διδασκαλία/ εκμάθηση σε μια σύνθεση μεικτής μάθησης (Blended Learning) με τη χρήση του δυναμικού μαθηματικού λογισμικού Geogebra σε διαδραστικό πίνακα και

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση Μία διδακτική προσέγγιση ΣΕΝΑΡΙΟ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.)

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ Χριστόφορος Δερμάτης ΠΕ 0 3 Γυμνάσιο - Λυκειακές τάξεις Κασσιόπης Κέρκυρα 01/07/2015 1. Συνοπ τική π εριγραφή της ανοιχτής εκπαιδευτικής π ρακτικής Γίνεται

Διαβάστε περισσότερα

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra.

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra. Σενάριο 4. Η µέτρηση του εµβαδού ενός παραβολικού οικοπέδου Γνωστική περιοχή: Μαθηµατικά Γ' Λυκείου. Παραβολή. Τετραγωνική συνάρτηση. Εµβαδόν. Ορισµένο ολοκλήρωµα Θέµα: Οι τέσσερις πλευρές ενός οικοπέδου

Διαβάστε περισσότερα

Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics»

Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics» Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics» ΣΧΟΛΕΙΟ Π.Π.Λ.Π.Π. ΤΑΞΗ: Α ΜΑΘΗΜΑ: Β Νόµος του Νεύτωνα ΚΑΘΗΓΗΤΗΣ: Σφαέλος Ιωάννης Συνοπτική Παρουσίαση

Διαβάστε περισσότερα

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής

Διαβάστε περισσότερα

Εξισώσεις α βαθμού. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ

Εξισώσεις α βαθμού. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ Εξισώσεις α βαθμού. Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν έγγραφο

Διαβάστε περισσότερα

Εξισώσεις α βαθμού. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ

Εξισώσεις α βαθμού. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ Εξισώσεις α βαθμού. Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν έγγραφο

Διαβάστε περισσότερα

Εξισώσεις α βαθμού. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ

Εξισώσεις α βαθμού. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ Εξισώσεις α βαθμού. Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν έγγραφο

Διαβάστε περισσότερα

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου ΣΕΝΑΡΙΟ «Προσπάθησε να κάνεις ένα τρίγωνο» Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου Ηµεροµηνία: Φλώρινα, 6-5-2014 Γνωστική περιοχή:

Διαβάστε περισσότερα

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Αγιώτης Πέτρος pagioti@sch.gr Εκπαιδευτικός Πληροφορικής Τίτλος διδακτικού σεναρίου Η έννοια των σταθερών και της καταχώρησης στη Visual Basic Εμπλεκόμενες γνωστικές περιοχές Στοιχεία

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία 1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός

Διαβάστε περισσότερα

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον)

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) ΔΡΑΣΤΗΡΙΟΤΗΤΑ: ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ με τη βοήθεια του λογισμικού Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Νοέμβριος 2013 0 ΤΙΤΛΟΣ ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

3 βήματα για την ένταξη των ΤΠΕ: 1. Εμπλουτισμός 2. Δραστηριότητα 3. Σενάριο Πέτρος Κλιάπης-Όλγα Κασσώτη Επιμόρφωση εκπαιδευτικών

3 βήματα για την ένταξη των ΤΠΕ: 1. Εμπλουτισμός 2. Δραστηριότητα 3. Σενάριο Πέτρος Κλιάπης-Όλγα Κασσώτη Επιμόρφωση εκπαιδευτικών 3 βήματα για την ένταξη των ΤΠΕ: 1. Εμπλουτισμός 2. Δραστηριότητα 3. Σενάριο Πέτρος Κλιάπης-Όλγα Κασσώτη Επιμόρφωση εκπαιδευτικών Παρουσίαση βασισμένη στο κείμενο: «Προδιαγραφές ψηφιακής διαμόρφωσης των

Διαβάστε περισσότερα

6 η ΣΥΝΕΔΡΙΑ. Διδακτικές δραστηριότητες και μικροσενάρια Εισαγωγή στο Φωτόδεντρο

6 η ΣΥΝΕΔΡΙΑ. Διδακτικές δραστηριότητες και μικροσενάρια Εισαγωγή στο Φωτόδεντρο 6 η ΣΥΝΕΔΡΙΑ Διδακτικές δραστηριότητες και μικροσενάρια Εισαγωγή στο Φωτόδεντρο ΣΤΟΧΟΙ Οι επιμορφούμενοι μετά το πέρας της Συνεδρίας θα πρέπει: να γνωρίζουν τις δυνατότητες που τους προσφέρει το Φωτόδεντρο.

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση

Διαβάστε περισσότερα

Μπολοτάκης Γιώργος. Μαθηματικός, Επιμορφωτής Β επιπέδου, συγγραφέας του βιβλίου «GeoGebra εύκολα και απλά»

Μπολοτάκης Γιώργος. Μαθηματικός, Επιμορφωτής Β επιπέδου, συγγραφέας του βιβλίου «GeoGebra εύκολα και απλά» «Αξιοποίηση των Τ.Π.Ε. στη Διδακτική Πράξη» «Διδασκαλία μαθήματος μαθηματικών Άλγεβρας Α Λυκείου, με εφαρμογή του λογισμικού GeoGebra και χρήση φύλλων εργασίας, «Εξίσωση-Ανίσωση 2ου βαθμού, Μορφές - Πρόσημο

Διαβάστε περισσότερα

Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου)

Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου) Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου) Συστάδα Β1.3: Μαθηματικά, Πληροφορική, Οικονομία Διοίκηση Επιχειρήσεων Συνεδρία 5 ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΧΡΗΣΕΙΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΚΕΙΜΕΝΟΥ

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο πολλές φορές και σε διαφορετικές τάξεις ή ανταλλάξει ιδέες µε άλλους συναδέλφους

Διαβάστε περισσότερα

Διδακτικές ενότητες Στόχος

Διδακτικές ενότητες Στόχος Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΤΙΤΛΟΣ ΣΕΝΑΡΙΟΥ: Οι κλασματικές μονάδες και οι απλοί κλασματικοί αριθμοί ΕΠΙΜΟΡΦOYMENH:

Διαβάστε περισσότερα

Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra

Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra Κιούφτη Ροϊδούλα 1 1 Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης, rkioufti@hotmail.com

Διαβάστε περισσότερα

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί

Διαβάστε περισσότερα

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α Γυμνασίου ΕΝΟΤΗΤΕΣ: 1. Ανάλογα ποσά Ιδιότητες αναλόγων ποσών 2. Γραφική παράσταση σχέσης αναλογίας ΕΙΣΗΓΗΤΕΣ: Άγγελος Γιαννούλας Κωνσταντίνος Ρεκούμης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ

Διαβάστε περισσότερα

Πειραματική Μελετη της Ατμοσφαίρας στο Μικρόκοσμο Torricelli του Λογισμικού ΓΑΙΑ ΙΙ

Πειραματική Μελετη της Ατμοσφαίρας στο Μικρόκοσμο Torricelli του Λογισμικού ΓΑΙΑ ΙΙ Πειραματική Μελετη της Ατμοσφαίρας στο Μικρόκοσμο Torricelli του Λογισμικού ΓΑΙΑ ΙΙ 1 ο Φύλλο Εργασίας: Τι συμβαίνει αν ανέβουμε ψηλά στην ατμόσφαιρα με ένα αερόστατο; 1.1 ΠΕΡΙΓΡΑΦΗ Ο Τορικέλι (Evangelista

Διαβάστε περισσότερα

1 ΕΙΣΑΓΩΓΗ 2 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ «ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ» ΜΕ ΤΟ ΜΙΚΡΟΚΟΣΜΟ «TORRICELLI» ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ ΓΑΙΑ ΙΙ

1 ΕΙΣΑΓΩΓΗ 2 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ «ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ» ΜΕ ΤΟ ΜΙΚΡΟΚΟΣΜΟ «TORRICELLI» ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ ΓΑΙΑ ΙΙ «ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ» ΜΕ ΤΟ ΜΙΚΡΟΚΟΣΜΟ «TORRICELLI» ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ ΓΑΙΑ ΙΙ 1 ΕΙΣΑΓΩΓΗ Εμπλεκόμενες γνωστικές περιοχές: Γεωγραφία: Η ατμόσφαιρα Τάξεις - Συμβατότητα με το Α.Π.Σ. Στ τάξη Δημοτικού

Διαβάστε περισσότερα

Μαθητές Β ΕΠΑ.Λ. Σωτήρης Δ. Χασάπης. 4-5 διδακτικές ώρες, ανάλογα με το γενικότερο επίπεδο της τάξης.

Μαθητές Β ΕΠΑ.Λ. Σωτήρης Δ. Χασάπης. 4-5 διδακτικές ώρες, ανάλογα με το γενικότερο επίπεδο της τάξης. Τίτλος σεναρίου : Η συνάρτηση f (x)=α ημ(ωx)+ β Γνωστική περιοχή : Θέμα : Τεχνολογικά εργαλεία : Πλαίσιο εφαρμογής Σε ποιους απευθύνεται : Διδάσκων : Χρόνος υλοποίησης : Χώρος υλοποίησης : 1 Σκεπτικό Βασική

Διαβάστε περισσότερα

Διδακτική Μαθηματικών Ι Ενδεικτικές οδηγίες για τη δραστηριότητα

Διδακτική Μαθηματικών Ι Ενδεικτικές οδηγίες για τη δραστηριότητα Διδακτική Μαθηματικών Ι Ενδεικτικές οδηγίες για τη δραστηριότητα Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Διδακτική Μαθηματικών Ι: Ενδεικτικές οδηγίες για τη δραστηριότητα (εργασία) (To

Διαβάστε περισσότερα

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» «Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano

Διαβάστε περισσότερα

Κρατική παρέμβαση στην αγορά - Επιβολή i) ανώτατων τιμών και ii) κατώτατων τιμών

Κρατική παρέμβαση στην αγορά - Επιβολή i) ανώτατων τιμών και ii) κατώτατων τιμών Κρατική παρέμβαση στην αγορά - Επιβολή i) ανώτατων τιμών και ii) κατώτατων τιμών Βέλτιστο Σενάριο Γνωστικό αντικείμενο: Κοινωνικές - Πολιτικές επιστήμες Δημιουργός: Γιώργος Παπαβασιλείου ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ

Διαβάστε περισσότερα

Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου)

Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου) Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου) Συστάδα Β1.3: Μαθηματικά, Πληροφορική, Οικονομία Διοίκηση Επιχειρήσεων Συνεδρία 5 ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΧΡΗΣΕΙΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΚΕΙΜΕΝΟΥ

Διαβάστε περισσότερα

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας. «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας. «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2 3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας ΠΡΑΚΤΙΚΑ «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2 1 Καθηγητής, Φυσικός, 2 ο Γενικό Λύκειο Αγ. Νικολάου Κρήτης xaralpan@gmail.com 2 Καθηγήτρια, Φυσικός,

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ

ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ 2. Εκπαιδευτικό Λογισμικό για τα Μαθηματικά 2.1 Κύρια χαρακτηριστικά του εκπαιδευτικού λογισμικού για την Διδακτική των Μαθηματικών 2.2 Κατηγορίες εκπαιδευτικού λογισμικού για

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe. 9.3.3 Σενάριο 10. Τριγωνομετρικές συναρτήσεις Γνωστική περιοχή: Άλγεβρα Β Λυκείου. Η συνάρτηση ψ= ρ ημ(λχ+κ). Γραφική παράσταση τριγωνομετρικών συναρτήσεων. Γραφική επίλυση τριγωνομετρικής εξίσωσης. Θέμα:

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

Διαφοροποίηση στρατηγικών διδασκαλίας ανάλογα με το περιεχόμενο στα μαθήματα των φυσικών επιστημών

Διαφοροποίηση στρατηγικών διδασκαλίας ανάλογα με το περιεχόμενο στα μαθήματα των φυσικών επιστημών Διαφοροποίηση στρατηγικών διδασκαλίας ανάλογα με το περιεχόμενο στα μαθήματα των φυσικών επιστημών Κων/νος Στεφανίδης Σχολικός Σύμβουλος Πειραιά kstef2001@yahoo.gr Νικόλαος Στεφανίδης Φοιτητής ΣΕΜΦΕ, ΕΜΠ

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι

Διαβάστε περισσότερα

Φάκελος επιμορφωτικού υλικού για την εκπαίδευση επιμορφωτών στην εκπαιδευτική αξιοποίηση διαδραστικών συστημάτων διδασκαλίας

Φάκελος επιμορφωτικού υλικού για την εκπαίδευση επιμορφωτών στην εκπαιδευτική αξιοποίηση διαδραστικών συστημάτων διδασκαλίας Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ (2007 2013) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ Φάκελος επιμορφωτικού υλικού για την εκπαίδευση επιμορφωτών στην

Διαβάστε περισσότερα

ΜΟΡΙΑΚΗ ΓΕΝΕΤΙΚΗ: ΜΕΤΑΓΡΑΦΗ ΤΟΥ ΓΕΝΕΤΙΚΟΥ ΥΛΙΚΟΥ

ΜΟΡΙΑΚΗ ΓΕΝΕΤΙΚΗ: ΜΕΤΑΓΡΑΦΗ ΤΟΥ ΓΕΝΕΤΙΚΟΥ ΥΛΙΚΟΥ ΕΝΤΥΠΟ Β: ΟΡΓΑΝΩΣΗ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΜΟΡΙΑΚΗ ΓΕΝΕΤΙΚΗ: ΜΕΤΑΓΡΑΦΗ ΤΟΥ ΓΕΝΕΤΙΚΟΥ ΥΛΙΚΟΥ 1. ΕΙΣΑΓΩΓΗ 1.1 Τίτλος σεναρίου Μεταγραφή του γενετικού υλικού 1.2 Δημιουργός σεναρίου Δασκαλάκη Αικατερίνη, ΠΕ04.04

Διαβάστε περισσότερα

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα. Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

Εφαρμογές παραγώγων. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΒΑΣΙΛΙΚΗ ΘΩΜΑ

Εφαρμογές παραγώγων. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΒΑΣΙΛΙΚΗ ΘΩΜΑ Εφαρμογές παραγώγων Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΒΑΣΙΛΙΚΗ ΘΩΜΑ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν έγγραφο

Διαβάστε περισσότερα

Εκπαιδευτικό Σενάριο 2

Εκπαιδευτικό Σενάριο 2 Εκπαιδευτικό Σενάριο 2 Τίτλος: Τα συνεργατικά περιβάλλοντα δημιουργίας και επεξεργασίας υπολογιστικών φύλλων Εκτιμώμενη διάρκεια εκπαιδευτικού σεναρίου: Προβλέπεται να διαρκέσει συνολικά 3 διδακτικές ώρες.

Διαβάστε περισσότερα

Δραστηριότητες ΕΠΙΜΟΡΦΩΤΗΣ ΟΒΑΔΙΑΣ ΣΑΒΒΑΣ. Συνεργατική εργασία συναδέλφων: Δημητρίου Καβαλιέρου Ευσταθίου Κόντου

Δραστηριότητες ΕΠΙΜΟΡΦΩΤΗΣ ΟΒΑΔΙΑΣ ΣΑΒΒΑΣ. Συνεργατική εργασία συναδέλφων: Δημητρίου Καβαλιέρου Ευσταθίου Κόντου Συνεδρία 10 η Συστάδα 2: Φυσικές Επιστήμες, Τεχνολογία, Φυσική Αγωγή μ-σενάριο Κυκλώματα στο Εναλλασσόμενο Ρεύμα Κύκλωμα RL σε σειρά Δραστηριότητες Εισαγωγή στην εκπαιδευτική αξιοποίηση των ΤΠΕ και στο

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ. Μελέτη της συνάρτησης f(x)=ηµx

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ. Μελέτη της συνάρτησης f(x)=ηµx ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Μελέτη της συνάρτησης f(x)=ηµx Στη Γ' γυµνασίου, το ηµίτονο µελετάται ως τριγωνοµετρικός αριθµός µε βάση τις συντεταγµένες ενός σηµείου Μ µιας ηµιευθείας ΟΜ που σχηµατίζει µε

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΒΑΣΙΛΗΣ ΦΑΓΟΓΕΝΗΣ ΣΧΟΛΕΙΟ 5 ο ΓΕΛ ΚΕΡΚΥΡΑΣ ΚΕΡΚΥΡΑ 25.6.2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Με χρήση του λογισμικού

Διαβάστε περισσότερα

Εισαγωγή στην έννοια της συνάρτησης

Εισαγωγή στην έννοια της συνάρτησης Εισαγωγή στην έννοια της συνάρτησης Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Η/Υ

ΠΑΙΔΑΓΩΓΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Η/Υ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΙΔΑΓΩΓΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Η/Υ ΘΕΜΑΤΑ ΕΝΟΤΗΤΑΣ ΣΙΑΣΙΑΚΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ ΕΝΟΤΗΤΑΣ «ΠΑΙΔΑΓΩΓΙΚΗ

Διαβάστε περισσότερα

ΤΟ ΟΡΙΟ ΜΕ ΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΛΟΓΙΣΜΙΚΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ.

ΤΟ ΟΡΙΟ ΜΕ ΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΛΟΓΙΣΜΙΚΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ. 372 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΟΡΙΟ ΜΕ ΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΛΟΓΙΣΜΙΚΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ. Ζάφειρας Παναγιώτης Μαθηματικός Β θμιας Εκπ., Επιμορφωτής Ενδοσχολικής Επιμόρφωσης pzafeir@sch.gr http://users.sch.gr/pzafeir

Διαβάστε περισσότερα

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία 1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός

Διαβάστε περισσότερα

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19 ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ Κοκκαλάρα Μαρία ΠΕ19 ΠΕΡΙΓΡΑΜΜΑ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγικά στοιχεία 2. Ένταξη του διδακτικού σεναρίου στο πρόγραμμα σπουδών 3. Οργάνωση της τάξης

Διαβάστε περισσότερα

Εισαγωγή στην έννοια του Αλγορίθμου

Εισαγωγή στην έννοια του Αλγορίθμου Εισαγωγή στην έννοια του Αλγορίθμου ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Νίκος Μιχαηλίδης, Πληροφορικός ΠΕ19 ΣΧΟΛΕΙΟ 2 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Θεσσαλονίκη, 24 Φεβρουαρίου 2015 1. Συνοπτική περιγραφή της

Διαβάστε περισσότερα

Τμήμα: ευτεροβάθμιας Ευβοίας. Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο:

Τμήμα: ευτεροβάθμιας Ευβοίας. Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο: Τμήμα: ευτεροβάθμιας Ευβοίας Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο: 2231081842 Χώρος υλοποίησης: 3 ο ημοτικό Σχολείο Χαλκίδας Υπεύθυνος: Σιέκρη Φρειδερίκη Τηλέφωνο

Διαβάστε περισσότερα

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΟΙΚΟΝΟΜΟΥ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ,

Διαβάστε περισσότερα

με συνθήκη όπως Countif και IF-ΤΗΕΝ-ELSE στο

με συνθήκη όπως Countif και IF-ΤΗΕΝ-ELSE στο 1 7 η ΔΙΔΑΚΣΙΚΗ ΠΑΡΕΜΒΑΗ Διάρκεια Παρέμβασης: 1 διδακτική ώρα ΣΙΣΛΟ ΔΡΑΣΗΡΙΟΣΗΣΑ Συναρτήσεις Microsoft Excel 2003-2007. με συνθήκη όπως Countif και IF-ΤΗΕΝ-ELSE στο ΚΟΠΟ Οι μαθητές μετά το τέλος του μαθήματος

Διαβάστε περισσότερα

Γυμνάσιο Μαραθώνα 1 Σχολικό έτος:

Γυμνάσιο Μαραθώνα 1 Σχολικό έτος: Γυμνάσιο Μαραθώνα 1 Σχολικό έτος: 2011-2012 Τίτλος διδακτικού σεναρίου: Γνωστικό αντικείμενο: Γενική ενότητα: Μάθημα: Τάξη: Προβλεπόμενος χρόνος: Εκπαιδευτικό λογισμικό:

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΩΝ (περιγραφή) Περιγραφή του περιεχομένου της ενότητας.

ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΩΝ (περιγραφή) Περιγραφή του περιεχομένου της ενότητας. Α/Α ΣΤΟΧΟΙ (επιθυμητές γνώσεις-δεξιότητες-ικανότ ητες) ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ (Τίτλοι) ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΩΝ (περιγραφή) ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΙΑΡΚΕΙΑ (ενδεικτικά σε ώρες) Το Πρόγραμμα πιστοποιήθηκε από την

Διαβάστε περισσότερα

1. Τίτλος. Τετράπλευρα Είδη τετράπλευρων (παραλληλόγραµµο-ορθογώνιορόµβος-τετράγωνο) 2. Ταυτότητα του σεναρίου.

1. Τίτλος. Τετράπλευρα Είδη τετράπλευρων (παραλληλόγραµµο-ορθογώνιορόµβος-τετράγωνο) 2. Ταυτότητα του σεναρίου. 1. Τίτλος. Τετράπλευρα Είδη τετράπλευρων (παραλληλόγραµµο-ορθογώνιορόµβος-τετράγωνο) και ιδιότητες αυτών. 2. Ταυτότητα του σεναρίου. Συγγραφέας: Αλαµπορινός Σπυρίδων Γνωστική περιοχή των µαθηµατικών: Γεωµετρία

Διαβάστε περισσότερα

Εφαρμογές Υπηρεσιών Νέφους

Εφαρμογές Υπηρεσιών Νέφους Εφαρμογές Υπηρεσιών Νέφους Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Πληροφορική Δημιουργός: ΑΦΡΟΔΙΤΗ ΜΙΧΑΗΛΙΔΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση

Διαβάστε περισσότερα

Εφαρμογές Υπηρεσιών Νέφους

Εφαρμογές Υπηρεσιών Νέφους Εφαρμογές Υπηρεσιών Νέφους Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Πληροφορική Δημιουργός: ΑΦΡΟΔΙΤΗ ΜΙΧΑΗΛΙΔΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση

Διαβάστε περισσότερα

222 Διδακτική των γνωστικών αντικειμένων

222 Διδακτική των γνωστικών αντικειμένων 222 Διδακτική των γνωστικών αντικειμένων 8. Χελωνόκοσμος (απαιτεί να είναι εγκατεστημένο το Αβάκιο) (6 ώρες) Τίτλος: Ιδιότητες παραλληλογράμμων Δημιουργός: Μιχάλης Αργύρης ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΕ ΜΟΡΦΗ ΔΙΑΔΡΑΣΤΙΚΩΝ ΣΕΛΙΔΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ DESCARTES

ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΕ ΜΟΡΦΗ ΔΙΑΔΡΑΣΤΙΚΩΝ ΣΕΛΙΔΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ DESCARTES 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 167 ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΕ ΜΟΡΦΗ ΔΙΑΔΡΑΣΤΙΚΩΝ ΣΕΛΙΔΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ DESCARTES Καστανιώτης Δημήτρης Μαθηματικός-επιμορφωτής

Διαβάστε περισσότερα

Διδασκαλία θεμάτων Φυσικών Επιστημών

Διδασκαλία θεμάτων Φυσικών Επιστημών Διδασκαλία θεμάτων Φυσικών Επιστημών Στους ειδικούς σκοπούς του μαθήματος αναφέρεται ότι θα πρέπει : «.οι μαθητές να είναι ικανοί, όχι μόνο να παρατηρούν τα φυσικά και χημικά φαινόμενα. και να καταγράφουν

Διαβάστε περισσότερα

ΠΕ60/70, ΠΕ02, ΠΕ03, ΠΕ04)

ΠΕ60/70, ΠΕ02, ΠΕ03, ΠΕ04) «Επιµόρφωση εκπαιδευτικών στη χρήση και αξιοποίηση των ΤΠΕ στην εκπαιδευτική διδακτική διαδικασία» (Γ ΚΠΣ, ΕΠΕΑΕΚ, Μέτρο 2.1, Ενέργεια 2.1.1, Κατηγορία Πράξεων 2.1.1 θ) Αναλυτικό Πρόγραµµα Σπουδών για

Διαβάστε περισσότερα

Σενάριο για την επεξεργασία εικόνας με το Paint.NET που σχεδίασε ο εκπαιδευτικός κλάδου ΠΕ20 Μαλλιαρίδης Κωνσταντίνος.

Σενάριο για την επεξεργασία εικόνας με το Paint.NET που σχεδίασε ο εκπαιδευτικός κλάδου ΠΕ20 Μαλλιαρίδης Κωνσταντίνος. Μπάλες Μπιλιάρδου Σενάριο για την επεξεργασία εικόνας με το Paint.NET που σχεδίασε ο εκπαιδευτικός κλάδου ΠΕ20 Μαλλιαρίδης Κωνσταντίνος. 1. Τίτλος διδακτικού σεναρίου Μπάλες μπιλιάρδου 2. Εκτιμώμενη διάρκεια

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

Δημιουργία, εμφάνιση, μέτρηση πλήθους γραμμών, λέξεων και χαρακτήρων αρχείων κειμένου στο Λ/Σ Unix

Δημιουργία, εμφάνιση, μέτρηση πλήθους γραμμών, λέξεων και χαρακτήρων αρχείων κειμένου στο Λ/Σ Unix Δημιουργία, εμφάνιση, μέτρηση πλήθους γραμμών, λέξεων και χαρακτήρων αρχείων κειμένου στο Λ/Σ Unix Επαρκές Σενάριο Γνωστικό αντικείμενο: Πληροφορική Δημιουργός: Βασίλειος Βασιλάκης ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ

Διαβάστε περισσότερα

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια Κάθε οµάδα παρουσιάζει στην τάξη: (1) Τις logo διαδικασίες µε τις οποίες σχεδίασε τα κανονικά πολύγωνα. (2) Τις διαδικασίες µε τις οποίες σχεδίασαν τα κανονικά πολύγωνα γύρω από µια περιοχή. (3) Τα τεχνουργήµατα

Διαβάστε περισσότερα

Από τη σχολική συμβατική τάξη στο νέο υβριδικό μαθησιακό περιβάλλον: εκπαίδευση από απόσταση για συνεργασία και μάθηση

Από τη σχολική συμβατική τάξη στο νέο υβριδικό μαθησιακό περιβάλλον: εκπαίδευση από απόσταση για συνεργασία και μάθηση Από τη σχολική συμβατική τάξη στο νέο υβριδικό μαθησιακό περιβάλλον: εκπαίδευση από απόσταση για συνεργασία και μάθηση Δρ Κώστας Χαμπιαούρης Επιθεωρητής Δημοτικής Εκπαίδευσης Συντονιστής Άξονα Αναλυτικών

Διαβάστε περισσότερα

Τίτλος Μαθήματος. Ενότητα: Εργαστήριο 4 ο : Παρουσίαση και Ανάλυση της Φόρμας Σχεδίασης Δραστηριοτήτων με χρήση λογισμικού/ά.

Τίτλος Μαθήματος. Ενότητα: Εργαστήριο 4 ο : Παρουσίαση και Ανάλυση της Φόρμας Σχεδίασης Δραστηριοτήτων με χρήση λογισμικού/ά. Τίτλος Μαθήματος Ενότητα: Εργαστήριο 4 ο : Παρουσίαση και Ανάλυση της Φόρμας Σχεδίασης Δραστηριοτήτων με χρήση λογισμικού/ά Βασίλειος Κόμης ΤΕΕΑΠΗ ΠΑΤΡΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

«Διδακτική Δραστηριότητα στην αίθουσα των υπολογιστών»

«Διδακτική Δραστηριότητα στην αίθουσα των υπολογιστών» «Διδακτική Δραστηριότητα στην αίθουσα των υπολογιστών» Καθηγητής ΜΠΟΥΖΑΛΗΣ ΜΙΧΑΛΗΣ e mail mbouzalis@otenet.gr Κλάδος Π Ε, Μαθηματικός Σχολείο ο Ενιαίο Λύκειο Καλαμαριάς Τάξη Θετική - Τεχνολογική κατεύθυνση

Διαβάστε περισσότερα

Λογικές πύλες και λογικά κυκλώματα

Λογικές πύλες και λογικά κυκλώματα Λογικές πύλες και λογικά κυκλώματα ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Κωνσταντίνος Δραγογιάννης, ΠΕ84 Ηλεκτρονικών ΣΧΟΛΕΙΟ Επαγγελματικό Λύκειο (ΕΠΑΛ) Άμφισσας Άμφισσα, 31 Οκτωβρίου 2018 1. Συνοπτική περιγραφή της ανοιχτής

Διαβάστε περισσότερα

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο Παιδαγωγικές εφαρμογές Η/Υ Μάθημα 1 ο 14/3/2011 Περίγραμμα και περιεχόμενο του μαθήματος Μάθηση με την αξιοποίηση του Η/Υ ή τις ΤΠΕ Θεωρίες μάθησης Εφαρμογή των θεωριών μάθησης στον σχεδιασμό εκπαιδευτικών

Διαβάστε περισσότερα

Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία

Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΠΥΡΙΔΩΝ ΔΟΥΚΑΚΗΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΠΑΡΑΔΟΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Εκπαιδευτική Τεχνολογία & Διδακτική της Πληροφορικής ΙΙ: Μέρος A

Διαβάστε περισσότερα

Περιοχές λειτουργίας τρανζίστορ BJT Ευθεία φόρτου - Σημείο Q

Περιοχές λειτουργίας τρανζίστορ BJT Ευθεία φόρτου - Σημείο Q Περιοχές λειτουργίας τρανζίστορ BJT Ευθεία φόρτου - Σημείο Q Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Ηλεκτρονική - Αυτοματισμός (Ε.Ε.) Δημιουργός: ΑΝΑΡΓΥΡΟΣ ΜΑΡΜΑΡΙΝΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ

Διαβάστε περισσότερα

Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ ( ) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ ( ) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ (2007 2013) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ Πρακτική Άσκηση Εκπαιδευομένων στα Πανεπιστημιακά Κέντρα Επιμόρφωσης

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΜΑΘΗΜΑΤΟΣ: ΔΥΝΑΜΙΚΗ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ

ΣΕΝΑΡΙΟ ΜΑΘΗΜΑΤΟΣ: ΔΥΝΑΜΙΚΗ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΣΕΝΑΡΙΟ ΜΑΘΗΜΑΤΟΣ: ΔΥΝΑΜΙΚΗ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ Τάξη: Β Γυμνασίου. Εμπλεκόμενες γνωστικές περιοχές : Φυσική Β Γυμνασίου Τίτλος μαθήματος : Ισχύς 5.2. Διάρκεια: 2 διδακτικές ώρες Οργάνωση τάξης και απαιτούμενη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: ΒΑΣΙΚΕΣ ΟΙΚΟΝΟΜΙΚΕΣ ΕΝΝΟΙΕΣ ΠΑΡΑΓΡΑΦΟΣ 7: ΠΑΡΑΓΩΓΙΚΕΣ ΔΥΝΑΤΟΤΗΤΕΣ ΟΙΚΟΝΟΜΙΑΣ ΕΝΟΤΗΤΑ 3: ΚΑΜΠΥΛΗ ΠΑΡΑΓΩΓΙΚΩΝ ΔΥΝΑΤΟΤΗΤΩΝ

ΚΕΦΑΛΑΙΟ 1: ΒΑΣΙΚΕΣ ΟΙΚΟΝΟΜΙΚΕΣ ΕΝΝΟΙΕΣ ΠΑΡΑΓΡΑΦΟΣ 7: ΠΑΡΑΓΩΓΙΚΕΣ ΔΥΝΑΤΟΤΗΤΕΣ ΟΙΚΟΝΟΜΙΑΣ ΕΝΟΤΗΤΑ 3: ΚΑΜΠΥΛΗ ΠΑΡΑΓΩΓΙΚΩΝ ΔΥΝΑΤΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 1: ΒΑΣΙΚΕΣ ΟΙΚΟΝΟΜΙΚΕΣ ΕΝΝΟΙΕΣ ΠΑΡΑΓΡΑΦΟΣ 7: ΠΑΡΑΓΩΓΙΚΕΣ ΔΥΝΑΤΟΤΗΤΕΣ ΟΙΚΟΝΟΜΙΑΣ ΕΝΟΤΗΤΑ 3: ΚΑΜΠΥΛΗ ΠΑΡΑΓΩΓΙΚΩΝ ΔΥΝΑΤΟΤΗΤΩΝ Στο παράδειγμα που θα χρησιμοποιήσουμε η οικονομία μας παράγει 2 αγαθά

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Τοπικών Δικτύων Υπολογιστών

Σχεδίαση και Ανάλυση Τοπικών Δικτύων Υπολογιστών Σχεδίαση και Ανάλυση Τοπικών Δικτύων Υπολογιστών Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Πληροφορική Δημιουργός: ΑΦΡΟΔΙΤΗ ΜΙΧΑΗΛΙΔΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ

Διαβάστε περισσότερα