Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα."

Transcript

1 Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι το πείραμα δεν έχει λάβει, μέχρι στιγμής, τη θέση που του αρμόζει στην εκπαίδευση και τη διδασκαλία των φυσικών επιστημών. Γιατί όμως το πείραμα είναι τόσο σημαντικό; Στην πραγματικότητα, η μοναδική πηγή γνώσης στις θετικές επιστήμες και ειδικά στη Φυσική είναι το πείραμα. Ας δούμε λίγο την εξέλιξη της σκέψης του ανθρώπινου νου, καθώς παρατηρεί το περιβάλλον του. 1. Όλα ξεκινούν με το πείραμα (παρατήρηση), όπου διαπιστώνουμε ότι συμβαίνουν κάποια πράγματα τα οποία υπερβαίνουν τα όρια των μέχρι τώρα γνώσεων μας. 2. Αμέσως διαμορφώνουμε μια νέα θεωρία που να μπορεί να εξηγεί τα καινούρια φαινόμενα, καθώς επίσης και τα φαινόμενα που έχουμε ήδη εξηγήσει με παλαιότερες θεωρίες. 3. Με βάση τη νέα θεωρία, προβλέπουμε νέα φαινόμενα που είναι δυνατόν να παρατηρηθούν πειραματικά. 4. Πραγματοποιούμε νέα πειράματα και αν επιβεβαιωθούν οι προβλέψεις μας, τότε επιβεβαιώνεται και η θεωρία. Αν υπάρξουν αποκλίσεις από τις προβλέψεις, τότε βελτιώνουμε τη θεωρία. Σε κάθε περίπτωση πρέπει να προσδιορίσουμε τα όρια ισχύος της θεωρίας. 5. Πραγματοποιούμε να πειράματα που ξεπερνούν τα όρια της θεωρίας μας κ.ο.κ. Όπως γίνεται κατανοητό, δεν μπορεί ποτέ κάποιος να ισχυριστεί ότι γνωρίζει πλήρως κάποιο τομέα της Φυσικής. Αυτό σημαίνει ότι δεν υπάρχει απόλυτη γνώση. Μπορούμε όμως πάντα να ελέγχουμε τη γνώση μας ως προς την ορθότητά της και εδώ είναι η συμβολή του πειράματος. Το πείραμα λοιπόν αποτελεί κριτήριο ορθότητας της γνώσης μας. Στόχοι του εργαστηρίου στα πλαίσια του σχολείου 1. Να διαπιστώσουν οι μαθητές, στην πράξη, την ισχύ των νόμων της φυσικής που διδάσκονται στη θεωρία. 2. Να εξοικειωθούν με τα όργανα του εργαστηρίου (τρόπος λειτουργίας, χρήση, ασφάλεια). 3. Να αποκτήσουν πείρα στη διεξαγωγή πειραμάτων (διαδικασία σε βήματα, προτεραιότητες). 4. Να αποκτήσουν πείρα στην επεξεργασία των αποτελεσμάτων ενός πειράματος. 5. Να κατανοήσουν τις δυσκολίες με τις οποίες έρχεται αντιμέτωπος ο ερευνητής στην προσπάθειά του να μετρήσει τα μεγέθη που τον ενδιαφέρουν. Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Ανάλυση σφαλμάτων Όπως είπαμε, τα σφάλματα είναι μια σημαντική δυσκολία στην προσπάθεια του ερευνητή να κάνει μετρήσεις. Ας τα πάρουμε όμως από την αρχή. Μέτρηση Μέτρηση ονομάζουμε τη σύγκριση ενός μεγέθους που μας ενδιαφέρει, με κάποιο άλλο ομοειδές που βρίσκεται στη συσκευή μας και το ονομάζουμε μονάδα μέτρησης. Έτσι για να μετρήσουμε το μήκος ενός μολυβιού, συγκρίνουμε το μολύβι με τη μονάδα μέτρησης εκατοστό που βρίσκεται στο χάρακά μας (συσκευή). 1

2 Σφάλματα Σφάλμα ονομάζεται η αβεβαιότητα στη μέτρηση ενός φυσικού μεγέθους. Προσοχή, η έννοια του σφάλματος δεν αναφέρεται σε πειραματικό λάθος, αλλά στην αβεβαιότητα σχετικά με την ακρίβεια της μέτρησης που μπορεί να οφείλεται: στα όργανα μέτρησης στην πειραματική διαδικασία στις συνθήκες του πειράματος Με τον υπολογισμό του σφάλματος, η μέτρηση ενός φυσικού μεγέθους θα αναγράφεται ως: Τιμή ± σφάλμα. Ο υπολογισμός των σφαλμάτων είναι απαραίτητος, γιατί διαφορετικά μπορεί να οδηγηθούμε σε εσφαλμένα συμπεράσματα. Για παράδειγμα, έστω ότι μετράμε την αντίσταση ενός αντιστάτη σε δυο διαφορετικές θερμοκρασίες και βρίσκουμε R 1 =31,77kΩ σε θερμοκρασία Τ 1 =300Κ και R 2 =32,27kΩ σε θερμοκρασία Τ 2 =360Κ. Αν δεν υπολογίσουμε το σφάλμα δεν μπορούμε να ισχυριστούμε ότι η αντίσταση μεταβάλλεται με τη θερμοκρασία. Κι αυτό διότι αν το σφάλμα ήταν ±0,5kΩ, οι τιμές της αντίστασης θα γράφονταν R 1 = 31,77 ± 0,5kΩ και R 2 = 3,27 ± 0,5kΩ, που σημαίνει ότι δεν μπορούμε να βγάλουμε συμπεράσματα. Τύποι σφαλμάτων Συστηματικά σφάλματα: είναι αυτά που οφείλονται: στα όργανα (π.χ. κακή βαθμονόμηση ή λανθασμένη χρήση) σε εξωτερικούς παράγοντες (π.χ. μεταβολές της θερμοκρασίας ή της υγρασίας κατά τη διάρκεια του πειράματος, που μπορεί να είναι μικρές αλλά επιδρούν στα αποτελέσματα) στη μέθοδο που χρησιμοποιούμε για να εκτελέσουμε το πείραμα Τα συστηματικά σφάλματα συνήθως μετατοπίζουν όλες τις μετρήσεις με συστηματικό τρόπο, με αποτέλεσμα η μέση τιμή να μετατοπίζεται προς ορισμένη κατεύθυνση. Για παράδειγμα αν το χρονόμετρο που χρησιμοποιούμε για να μετρήσουμε το χρόνο, πηγαίνει λίγο πιο αργά τότε όλα τα χρονικά διαστήματα που θα μετρήσουμε θα είναι μικρότερα από τα πραγματικά. Τυχαία σφάλματα: είναι αυτά που οφείλονται: στην ευαισθησία του οργάνου (π.χ. ο χάρακας είναι διαιρεμένος σε χιλιοστά, άρα δεν μπορούμε να ξέρουμε αν ένα μολύβι έχει μήκος 92mm ή 92,3mm. Έτσι είναι καλύτερα να γράψουμε ότι το μήκος του μολυβιού είναι 92,0 ± 0,5mm) στον παρατηρητή σε εξωτερικές επιδράσεις (π.χ. η μέτρηση της ταχύτητα ενός κινητού στο εργαστήριο επηρεάζεται από την κίνηση του αέρα στο χώρο ή τη σκόνη) Τα τυχαία σφάλματα δείχνουν τις διακυμάνσεις των μετρήσεων και οδηγούν στην κατανομή των αποτελεσμάτων γύρω από μια μέση τιμή. Μέση τιμή Πολλές φορές είναι αδύνατον να εκτιμήσουμε το σφάλμα με βάση την ένδειξη του οργάνου. Σε αυτή την περίπτωση κάνουμε επαναλαμβανόμενες μετρήσεις. Έστω ότι μετράμε κάποιο μέγεθος x, Ν φορές και οι τιμές είναι x 1, x 2,, x N. Η τιμή που βρίσκεται πιο κοντά στην πραγματική είναι η μέση τιμή, που υπολογίζεται από το τύπο: x = x 1+x 2 + +x N x = 1 x N N i=1 i (1) Το απόλυτο σφάλμα της μέσης τιμής ή αλλιώς τυπική απόκλιση θα δίνεται από τον τύπο: 2 N δx = N i=1 (x i x) 2 Ν (Ν 1) Αν η τιμή ενός μεγέθους είναι 5,2 ± 0,2 και ενός άλλου μεγέθους είναι 6321,5 ± 0,2 τότε έχουμε το ίδιο απόλυτο

3 σφάλμα, όμως στην πραγματικότητα η απόκλιση είναι εντελώς διαφορετική. Γι αυτό πρέπει να υπολογίζουμε και το σχετικό σφάλμα: σ% = δx x 100 Παράδειγμα Έστω ότι μετρήσαμε το μήκος μιας αφίσας και βρήκαμε τις παρακάτω τιμές σε cm: 30,32 30,35 30,31 30,37 30,30 30,29 30,34 30,33 30,35 30,32 Με τις τιμές αυτές φτιάχνουμε τον παρακάτω πίνακα: L i (cm) L i L (cm) (L i L) 2 cm ,32-0,008 6,4 30,35 0,022 48,4 30,31-0,018 32,4 30,37 0, ,4 30,30-0,028 78,4 30,29-0, ,4 30,34 0,012 14,4 30,33 0,002 0,4 30,35 0,022 48,4 30,32-0,008 6, L i = 303,28cm (L i L) = 0 (L i L) 2 = 5, cm 2 ι=1 Με τις τιμές της πρώτης στήλης υπολογίζουμε τη μέση τιμή: L = 1 N 303,28 = 30,328cm. N i=1 i=1 L i = 1 10 Μετά υπολογίζουμε τις διαφορές της δεύτερης στήλης και στη συνέχεια τις υψώνουμε στο τετράγωνο και συμπληρώνουμε την τρίτη στήλη. Αθροίζουμε και με το αποτέλεσμα υπολογίζουμε το απόλυτο σφάλμα: δl = N (L i L) 2 i=1 Ν (Ν 1) = 5, cm i=1 = 0, cm Τελικά γράφουμε για το μήκος της αφίσας: L = (30,328 ± 0,008)cm Αυτό σημαίνει ότι η τιμή του μήκους βρίσκεται ανάμεσα στις τιμές 30,320cm και 30,336cm με πιθανότητα 68%. Το σχετικό σφάλμα θα είναι: σ% = δl 0, = 100 = 0,03% L 30,328 Σημαντικά ψηφία Σημαντικά ονομάζονται τα ψηφία για τα οποία είμαστε απόλυτα βέβαιοι ότι είναι ακριβή, εκτός από τα μηδενικά που δείχνουν το δεκαδικό. Οι κανόνες για την επιλογή των σημαντικών ψηφίων είναι: Ως πρώτο σημαντικό ψηφίο λαμβάνουμε το αριστερότερα μη μηδενικό Αν υπάρχει υποδιαστολή, ως τελευταίο σημαντικό ψηφίο λαμβάνουμε το τελευταίο δεξιά, ακόμη κι αν είναι το μηδέν. Αν δεν υπάρχει υποδιαστολή, ως τελευταίο σημαντικό ψηφίο λαμβάνουμε το δεξιότερο μη μηδενικό. 3

4 Παραδείγματα: Αριθμός Σημαντικά ψηφία 0, ,00 3 0, Τα σημαντικά ψηφία στις πράξεις Κατ αρχήν θα κρατήσουμε την ακρίβεια του αριθμού που έχει τη μικρότερη ακρίβεια. Στο αποτέλεσμα της πρόσθεσης και της αφαίρεσης, το πλήθος των δεκαδικών ψηφίων καθορίζεται από τον αριθμό με το μικρότερο πλήθος δεκαδικών ψηφίων π.χ. 52, ,3 = 54,624~54,6 Στο αποτέλεσμα των πολλαπλασιασμών και των διαιρέσεων, το πλήθος των σημαντικών ψηφίων καθορίζεται από τον αριθμό με το μικρότερο πλήθος σημαντικών ψηφίων π.χ. 3,10 5,013 = 15,5403~15,5 Στρογγυλοποιήσεις Η στρογγυλοποίηση είναι η απόρριψη των μη σημαντικών ψηφίων. Οι κανόνες στρογγυλοποίησης είναι οι εξής: Αρχίζουμε τη στρογγυλοποίηση από το σφάλμα. Κατά τη στρογγυλοποίηση του σφάλματος κρατάμε ένα σημαντικό ψηφίο για λιγότερες από 20 μετρήσεις, εκτός αν πρόκειται για το 1 ή το 2, οπότε κρατάμε δύο σημαντικά. Για να το κάνουμε αυτό ακολουθούμε τα εξής βήματα: o Βρίσκουμε το σημαντικό ψηφίο που μας ενδιαφέρει. o εξετάζουμε το αμέσως επόμενο και αν είναι μεγαλύτερο του 5 αυξάνουμε το σημαντικό κατά 1 και απορρίπτουμε τα υπόλοιπα ψηφία. αν είναι μικρότερο του 5 αφήνουμε το σημαντικό ως έχει και απορρίπτουμε τα υπόλοιπα ψηφία. αν είναι ίσο με 5 εξετάζουμε τι υπάρχει μετά και αν υπάρχει έστω και ένα ψηφίο διάφορο του 0, αυξάνουμε το σημαντικό κατά 1 και απορρίπτουμε τα υπόλοιπα ψηφία. Στρογγυλοποιούμε τη μέση τιμή κρατώντας τόσα δεκαδικά, όσα είναι τα δεκαδικά του στρογγυλοποιημένου σφάλματος. Παραδείγματα Αρχικά αποτελέσματα Αποτελέσματα μετά τη στρογγυλοποίηση Τελική τιμή x δx δx x x 237,187 0,827 0,8 237,2 237,2 ± 0, , ± ,46 48, ± ± ,3 3677, ± ±

5 Γραφική παράσταση Για να φτιάξουμε μια γραφική παράσταση με τις μετρήσεις που πήραμε από κάποιο πείραμα, ακολουθούμε τα εξής βήματα: 1. Σε χιλιοστομετρικό (μιλιμετρέ) χαρτί χαράζουμε δυο κάθετους άξονες και στον οριζόντιο άξονα τοποθετούμε την ανεξάρτητη μεταβλητή (π.χ. χρόνος), ενώ στον κατακόρυφο τοποθετούμε την εξαρτημένη (π.χ. θέση). Αυτό γίνεται γράφοντας τα σύμβολα των μεγεθών, καθώς και τις μανάδες μέτρησής τους σε παρένθεση. 2. Βαθμονομούμε τους δυο άξονες. Βάζουμε το μηδέν του κάθε άξονα στο σημείο τομής τους και στη συνέχεια χωρίζουμε τον κάθε άξονα σε ίσα τμήματα. Επιλέγω την κλίμακα ξεχωριστά σε κάθε άξονα, έτσι ώστε τα πειραματικά σημεία να καλύπτουν το δυνατόν μεγαλύτερο μέρος από το χαρτί σχεδίασης. Η κάθε υποδιαίρεση στους άξονες πρέπει να είναι ίση ή ακέραιο πολλαπλάσιο των αριθμών 1,2,5, Μετά τη βαθμονόμηση σημειώνουμε στο επίπεδο τα πειραματικά σημεία. Σε κάθε ζεύγος τιμών, αντιστοιχεί ένα πειραματικό σημείο. Προσοχή!!! Δεν σημειώνουμε ποτέ τις μετρήσεις μας στους άξονες. 4. Χαράζουμε τη γραμμή έτσι ώστε αυτή να είναι αφενός ομαλή (όχι τεθλασμένη) και αφετέρου να διέρχεται δια μέσου των σημείων, όσο το δυνατόν πλησιέστερα σε αυτά ή περνώντας από αυτά. 3 ΣΩΣΤΟ ΛΑΘΟΣ

6 Η γραφική παράσταση είναι ένα πολύ χρήσιμο εργαλείο καθώς μπορούμε να υπολογίζουμε και άλλα μεγέθη, εκτός από τα αναγραφόμενα, μέσω της κλίσης της γραμμής ή του εμβαδού του σχήματος που προσδιορίζεται από τη γραμμή και τον οριζόντιο άξονα. Έτσι από την κλίση μιας γραφικής παράστασης με ανεξάρτητη μεταβλητή το χρόνο, μπορούμε να υπολογίσουμε το ρυθμό μεταβολής της εξαρτημένης μεταβλητής. Αναφορές 1. J.R. Taylor: An introduction to error analysis. A series of books in Physics Eugene D. Commins, Editor University Science Books, Mill Valley, California

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

Περί σφαλμάτων και γραφικών παραστάσεων

Περί σφαλμάτων και γραφικών παραστάσεων Περί σφαλμάτων και γραφικών παραστάσεων Σφάλμα ανάγνωσης οργάνου Το σφάλμα αυτό αναφέρεται σε αβεβαιότητες στη μέτρηση που προκαλούνται από τις πεπερασμένες ιδιότητες του οργάνου μέτρησης και/ή από τις

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 Θεωρία Σφαλμάτων Σκοπός

ΑΣΚΗΣΗ 3 Θεωρία Σφαλμάτων Σκοπός ΑΣΚΗΣΗ 3 Θεωρία Σφαλμάτων Σκοπός Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να παρουσιάζει τα αποτελέσματα πειραματικών μετρήσεων σε μορφή. Τις περισσότερες φορές στις ασκήσεις του εργαστηρίου,

Διαβάστε περισσότερα

Η αβεβαιότητα στη μέτρηση.

Η αβεβαιότητα στη μέτρηση. Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη

Διαβάστε περισσότερα

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2 ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ Περιεχόμενα 1. Στρογγυλοποίηση.... 2 1.1 Γενικά.... 2 1.2 Κανόνες Στρογγυλοποίησης.... 2 2. Σημαντικά ψηφία.... 2 2.1 Γενικά.... 2 2.2 Κανόνες για την

Διαβάστε περισσότερα

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών Φυσική Α Γενικού Λυκείου Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών (Μετρήσεις, αβεβαιότητα, επεξεργασία δεδομένων) Υποστηρικτικό υλικό 20 Οκτωβρίου 2016 Μαρίνα Στέλλα, Υπεύθυνη ΕΚΦΕ Σχολικό Εργαστήριο

Διαβάστε περισσότερα

Σφάλματα Είδη σφαλμάτων

Σφάλματα Είδη σφαλμάτων Σφάλματα Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα μετράμε την

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Μαρία Κατσικίνη E-mal: katsk@auth.gr Web: users.auth.gr/katsk Τηλ: 0 99800 Γραφείο : Β όροφος, Τομέας Φυσικής Στερεάς Κατάστασης Σειρά των ασκήσεων Θεωρία : Σφάλματα Θεωρία :

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-15 1. Εισαγωγή ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Οι γραφικές παραστάσεις (ή διαγράμματα) χρησιμεύουν για την απεικόνιση της εξάρτησης

Διαβάστε περισσότερα

x 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από

x 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από Στη θεωρία, θεωρία και πείραμα είναι τα ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ... υπό ισχυρή συμπίεση ίδια αλλά στο πείραμα είναι διαφορετικά, A.Ensten Οι παρακάτω σημειώσεις περιέχουν τα βασικά σημεία που πρέπει να γνωρίζει

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ.

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ. ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ http://www.physicslab.tuc.gr https://www.eclass.tuc.gr/courses/sci123/ Επιμέλεια παρουσίασης: Ά.Καλλιατάκη,

Διαβάστε περισσότερα

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 03-4 Τοπικός διαγωνισμός στη Φυσική 07--03 Σχολείο: Ονόματα των μαθητών της ομάδας: ) ) 3) Ιδανικά αέρια: o νόμος του Boyle Κεντρική ιδέα της άσκησης Στην άσκηση αυτή

Διαβάστε περισσότερα

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης; 10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι, 2013-14

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι, 2013-14 ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Με τη λέξη σφάλμα στις θετικές επιστήμες αναφερόμαστε στην αβεβαιότητα που υπάρχει στην εύρεση του αποτελέσματος που προκύπτει από μια μέτρηση. Το να εκτιμήσουμε και να βρούμε τα σφάλμα

Διαβάστε περισσότερα

Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων

ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων Σκοπός Σκοπός είναι να κατανοηθεί η έννοια των σφαλμάτων, η σπουδαιότητά τους και η αναγκαιότητα υπολογισμού τους. Δίνονται επίσης οι βασικοί μαθηματικοί τύποι που επιτρέπουν

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. A Γυμνασίου 29 Μαρτίου 2014 Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:... Σχολείο:... Τάξη/Τμήμα:. Εξεταστικό Κέντρο:. Πειραματικό Μέρος Θέμα 1 ο H μέτρηση του μήκους γίνεται, συνήθως, με μετροταινία

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα

ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα Σκοπός ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να παρουσιάζει τα αποτελέσματα πειραματικών μετρήσεων σε μορφή καμπυλών και να μπορέσει εν τέλει

Διαβάστε περισσότερα

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Σκοπός της άσκησης 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός αυτής της άσκησης είναι η εξοικείωση των σπουδαστών με τα σφάλματα που

Διαβάστε περισσότερα

0,00620 = 6, ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ. Γενικοί Κανόνες για τα Σημαντικά Ψηφία

0,00620 = 6, ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ. Γενικοί Κανόνες για τα Σημαντικά Ψηφία ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ Είναι απαραίτητο να πούμε μερικά πράγματα για μια επαναλαμβανόμενη πηγή προβλημάτων και δυσκολιών: τα σημαντικά ψηφία. Τα μαθηματικά είναι μια επιστήμη όπου οι αριθμοί και οι σχέσεις μπορούν

Διαβάστε περισσότερα

METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ

METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν ΕΞΕΤΑΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ ΟΝΟΜΑTΕΠΩΝΥΜΟ ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ Χρησιμοποιώντας

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα.

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα. Σημαντικά ψηφία Η ταχύτητα διάδοσης του φωτός είναι 2.99792458 x 10 8 m/s. Η τιμή αυτή είναι δοσμένη σε 9 σημαντικά ψηφία. Τα 9 σημαντικά ψηφία είναι 299792458. Η τιμή αυτή μπορεί να δοθεί και με 5 σημαντικά

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011-12 Τοπικός διαγωνισμός στη Φυσική 10-12-2011 Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Κεντρική ιδέα της άσκησης Στην άσκηση μελετάμε την κίνηση ενός

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ. Περιεχόμενα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ. Περιεχόμενα ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ Περιεχόμενα 1) Γενικές Πληροφορίες ) Ανάλυση σφαλμάτων 3) Γραφικές παραστάσεις 4) Υπόδειγμα Εργαστηριακής Άσκησης 5) Εργαστηριακές Ασκήσεις Άσκηση 1 Μέτρηση

Διαβάστε περισσότερα

Κεφάλαιο 3 Παρουσίαση πειραματικών αποτελεσμάτων

Κεφάλαιο 3 Παρουσίαση πειραματικών αποτελεσμάτων Κεφάλαιο 3 Παρουσίαση πειραματικών αποτελεσμάτων Σύνοψη Πέραν από την ιδιαίτερη προσοχή που θα πρέπει να επιδείξουμε κατά τη λήψη μετρήσεων σε ένα πείραμα, μεγάλη σημασία έχει ο τρόπος που θα παρουσιάσουμε

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΑΘΗΜΑΤΙΚΑ (Γ ΤΑΞΗ) ΟΝΟΜΑ:. (ΕΙΣΑΓΩΓΗ ΣΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΣΤΟΥΣ ΔΕΚΑΔΙΚΟΥΣ ΑΡΙΘΜΟΥΣ) ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΛΑΤΕ ΝΑ ΣΚΕΦΤΟΥΜΕ ΜΑΖΙ: Υπάρχουν άραγε αριθμοί ανάμεσα στο 0 και

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ

Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ Παρουσίαση οργάνωσης των Εργαστηρίων Φυσικής Ι Ακαδ. Έτους 2013-14 http://www.physicslab.tuc.gr physicslab@isc.tuc.gr

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4 ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Εισαγωγή... 2 Έννοια του σφάλματος...3 Συστηματικά και τυχαία σφάλματα...4 Εκτίμηση του σφάλματος κατά την ανάγνωση κλίμακας...8 Πολλαπλές μετρήσεις... 10 Περί του αριθμού των σημαντικών

Διαβάστε περισσότερα

Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι:

Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: Μετρήσεις-Αβεβαιότητα-Σφάλματα. Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: ΑΜΕΣΗ ή ΕΜΜΕΣΗ Στην άμεση μέτρηση το μέγεθος μετράται με κάποιο όργανο. Στην έμμεση μέτρηση το μέγεθος υπολογίζεται

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας

Πανεπιστήμιο Θεσσαλίας Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Εργαστηριακές Ασκήσεις Εργαστήριο 4 Ορθότητα, Ακρίβεια και Θόρυβος (Accuracy, Precision and Noise) Φ. Πλέσσας

Διαβάστε περισσότερα

Κεφάλαιο 1. Δx: απόλυτο σφάλμα του μεγέθους x. (Το Δx έχει τις ίδιες μονάδες με το x). Δx x Δx x

Κεφάλαιο 1. Δx: απόλυτο σφάλμα του μεγέθους x. (Το Δx έχει τις ίδιες μονάδες με το x). Δx x Δx x Κεφάλαιο 1 Σύνοψη Θεωρία Σφαλμάτων: Βασικές γνώσεις περί σφαλμάτων με στόχο την κατανόηση των διαφόρων πηγών σφάλματος πειραματικών μετρήσεων, του τρόπου ποσοτικής εκτίμησης της επίδρασής τους στην (αν-)ακρίβεια

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΚΦΕ Ν.ΚΙΛΚΙΣ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ () ΜΕ ΤΗ ΒΟΗΘΕΙΑ

Διαβάστε περισσότερα

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012 1 Τοπικός Μαθητικός Διαγωνισμός 11η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2013 11Η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΕΚΦΕ Τρικάλων Πειραματική Δοκιμασία στη Φυσική Τοπικός Μαθητικός Διαγωνισμός Τρίκαλα,

Διαβάστε περισσότερα

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται δύο κριτήρια απόρριψης απομακρυσμένων από τη μέση τιμή πειραματικών μετρήσεων ενός φυσικού μεγέθους και συγκεκριμένα

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2009 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2009 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική ΠΑΝΕΚΦΕ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 009 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική 16-01-010 Σχολείο: Ονόματα των μαθητών της ομάδας: 1) ) 3) Σκοπός και κεντρική ιδέα της άσκησης Ο βασικός

Διαβάστε περισσότερα

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Σάββατο 8 ΕΚΕΜΒΡΙΟΥ 2012 ΕΚΦΕ ΑΧΑΪΑΣ (ΑΙΓΙΟΥ) (Διάρκεια εξέτασης 60 min) Μαθητές: Σχολική Μονάδα

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας

Διαβάστε περισσότερα

Φυσική για Επιστήμονες και Μηχανικούς. Εισαγωγή Φυσική και μετρήσεις

Φυσική για Επιστήμονες και Μηχανικούς. Εισαγωγή Φυσική και μετρήσεις Φυσική για Επιστήμονες και Μηχανικούς Εισαγωγή Φυσική και μετρήσεις Φυσική Χωρίζεται σε έξι βασικούς κλάδους: Κλασική μηχανική Θερμοδυναμική Ηλεκτρομαγνητισμός Οπτική Σχετικότητα Κβαντική μηχανική είναι

Διαβάστε περισσότερα

Γενικό Εργαστήριο Φυσικής

Γενικό Εργαστήριο Φυσικής http://users.auth.gr/agelaker Γενικό Εργαστήριο Φυσικής Γενικό Εργαστήριο Φυσικής Σφάλματα Μελέτη φυσικού φαινομένου Ποσοτική σχέση παραμέτρων Πείραμα Επαλήθευση Καθιέρωση ποσοτικής σχέσης Εύρεση τιμής

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός

ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να σχεδιάζει κύκλωμα αντιστάσεων σε παράλληλη σύνδεση και να μετράει

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 4 ο, Τμήμα Α Τι συμβαίνει όταν η περίοδος δεν ξεκινάει αμέσως μετά το κόμμα όπως συμβαίνει με τον αριθμό 3,4555 και θέλουμε να γραφεί σαν κλάσμα; 345 Υπήρχαν πολλές

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ

Διαβάστε περισσότερα

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Βασικές έννοιες, σχέσεις και διαδικασίες Αδρανειακό

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΟΥ OHM ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΗΣ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΑΝΤΙΣΤΑΣΗΣ ΛΑΜΠΤΗΡΑ

ΝΟΜΟΣ ΤΟΥ OHM ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΗΣ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΑΝΤΙΣΤΑΣΗΣ ΛΑΜΠΤΗΡΑ ΝΟΜΟΣ ΤΟΥ OHM ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΗΣ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΑΝΤΙΣΤΑΣΗΣ ΛΑΜΠΤΗΡΑ ΣΚΟΠΟΣ Σκοπός αυτής της μελέτης είναι αφενός να επαληθεύσουμε το νόμο του Ohm πειραματικά και αφετέρου να μετρήσουμε την αντίσταση

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ.

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. ΠΑΡΑΡΤΗΜΑ Α ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. Αρκετές φορές τα πειραματικά δεδομένα πρέπει να απεικονίζονται υπό μορφή γραφικών παραστάσεων σε ορθογώνιο σύστημα αξόνων καρτεσιανών συντεταγμένων. Με τις γραφικές παραστάσεις

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

European Union Science Olympiad EUSO 2014 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ. Σάββατο 7 ΕΚΕΜΒΡΙΟΥ 2013 ΕΚΦΕ ΑΧΑΪΑΣ (ΑΙΓΙΟΥ)

European Union Science Olympiad EUSO 2014 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ. Σάββατο 7 ΕΚΕΜΒΡΙΟΥ 2013 ΕΚΦΕ ΑΧΑΪΑΣ (ΑΙΓΙΟΥ) 12 η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2014 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Σάββατο 7 ΕΚΕΜΒΡΙΟΥ 2013 ΕΚΦΕ ΑΧΑΪΑΣ (ΑΙΓΙΟΥ) ( ιάρκεια εξέτασης 60 min) Μαθητές: Σχολική Μονάδα

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί

Διαβάστε περισσότερα

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ...

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ... ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...2

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.1 Ευθύγραμμη κίνηση 1. Να αναφέρετε ποια από τα σώματα που φαίνονται στην εικόνα κινούνται. Α. Ως προς τη Γη B. Ως προς το αυτοκίνητο. Α. Ως προς τη Γη κινούνται το αυτοκίνητο, το αεροπλάνο και ο γλάρος.

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ ΕΚΦΕ Αν. Αττικής Υπεύθυνος: Κ. Παπαμιχάλης ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ Κεντρική επιδίωξη των εργαστηριακών ασκήσεων φυσικής στην Α Γυμνασίου, είναι οι μαθητές να οικοδομήσουν

Διαβάστε περισσότερα

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ 5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ Μετρούμε αλλά και υπολογίζουμε Στο προηγούμενο μάθημα χρησιμοποιήσαμε το μέτρο, αλλά και άλλα όργανα με τα οποία μετρούμε το μήκος. Το σχήμα που μετρούμε με το μέτρο

Διαβάστε περισσότερα

Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε

Αρβανιτίδης Θεόδωρος,  - Μαθηματικά Ε Δεκαδικά κλάσματα Δεκαδικοί αριθμοί Μάθημα 7 ο Σε κάθε κλάσμα έχουμε : όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική

Διαβάστε περισσότερα

Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι:

Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: Μετρήσεις-Αβεβαιότητα-Σφάλματα. Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: ΑΜΕΣΗ ή ΕΜΜΕΣΗ Στην άμεση μέτρηση το μέγεθος μετράται με κάποιο όργανο. Στην έμμεση μέτρηση το μέγεθος υπολογίζεται

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική. Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3)

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική. Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) ΠΑΝΕΚΦΕ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Σχήμα 1 Εργαστηριακή Άσκηση: Μέτρηση της μάζας κινούμενου

Διαβάστε περισσότερα

Πειραματική διάταξη μελέτης, της. χαρακτηριστικής καμπύλης διπόλου

Πειραματική διάταξη μελέτης, της. χαρακτηριστικής καμπύλης διπόλου Πειραματική διάταξη μελέτης, της χαρακτηριστικής καμπύλης διπόλου Επισημάνσεις από τη θεωρία. 1 Ηλεκτρικό δίπολο ονομάζουμε κάθε ηλεκτρική συσκευή που έχει δύο πόλους (άκρα) και όταν συνδεθεί σε ηλεκτρικό

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς

Διαβάστε περισσότερα

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό.

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Φυσική 1. Επεξεργασία πειραματικών δεδομένων: α) Καταγραφή δεδομένων σε πίνακα μετρήσεων, β) Επιλογή συστήματος αξόνων με τις κατάλληλες κλίμακες και

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΤΗΣ ΔΙΑΜΕΤΡΟΥ ΚΥΛΙΝΔΡΙΚΟΥ ΣΥΡΜΑΤΟΣ

ΜΕΤΡΗΣΗ ΤΗΣ ΔΙΑΜΕΤΡΟΥ ΚΥΛΙΝΔΡΙΚΟΥ ΣΥΡΜΑΤΟΣ 14 η ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΚΦΕ ΧΑΛΑΝΔΡΙΟΥ και ΝΕΑΣ ΙΩΝΙΑΣ Τοπικός διαγωνισμός στη ΦΥΣΙΚΗ 05 Δεκεμβρίου 2015 Μαθητές Σχολείο 1. 2. 3. ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΦΥΣΙΚΗΣ ΜΕΤΡΗΣΗ ΤΗΣ ΔΙΑΜΕΤΡΟΥ ΚΥΛΙΝΔΡΙΚΟΥ

Διαβάστε περισσότερα

ΧΡΟΝΟΜΕΤΡΗΤΗΣ ΒΑΣΙΚΗ ΣΥΣΚΕΥΗ ΣΤΗΝ ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟΝ ΧΡΟΝΟΜΕΤΡΗΤΗ

ΧΡΟΝΟΜΕΤΡΗΤΗΣ ΒΑΣΙΚΗ ΣΥΣΚΕΥΗ ΣΤΗΝ ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟΝ ΧΡΟΝΟΜΕΤΡΗΤΗ ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΧΡΟΝΟΜΕΤΡΗΤΗΣ ΒΑΣΙΚΗ ΣΥΣΚΕΥΗ ΣΤΗΝ ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟΝ ΧΡΟΝΟΜΕΤΡΗΤΗ Τι είναι ο χρονομετρητής ; Ο χρονομετρητής : αξιοποιείται στους

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

Εισαγωγή Μια απλοποιημένη θεωρία σφαλμάτων Γραφικές παραστάσεις

Εισαγωγή Μια απλοποιημένη θεωρία σφαλμάτων Γραφικές παραστάσεις Εισαγωγή Μια απλοποιημένη θεωρία σφαλμάτων Γραφικές παραστάσεις Ο άνθρωπος αρχίζει να αποκτά γνώση για τον φυσικό κόσμο γύρω του, από τη στιγμή που αρχίζει να καταγράφει τα φυσικά φαινόμενα και να τα επεξεργάζεται

Διαβάστε περισσότερα

1. Πειραματικά Σφάλματα

1. Πειραματικά Σφάλματα . Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός

Διαβάστε περισσότερα

Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά

Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά Καργιωτάκης Γιώργος, Μπελίτσου Νατάσσα Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά στις τάξεις Β, Δ και Ε (μιας διδακτικής ώρας). ΣΤΟΧΟΣ ΒΗΜΑΤΑ ΥΛΙΚΟ- ΧΡΟΝΟΣ ΕΝΕΡΓΕΙΕΣ Αρχική αξιολόγηση επιπέδου

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β Γυμνασίου ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Βασικές έννοιες: Θέση - μετατόπιση - χρόνος - χρονικό διάστημα - ταχύτητα

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

1. Εισαγωγή. 2. Τεχνικές και «κρατούμενα»

1. Εισαγωγή. 2. Τεχνικές και «κρατούμενα» 1. Εισαγωγή Η προσέγγιση των Μαθηματικών της Β Δημοτικού από το παιδί προϋποθέτει την κατανόηση των μαθηματικών εννοιών που παρουσιάστηκαν στην Α Δημοτικού και την εξοικείωση του παιδιού με τις πράξεις

Διαβάστε περισσότερα

Γενικές Παρατηρήσεις για τις Εργαστηριακές Ασκήσεις Φυσικοχηµείας

Γενικές Παρατηρήσεις για τις Εργαστηριακές Ασκήσεις Φυσικοχηµείας Γενικές Παρατηρήσεις για τις Εργαστηριακές Ασκήσεις Φυσικοχηµείας Σκοπός των ασκήσεων είναι η κατανόηση φυσικών φαινοµένων και µεγεθών και η µέτρησή τους. Η κατανόηση αρχίζει µε την µελέτη των σηµειώσεων,

Διαβάστε περισσότερα

Κεφάλαιο 11: Προσδιορισμός της επιτάχυνσης της βαρύτητας με το απλό εκκρεμές

Κεφάλαιο 11: Προσδιορισμός της επιτάχυνσης της βαρύτητας με το απλό εκκρεμές Κεφάλαιο 11: Προσδιορισμός της επιτάχυνσης της βαρύτητας με το απλό εκκρεμές Σύνοψη Προσδιορισμός της έντασης του γήινου βαρυτικού πεδίου μέσω μέτρησης της περιόδου απλών αρμονικών ταλαντώσεων ενός απλού

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ - ΑΞΙΟΛΟΓΗΣΗ

ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ - ΑΞΙΟΛΟΓΗΣΗ ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ - ΑΞΙΟΛΟΓΗΣΗ 1 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιδιώκεται οι μαθητές: 1. Να συζητούν και να προβληματίζονται για τα μετρήσιμα και τα μη μετρήσιμα μεγέθη. 2. Να πειραματιστούν και να καταλήξουν σε

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5 Συνδεσμολογία Αντιστάσεων Ι (αντιστάσεις σε σειρά)

ΑΣΚΗΣΗ 5 Συνδεσμολογία Αντιστάσεων Ι (αντιστάσεις σε σειρά) Σκοπός ΑΣΚΗΣΗ 5 Συνδεσμολογία Αντιστάσεων Ι (αντιστάσεις σε σειρά) Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να σχεδιάζει κύκλωμα αντιστάσεων σε σειρά και να μετράει άγνωστα στοιχεία του

Διαβάστε περισσότερα

2. ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΤΑΞΗ

2. ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΤΑΞΗ 2 Πειραματικό Γενικό Λύκειο Αθηνών Κλεομένης Σαλαπάτας Επιστημονική Αναφορά Για Τον Νόμο του Charles 1. ΥΠΟΘΕΣΗ Η ακόλουθη πειραματική διαδικασία που διεξήχθη βασίζεται σε ένας από τους νόμους των αερίων

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Αθήνα 2014 1 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1. Η ΕΝΝΟΙΑ ΤΟΥ ΣΦΑΛΜΑΤΟΣ... 2. ΤΥΠΟΙ ΣΦΑΛΜΑΤΩΝ. ΣΥΣΤΗΜΑΤΙΚΑ ΚΑΙ ΤΥΧΑΙΑ ΣΦΑΛΜΑΤΑ... 3. ΕΚΤΙΜΗΣΗ ΣΦΑΛΜΑΤΟΣ ΚΑΤΑ

Διαβάστε περισσότερα

Άσκηση 4 Θεμελιώδης νόμος της Μηχανικής

Άσκηση 4 Θεμελιώδης νόμος της Μηχανικής Άσκηση 4 Θεμελιώδης νόμος της Μηχανικής Σύνοψη Η άσκηση αυτή διαφέρει από όλες τις άλλες. Σκοπός της είναι η πειραματική επαλήθευση του θεμελιώδους νόμου της Μηχανικής. Αυτό θα γίνει με τη γραφική ανάλυση

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ. ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Όνομα Μαθητή/τριας:... Τμήμα: Αρ.:

ΓΥΜΝΑΣΙΟ. ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Όνομα Μαθητή/τριας:... Τμήμα: Αρ.: ΓΥΜΝΑΣΙΟ. ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2015-2016 ΒΑΘΜΟΣ ΦΥΣΙΚΗΣ Αριθμητικώς:... Ολογρ.:... Υπογραφή:... ΒΑΘΜΟΣ ΦΥΣΙΚΑ Αριθμητικώς:... Ολογρ.:... Υπογραφές:... ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2016 ΤΑΞΗ: Β ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί

Διαβάστε περισσότερα

Τι μάθαμε μέχρι τώρα:

Τι μάθαμε μέχρι τώρα: Τι μάθαμε μέχρι τώρα: Η μέτρηση μπορεί να είναι: ΑΜΕΣΗ ή ΕΜΜΕΣΗ Κάθε μέτρηση έχει ΑΒΕΒΑΙΟΤΗΤΑ. Παρουσιάζοντας τη μέτρηση σύμφωνα με τη θεωρία σφαλμάτων γράφω δυο αριθμούς: x ± δx ή x ± Σσχ ή x ± %Σσχ όπου

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία σφαλμάτων. Μαθηματικός ορισμός του σφάλματος : σφάλμα=x-x όπου x & X είναι η μετρούμενη και η πραγματική τιμή αντίστοιχα.

Εισαγωγή στη θεωρία σφαλμάτων. Μαθηματικός ορισμός του σφάλματος : σφάλμα=x-x όπου x & X είναι η μετρούμενη και η πραγματική τιμή αντίστοιχα. Ε. Κ. Παλούρα 00 Ε. Κ. Παλούρα 00 Εισαγωγή στη θεωρία σφαλμάτων Εισαγωγή στη θεωρία σφαλμάτων Πείραμα Συστηματική παρατήρηση & μέτρηση φυσικών φαινομένων Επαλήθευση απλών νόμων Εκπαίδευση στον υπολογισμό

Διαβάστε περισσότερα

ΔΙΔΑΣΚΟΝΤΕΣ Ε. Σπανάκης, Δ. Θεοδωρίδης, Δ. Στεφανάκης, Γ.Φανουργάκης & ΜΤΠΧ

ΔΙΔΑΣΚΟΝΤΕΣ Ε. Σπανάκης, Δ. Θεοδωρίδης, Δ. Στεφανάκης, Γ.Φανουργάκης & ΜΤΠΧ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΕΤΥ203 3 Ώρες εργαστηρίου την ημέρα Προαπαιτούμενo: Φυσική Ι (ΕΤΥ101) Βαθμός Μαθήματος: 0.1*(Μ.Ο. Βαθμών προφορικής εξέτασης) + 0.5*(Μ.Ο. Βαθμών Αναφορών) + 0.4*(Βαθμός Τελικής εξέτασης

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO 2017

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO 2017 1ο και 2ο ΕΚΦΕ Ηρακλείου ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO 2017 Σάββατο 3 Δεκεμβρίου 2016 Διαγωνισμός στη Φυσική (Διάρκεια 1 ώρα) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΩΝ 1)... 2)...

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ

ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ Συνοπτική περιγραφή Μελετάμε την κίνηση μιας ράβδου που μπορεί να περιστρέφεται γύρω από σταθερό οριζόντιο άξονα,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Αθήνα 2017 1 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1. Η ΕΝΝΟΙΑ ΤΟΥ ΣΦΑΛΜΑΤΟΣ... 2. ΤΥΠΟΙ ΣΦΑΛΜΑΤΩΝ. ΣΥΣΤΗΜΑΤΙΚΑ ΚΑΙ ΤΥΧΑΙΑ ΣΦΑΛΜΑΤΑ... 3. ΕΚΤΙΜΗΣΗ ΣΦΑΛΜΑΤΟΣ ΚΑΤΑ

Διαβάστε περισσότερα

Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων

Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται οι βασικές έννοιες της στατιστικής ανάλυσης των μετρήσεων που υπόκεινται σε τυχαία σφάλματα. Παρουσιάζεται μέσω

Διαβάστε περισσότερα

ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος

ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος Περιεχόμενα ΦΕ1 ΤΑ ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΚΑΙ Η ΜΕΤΡΗΣΗ ΤΟΥΣ ΤΟ ΜΗΚΟΣ 2015-16 6 ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ Τα φυσικά μεγέθη Η Μέτρηση των φυσικών μεγεθών Μια μονάδα μέτρησης για όλους Το φυσικό μέγεθος Μήκος Όργανα μέτρησης

Διαβάστε περισσότερα