1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία
|
|
- Ποδαργη Βλαστός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός του σεναρίου γεννήθηκε όταν κατά την εισαγωγική παράδοση στο µάθηµα Τριγωνοµετρικοί αριθµοί οξείας γωνίας µιας µαθήτρια ρώτησε: που φαίνονται κύριε οι τριγωνοµετρικοί αριθµοί στο τρίγωνο; Φυσικά είναι πολύ δύσκολο να δείξεις αλλά και να εξηγήσεις ότι στο ορθογώνιο τρίγωνο εκτός από τις ορατές πλευρές και γωνίες, υπάρχουν κρυµµένοι αριθµοί (οι λόγοι των πλευρών που αντιστοιχούν σε οξείες γωνίες) Η καινοτοµία που εισάγεται µε τη διδασκαλία του θέµατος είναι η εµφάνιση αυτών των αριθµών στο τρίγωνο. Προστιθέµενη αξία. Το σενάριο αναδεικνύει συγκεκριµένες δράσεις οι οποίες δεν µπορούν να υλοποιηθούν µε τα συµβατικά αναπαραστασιακά µέσα ενώ συγχρόνως αυτές οι δράσεις επεκτείνουν τους γνωστικούς ορίζοντες του µαθητή. Η προστιθέµενη αξία του σεναρίου από παιδαγωγική σκοπιά είναι ότι ο µαθητής µε την βοήθεια του λογισµικού έχει την δυνατότητα να χειριστεί δυναµικά ένα τρίγωνο να διαπιστώσει χωρίς να µετράει κάθε φορά και να διαιρεί ότι υπάρχει ένας λόγος σταθερός (τριγωνοµετρικός αριθµός) που αντιστοιχεί σε µια οξεία γωνία. Κατόπιν ο µαθητής βλέπει ότι υπάρχουν και άλλοι τέτοιοι αριθµοί, οπότε αναπόφευκτα αναρωτιέται πόσοι είναι, υπάρχει η ανάγκη να τους ξεχωρίζουµε άρα να τους δώσουµε όνοµα, συµµετέχοντας έτσι ενεργά στην αναζήτηση των κρυµµένων αριθµών. Καινοτοµία: α) Με την παρούσα δραστηριότητα διδάσκονται οι τριγωνοµετρικοί αριθµοί (εφαπτοµένη, συνηµίτονο, ηµίτονο ) καθώς και οι συµµεταβολές τους σε µία διδακτική ώρα, σε αντίθεση µε την κατανοµή του αναλυτικού προγράµµατος σε διαφορετικές παραγράφους. Αυτό δεν σηµαίνει ότι η µία ώρα αυτής της δραστηριότητας καλύπτει τις ώρες διδασκαλίας του αναλυτικού προγράµµατος. Ο ενιαίος τρόπος διδασκαλίας όλων των τριγωνοµετρικών αριθµών έρχεται να σταθεροποιήσει την έννοια των λόγων των πλευρών του τριγώνου σαν αριθµούς που υπάρχουν σε ένα τρίγωνο και την σύνδεσή τους µε µια οξεία γωνία. Μετά την δραστηριότητα αυτή ο καθηγητής µε τους µαθητές µπορούν να κάνουν τις εφαρµογές και τα προβλήµατα του σχολικού βιβλίου ανά παράγραφο αλλά και τυχαία. Επίσης γίνεται η δυνατότητα να γίνουν εφαρµογές και µέσα από αυτή τη δραστηριότητα αλλά θα απαιτηθεί µία ακόµη διδακτική ώρα. β) Η παρούσα δραστηριότητα στην φάση εισάγει ένα γράφηµα που είναι πρόδροµος της γραφικής παράστασης των τριγωνοµετρικών αριθµών. Με αυτή την αναπαράσταση επιχειρείται να συνδεθεί η µεταβολή ενός τριγωνοµετρικού αριθµού, µε την µεταβολή της γωνίας Γνωστικά διδακτικά προβλήµατα Η έννοια του τριγωνοµετρικού αριθµού αρχίζοντας από τον ορισµό, δεν δίνει στον µαθητή την στέρεα αίσθηση ότι είναι ένας αριθµός. Ο µαθητής δυσκολεύεται αρκετά να κατανοήσει τι είναι λόγος. Έτσι µε τον παραδοσιακό τρόπο διδασκαλίας αποστηθίζει κάποιους ορισµούς χωρίς να αντιλαµβάνεται τι είναι οι τριγωνοµετρικοί αριθµοί και πως αυτοί φαίνονται στο τρίγωνο. Μαθαίνει απλά να κοιτά τους τριγωνοµετρικούς πίνακες που υπάρχουν στις τελευταίες σελίδες του βιβλίου του ή να τους βρίσκει µε µια επιστηµονική αριθµοµηχανή του Η- Υ ή του κινητού του. Βέβαια και αυτή η δεξιότητα είναι καλή, καλύτερα όµως να γίνεται αφού γνωρίσει ενεργά το θεωρητικό πλαίσιο που αφορά αυτούς τους αριθµούς. 2. Πλαίσιο εφαρµογής. Σε ποιους απευθύνεται: Σε µαθητές της Β Γυµνασίου Χρόνος υλοποίησης. ύο (2) διδακτικές ώρες Χώρος υλοποίησης. οι µαθητές θα εργαστούν εξ ολοκλήρου στο εργαστήριο υπολογιστών, ή στην αίθουσα µε τον διαδραστικό πίνακα
2 Προαπαιτούµενες γνώσεις των µαθητών. Το απαιτούµενο γνωστικό υπόβαθρο των µαθητών είναι : Το ορθογώνιο τρίγωνο, ή έννοια της οξείας γωνίας, οι εντός εκτός και επί τα αυτά γωνίες. Η επίλυση εξισώσεων µε την µέθοδο χιαστί. Απαιτούµενα βοηθητικά υλικά και εργαλεία: Φύλλο εργασίας, το λογισµικό δυναµικής γεωµετρίας geogebra και οι Η-Υ. Κοινωνική ενορχήστρωση της τάξης. οι µαθητές θα εργαστούν σε οµάδες των 4 ατόµων, οι ρόλοι των µαθητών είναι να προβούν στις µαθησιακές δράσεις που προκύπτουν από το φύλλο εργασίας και να εµπλακούν στις αλληλεπιδραστικές δράσεις µε το λογισµικό, µε τους συµµαθητές τους και µε τον διδάσκοντα. Οι αναµενόµενες διδακτικές παρεµβάσεις του εκπαιδευτικού είναι περισσότερο ο συντονισµός των φάσεων της δραστηριότητας και οι επεξηγήσεις που θα δώσει στους µαθητές Στόχοι της δραστηριότητας α) ιδακτικοί: Αναφέρονται παρακάτω στην ανάλυση της δραστηριότητα β) Παιδαγωγικοί: Το παρών σενάριο δηµιουργεί µαθησιακό περιβάλλον που εµπλέκει µαθητές, λογισµικό, καθηγητή. Η αλληλεπίδραση αυτή έχει δύο διαστάσεις. Η πρώτη αφορά στην αλληλεπίδραση µεταξύ µαθητών και εκπαιδευτικού, µαθητών µε µαθητές, εκπαιδευτικών µε εκπαιδευτικούς. Η δεύτερη αφορά στην αλληλεπίδραση των χρηστών µε την πληροφορία και τη διαχείρισή της µέσω των ΤΠΕ. Ανάλυση της δραστηριότητας. Ερωτήσεις φύλλου εργασίας ιδακτικοί στόχοι. Μαθησιακές ράσεις (τι αναµένεται από µαθητή/οµάδα να κάνει µαζί µε εκπαιδευτικό και τα υπολογιστικά µέσα) Α φάση: Αναµενόµενες διδακτικές παρεµβάσεις Κινείστε το δροµέα για Οι µαθητές να αποκτήσουν Οι µαθητές να παρατηρήσουν ότι Στο δυναµικό σχήµα της εφαρµογής η Β παραµένει σταθερή, ενώ οι άλλες
3 το σηµείο Α. Τι παρατηρείτ ε; Μπορείτε να παρατηρήσ ετε ότι στις πλευρές κάτι παραµένει σταθερό; κινητικές δεξιότητες, να παρατηρήσουν, να εικάσουν Να παρατηρήσουν οι µαθητές ότι ο λόγος της απέναντι κάθετης προς την υποτείνουσα είναι σταθερός, εφόσον η γωνία Β παραµένει σταθερή. αλλάζει το τρίγωνο, ότι αλλάζουν οι πλευρές, η Β παραµένει σταθερή, οι άλλες γωνίες θα συζητήσουν αν παραµένουν σταθερές ή αλλάζουν. Να αναρωτηθούν πώς µπορεί να γίνει αυτό. Να κάνουν διάφορες πράξεις µε αυτούς τους αριθµούς αλλάζουν µεν, αλλά παραµένουν ίσες.οι µαθητές γνωρίζουν από την Α τάξη για τις γωνίες που ορίζονται από 2 παράλληλες ευθείες που τέµνονται από µία τρίτη ευθεία. Αν χρειαστεί µπορεί να ζητηθεί οι µαθητές σχεδιάσουν και τρίτη παράλληλη. Είναι δύσκολο να παρατηρήσουν ότι ο λόγος παραµένει σταθερός, γιατί αυτό δεν φαίνεται, είναι κρυµµένο θέλει πράξεις. Για τον λόγο αυτό δίνουµε στους µαθητές τη δυνατότητα να χρησιµοποιήσουν την αριθµοµηχανή.
4 Κινείστε το σηµείο Κ Όµοιες ερωτήσεις µε αυτές τις Α φάσης Όµοιες ερωτήσεις µε αυτές τις Α φάσης Να παρατηρήσουν οι µαθητές ότι ο λόγος της απέναντι κάθετης προς την υποτείνουσα είναι σταθερός για κάθε γωνία Β στο ορθογώνιο τρίγωνο, να µάθουν να ορίζουν τον αριθµό αυτό Να παρατηρήσουν οι µαθητές ότι υπάρχει και άλλος τριγωνοµετρικός αριθµός κρυµµένος, αρκεί να αλλάξουµε τους λόγους, να µάθουν να ορίζουν τον αριθµό αυτό Να παρατηρήσουν οι µαθητές ότι υπάρχει και άλλος τριγωνοµετρικός αριθµός κρυµµένος, αρκεί να αλλάξουµε τους λόγους, να µάθουν να ορίζουν τον αριθµό αυτό Να παρατηρήσουν οι µαθητές ότι η γωνία Β αλλάζει και µαζί µε αυτή και ο λόγος. Β φάση: όµοια Γ φάση: Λογικά κάποιοι µαθητές θα αναρωτηθούν πόσοι τριγωνοµετρικοί αριθµοί (κρυµµένοι) υπάρχουν σε ένα ορθογώνιο τρίγωνο; Αν δεν γίνει η ερώτηση αυτή θα πρέπει ο καθηγητής να την κάνει. Τότε µπορούµε να πούµε ότι υπάρχουν τόσοι τριγωνοµετρικοί αριθµοί οξείας γωνίας όσοι και οι διαφορετικοί λόγοι στις πλευρές του ορθογωνίου. Εµείς ασχολούµαστε µε τους αξιοσηµείωτους τριγωνοµετρικούς αριθµούς. Θα ειπωθεί ότι τελικά σε οποιοδήποτε ορθογώνιο τρίγωνο, για οποιαδήποτε οξεία γωνία Β, υπάρχει ένας κρυµµένος τριγωνοµετρικός αριθµός. Τώρα θα διατυπωθεί ο ορισµός για αυτόν τον αριθµό. Υπάρχει και αντίστοιχο κουτί στο λογισµικό για τον ορισµό της εφαπτοµένης Εδώ η διαδικασία θα είναι πιο γρήγορη αφού τα περισσότερα είναι όµοια µε την Α φάση. Όµως θα είναι µεγάλη η ικανοποίηση να βλέπεις τους µαθητές να ανακαλύπτουν και νέο τριγωνοµετρικό αριθµό,το συνηµίτονο της Β Εδώ η διαδικασία θα είναι πιο γρήγορη αφού τα περισσότερα είναι όµοια µε την Α φάση. Όµως θα είναι µεγάλη η ικανοποίηση να βλέπεις τους µαθητές να ανακαλύπτουν και νέο τριγωνοµετρικό αριθµό,το ηµίτονο της Β.
5 φάση: Κινείστ ε τον δροµέα. Πως µεταβά λλεται η γωνία ; και πως αντίστο ιχα ο κάθε τριγωνο µετρικό ς αριθµός ; Να κατανοήσουν οι µαθητές ότι όταν µεγαλώνει ή µικραίνει η οξεία γωνία τότε οι δύο τριγωνοµετρικοί αριθµοί ηµ, εφ µεγαλώνουν, µικραίνουν αντίστοιχα, ενώ ο τρίτος τριγωνοµετρικός αριθµός συν µικραίνει, µεγαλώνει αντίστοιχα. Αρχικά κινώντας το δροµέα οι µαθητές βλέπουν να αυξοµειώνε ται η γωνία. Κατόπιν θα αναρωτηθού ν πως γίνεται να καταλάβουν πως µεταβάλλον ται οι τριγωνοµετρ ικοί αριθµοί αφού δεν τους βλέπουν. Ο καθηγητής προτρέπει τους µαθητές να κάνουν κλίκ σε κουτί που έχει το όνοµα του τριγωνοµετρικού αριθµού. Τότε θα εξηγηθεί ότι ο τριγωνοµετρικός αριθµός έχει αποτυπωθεί στον άξονα των τεταγµένων, ενώ η γωνία στον άξονα των τετµηµένων. Αφού γίνουν αντιληπτές οι συµµεταβολές γωνίας και τριγωνοµετρικών αριθµών, τότε ο καθηγητής προτρέπει στους µαθητές να εµφανίσουν το ίχνος του σηµείου, οπότε κινώντας πάλι τον δροµέα (δίνονται οι οδηγίες σαν κείµενο στο λογισµικό) θα πάρουν ένα γράφηµα. Από το γράφηµα αυτό που σηµειωτέον είναι αποτέλεσµα της δραστηριότητας του µαθητή µαζί µε το λογισµικό οι µαθητές µπορούν να επαληθεύσουν τις εικασίες τους για τις συµµεταβολές.επίσης µπορεί ο καθηγητής να αναφέρει ότι το γράφηµα αυτό είναι ο πρόδροµος της γραφικής παράστασης των τριγωνοµετρικών αριθµών που θα διδαχθούν στην Α λυκείου. Σε άλλο µάθηµα στην τάξη ο καθηγητής θα ζητήσει από τους µαθητές να δούνε τους τριγωνοµετρικούς πίνακες και να τους ζητήσει να επαληθεύσουν τις συµµεταβολές γωνίας και τριγωνοµετρικών αριθµών που έµαθαν µέσω του λογισµικού. Ε φάση:
6 Κινείστε το σηµείο Λ. Τι παρατηρείτ ε; Στις φάσεις 1, 2, 3 να πατήσετε το κουτί µε το όνοµα εφαρµογή και να βρείτε την άγνωστη πλευρά. Να κατανοήσουν οι µαθητές ότι στο τυχαίο τρίγωνο κανείς λόγος δεν είναι σταθερός, οπότε οι ορισµοί των τριγωνοµετρικών αριθµών που δόθηκαν στις προηγούµενες φάσεις ισχύουν αποκλειστικά σε ορθογώνιο τρίγωνο. Να εµπεδώσουν τους ορισµούς των τριγωνοµετρικών αριθµών. Να µάθουν να τους χρησιµοποιούν για να βρίσκουν άγνωστες πλευρές στο ορθογώνιο τρίγωνο Να παρατηρήσουν οι µαθητές ότι κινώντας το Λ η γωνία Ν παραµένει σταθερή και ότι ο λόγος της απέναντι πλευράς µε την απέναντι δεν είναι σταθερός. ΣΤ φάση: Οι µαθητές κινούν το Α ή το Κ και λύνουν τις εξισώσεις που προκύπτουν χωρίς την βοήθεια του λογισµικού. Απλά χρησιµοποιούν τον πίνακα ή ένα χαρτί που δίνεται µαζί µε το φύλλο εργασίας Εδώ ο καθηγητής έρχεται να δώσει στους µαθητές να κατανοήσουν ότι όταν δίνουµε τον ορισµό ενός τριγωνοµετρικού αριθµού, αυτός ο ορισµός απαιτεί την προϋπόθεση του ορθογωνίου τριγώνου. Βέβαια οι τριγωνοµετρικοί αριθµοί κάθε γωνίας υπάρχουν. Φέρνοντας το ύψος από το Λ ή το Μ σχηµατίζεται ορθογώνιο τρίγωνο του οποίου οι λόγοι των πλευρών ορίζουν τους τριγωνοµετρικούς αριθµούς. Μετά την λύση µιας εξίσωσης ο καθηγητής πάει σε κάθε οµάδα, απενεργοποιεί το κουτί εφαρµογή και µαζί µε τους µαθητές βλέπουν την λύση. 3. Αξιολόγηση µετά την εφαρµογή: Οι πληροφορίες που αντλεί ο εκπαιδευτικός κατά τη διάρκεια της εφαρµογής της δραστηριότητας αξιοποιούνται για ανατροφοδότηση του σεναρίου. 4. Επέκταση της δραστηριότητας. Προτάσεις για την περαιτέρω επέκταση του σεναρίου. 5. Βιβλιογραφία. Εδώ θα αναφερθούν οι βιβλιογραφικές αναφορές που χρησιµοποιήθηκαν.
1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία
1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός
Διαβάστε περισσότεραΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου
ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να
Διαβάστε περισσότεραΓεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα
Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.
Διαβάστε περισσότεραΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ
ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ Γνωστική Περιοχή: Γεωμετρία Β Λυκείου Θέμα Το Πυθαγόρειο Θεώρημα είναι γνωστό στους μαθητές από το Γυμνάσιο. Το προτεινόμενα θέμα αφορά την
Διαβάστε περισσότεραπολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια
Κάθε οµάδα παρουσιάζει στην τάξη: (1) Τις logo διαδικασίες µε τις οποίες σχεδίασε τα κανονικά πολύγωνα. (2) Τις διαδικασίες µε τις οποίες σχεδίασαν τα κανονικά πολύγωνα γύρω από µια περιοχή. (3) Τα τεχνουργήµατα
Διαβάστε περισσότεραTo σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe.
Σενάριο 7. Η Οµοιότητα Τριγώνων ως Λόγος Πλευρών Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η γραµµική συνάρτηση ψ= αχ. Συντελεστής διεύθυνσης ευθείας. Γεωµετρία Α' Λυκείου Οµοιότητα τριγώνων Θέµα: To προτεινόµενο
Διαβάστε περισσότεραΤα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού
Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.
Διαβάστε περισσότεραΤο σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.
9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη
Διαβάστε περισσότεραΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ. Μελέτη της συνάρτησης f(x)=ηµx
ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Μελέτη της συνάρτησης f(x)=ηµx Στη Γ' γυµνασίου, το ηµίτονο µελετάται ως τριγωνοµετρικός αριθµός µε βάση τις συντεταγµένες ενός σηµείου Μ µιας ηµιευθείας ΟΜ που σχηµατίζει µε
Διαβάστε περισσότεραΕρωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).
τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο
Διαβάστε περισσότεραΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ
ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Νέες
Διαβάστε περισσότεραΓεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.
Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη
Διαβάστε περισσότεραΕκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου
Εκπαιδευτικό Σενάριο: Αναλογίες Ιανουάριος 2011 1. Τίτλος Αναλογίες 2. Ταυτότητα Συγγραφέας: Γνωστική περιοχή των μαθηματικών: Άλγεβρα, Γεωμετρία Θέμα: Αναλογίες Συντεταγμένες στο επίπεδο 3. Σκεπτικό 2
Διαβάστε περισσότεραΗ λογαριθµική συνάρτηση και οι ιδιότητές της
ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα
Διαβάστε περισσότεραΕικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra.
Σενάριο 4. Η µέτρηση του εµβαδού ενός παραβολικού οικοπέδου Γνωστική περιοχή: Μαθηµατικά Γ' Λυκείου. Παραβολή. Τετραγωνική συνάρτηση. Εµβαδόν. Ορισµένο ολοκλήρωµα Θέµα: Οι τέσσερις πλευρές ενός οικοπέδου
Διαβάστε περισσότεραΣενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου
Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής
Διαβάστε περισσότεραΣενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.
Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον
Διαβάστε περισσότεραΕρωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).
λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο πολλές φορές και σε διαφορετικές τάξεις ή ανταλλάξει ιδέες µε άλλους συναδέλφους
Διαβάστε περισσότεραΑνάλυση δραστηριότητας- φύλλο εργασίας
Ανάλυση δραστηριότητας- φύλλο εργασίας Τίτλος : Δύο δραστηριότητες σε ευθεία-κύκλο. α) Η «χρυσή ευθεία» β) οι γεωμετρικοί τόποι μιας οικογένειας κύκλων. Τάξη: Δίωρο μάθημα σε μαθητές Β λυκείου σε αίθουσα
Διαβάστε περισσότεραΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ
ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ
Διαβάστε περισσότεραΠαιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx
Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Στόχος: Το παιδαγωγικό σενάριο αναφέρεται στη μελέτη της συνάρτησης y=αx και στη κατανόηση της κλίσης ευθείας. Λογισμικό: Για την εφαρμογή του σεναρίου
Διαβάστε περισσότεραΚατακόρυφη - Οριζόντια μετατόπιση συνάρτησης
ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Β ΕΠΙΠΕΔΟΥ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΚΣΕ 4 ου ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ ΕΠΙΜΟΡΦΩΤΗΣ: ΜΗΤΡΟΓΙΑΝΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ Κατακόρυφη - Οριζόντια
Διαβάστε περισσότερα«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.
«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,
Διαβάστε περισσότεραΣενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).
Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση
Διαβάστε περισσότεραΤο σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe.
9.3.3 Σενάριο 10. Τριγωνομετρικές συναρτήσεις Γνωστική περιοχή: Άλγεβρα Β Λυκείου. Η συνάρτηση ψ= ρ ημ(λχ+κ). Γραφική παράσταση τριγωνομετρικών συναρτήσεων. Γραφική επίλυση τριγωνομετρικής εξίσωσης. Θέμα:
Διαβάστε περισσότεραΕµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου
Γιώργος Μαντζώλας ΠΕ03 Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Σύντοµη περιγραφή του σεναρίου Η βασική ιδέα του σεναρίου Το συγκεκριµένο εκπαιδευτικό σενάριο αναφέρεται στην εύρεση των τύπων µε τους
Διαβάστε περισσότεραΤο σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra.
9.3. Σενάριο 9. Μελέτη της συνάρτησης f(x) = αx +βx+γ Γνωστική περιοχή: Άλγεβρα Α Λυκείου. Η συνάρτηση ψ= αχ +βχ+γ (γραφική παράσταση, μονοτονία, ακρότατα). Θέμα: Το προτεινόμενο θέμα αφορά την κατασκευή
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Β Λυκείου τμήμα.. Καθηγητής/τρια:Τάξη: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό
Διαβάστε περισσότεραlim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =
Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο
Διαβάστε περισσότεραΔιδακτικές ενότητες Στόχος
Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.
Διαβάστε περισσότεραΆθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου
ΣΕΝΑΡΙΟ «Προσπάθησε να κάνεις ένα τρίγωνο» Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου Ηµεροµηνία: Φλώρινα, 6-5-2014 Γνωστική περιοχή:
Διαβάστε περισσότεραΤο σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe.
Σενάριο 2: Ο ερευνητής και οι χελώνες ΚΑΡΕΤΑ_ΚΑΡΕΤΑ Συγγραφέας: Καλλιόπη Αρδαβάνη, Επιμορφώτρια Μαθηματικών (Β επιπέδου). Γνωστική περιοχή: Άλγεβρα Ανεξάρτητη και εξαρτημένη μεταβλητή. Πεδίο ορισμού και
Διαβάστε περισσότεραΒοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.
Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται
Διαβάστε περισσότεραΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ
ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ
Διαβάστε περισσότεραΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ
ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ Χριστόφορος Δερμάτης ΠΕ 0 3 Γυμνάσιο - Λυκειακές τάξεις Κασσιόπης Κέρκυρα 01/07/2015 1. Συνοπ τική π εριγραφή της ανοιχτής εκπαιδευτικής π ρακτικής Γίνεται
Διαβάστε περισσότερα«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α Γυμνασίου ΕΝΟΤΗΤΕΣ: 1. Ανάλογα ποσά Ιδιότητες αναλόγων ποσών 2. Γραφική παράσταση σχέσης αναλογίας ΕΙΣΗΓΗΤΕΣ: Άγγελος Γιαννούλας Κωνσταντίνος Ρεκούμης
Διαβάστε περισσότεραΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:
Διαβάστε περισσότεραΜαθητές Β ΕΠΑ.Λ. Σωτήρης Δ. Χασάπης. 4-5 διδακτικές ώρες, ανάλογα με το γενικότερο επίπεδο της τάξης.
Τίτλος σεναρίου : Η συνάρτηση f (x)=α ημ(ωx)+ β Γνωστική περιοχή : Θέμα : Τεχνολογικά εργαλεία : Πλαίσιο εφαρμογής Σε ποιους απευθύνεται : Διδάσκων : Χρόνος υλοποίησης : Χώρος υλοποίησης : 1 Σκεπτικό Βασική
Διαβάστε περισσότεραΝα υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:
Διαβάστε περισσότεραίτλος αυτότητα του σεναρίου. Συγγραφέας Γνωστική περιοχή των μαθηματικών: Θέματα: κεπτικό της δραστηριότητας. Καινοτομίες Προστιθέμενη αξία.
1. Τίτλος Περιπολύγωνα. 2. Ταυτότητα του σεναρίου. Συγγραφέας Βλάστος Αιμίλιος Γνωστική περιοχή των μαθηματικών: Γεωμετρία Θέματα: 1. Κανονικά πολύγωνα (γωνία ω, φ και σχέση τους) 2. Άθροισμα εξωτερικών
Διαβάστε περισσότεραCabri II Plus. Λογισμικό δυναμικής γεωμετρίας
Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή
Διαβάστε περισσότεραΝα υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση.
Ενότητα 4 Τριγωνομετρία Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση.
Διαβάστε περισσότεραΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ
184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία
Διαβάστε περισσότερα«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή»
«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» Αρδαβάνη Καλλιόπη 1, Μαργιόρα Φιλίππα 2, Μαυρουδής Σπύρος 3 1 Καθηγήτρια Μαθηματικών 3ο Γυμνάσιο Γλυφάδας, επιμορφώτρια Β επιπέδου popiardv@hotmail.com
Διαβάστε περισσότερα2.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ
1.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ω µε 0 ο ω 180 ο ΘΕΩΡΙΑ 1. Τριγωνοµετρικοί αριθµοί οξειών γωνιών ορθογωνίου τριγώνου Στο διπλανό ορθογώνιο τρίγωνο θυµίζουµε ότι απέναντι κάθετη ηµω = = ΑΓ υποτείνουσα
Διαβάστε περισσότεραΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ
ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΒΑΣΙΛΗΣ ΦΑΓΟΓΕΝΗΣ ΣΧΟΛΕΙΟ 5 ο ΓΕΛ ΚΕΡΚΥΡΑΣ ΚΕΡΚΥΡΑ 25.6.2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Με χρήση του λογισμικού
Διαβάστε περισσότεραΔιδακτική Μαθηματικών Ι Ενδεικτικές οδηγίες για τη δραστηριότητα
Διδακτική Μαθηματικών Ι Ενδεικτικές οδηγίες για τη δραστηριότητα Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Διδακτική Μαθηματικών Ι: Ενδεικτικές οδηγίες για τη δραστηριότητα (εργασία) (To
Διαβάστε περισσότεραΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ
Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι
Διαβάστε περισσότεραΣενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics»
Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics» ΣΧΟΛΕΙΟ Π.Π.Λ.Π.Π. ΤΑΞΗ: Α ΜΑΘΗΜΑ: Β Νόµος του Νεύτωνα ΚΑΘΗΓΗΤΗΣ: Σφαέλος Ιωάννης Συνοπτική Παρουσίαση
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότερα1. Τίτλος. Τετράπλευρα Είδη τετράπλευρων (παραλληλόγραµµο-ορθογώνιορόµβος-τετράγωνο) 2. Ταυτότητα του σεναρίου.
1. Τίτλος. Τετράπλευρα Είδη τετράπλευρων (παραλληλόγραµµο-ορθογώνιορόµβος-τετράγωνο) και ιδιότητες αυτών. 2. Ταυτότητα του σεναρίου. Συγγραφέας: Αλαµπορινός Σπυρίδων Γνωστική περιοχή των µαθηµατικών: Γεωµετρία
Διαβάστε περισσότεραΕφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση. Ενότητα 6: Πλαίσιο Σχεδιασμού και αναφοράς Σεναρίου
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Μάθημα επιλογής Α εξάμηνο, Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ
Διαβάστε περισσότεραΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:
Διαβάστε περισσότερα(Μέρος της εργασίας για το 7ο ΠΑΓΚΥΠΡΙΟ ΜΑΘΗΤΙΚΟ ΣΥΝΕΔΡΙΟ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ )
(Μέρος της εργασίας για το 7ο ΠΑΓΚΥΠΡΙΟ ΜΑΘΗΤΙΚΟ ΣΥΝΕΔΡΙΟ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ) ΧΕΙΡΟΚΙΝΗΤΟΣ ΜΗΧΑΝΙΣΜΟΣ ΠΟΥ ΒΡΙΣΚΕΙ ΤΟΥΣ 6 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΚΑΙ ΠΑΡΟΜΟΙΟΣ ΜΗΧΑΝΙΣΜΟΣ ΠΟΥ ΛΕΙΤΟΥΡΓΕΙ ΜΕ ΗΛΕΚΤΡΟΝΙΚΟ
Διαβάστε περισσότεραΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ
Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι
Διαβάστε περισσότεραΓ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση
Διαβάστε περισσότεραΓωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία
Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΟΙΚΟΝΟΜΟΥ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ,
Διαβάστε περισσότεραΘέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση
Διαβάστε περισσότεραΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14. Μιχαηλίδου Αγγελική Λάλας Γεώργιος
ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14 Μιχαηλίδου Αγγελική Λάλας Γεώργιος Περιγραφή Πλαισίου Σχολείο: 2 ο Πρότυπο Πειραματικό Γυμνάσιο Αθηνών Τμήμα: Β 3 Υπεύθυνος καθηγητής: Δημήτριος Διαμαντίδης Συνοδός: Δημήτριος Πρωτοπαπάς
Διαβάστε περισσότεραΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO
1 ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Τοποθέτησε μια χελώνα στην επιφάνεια εργασίας. 2. Με ποια εντολή γράφει η χελώνα μας;.. 3. Γράψε την εντολή για να πάει
Διαβάστε περισσότεραΕ.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ ( ) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ
Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ (2007 2013) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ Πρακτική Άσκηση Εκπαιδευομένων στα Πανεπιστημιακά Κέντρα Επιμόρφωσης
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ
ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου
Διαβάστε περισσότεραΕνότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων
Ενότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων Σενάριο 8 (Τροποποιηµένο): Η γραµµική συνάρτηση ψ=αx Γνωστική περιοχή: Άλγεβρα Α Λυκείου. - Η γραµµική συνάρτηση ψ=αx. Θέµα: Το προτεινόµενο θέµα αφορά
Διαβάστε περισσότεραΣΕΝΑΡΙΟ ΜΑΘΗΜΑΤΟΣ ΣΤΗ ΦΥΣΙΚΗ
ΣΕΝΑΡΙΟ ΜΑΘΗΜΑΤΟΣ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΣΚΩΝ: ΣΦΑΕΛΟΣ Ι. ΤΑΞΗ: Α ΛΥΚΕΙΟΥ ΘΕΜΑ: ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ - ΚΑΤΑΚΟΡΥΦΗ ΒΟΛΗ Βασική ιδέα: Οι µαθητές παρακολουθώντας τις προσοµοιώσεις για την ελεύθερη πτώση, την πτώση σώµατος
Διαβάστε περισσότεραΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Γνωστική περιοχή: Γεωµετρία Β Λυκείου Αναλογίες γεωµετρικών µεγεθών, Οµοιότητα τριγώνων, Εµβαδόν Τετραγώνου. Εµβαδόν Τριγώνου Βασικές γνώσεις Ευκλείδειας Γεωµετρίας Α
Διαβάστε περισσότεραΤΟ ΕΜΒΑΔΟΝ ΠΟΥ ΠΡΟΚΥΠΤΕΙ ΑΠΟ ΕΓΓΕΓΡΑΜΜΕΝΗ ΓΩΝΙΑ
ΤΟ ΕΜΒΑΔΟΝ ΠΟΥ ΠΡΟΚΥΠΤΕΙ ΑΠΟ ΕΓΓΕΓΡΑΜΜΕΝΗ ΓΩΝΙΑ Το στιγμιότυπο που παρουσιάζεται εδώ πρόκυψε πέντε λεπτά πριν από τη λήξη μιας διδακτικής ώρας η οποία ήταν αφιερωμένη σε μια γενική επανάληψη του κεφαλαίου
Διαβάστε περισσότεραΜαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία
Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού
Διαβάστε περισσότεραΑ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.
Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι
Διαβάστε περισσότερα2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο
.4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε
Διαβάστε περισσότεραTo σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe. Σκεπτικό: Βασική
Σενάριο 8. Τριγωνοµετρικές. συναρτήσεις; Γνωστική περιοχή: Άλγεβρα Β' Λυκείου. Η συνάρτηση ψ= ρηµ(λχ+κ) Γραφική παράσταση τριγωνοµετρικών συναρτήσεων Γραφική επίλυση τριγωνοµετρικής εξίσωσης. Θέµα: To
Διαβάστε περισσότεραΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε
Διαβάστε περισσότεραΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση
Μία διδακτική προσέγγιση ΣΕΝΑΡΙΟ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.)
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ.
Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΙΑΣΜΟΥ ΤΗΣ ΙΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στο κείμενο που ακολουθεί έχει γίνει προσπάθεια να φανεί ότι ο σχεδιασμός της διδασκαλίας
Διαβάστε περισσότερα«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»
«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k
Διαβάστε περισσότεραΣε ποιους απευθύνεται: Χρόνος υλοποίησης: Χώρος υλοποίησης: Κοινωνική ενορχήστρωση της τάξης Στόχοι:... 4
Περιεχόμενα Νικόλαος Μανάρας... 2 Σενάριο για διδασκαλία/ εκμάθηση σε μια σύνθεση μεικτής μάθησης (Blended Learning) με τη χρήση του δυναμικού μαθηματικού λογισμικού Geogebra σε διαδραστικό πίνακα και
Διαβάστε περισσότεραΔιδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες»
Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες» Βέλτιστο Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΓΕΩΡΓΙΟΣ ΜΠΟΛΟΤΑΚΗΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ
Διαβάστε περισσότεραΕισαγωγή των εννοιών μέσης και στιγμιαίας ταχύτητας σε περιβάλλον όπου αξιοποιούνται οι
3ο ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ 1. Τίτλος διδακτικού σεναρίου: Η ΜΕΣΗ ΚΑΙ Η ΣΤΙΓΜΙΑΙΑ ΤΑΧΥΤΗΤΑ 2. Γνωστικό αντικείμενο: ΦΥΣΙΚΗ 3. Τάξη: Β 4. Μάθημα: 2.2 Η ΕΝΝΟΙΑ ΤΗΣ ΤΑΧΥΤΗΤΑΣ 5. Γενική ενότητα: ΚΕΦΑΛΑΙΟ 2ο ΚΙΝΗΣΕΙΣ
Διαβάστε περισσότερα1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Διαβάστε περισσότεραΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ
2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας
Διαβάστε περισσότεραΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.
Διαβάστε περισσότερα1.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ (Επαναλήψεις Συμπληρώσεις) Τριγωνομετρικοί αριθμοί οξείας γωνίας
. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ (Επαναλήψεις Συμπληρώσεις) Τριγωνομετρικοί αριθμοί οξείας γωνίας Έστω οξεία γωνία ω. Αν πάνω στη μία από τις δύο πλευρές της γωνίας πάρουμε τυχαία σημεία Μ και Ν και φέρουμε
Διαβάστε περισσότεραΣενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος)
Σενάριο 1 Σκιτσάροντας µε παραλληλόγραµµα (χρήση λογισµικού Χελωνόκοσµος) Βασική ιδέα του σεναρίου Οι µαθητές σκιτσάρουν παραλληλόγραµµα και τα «ζωντανεύουν» κινώντας τα δυναµικά µε χρήση της Logo. Με
Διαβάστε περισσότεραΓραμμικά Συστήματα. δεν είναι λύση του συστήματος. β) Ποιο από τα παραπάνω ζεύγη είναι λύση του συστήματος
8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y 4, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το 4, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος
Διαβάστε περισσότεραΘέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ
Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 007 Σχ. Έτος 006-007 ΤΑΞΗ Γ ΘΕΩΡΙΑ 1. α.) Να συμπληρώσετε τις ταυτότητες : 3 ( α + β ) = ( β ) = α 3 3 3 β.) Να αποδείξετε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν
Διαβάστε περισσότεραΔιδακτική της Χημείας
Διδακτική της Χημείας Ενότητα 5: Νεότερες Θεωρητικές Προσεγγίσεις Ζαχαρούλα Σμυρναίου Τμήμα Φιλοσοφίας, Παιδαγωγικής και Ψυχολογίας 1. Τα Σενάρια και οι Προδιαγραφές τους... 3 1.1 Ορισμός της έννοιας του
Διαβάστε περισσότεραΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr
ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Αγιώτης Πέτρος pagioti@sch.gr Εκπαιδευτικός Πληροφορικής Τίτλος διδακτικού σεναρίου Η έννοια των σταθερών και της καταχώρησης στη Visual Basic Εμπλεκόμενες γνωστικές περιοχές Στοιχεία
Διαβάστε περισσότεραΓραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1);
8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος
Διαβάστε περισσότερα1.0 Βασικές Έννοιες στην Τριγωνομετρία
.0 Βασικές Έννοιες στην Τριγωνομετρία Εύρεση τριγωνομετρικών αριθμών οξείας γωνίας σε ορθογώνιο τρίγωνο. ΑΠΑΝΤΗΣΗ Έστω ορθογώνιο τρίγωνο ΑΒΓ (Α= 90 0 ). Οι τριγωνομετρικοί αριθμοί μιας οξείας γωνίας ορίζονται
Διαβάστε περισσότεραΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,
Διαβάστε περισσότεραΙ Α Σ Κ Α Λ Ι Α Σ Ι Σ Τ Ο Ρ Ι Α Σ
Σ Ε Ν Α Ρ Ι Ο Ι Α Σ Κ Α Λ Ι Α Σ Ι Σ Τ Ο Ρ Ι Α Σ «Η επέκταση των συνόρων του Ελληνικού κράτους την περίοδο 1912-1923» ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ: ΝΕΟΤΕΡΗ ΚΑΙ ΣΥΓΧΡΟΝΗ ΕΛΛΗΝΙΚΗ ΙΣΤΟΡΙΑ ΕΠΑΝΑΛΗΨΗ Ι ΑΧΘΕΙΣΑΣ
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις
Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την
Διαβάστε περισσότεραΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ
ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ 2. Εκπαιδευτικό Λογισμικό για τα Μαθηματικά 2.1 Κύρια χαρακτηριστικά του εκπαιδευτικού λογισμικού για την Διδακτική των Μαθηματικών 2.2 Κατηγορίες εκπαιδευτικού λογισμικού για
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του
Διαβάστε περισσότερα