ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ&ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ. Διπλωματική Εργασία

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ&ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ. Διπλωματική Εργασία"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ&ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ Διπλωματική Εργασία Μελέτη εγκατάστασης φωτοβολταϊκών μεγάλης ισχύος σε σύνδεση με το δίκτυο Δαλαΐνας Δημήτρης ΕΠΙΒΛΕΠΩΝ: ΑΛΕΞΑΝΔΡΙΔΗΣ ΑΝΤΩΝΗΣ ΑΡΙΘΜΟΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: ΗΜΕΡΟΜΗΝΙΑ: 16/2/09

2 ΠΙΣΤΟΠΟΙΗΣΗ Πιστοποιείται ότι η διπλωματική εργασία με θέμα Μελέτη εγκατάστασης φωτοβολταϊκών μεγάλης ισχύος σε σύνδεση με το δίκτυο Του φοιτητή του τμήματος Ηλεκτρολόγων Μηχανικών &Τεχνολογίας Υπολογιστών Δαλαΐνα Δημήτρη του Θεοδώρου (Α.Μ. 5196) Παρουσιάστηκε δημόσια και εξετάστηκε στο τμήμα Ηλεκτρολόγων Μηχανικών &Τεχνολογίας Υπολογιστών στις 16/2/09. Ο επιβλέπων/εξεταστής Α.Αλεξανδρίδης Ο διευθυντής του τομέα Α.Αλεξανδρίδης 2

3 ΕΥΧΑΡΙΣΤΙΕΣ Απευθύνω θερμές ευχαριστίες στους κυρίους Α.Αλεξανδρίδη, Θ.Ζαχαρία, Μ.Νέρη, Σ.Λαζάρου, Ι.Ναξακη, Α.Τζινευράκη, Ε.Μίμο, Α. Χαρίτο, Ι. Παπαϊωάννου, Σ. Κοντό για την πολύτιμη βοήθεια τους και τις εύστοχες παρατηρήσεις τους κατά την εκπόνηση της εργασίας αυτής. 3

4 Περιεχόμενα Περιεχόμενα Περιεχόμενα ΠΕΡΙΕΧΟΜΕΝΑ... 1 Περιεχόμενα... 4 ΠΕΡΙΛΗΨΗ Περίληψη ΚΕΦΑΛΑΙΟ Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του Μοντέλο της μιας διόδου ενός φωτοβολταϊκού κυττάρου Μοντέλο της μιας διόδου για ένα ολόκληρο το πλαίσιο Συνήθεις προσεγγίσεις Προσδιορισμός παραμέτρων του κυκλώματος της μιας διόδου με χρήση πειραματικών μετρήσεων Εξισώσεις που δίνουν τις παραμέτρους του μοντέλου Καθορισμός των παραμέτρων του μοντέλου της μιας διόδου από τα στοιχεία που παραθέτουν οι κατασκευαστές (2) Μοντέλο μιας διόδου και καθορισμός παραμέτρων στο PVSYST (3)

5 Περιεχόμενα Χαρακτηριστικά φβ πλαισίου περιγραφή μοντέλου Φωτόρευμα στις εκάστοτε συνθήκες ακτινοβολίας και θερμοκρασίας Το ανάστροφο ρεύμα κόρου της διόδου στις εκάστοτε συνθήκες ακτινοβολίας και θερμοκρασίας Καθορισμός των παραμέτρων του μοντέλου Γραφικές παραστάσεις ΚΕΦΑΛΑΙΟ Απώλειες Χαρακτηριστικά μεγέθη Πρότυπες Συνθήκες Δοκιμής φωτοβολταϊκού στοιχείου ή πλαισίου (STC Standard Test Conditions): Ονομαστική ισχύς ενός φωτοβολταϊκού πλαισίου Ονομαστική Θερμοκρασία Λειτουργίας ΦΒ κυψελίδας (Nominal Operating Cell Temperature NOCT ) Συνθήκες λειτουργίας της φβ κυψελίδας κάτω από τις οποίες η θερμοκρασία της ισούται με την ονομαστική τιμή της (NOCT): Απώλειες και συντελεστές απόδοσης Συντελεστής απόδοσης φωτοβολταϊκού πλαισίου Συντελεστής απόδοσης μιας φωτοβολταϊκής συστοιχίας (array) Δίοδοι αντεπιστροφής ΑΠΩΛΕΙΕΣ και PVSYST Απώλειες IAM [Incidence angle modifier IAM)] Θερμικές απώλειες λόγω της θερμοκρασίας των κυψελίδων Απώλειες λόγω ανακρίβειας ποιοτικών χαρακτηριστικών πλαισίου (Module Quality Loss) Απώλειες λόγω αναντιστοιχίας μεταξύ των χαρακτηριστικών των πλαισίων (Mismatch Loss). (3) Ωμικές απώλειες λόγω καλωδιώσεων. (3) ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΕΦΑΛΑΙΟ Ηλεκτρικά χαρακτηριστικά μετατροπέα Εισαγωγή

6 Περιεχόμενα 3.2 Ηλεκτρικά χαρακτηριστικά μετατροπέα Πλευρά εισόδου του μετατροπέα. ( Input side) Κατάσταση λειτουργίας Ελάχιστη και μέγιστη MPP τάση Μέγιστη τάση Κατώφλι ισχύος (Power threshold) Μέγιστο φωτοβολταϊκό ρεύμα (I pvmax ) Λοιπά στοιχεία Πλευρά εξόδου του μετατροπέα Ονομαστική ισχύς Μέγιστη AC ισχύς Ονομαστική AC τάση Ονομαστικό AC ρεύμα Μονοφασική ή τριφασική σύνδεση Συχνότητα δικτύου Απόδοση ΚΕΦΑΛΑΙΟ Διαστασιολόγηση Μετατροπείς Υπολογισμός της συνολικής ονομαστικής ισχύος των μετατροπέων Αριθμός και «τοποθέτηση μετατροπέων» ΦΒ συστοιχίες Εκτίμηση του συνολικού αριθμού πλαισίων Συμβατότητα συστοιχίας μετατροπέα Η τάση της συστοιχίας Συμβατότητα τάσης συστοιχίας και τάσης εισόδου μετατροπέα Υπολογισμός του μέγιστου αριθμού πλαισίων εν σειρά Έλεγχος τάσης στο MPP Αριθμός παράλληλων αλυσίδων Συμβατότητα ρεύματος συστοιχίας και μετατροπέα Μονογραμμικό σχέδιο Τελικά αποτελέσματα για το σύστημα Αποδοτικότητες, λόγος επίδοσης, αποδόσεις Ακτινοβολία, αποδιδόμενη ενέργεια και αποδόσεις

7 Περιεχόμενα Διαγράμματα απωλειών Συγκεντρωτική αναφορά του συστήματος Τοποθέτηση πλαισίων Τοποθέτηση για αποφυγή σκίασης Τεχνικά χαρακτηριστικά μετατροπέα και πλαισίου ΚΕΦΑΛΑΙΟ Νησιδοποίηση ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Διανεμημένη παραγωγή Τι είναι το φαινόμενο της νησιδοποίησης Λόγοι για τους οποίους η νησιδοποίηση είναι ανεπιθύμητη Τεχνικές ανίχνευσης και διακοπής της νησιδοποίησης «Τοπικές» τεχνικές ανίχνευσης Οι παθητικές τεχνικές Οι ενεργητικές τεχνικές Περιγραφή παθητικών τεχνικών Παραδοσιακές τεχνικές με ρελέ υπέρτασης/υπότασης και υπερσυχνότητας/υποσυχνότητας Ανίχνευση Αρμονικών Τάσης Ανίχνευση μεταβολών φάσης (phase jump) Περιγραφή ενεργητικών τεχνικών Μέτρηση εμπέδησης του δικτύου (Impedance measurement) Ανίχνευση της εμπέδησης για συγκεκριμένη συχνότητα Τεχνικές μεταβολής της συχνότητας και της φάσης που χρησιμοποιούν θετική ανάδραση (Frequency and phase shift techniques positive feedback) α Γενική αρχή λειτουργίας β Ενεργός Μεταβολή της Συχνότητας (Active Frequency Drift AFD) γ Ενεργός Μεταβολή της Συχνότητας με Θετική Ανάδραση [AFDPF(with positive feedback) or Sandia Frequency Drift] δ Slip Mode Frequency Shift (SMS) Μεταβολή Tάσης με Θετική Ανάδραση Sandia Voltage Shift (SVS) Τυπική συσκευή αυτόματης αποσύνδεσης μεταξύ παραγωγού και δικτύου

8 Περιεχόμενα ΚΕΦΑΛΑΙΟ Προστασίες Βασικές έννοιες Διατάξεις προστασίας ΧΤ Ασφάλειες Αυτόματοι Διακόπτες Ισχύος Διατάξεις προστασίας ΜΤ Ασφάλειες ΥΤ Διακόπτες ισχύος ΜΤ Διακόπτες φορτίου Αποζεύκτες ΠΡΟΣΤΑΣΙΑ ΜΕΤΑΣΧΗΜΑΤΙΣΤΩΝ Πλευρά ΜΤ Πλευρά ΧΤ Ρεύματα ζεύξεως ΜΣ Προστασία έναντι ρευμάτων βραχυκύκλωσης Μελέτη προστασίας εγκατάστασης ΧΤ και ΜΣ ανύψωσης Στοιχεία ΜΣ Ασφάλειες ΧΤ Αυτόματος Διακόπτης Ισχύος (ΔΙ) ΧΤ Ασφάλειες ΥΤ ΚΕΦΑΛΑΙΟ Θέματα σύνδεσης με το Δίκτυο Ορισμοί και βασικές έννοιες Σημείο σύνδεσης στο δίκτυο ΣΣΔ Σημείο κοινής σύνδεσης ΣΚΣ Εγκατάσταση παραγωγής Μοναδιαία εγκατάσταση Μονάδα γεννήτριας Γενικές προϋποθέσεις για τη σύνδεση Τρόπος σύνδεσης Γενικά περί διατάξεων ζεύξης και προστασίας Διατάξεις ζεύξης και προστασίας

9 Περιεχόμενα Προϋποθέσεις για τις διατάξεις ζεύξης και προστασίας Ρυθμίσεις προστασιών Διαμόρφωση της σύνδεσης στη ΜΤ Συνολκή επισκόπηση των μέσων προστασίας και ζεύξης μέχρι το ΣΚΣ ΚΕΦΑΛΑΙΟ Βραχυκυκλώματα Εισαγωγή Βασικοί ορισμοί Υπολογισμός ρευμάτων βραχυκύκλωσης Μέθοδος IEC Σύνθετες αντιστάσεις Αρχικό ρεύμα βραχυκύκλωσης Ιk Κρουστικό ρεύμα βραχυκύκλωσης Ιs Υπολογισμός ρεύματος διακοπής Ια Υπολογισμός μόνιμου ρεύματος βραχυκύκλωσης Ικ Υπολογισμός ρευμάτων βραχυκύκλωσης σε δίκτυα ΧΤ Βιβλιογραφία ΒΙΒΛΙΟΓΡΑΦΙΑ ΒΙΒΛΙΟΓΡΑΦΙΑ

10 Περίληψη Περίληψη Περίληψη Στην παρούσα εργασία θα ασχοληθούμε με τη μελέτη ενός διασυνδεμένου με το Δίκτυο φωτοβολταϊκού σταθμού μεγάλης ισχύος. Η ονομαστική ισχύς του σταθμού ανέρχεται στα 500kW περίπου και η σύνδεση του γίνεται στο Δίκτυο ΜΤ της ΔΕΗ. Για την εξομοίωση της λειτουργίας του σταθμού χρησιμοποιούμε το πρόγραμμα PVSYST. Με τη χρήση και κατανόηση του συγκεκριμένου προγράμματος προσπαθούμε ταυτόχρονα να βγάλουμε χρήσιμα συμπεράσματα για την μοντελοποιημένη λειτουργία των φωτοβολταϊκών. Στο πρώτο κεφάλαιο ασχολούμαστε με το μοντέλο της μιας διόδου που περιγράφει τη λειτουργία των ΦΒ πλαισίων. Οι παράμετροι του μοντέλου και οι τιμές που αυτές λαμβάνουν για διάφορες συνθήκες θερμοκρασίας και ακτινοβολίας καθορίζουν σε μεγάλο βαθμό την ηλεκτρική συμπεριφορά των πλαισίων. Ωστόσο ο καθορισμός των παραμέτρων δεν είναι πάντα εύκολη υπόθεση. Στο κεφάλαιο αυτό θα ανιχνεύσουμε μια μεθοδολογία προσδιορισμού τους για να καταλήξουμε στον τρόπο που αντιμετωπίζονται από το πρόγραμμα. Κατά την λειτουργία των ΦΒ πλαισίων σε συνθήκες διαφορετικές από τις πρότυπες παρουσιάζονται απώλειες. Μια φωτοβολταϊκή γεννήτρια μπορεί να αποτελείται από εκατοντάδες πλαίσια. Πρέπει συνεπώς να δούμε το σύνολο των 10

11 Περίληψη απωλειών που αφορούν το σύστημα φβ γεννήτρια. Στο κεφάλαιο 2 εξετάζουμε το ζήτημα των απωλειών και τον τρόπο αντιμετώπισης τους από το PVSYST. Σκοπός μας είναι η κατανόηση των παραγόντων που τις καθορίζουν και η κατά το δυνατόν ποσοτικοποίηση τους. Ένα από τα σημαντικότερα τμήματα μιας φωτοβολταϊκής εγκατάστασης είναι ο μετατροπέας dc-ac. Στο τρίτο κεφάλαιο παρουσιάζουμε τα σημαντικότερα ηλεκτρικά μεγέθη που αφορούν τους μετατροπείς και είναι σημαντικά για την ορθή διαστασιολόγηση του συστήματος. Στο τέταρτο κεφάλαιο προχωράμε στη διαστασιολόγηση του συστήματος. Εξετάζουμε κυρίως τα ζητήματα συμβατότητας μεταξύ ΦΒ γεννητριών και μετατροπέων και καθορίζουμε τον αριθμό των εν σειρά και παράλληλων πλαισίων που απαιτούνται. Παράλληλα παρουσιάζονται οι αποδόσεις του συστήματος όπως προκύπτουν από το πρόγραμμα για προσομοίωση λειτουργίας ενός έτους. Ο υπολογισμός τους βασίζεται στα 2 πρώτα κεφάλαια. Στο πέμπτο κεφάλαιο ασχολούμαστε με το φαινόμενο της νησιδοποίησης. Η αύξηση της παραγωγής ισχύος από Διανεμημένους Παραγωγούς καθιστά την εμφάνιση του φαινομένου όλο και συχνότερη. Η ανίχνευση και διακοπή του φαινομένου είναι καθοριστικής σημασίας για την ορθή λειτουργία του Δικτύου και την ασφάλεια του προσωπικού που εργάζεται σε αυτό. Εδώ περιγράφουμε μερικές από τις πιο βασικές εφαρμοζόμενες μεθόδους ανίχνευσης και διακοπής του. Στο έκτο κεφάλαιο παρουσιάζουμε τα βασικά χαρακτηριστικά των μέσων προστασίας έναντι υπερεντάσεων. Προχωράμε σε μελέτη των διατάξεων προστασίας της εγκατάστασης με σκοπό τη διασφάλιση της σε περίπτωση εμφάνισης σφαλμάτων. Στο έβδομο κεφάλαιο συνεχίζουμε με μια επισκόπηση των διατάξεων προστασίας και ζεύξης που χρειάζονται για τη σύνδεση Διανεμημένων Παραγωγών στο Δίκτυο Μέσης Τάσης της ΔΕΗ. Παραθέτουμε τις βασικές προϋποθέσεις που πρέπει να πληρούν τα μέσα όπως αυτές καθορίζονται από σχετικό κανονισμό. Στο όγδοο κεφάλαιο τέλος παρουσιάζουμε μερικές βασικές αρχές και ορισμούς που χαρακτηρίζουν τα βραχυκυκλώματα στα Δίκτυα ΥΤ και ΜΤ. Ο υπολογισμός χαρακτηριστικών μεγεθών που αφορούν στα ρεύματα βραχυκύκλωσης είναι 11

12 Περίληψη καθοριστικής σημασίας για την προστασία του συστήματος παραγωγής και διανομής ηλεκτρικής ισχύος. Δε θα επεκταθούμε ωστόσο σε μια τέτοια μελέτη. 12

13 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. Κεφάλαιο 1 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. 1.1 Μοντέλο της μιας διόδου ενός φωτοβολταϊκού κυττάρου. Το παραμετρικό μοντέλο της μιας διόδου ενός φωτοβολταϊκού κυττάρου περιγράφεται από την ακόλουθη εξίσωση: Vcell + Icell Rs, cell ncell V V T cell + Icell = IL, cell I0, cell e 1 IR s, cell sh, cell (1.1) R Όπου : V T : η θερμική τάση σε Volt που δίνεται από τη σχέση KTc VT =. Για q θερμοκρασία δωματίου, 27ºC = 300ºK, V T 25,85mV. K: η σταθερά Boltzmann. Κ = J/ºK. Tc: απόλυτη θερμοκρασία του κυττάρου σε βαθμούς Kelvin. (0ºC = 273ºK). 13

14 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. q: φορτίο ηλεκτρονίου. n cell : συντελεστής διόρθωσης που οφείλεται σε φαινόμενα επανασύνδεσης και μη ιδανικής διάχυσης τα οποία συμβαίνουν στην περιοχή της p-n επαφής. Παίρνει τιμές μεταξύ 1 και 2. I cell: το ρεύμα στην έξοδο του κυττάρου. V cell: η τάση στην έξοδο του κυττάρου. I L, cell : το φωτόρευμα, δηλαδή το ρεύμα που παράγεται λόγω του προσπίπτοντος ηλιακού φωτός επί του κυττάρου. I 0, cell: ρεύμα κόρου της διόδου R s, cell : σε σειρά αντίσταση του κυττάρου. Παριστάνει σε συγκεντρωμένη μορφή όλα τα κατανεμημένα στοιχεία αντίστασης κατά τη ροή των φορέων στον κυρίως ημιαγωγό, την ενδοεπιφάνεια μεταξύ ημιαγωγού ωμικής επαφής και την ωμική επαφή. Είναι συνήθως μικρότερη του 1Ω. R sh,cell : παράλληλη αντίσταση του κυττάρου. Οφείλεται σε διαρροές φορέων που συμβαίνουν : στην επαφή pn (επανασύνδεση), στην εξωτερική παράπλευρη επιφάνεια του κυττάρου (επιφανειακή διαρροή), σε άλλες ανωμαλίες του κρυστάλλου. Είναι της τάξης των kω, γενικά πολύ μεγαλύτερη από την Rs. 1.2 Μοντέλο της μιας διόδου για ένα ολόκληρο το πλαίσιο. Με βάση το μοντέλο της μιας διόδου για ένα ηλιακό κύτταρο προκύπτει το μοντέλο της μιας διόδου για ένα ολόκληρο πλαίσιο. Αν θεωρήσουμε ότι το πλαίσιο αποτελείται από N s ίδια ηλιακά κύτταρα σε σειρά και N p παράλληλες αλυσίδες κυττάρων τότε η ηλεκτρική συμπεριφορά του δίνεται από την εξίσωση: 14

15 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. V+ I R s nv V + IR T I = IL I0 e 1 Rsh s (1.2) Όπου: N s : αριθμός κυττάρων σε σειρά. Θεωρούμε ότι τα κύτταρα είναι πανομοιότυπα. N p : αριθμός παράλληλων αλυσίδων. n: N s n cell. I = I cell N p, το ρεύμα στην έξοδο του πλαισίου. V = V cell N s, η τάση στη έξοδο του πλαισίου. I L = I L,cell N p το συνολικό ισοδύναμο φωτόρευμα του πλαισίου. I 0 = I 0,cell N p το συνολικό ρεύμα κόρου της διόδου του πλαισίου. R s = (N s / N p ) R s, cell η ισοδύναμη σε σειρά αντίσταση του πλαισίου R sh = (N s / N p ) R sh, cell η ισοδύναμη παράλληλη αντίσταση του πλαισίου Η εξίσωση αυτή είναι μια μη γραμμική πεπλεγμένη εξίσωση, I=f(I,V). Αποτελεί το μαθηματικό μοντέλο που περιγράφει την ηλεκτρική συμπεριφορά ενός πλαισίου σε στατικές καταστάσεις. Το ισοδύναμο ηλεκτρικό κύκλωμα φαίνεται στο σχήμα. Σχέδιο 1.. Το μοντέλο της μιας διόδου για ένα πλαίσιο. Αν επιλύσουμε την παραπάνω εξίσωση (1.2) ως προς την τάση τότε παίρνουμε πάλι μια πεπλεγμένη εξίσωση τα μορφής V= f(i,v). Επομένως έχουμε : 15

16 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. V IL βr I R SH V = I Rs+ nvt ln + 1 I0 (1.3) Όπου: Rs o β R = 1+ R sh (1.4) Από τις παραπάνω εξισώσεις μπορούμε να υπολογίσουμε το ρεύμα βραχυκύκλωσης και την τάση ανοιχτοκύκλωσης. Το ρεύμα βραχυκύκλωσης Isc υπολογίζεται αν θέσουμε στην εξίσωση 1.2 V=0 και Ι = Isc οπότε προκύπτει : 1 ISC R S I = I I exp 1 nv T (1.5) sc L 0 βr Η τάση ανοιχτοκύκλωσης Voc υπολογίζεται αν θέσουμε στην εξίσωση 1.3 όπου I = 0 και V = Voc οπότε προκύπτει: V oc Voc I L R SH = nvt ln + 1 I0 (1.6) Συνήθεις προσεγγίσεις Επειδή όπως είδαμε η Rsh είναι πολύ μεγάλη (της τάξης των kω) και πολύ μεγαλύτερη της R s μπορούμε να κάνουμε τις παρακάτω προσεγγίσεις: V + R IR sh s V 0 και 0 R SH Rs β R = 1+ 1 R sh 16

17 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. Οι παραλειπόμενοι όροι είναι σχεδόν αμελητέοι και δεν έχουν καθοριστικό ρόλο στη διαμόρφωση της χαρακτηριστικής εξόδουv-i. Έτσι οι σχέσεις 1.2,1.3,1.5,1.6 απλοποιούνται στις ακόλουθες: V + I R S n VT I IL I0 e 1 (1.7) IL I V I Rs+ nvt ln + 1 I0 (1.8) ISC R S ISC IL I0 exp 1 nv T (1.9) Voc I L nvt ln + 1 I 0 (1.10) Η γραφική παράσταση μεταξύ τάσης και ρεύματος στην έξοδο του πλαισίου καλείται χαρακτηριστική εξόδου I-V και έχει επικρατήσει να παριστάνεται στο πρώτο τεταρτημόριο. Μια τέτοια καμπύλη για δοσμένη ένταση ακτινοβολίας και δοσμένη θερμοκρασία λειτουργίας του πλαισίου φαίνεται στο σχήμα για το πλαίσιο ASE-300- DG-FT. 17

18 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. Σχέδιο 2. Χαρακτηριστική I-V για το πλαίσιο ASE-300-DG-FT. Στην καμπύλη βλέπουμε τα ακόλουθα χαρακτηριστικά μεγέθη για το πλαίσιο: Isc: το ρεύμα βραχυκύκλωσης στην έξοδο του πλαισίου για τάση εξόδου V=0. Voc: την τάση ανοιχτού κυκλώματος, που είναι η τάση για ρεύμα Ι= =0. MPP: το σημείο μέγιστης ισχύος εξόδου που είναι το σημείο της I-V καμπύλης από όπου μπορούμε να κατασκευάσουμε το ορθογώνιο με την μέγιστη επιφάνεια μέσα στην καμπύλη Ι-V. Η ισχύς στο σημείο, αυτό για δοσμένες συνθήκες ακτινοβολίας και θερμοκρασίας, είναι η μέγιστη ισχύς που μπορεί να δώσει το πλαίσιο, P M. I MPP : το ρεύμα εξόδου που αντιστοιχεί στο MPP. V MPP : η τάση εξόδου που αντιστοιχεί στο MPP Προσδιορισμός παραμέτρων πειραματικών μετρήσεων. του κυκλώματος της μιας διόδου με χρήση Οι παράμετροι που καθορίζουν το μοντέλο της μια διόδου για το φβ πλαίσιο δεν υπολογίζονται εύκολα. Παρουσιάζεται εδώ συνοπτικά ένας αλγεβρικός τρόπος προσδιορισμού των παραμέτρων του μοντέλου με βάση συγκεκριμένες πειραματικές 18

19 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. μετρήσεις ή δεδομένα που παρέχονται για τα πλαίσια υπό γνωστές συνθήκες θερμοκρασίας και ακτινοβολίας (συνθήκες αναφοράς). Οι συνθήκες αναφοράς λαμβάνονται συνήθως για ακτινοβολία 1000 W/m 2 και για τη θερμοκρασία 25ºC (STC συνθήκες). Για δεδομένες λοιπόν τιμές ηλιακής ακτινοβολίας και θερμοκρασίας μπορούμε να καθορίσουμε την πλήρη Ι-V χαρακτηριστική ενός οποιουδήποτε πλαισίου αρκεί να προσδιορίσουμε τις παραμέτρους των παραπάνω εξισώσεων, δηλ τα : n, I 0, I L, R sh, R s. Για το σκοπό αυτό χρησιμοποιούνται κάποιες επιλεγμένες μετρήσεις και γίνονται κατάλληλες προσεγγίσεις στις παραπάνω εξισώσεις του μοντέλου για να καταλήξουμε σε σχέσεις που δίνουν τις αναλυτικές εκφράσεις για τις παραμέτρους του μοντέλου με ικανοποιητική ακρίβεια. Επομένως χρησιμοποιούμε κάποιες μετρήσεις και τις εξισώσεις που περιγράφουν το μοντέλο και στη συνέχεια επιλύουμε το αλγεβρικό σύστημα που προκύπτει ως προς τις ζητούμενες παραμέτρους. Για τον υπολογισμό λοιπόν των παραμέτρων με την συγκεκριμένη αλγεβρική μέθοδο χρησιμοποιούνται κατάλληλα πειραματικά σημεία που προκύπτουν από κάποια κατάλληλη πειραματική καμπύλη. Τα σημεία αυτά είναι: Τάση ανοιχτού κυκλώματος, Voc. Ρεύμα ανοιχτοκύκλωσης, Isc. Τάση V MP και ρεύμα I MP στο σημείο μέγιστης ισχύος εξόδου P MP. Την κλίση, V/ I, της καμπύλης V-I στο σημείο (V=Voc, Ι=0), με βάση την V οποία υπολογίζουμε την R S0. Έχουμε δηλαδή: (1.11) Rs 0 = I V= Voc Για το σκοπό αυτό απαιτείται η λήψη πειραματικών μετρήσεων πολύ κοντά στην τιμή Voc. Συγκεκριμένα παίρνουμε το ζεύγος τιμών ( V MAX, I MIN ). R V V V V V = = R = (1.12) oc MAX oc MAX o s0 s0 I V= Voc 0 IMIN IMIN 19

20 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. Την κλίση της καμπύλης V-I στο σημείο (V=0, Ι=Ιsc), με βάση την οποία υπολογίζουμε την R sh. Έχουμε δηλαδή: R sh V = I I= Isc (1.13) Για το σκοπό αυτό απαιτείται η λήψη πειραματικών μετρήσεων πολύ κοντά στην τιμή (V=0, I=Isc). Συγκεκριμένα παίρνουμε το ζεύγος τιμών ( 0, I MAX ). V 0 VMIN VMIN o Rsh0 = = Rsh 0 = I I= Isc ISC IMAX ISC IMAX (1.14) Εξισώσεις που δίνουν τις παραμέτρους του μοντέλου. Με βάση τα παραπάνω μετρούμενα δεδομένα, με τη χρήση των εξισώσεων που έχουμε ήδη δει και κάνοντας κατάλληλες προσεγγίσεις καταλήγουμε σε 5 εξισώσεις για τον υπολογισμό τον παραμέτρων του μοντέλου του φβ πλαισίου. Οι εξισώσεις στις οποίες καταλήγουμε παρουσιάζονται πιο κάτω. Η διαδοχή των εξισώσεων συμπίπτει με τη διαδοχή που πρέπει να γίνουν οι υπολογισμοί για να λάβουμε τις τιμές των παραμέτρων. Συνεπώς έχουμε: MIN Rsh Rsh0 = (1.15) ISC IMAX V 1 MP MP s0 oc n V T I sc I MP R sh V MP IMP ( ) V + I R V ln + I V sc Rsh Voc Isc R oc sh (1.16) I0 Voc Isc Rsh V oc exp nvt (1.17) R S S0 nvt = R exp V oc I0 nvt (1.18) V όπου Rs 0 = oc V I MIN MAX 20

21 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. R I R I = I 1+ + I exp 1 (1.19) S SC S L SC 0 R SH nvt Μπορούμε συνεπώς να υπολογίσουμε τις παραμέτρους του μοντέλου ενός φβ πλαισίου (πάντα για συγκεκριμένες συνθήκες ακτινοβολίας και θερμοκρασίας) ως συνάρτηση μεγεθών άμεσα μετρήσιμων από την χαρακτηριστική V-I. Τα μετρούμενα μεγέθη είναι : Voc: τάση ανοιχτού κυκλώματος. Isc: ρεύμα βραχυκύκλωσης. V MP : τάση που αντιστοιχεί στο σημείο μέγιστης ισχύος. I MP : ρεύμα που αντιστοιχεί στο σημείο μέγιστης ισχύος. V MIN : η ελάχιστη μετρηθείσα τιμή τάσεως της καμπύλης. I MAX : η μέγιστη μετρηθείσα τιμή ρεύματος της καμπύλης. V MAX : η μέγιστη μετρηθείσα τιμή τάσεως της καμπύλης. I MIN : η ελάχιστη μετρηθείσα τιμή ρεύματος της καμπύλης (1) 1.3 Καθορισμός των παραμέτρων του μοντέλου της μιας διόδου από τα στοιχεία που παραθέτουν οι κατασκευαστές (2) Οι Beckmann & Duffie, για τον υπολογισμό των παραμέτρων R s, I L,Ι 0 και α, με βάση τα στοιχεία που παραθέτουν οι κατασκευαστές για τα πλαίσια, προτείνουν την διαδικασία που περιγράφεται ακολούθως. Αρχικά να πούμε ότι η βασική σχέση που περιγράφει το μοντέλο της μιας διόδου είναι: V+ IRs V+ IR a I = IL ID Ish = IL I0 e 1 Rsh s (1.20) 21

22 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. και συμπίπτει υπόλοιπες σχέσεις που περιγράφουν το μοντέλο της μιας διόδου και έχουμε δει ή πρόκειται να δούμε στην παρούσα εργασία. Να επισημάνουμε ότι γενικά ισχύει Rsh πολύ μεγάλη, της τάξης των kω, και επίσης ότι Rsh>>Rs. Όπως είδαμε άλλωστε η Rs είναι μικρότερη από 1Ω. Με βάση αυτή τη θεώρηση γίνονται απλοποιήσεις που απλουστεύουν σημαντικά τους υπολογισμούς χωρίς ωστόσο να προκύπτουν σημαντικά σφάλματα στον υπολογισμό των παραπάνω παραμέτρων του μοντέλου της μιας διόδου. Στις συνθήκες βραχυκυκλώματος το ρεύμα της διόδου θεωρείται αμελητέο. Το ίδιο θεωρείται και για το ρεύμα I sh στην παράλληλη αντίσταση Rsh. Οπότε λαμβάνεται: I L = I sc (1.21) Από την αρχική σχέση (1.20) για V=Voc και για ρεύμα Ι=0 λαμβάνοντας υπόψη ότι Rsh πολύ μεγάλη και αγνοώντας τη μονάδα σε σχέση με τον εκθετικό όρο έχουμε: Voc a 0= I L I 0 e 1 I0 = IL e Voc a (1.22) Αντικαθιστώντας στην βασική εξίσωση (1.20) το ζεύγος τιμών (Ι MPP, V MPP ), την έκφραση για το Ι 0 από την (1.22) και λαμβάνοντας υπόψη την εξίσωση (1.21) προκύπτει για την R S ότι: R s Impp aln 1 Vmpp + Voc I L = (1.23) I mpp Η παραπάνω σχέση συνδέει τις παραμέτρους α και Rs αλλά δίνει και όρια για τις τιμές που μπορούν να πάρουν. Έτσι η μέγιστη τιμή για την Rs προκύπτει όταν το α τείνει στο μηδέν, αφού ο όρος ln[1-(i mpp /I L )] είναι γενικά αρνητικός. Η μέγιστη τιμή για το α προκύπτει όταν η Rs τείνει στο μηδέν. Αυτά με την προϋπόθεση ότι για να υπάρχει φυσική σημασία οι παραπάνω παράμεροι πρέπει να έχουν θετικές τιμές. Μια ικανοποιητική τιμή για το συντελεστή α ref δίνεται από τη σχέση: 22

23 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. a ref μvoctcref Vocref + EgapNs = μisctcref 3 I Lref (1.24) όπου μ Voc είναι ο θερμοκρασιακός συντελεστής για την τάση ανοιχτού κυκλώματος, μ Isc ο θερμοκρασιακός συντελεστής για το ρεύμα βραχυκύκλωσης, Ε gap το ενεργειακό διάκενο του υλικού, Ν s ο αριθμός των κυττάρων του πλαισίου επί τον αριθμό των εν σειρά πλαισίων, G ref η ακτινοβολία αναφοράς και T cref η θερμοκρασία αναφοράς του κυττάρου. Από τη σχέση (1.24) υπολογίζουμε πρώτα τον α ref και στη συνέχεια από τις προηγούμενες σχέσεις μπορούμε να υπολογίσουμε τις παραμέτρους R sref, I Lref και I 0ref για το μοντέλο τις μιας διόδου σε συνθήκες αναφοράς για την ακτινοβολία (G ref ) και τη θερμοκρασία (T cref ). Συνήθως οι συνθήκες αναφοράς είναι οι STC οπότε G ref =1000 W/m 2 και T cref =25ºC. Επίσης για τις συνθήκες αναφοράς πρέπει να παρέχονται από τον κατασκευαστή τα εξής στοιχεία που χαρακτηρίζουν τα πλαίσια: Ι MPP, V MPP, Voc, Isc, μ Voc και μ Isc. Η τιμή για την Rsh μπορεί να υπολογιστεί με χρήση πειραματικών δεδομένων όπως είδαμε σε προηγούμενη παράγραφο ή να ληφθεί πολύ μεγάλη Rsh άπειρο χωρίς να προκύψουν σημαντικές αλλαγές στην χαρακτηριστική καμπύλη. Με βάση τα δεδομένα που προκύπτουν από τους υπολογισμούς για τις συνθήκες αναφοράς (α ref, R sref, I Lref και I 0ref ) είναι δυνατός ο υπολογισμός των παραμέτρων I L, Ι 0 και α του μοντέλου της μιας διόδου και για οποιεσδήποτε άλλες συνθήκες ακτινοβολίας (G) και θερμοκρασίας (T). Οι παρακάτω σχέσεις δίνουν μια ικανοποιητική προσέγγιση για αυτές τις παραμέτρους. a a ref T T c = (1.25) ref G I = I + μi T T ( ) T L Lref sc c cref G Tref (1.26) 23

24 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. 3 I 0 T Ε c gapn s T c = exp 1 I 0ref T cref a ref T cref (1.27) Σημείωση 1: στο μοντέλο αυτό η τιμή της Rs θεωρείται αμετάβλητη ως προς τις μεταβολές της θερμοκρασίας και της ακτινοβολίας επομένως μπορεί να λαμβάνεται Rs=Rsref. Σημείωση 2: αν η τιμή του α ref που προκύπτει από την εξίσωση 1.24 είναι θετική αλλά μικρότερη από την μέγιστη τιμή του που προκύπτει από την εξίσωση 1.23 για R s =0 τότε μοντέλο της μιας διόδου μας καλύπτει. Αν όμως η τιμή του α ref από την εξίσωση 1.24 είναι μεγαλύτερη από τη μέγιστη τιμή που μπορεί να πάρει το α με βάση την 1.23 ή προκύψει να έχει αρνητική τιμή τότε το μοντέλο δεν μας καλύπτει. 1.4 Μοντέλο μιας διόδου και καθορισμός παραμέτρων στο PVSYST (3) Χαρακτηριστικά φβ πλαισίου περιγραφή μοντέλου. Το πρόγραμμα που χρησιμοποιήσαμε κινείται στο παραπάνω μοτίβο αναφορικά με το μοντέλο και τον αλγεβρικό τρόπο προσδιορισμού των παραμέτρων που χρειάζονται για να τον πλήρη προσδιορισμό του. Για να περιγραφτεί λοιπόν η λειτουργία των φωτοβολταϊκών πλαισίων χρησιμοποιείται το μοντέλο της μιας διόδου. Παρατίθεται και το γνωστό ισοδύναμο ηλεκτρικό κύκλωμα. 24

25 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. Σχέδιο 3. Μοντέλο μιας διόδου του πλαισίου Το μοντέλο είχε αρχικά σχεδιαστεί για ένα μόνο κύτταρο. Χρησιμοποιείται όμως για ολόκληρο το πλαίσιο με την προϋπόθεση ότι τα κύτταρα που το αποτελούν είναι πανομοιότυπα, κάτι που ωστόσο στην πράξη δεν ισχύει απόλυτα. Το μοντέλο αυτό ταιριάζει για την περιγραφή πλαισίων κρυσταλλικού πυριτίου αλλά χρειάζεται μερικές προσαρμογές για να περιγράψει τη συμπεριφορά πλαισίων λεπτού υμενίου. Έχει επίσης παρατηρηθεί ότι το μοντέλο αυτό περιγράφει επαρκώς τη συμπεριφορά πλαισίων που φτιάχνονται από CIS (Cu,Indio,Se 2 ) Η βασική σχέση που χρησιμοποιείται στο πρόγραμμα για την περιγραφή του μοντέλου της μιας διόδου είναι: + I = Iph I e R q ( V + I R s) Ncs Gamma K T V I R c s 0 1 sh (1.28) Όπου: I: το ρεύμα στην έξοδο του πλαισίου [Α]. V: η τάση στους ακροδέκτες εξόδου του πλαισίου [V]. Iph: φωτόρευμα [Α]. Είναι ανάλογο της ολικής ακτινοβολίας, με διόρθωση που εξαρτάται από την θερμοκρασία Tc. ID: ρεύμα διόδου [A]. Io: ανάστροφο ρεύμα κορεσμού της διόδου που επίσης εξαρτάται από την θερμοκρασία. 25

26 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. Rs: σε σειρά αντίσταση [ohm]. Rsh: παράλληλη αντίσταση [ohm]. q: φορτίο του ηλεκτρονίου. q = Coulomb. K: σταθερά Boltzmann. Κ = E-23 J/K. Gamma: παράγοντας ποιότητας της διόδου, μεταξύ 1-2 για κρυσταλλικά πλαίσια. Οφείλεται σε φαινόμενα επανασύνδεσης στην περιοχή επαφής. Ncs: αριθμός κυττάρων εν σειρά. Tc: θερμοκρασία των κυττάρων [ºK]. Είναι φανερό ότι πρόκειται για την σχέση που συναντήσαμε πιο πάνω αρκεί να λάβουμε υπόψη ότι: V T = KT/q, και n = Ns ncell = Ncs Gamma. Όπου προφανώς Ns = Νcs είναι ο αριθμός των εν σειρά στοιχείων του πλαισίου και n cell = Gamma. Προφανώς συμπίπτει και με τη σχέση που προτείνουν οι Beckmann&Duffie αν λάβουμε υπόψη τη σχέση μεταξύ των συντελεστών α και Gamma, a=nsgammaktc/q και Ncs=Ns Φωτόρευμα στις εκάστοτε συνθήκες ακτινοβολίας και θερμοκρασίας. Το φωτόρευμα μπορεί να υπολογιστεί με βάση τις τιμές της ακτινοβολίας και της θερμοκρασίας στις συνθήκες αναφοράς που συνήθως είναι οι πρότυπες. Έτσι έχουμε: G T I ph = I ph, ref + muisc G ref T c cref (1.29) Όπου: G [W/m 2 ]: η πυκνότητα ισχύος της συνολικής προσπίπτουσας ακτινοβολίας στην επιφάνεια των κυττάρων για τις εκάστοτε συνθήκες. Gref [W/m 2 ]: η πυκνότητα ισχύος της συνολικής προσπίπτουσας ακτινοβολίας αναφοράς. Tc [ K]: η θερμοκρασία λειτουργίας του κατάρρου στις εκάστοτε συνθήκες. Tcref [ K]: η θερμοκρασία αναφοράς. Και οι 2 λαμβάνονται σε μονάδες [ K]. 26

27 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. muisc: θερμοκρασιακός συντελεστής φωτορεύματος (ή του ρεύματος βραχυκύκλωσης). Έχει μονάδες A/K και δίνεται από τον κατασκευαστή. I phref : το φωτόρευμα στις συνθήκες αναφοράς. Η παραπάνω σχέση 1.29 μας επιτρέπει να υπολογίσουμε το I ph σε οποιεσδήποτε συνθήκες προσπίπτουσας ακτινοβολίας και θερμοκρασίας λειτουργίας του κυττάρου αρκεί να γνωρίζουμε τα μεγέθη I phref και muisc. Σημείωση : Συνήθως ως συνθήκες αναφοράς επιλέγονται οι Πρότυπες Συνθήκες Δοκιμής (STC) οπότε Gref =1000W\m 2 και Tcref =25ºC Το ανάστροφο ρεύμα κόρου της διόδου στις εκάστοτε συνθήκες ακτινοβολίας και θερμοκρασίας. Μεταβάλλεται ως προς τις συνθήκες αναφοράς ανάλογα με τη θερμοκρασία σύμφωνα με την έκφραση: I 0 0ref 3 T q E c Gap 1 1 = I exp (1.30) T cref Gamma K Tcref T c Όπου E Gap είναι το ενεργειακό χάσμα του υλικού (1.12 ev για κρυσταλλικό Si, 1.03 ev για CIS, 1.7 ev για άμορφο Si, 1.5 ev για CdTe). Η παραπάνω σχέση μας επιτρέπει να υπολογίσουμε το μέγεθος I 0 για διάφορες θερμοκρασίες όταν γνωρίζουμε τα μεγέθη Tcref, Iοref καθώς και Gamma Καθορισμός των παραμέτρων του μοντέλου. Πρώτα καθορίζεται η τιμή της Rsh. Όπως είδαμε η τιμή της Rsh θα μπορούσε να καθοριστεί από την κλίση της χαρακτηριστικής I-V κοντά στο σημείο βραχυκύκλωσης. Αυτό θα απαιτούσε λήψη πειραματικών σημείων ή την γνώση της καμπύλης Ι-V με μεγάλη ακρίβεια. Το τελευταίο δεν παρέχεται από τους κατασκευαστές. Έτσι στο πρόγραμμα PVSYST επιλέγεται μια τυπική τιμή για την Rsh. Αυτή καθορίζεται προσεγγιστικά λαμβάνοντας ένα κλάσμα του λόγου Vmpp/Isc-Imp. Για πλαίσια πυριτίου τιμή της Rsh είναι μεγάλη και δεν ενδιαφέρει τόσο ένας ακριβής καθορισμός της Rsh για τον καθορισμό της συμπεριφοράς του 27

28 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. πλαισίου. Η τιμή της Rsh λαμβάνεται σταθερή και ίση με την τιμή που προκύπτει για τις πρότυπες συνθήκες για όλες τις υπόλοιπες συνθήκες. Στη συνέχεια η διαδικασία που ακολουθείται στο PVSYST για τον καθορισμό των υπόλοιπων παραμέτρων του μοντέλου της μιας διόδου είναι αντίστοιχη με αυτή που προτείνουν οι Beckmann&Duffie. Αρχικά ο υπολογισμός των παραμέτρων γίνεται για τις συνθήκες αναφοράς και ύστερα με βάση τους τύπους που έχουμε δει οι παράμετροι μπορούν να υπολογιστούν για οποιεσδήποτε άλλες συνθήκες. Στο συγκεκριμένο πρόγραμμα λαμβάνονται 3 εξισώσεις αρκεί να αντικατασταθούν τα ζεύγη τιμών (Isc,0), (0,Voc), (Impp, Vmpp) στην βασική εξίσωση του μοντέλου και να γίνουν οι απαραίτητες προσεγγίσεις. Οι σχέσεις που προκύπτουν είναι αντίστοιχες με αυτές των Beckman&Duffie. Έτσι έχουμε Isc = I ph, 0 ph Voc a I = I e, R s Impp aln 1 Vmpp + Voc I L =, όπου I mpp Gamma K Tc a =. q Στο PVSYST ο συντελεστής Gamma επιλέγεται να έχει μια τυπική προκαθορισμένη σταθερή τιμή ανάλογα με το υλικό από το όποιο είναι φτιαγμένο το πλαίσιο. Ο αυθαίρετος προκαθορισμός του Gamma έχει επιλεχθεί καθότι αυτός εμφανίζεται να είναι ίσως η πιο σταθερή παράμετρος από αυτές που καθορίζουν το μοντέλο της μιας διόδου για τα φωτοβολταϊκά πλαίσια. Εξάλλου μια σχετική ανακρίβεια στον προσδιορισμό του δεν επηρεάζει καθοριστικά τη συμπεριφορά της χαρακτηριστικής I-V, τουλάχιστον για τα κρυσταλλικά πλαίσια. Γενικά για τα κρυσταλλικά πλαίσια η προτεινόμενη τιμή του Gamma είναι περίπου 1,3. Παρέχονται επίσης ενδεικτικά τιμές για το συντελεστή Gamma ανάλογα με το υλικό από το οποίο είναι κατασκευασμένα τα πλαίσια: Si-Mono Gamma = 1.3 SI-Poly Gamma = 1.35 a-si: H Gamma = 1.4 CdTe Gamma = 1.5 (αμφιβόλου ισχύος) 28

29 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. CIS AsGa Gamma = 1.5 (από μετρήσεις) Gamma = 1.3 (αμφιβόλου ισχύος) Θεωρητικά οι τιμές του Gamma πρέπει να κυμαίνονται μεταξύ 1 και 2. Με βάση λοιπόν το συντελεστή Gamma υπολογίζεται η τιμή της Rs στις συνθήκες αναφοράς σύμφωνα με τη σχέση που δίνουν και οι Beckmann&Duffie, αρκεί να λάβουμε υπόψη τη σχέση μεταξύ Gamma και α. Η τιμή της Rs θεωρείται αμετάβλητη ως προς τις μεταβολές της θερμοκρασίας και της ακτινοβολίας και λαμβάνεται σταθερή για όλες τις συνθήκες. Γενικά δηλαδή λαμβάνεται Rs=Rsref. Συνεπώς, αν και προσεγγιστικά, το μοντέλο της μιας διόδου καθορίζεται πλήρως για τις συνθήκες αναφοράς. Οι τιμές Gamma, Rs, Rsh θεωρούνται να παραμένουν σταθερές για όλες τις διαφορετικές από τις πρότυπες συνθήκες. Με βάση τις εξισώσεις 1.29 και 1.30 μπορούν να υπολογιστούν οι λοιπές παράμετροι για συνθήκες διαφορετικές από τις πρότυπες. 1.5 Γραφικές παραστάσεις Στην παρούσα παράγραφο παρουσιάζονται μια σειρά γραφικών παραστάσεων που δίνει το πρόγραμμα με βάση το μοντέλο της μιας διόδου. Στα σχήματα 4,5,6 φαίνεται ή επίδραση της θερμοκρασίας και της ακτινοβολίας στην χαρακτηριστική Ι- V για διαφορετικές συνθήκες από τις STC. Επίσης στα σχήματα 7 και 8 μπορούμε να παρατηρήσουμε τις όποιες διαφοροποιήσεις στη χαρακτηριστική I-V λόγω διαφορετικών τιμών που θεωρητικά μπορούν να πάρουν οι αντιστάσεις Rs και Rsh. Το πλαίσιο είναι το ASE-300-DG-FT που χρησιμοποιούμε για το σχεδιασμό του φβ σταθμού. 29

30 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. Σχέδιο 4 Χαρακτηριστικές I-V για διάφορες τιμές της προσπίπτουσας ακτινοβολίας. Η θερμοκρασία λειτουργίας πλαισίου παραμένει σταθερή στους 25ºC. Με την μείωση της προσπίπτουσας ακτινοβολίας παρατηρείται σημαντική μείωση του ρεύματος βραχυκύκλωσης και της παραγόμενης ισχύος στο MPP. Αντίθετα η τάση ανοιχτοκύκλωσης μετατοπίζεται ελαφρά. 30

31 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. Σχέδιο 5 Χαρακτηριστικές I-V για διάφορες τιμές της προσπίπτουσας ακτινοβολίας. Η θερμοκρασία λειτουργίας πλαισίου παραμένει σταθερή στους 75ºC. Με την αύξηση της θερμοκρασίας λειτουργίας (75ºC > 25 ºC) παρατηρείται μείωση της παραγόμενης ισχύος στο MPP για τις ίδιες συνθήκες ακτινοβολίας. Το επόμενο σχήμα είναι περισσότερο αποσαφηνιστικό για την επίδραση της θερμοκρασίας. 31

32 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. Σχέδιο 6 Χαρακτηριστικές I-V για διάφορες τιμές της θερμοκρασίας λειτουργίας των κυττάρων του πλαισίου. Η τιμή της προσπίπτουσας ολικής ακτινοβολίας παραμένει σταθερή στα 1000 W/m 2. Με την αύξηση της θερμοκρασίας λειτουργίας των κυττάρων του πλαισίου παρατηρείται μετατόπιση του MPP που αντιστοιχεί σε μείωση της παραγόμενης ισχύος. Το ρεύμα βραχυκύκλωσης αυξάνεται ελαφρά. Η τάση Voc μειώνεται περισσότερο αισθητά κάτι που οφείλεται στην μεταβολή των χαρακτηριστικών αγωγής της διόδου. 32

33 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. Σχέδιο 7. Ο καθορισμός της Rs έχει μεγαλύτερη σημασία για τη Ι-V χαρακτηριστική σε σχέση με την Rsh. Μπορούμε να δούμε την επίδραση της Rs όταν αυτή παίρνει ακραίες τιμές, δηλαδή κοντά στα 0Ω και κοντά στο 1Ω. Σχέδιο 8. Ο καθορισμός της Rsh με μεγάλη ακρίβεια δεν έχει ιδιαίτερη σημασία για την χαρακτηριστική I-V του μοντέλου της μιας διόδου. Ακόμα και για μεγάλες διακυμάνσεις της Rsh δεν προκύπτουν μεγάλες μεταβολές στην καμπύλη και στο MPP. 33

34 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. Στα σχήματα 9,10,11,12 φαίνεται η επίδραση μεγεθών όπως η ακτινοβολία, η θερμοκρασία, η Rs και η Rsh στην παραγόμενη από το πλαίσιο ισχύ. Σχέδιο 9. Είναι φανερό ότι η μείωση της ακτινοβολίας προκαλεί σημαντική μετατόπιση του MPP και της παραγόμενης ισχύος. Η μεταβολές στην Vmpp είναι σχετικά μικρές. Σχέδιο 10. Η αύξηση της θερμοκρασίας λειτουργίας προκαλεί σημαντική μετατόπιση του MPP και μείωση της παραγόμενης ισχύος σε αυτό το σημείο λειτουργίας. 34

35 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. Σχέδιο 11. Για τυπικές μεταβολές στις τιμές της Rs (0, Ω) οι μεταβολές στην παραγόμενη ισχύ δεν είναι μεγάλες. Ωστόσο για τις ακραίες τιμές της Rs 0.001Ω και 1Ω παρατηρούμε σημαντική μεταβολή στην παραγόμενη ισχύ. Σχέδιο 12. Οι μεταβολές που θεωρητικά μπορεί να πάρει η τιμή της Rsh δεν έχουν σημαντική επίδραση στην παραγόμενη ισχύ. 35

36 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. Στα σχήματα που ακολουθούν φαίνεται η επίδραση που έχουν στην απόδοση του πλαισίου μεταβολές διάφορων παραγόντων όπως η ακτινοβολία, η θερμοκρασία καθώς και οι τιμές που θεωρητικά μπορούν να πάρουν οι Rs και Rsh. Σχέδιο 13. Όπως αναμενόταν ο μέγιστη απόδοση του πλαισίου μειώνεται με την αύξηση της θερμοκρασίας λειτουργίας για τις ίδιες συνθήκες ακτινοβολίας. 36

37 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. Σχέδιο 14. Για τις ακραίες τιμές που θεωρητικά μπορεί να πάρει η Rs παρατηρούνται σημαντικές μεταβολές στο βαθμό απόδοσης. Για μικρές μεταβολές της Rs οι μεταβολές στην απόδοση είναι μικρές. Σχέδιο 15. Για μεγάλες τιμές τις ακτινοβολίας ή επίδραση της αύξησης της Rsh στην μέγιστη απόδοση του πλαισίου είναι ασήμαντη. 37

38 Μοντέλο της μιας διόδου του πλαισίου και καθορισμός των παραμέτρων του. Σχέδιο 16. Για μείωση της ακτινοβολίας και άνοδο της θερμοκρασίας ο βαθμός απόδοσης μειώνεται. Η μεταβολή είναι σχεδόν γραμμική. Σχέδιο 17. Επίδραση της αύξησης της R S στο βαθμό απόδοσης. 38

39 Απώλειες Κεφάλαιο 2 Απώλειες 2.1 Χαρακτηριστικά μεγέθη Πρότυπες Συνθήκες Δοκιμής φωτοβολταϊκού στοιχείου ή πλαισίου (STC- Standard Test Conditions): Η ακτινοβολία που προσπίπτει κάθετα στο συλλέκτη έχει πυκνότητα ισχύος ακτινοβολίας 1kW/m 2 και φάσμα ΑΜ1,5. Η θερμοκρασία του πλαισίου είναι 25C Ονομαστική ισχύς ενός φωτοβολταϊκού πλαισίου. Ισχύς αιχμής ενός πλαισίου P p : είναι η μέγιστη ισχύς με την οποία αυτό αποδίδει ηλεκτρική ενέργεια κάτω από τις πρότυπες συνθήκες ελέγχου STC. Έστω για παράδειγμα ότι η ισχύς αιχμής ενός πλαισίου είναι 300W p. Αυτό σημαίνει ότι όταν το πλαίσιο δέχεται ακτινοβολία πυκνότητας ισχύος E=1 kw\m 2, φάσματος ΑΜ1,5 και η θερμοκρασία του είναι 25C τότε παράγει ηλεκτρική ενέργεια με ισχύ 300W. 39

40 Απώλειες Κατά την λειτουργία του σε πραγματικές συνθήκες η θερμοκρασία του πλαισίου είναι διαφορετική από τους 25C και η πυκνότητα ισχύος της ΗΜ ακτινοβολίας από 0 ως 1200 W\m. Η μέγιστη παραγόμενη ισχύς είναι διαφορετική και μάλιστα μικρότερη από την ισχύ αιχμής του. Μερικά από τα συνήθη στοιχεία των φβ πλαισίων που δίνουν οι κατασκευαστές για τις Πρότυπες Συνθήκες Ελέγχου (STC) είναι η ισχύς αιχμής P p, η ένταση ρεύματος βραχυκύκλωσης I sc και τάση ανοιχτού κυκλώματος V oc Ονομαστική Θερμοκρασία Λειτουργίας ΦΒ κυψελίδας (Nominal Operating Cell Temperature-NOCT ). Σε κάθε πλαίσιο μπορεί να αναγράφεται επιπλέον και η θερμοκρασία την οποία αποκτά το πλαίσιο σε καθορισμένες συνθήκες περιβάλλοντος που προσεγγίζουν μια μέση πραγματική κατάσταση. Αντιπροσωπευτικές τιμές αυτής της θερμοκρασίας μπορεί να είναι 45C-50C. Η περιοχή αυτή των θ αφορά τη μέση κατάσταση του υλικού του φβ στοιχείου στο χρονικό διάστημα 2-3 ώρες πριν και μετά το μεσημέρι μιας αίθριας καλοκαιρινής μέρας σε μέσα γεωγραφικά πλάτη. Χαρακτηρίζεται ως Ονομαστική θερμοκρασία λειτουργίας ΦΒ κυψελίδας- Nominal Operating Cell Temperature-NOCT conditions Συνθήκες λειτουργίας της φβ κυψελίδας κάτω από τις οποίες η θερμοκρασία της ισούται με την ονομαστική τιμή της (NOCT): Το φβ πλαίσιο σε κατάσταση ανοιχτού κυκλώματος. Πυκνότητα ισχύος ηλιακής ακτινοβολίας G NOCT =800 W\m 2. Θερμοκρασία περιβάλλοντος αέρα θ α = 20C. Μέση ταχύτητα ανέμου 1m/sec. Η σημασία της NOCT: Χαμηλή NOCT για την κυψελίδα σημαίνει ότι αποβάλλει ταχύτερα στο περιβάλλον το μέρος εκείνο της ηλιακής ακτινοβολίας που συμβάλλει ουσιαστικά στην αύξηση της θερμοκρασίας του. Άρα όσο μικρότερη είναι η NOCT για ένα πλαίσιο τόσο μικρότερη είναι η μείωση της παρεχόμενης ηλεκτρικής ισχύος σε 40

41 Απώλειες σχέση με άλλο πλαίσιο ίδιας ισχύος αιχμής το οποίο όμως έχει μεγαλύτερη NOCT. (4) 2.2 Απώλειες και συντελεστές απόδοσης Συντελεστής απόδοσης φωτοβολταϊκού πλαισίου. Ο στιγμιαίος συντελεστής απόδοσης ( n m ) του πλαισίου προσδιορίζεται από το πηλίκο της αποδιδόμενης μέγιστης ηλεκτρικής ισχύος P m στην έξοδο του προς την προσπίπτουσα στο πλαίσιο ισχύ της ηλιακής ακτινοβολίας E S. n m = P E m S (4) (5) Όπου E (W/m 2 ) είναι η πυκνότητα ισχύος της ηλιακής ακτινοβολίας στο επίπεδο του φβ πλαισίου και S (m 2 ) η συνολική επιφάνεια του. Η τιμή του στιγμιαίου συντελεστή απόδοσης του φβ πλαισίου n m καθορίζεται από τις αποκλίσεις που υφίσταται από την τιμή του n m,stc, o οποίος προσδιορίζεται σε πρότυπες συνθήκες ελέγχου (STC). Δηλαδή ο συντελεστής απόδοσης αναφοράς ενός πλαισίου λαμβάνεται στις συνθήκες STC (n m,stc ) και είναι ο μέγιστος. Σε συνθήκες όμως πραγματικής λειτουργίας ο στιγμιαίος συντελεστής απόδοσης n m αποκλίνει από τον κανονικοποιημένο συντελεστή n m,stc λόγω απωλειών. Προκύπτει έτσι μικρότερος συντελεστής απόδοσης για το πλαίσιο κάτι που προφανώς σημαίνει μείωση της πραγματικής απόδοσης του πλαισίου για τις δοσμένες συνθήκες λειτουργίας σε σχέση με την απόδοσή του στις πρότυπες συνθήκες. Σε συνθήκες λοιπόν διαφορετικές από τις πρότυπες οι απώλειες αφορούν κυρίως στη διαφορά της θερμοκρασίας λειτουργίας του πλαισίου από τη θερμοκρασία λειτουργίας του στις πρότυπες καθώς και στην διαφορά της πυκνότητας της ηλιακής ακτινοβολίας που τελικά προσπίπτει στην επιφάνεια του συλλέκτη από αυτήν που προσπίπτει στις Πρότυπες Συνθήκες Δοκιμής. Για ακόμα μεγαλύτερη ακρίβεια στον υπολογισμό των απωλειών της απόδοσης του πλαισίου θα πρέπει για το συντελεστή n m να λάβουμε υπόψη επιπλέον οπτικές 41

42 Απώλειες και θερμικές απώλειες. Οι απώλειες αυτές συμβάλουν περαιτέρω στη μείωση του συντελεστή απόδοσης n m του πλαισίου σε σχέση με τον n m,stc. Συνοψίζοντας, ο n m μπορεί να αποδοθεί ως γινόμενο των επί μέρους στιγμιαίων συντελεστών ενεργειακών απωλειών που προσδιορίζουν την απόκλιση της απόδοσης από αυτή των πρότυπων συνθηκών. Έτσι προκύπτει η σχέση: n m = n STC n T n LI n S n P n R n καθ n D, όπου: n STC : απόδοσης φβ πλαισίου σε πρότυπες συνθήκες STC. n T : απόκλισης της απόδοσης του ΦΒ πλαισίου εξαιτίας της διαφοροποίησης της θ της κυψελίδας σε σχέση με τη θ αναφοράς 25 C n LI : απόκλισης στην περιοχή χαμηλών τιμών πυκνότητας ισχύος ΗΜ ακτινοβολίας.( Low Irradiance losses) n S : φασματικής απόκλισης λόγω διαφορετικού φάσματος σε σχέση με το φάσμα ΑΜ1,5 (STC). n P :απόκλισης λόγω της πόλωσης της ηλιακής ακτινοβολίας. n R : απόκλισης λόγω διαφοροποίησης της ανακλαστικότητας σε γωνίες πρόσπτωσης διάφορες της καθέτου στο πλαίσιο. Ο n R λαμβάνεται περίπου ίσος με 0.97 κάτι που αντιστοιχεί σε μέσες ετήσιες απώλειες 3%. n καθ : συντελεστής καθαρότητας υαλοπίνακα πλαισίου n D : απωλειών από τη δίοδο αντεπιστροφής. Τέλος να σημειώσουμε ότι η απόδοση του φωτοβολταϊκού πλαισίου είναι μικρότερη από την απόδοση καθενός από τα φβ στοιχεία που το απαρτίζουν. Αυτό οφείλεται κυρίως στη μη πλήρη κάλυψη της γεωμετρικής επιφάνειας του πλαισίου από επιφάνεια στοιχείων, στην ανομοιογένεια των χαρακτηριστικών των φβ στοιχείων που απαρτίζουν το πλαίσιο και στην ανακλαστικότητα του υαλοπίνακα του πλαισίου Συντελεστής απόδοσης μιας φωτοβολταϊκής συστοιχίας (array). Ο ολικός συντελεστής απόδοσης μιας φβ συστοιχίας (n σ ) εκφράζεται με βάση το συντελεστή απόδοσης του πλαισίου (n m ) λαμβάνοντας υπόψη την επίδραση της εκ κατασκευής ανομοιογένειας (Mismatch) των ηλεκτρικών χαρακτηριστικών των 42

43 Απώλειες χρησιμοποιούμενων φβ πλαισίων (n ανομ ) καθώς επίσης και την απώλεια στα καλώδια σύνδεσης (Wiring) μεταξύ των πλαισίων της συστοιχίας (n wσ ). Έτσι προκύπτει: n σ = n m n ανομ n wσ. Οι απώλειες ανομοιογένειας αφορούν στην ανομοιογένεια των χαρακτηριστικών I-V των πλαισίων που απαρτίζουν τη φβ συστοιχία και εκφράζονται από το συντελεστή ανομοιογένειας n ανομ ο οποίος παίρνει την τυπική τιμή Οι διατομές των καλωδίων σύνδεσης μεταξύ των φβ πλαισίων της συστοιχίας επιλέγονται έτσι ώστε οι απώλειες σε αυτά να μην ξεπερνούν το 2% με 3%. Μια τυπική τιμή για το συντελεστή απωλειών στις καλωδιώσεις της συστοιχίας λαμβάνεται n wς = Δίοδοι αντεπιστροφής. (6) (4) Οι απώλειες στη δίοδο αντεπιστροφής λαμβάνονται υπόψη με το συντελεστή n D που συνήθως παίρνει την τυπική τιμή n D =0.99 ανεξάρτητα από το πλήθος των φβ πλαισίων ανά κλάδο. Οι δίοδοι αντεπιστροφής ή δίοδοι απομόνωσης χρησιμοποιούνται για να συνδέσουν μια αλυσίδα πλαισίων με τέτοιο τρόπο ώστε η αλυσίδα να άγει ρεύμα στο ζυγό (ορθή πόλωση της διόδου) όταν τα κύτταρα φωτίζονται αλλά να εμποδίζουν τη ροή ρεύματος από το ζυγό στην αλυσίδα των πλαισίων (ανάστροφη πόλωση της διόδου) στην περίπτωση που για οποιοδήποτε λόγο η τάση εξόδου της αλυσίδας είναι μικρότερη από την τάση του ζυγού. Οι δίοδοι αντεπιστροφής προκαλούν μια πτώση τάσης που αφαιρείται από την τάση εξόδου της συστοιχίας, προκαλούν δηλαδή απώλειες ενέργειας υπό μορφή θερμότητας όταν η συστοιχία παράγει ενέργεια. Κατάλληλη τοποθέτηση διόδων αντεπιστροφής μπορεί να προλάβει σοβαρές ή ακόμα και καταστροφικές βλάβες όταν για κάποιο λόγο συμβεί βραχυκύκλωμα σε καλώδια, συνδετήρες, ακροδέκτες μεταξύ γειτονικών πλαισίων και αλυσίδων ή μεταξύ κυττάρων και μεταλλικών υποστρωμάτων των πλαισίων. Ως δίοδοι αντεπιστροφής χρησιμοποιούνται συνήθως κοινές ανορθωτικές δίοδοι επαφής p-n με κατάλληλα χαρακτηριστικά. Παρουσιάζουν πτώση τάσης περί 43

44 Απώλειες τα 0.7V με 0.9V. σε μικρότερα συστήματα τάσεις μικρότερες των 24V μπορούν να χρησιμοποιηθούν δίοδοι schottky που παρουσιάζουν μικρότερη πτώση τάσης από τις κανονικές διόδους αλλά είναι πιο ακριβές. Γενικά κριτήρια επιλογής διόδων αντεπιστροφής: Ελάχιστη δυνατή πτώση τάσης σε ορθή πόλωση σε ονομαστικό ρεύμα και πραγματική θερμοκρασία. Ικανοποιητική μέγιστη ανάστροφη τάση που πρέπει να σχετίζεται με τη μέγιστη τάση του ζυγού όπου συνδέονται οι αλυσίδες (strings) μαζί με τις υπερτιθέμενες στιγμιαίες υπερτάσεις καθώς και με τις πιθανές συνθήκες βραχυκύκλωσης των αλυσίδων. Μέγιστη επιτρεπτή θερμοκρασία λειτουργίας σε σταθερή κατάσταση. Αξιοπιστία. Στο παρακάτω σχήμα βλέπουμε μια περίπτωση ροής ρευμάτων βραχυκύκλωσης σε μια αλυσίδα όπου έχει συμβεί σφάλμα. Το σφάλμα μπορεί να αφορά όλους τους λόγους που είδαμε παραπάνω. Σχέδιο 18. Ροη ρευμάτων βραχυκύκλωσης σε μια συστοιχία. Στο σχήμα η προστασία γίνεται με διακοπτικά στοιχεία. (7) Το ρεύμα βραχυκύκλωσης των φωτοβολταϊκών I sc είναι λίγο μεγαλύτερο από το I MPP. Σε περίπτωση ωστόσο βραχυκυκλώματος σε μια αλυσίδα μιας συστοιχίας με πολλές παράλληλες αλυσίδες το ρεύμα βραχυκύκλωσης που θα διαρρεύσει την «προβληματική» αλυσίδα θα ισούται με το άθροισμα των ρευμάτων I sc των 44

45 Απώλειες υπόλοιπων παράλληλων αλυσίδων. Αυτό το ρεύμα μπορεί να είναι αρκετά μεγάλο, ανάλογα με τον αριθμό των παράλληλων αλυσίδων και το I sc του κάθε πλαισίου, και μπορεί να καταστρέψει συνολικά την αλυσίδα. Παράλληλα θέτει εκτός παραγωγής όλη τη συστοιχία. Μια έκφραση για το αντίστροφο ρεύμα του παραπάνω τύπου είναι: I r = ( n sp 1) I sc I r : μέγιστο αντίστροφο ρεύμα n sp : αριθμός παράλληλων αλυσίδων I sc : ρεύμα βραχυκύκλωσης ενός πλαισίου/αλυσίδας. Να πούμε ότι αρκετοί σχεδιαστές εκτιμούν ότι οι δίοδοι αντεπιστροφής δεν προστατεύουν ικανοποιητικά τις συστοιχίες από τα αντίστροφα ρεύματα. Για αυτό και προτείνουν τον εφοδιασμό των συστοιχιών με διακοπτικά μέσα όπως ασφάλειες ή αυτόματους διακόπτες. Κάτι τέτοιο απεικονίζεται στο σχήμα. 2.3 ΑΠΩΛΕΙΕΣ και PVSYST Στο πρόγραμμα που χρησιμοποιήσαμε για την εξομοίωση οι απώλειες της συστοιχίας ορίζονται ως όλοι εκείνοι οι παράγοντες που περιορίζουν την διαθέσιμη ενέργεια στην έξοδο της συστοιχίας σε σχέση με την ονομαστική διαθέσιμη ενέργεια στην έξοδο της υπό συνθήκες STC. Η τελευταία βασίζεται στην ονομαστική ισχύ των φωτοβολταϊκών πλαισίων όπως αυτή ορίζεται από τον κατασκευαστή σε συνθήκες STC Απώλειες IAM [Incidence angle modifier-iam)]. Είναι απώλειες οπτικού τύπου, λόγω ανάκλασης και διάδοσης της προσπίπτουσας ακτινοβολίας στο πλαίσιο. Ουσιαστικά εκφράζουν το «αδυνάτισμα» της ακτινοβολίας που τελικά φτάνει στην επιφάνεια των φβ κυττάρων σε σχέση με αυτή που θα προσέπιπτε αν δεν υπήρχαν τα παραπάνω φαινόμενα. Καθοριστικός παράγοντας για τα παραπάνω είναι η γωνία πρόσπτωσης της ακτινοβολίας στην επιφάνεια του πλαισίου. 45

46 Απώλειες Αυτού του είδους οι απώλειες υπακούουν στους νόμους του Fresnel αναφορικά με την διάδοση της ακτινοβολίας και τις ανακλάσεις της πάνω στο προστατευτικό στρώμα γυαλιού που επικαλύπτει τα φβ κύτταρα των πλαισίων καθώς και πάνω στην ίδια την επιφάνεια των κυττάρων. To αδυνάτισμα αυτό προσεγγίζεται από ένα συντελεστή απωλειών (FactorIAM). Με τη χρήση μιας μεθόδου καθορισμού των εμπλεκόμενων παραμέτρων που ονομάζεται ashray, ο συντελεστή συντελεστής αυτός καταλήγει να εξαρτάται από μια μόνο μεταβλητή, b 0. (3) Έτσι προκύπτει: FIAM = 1 - b o (1/cosθ 1) Όπου θ : η γωνία πρόσπτωσης της ακτινοβολίας στο πλαίσιο. Η γωνία που σχηματίζεται ανάμεσα στο διάνυσμα θέσης της προσπίπτουσας ακτινοβολίας και στην κάθετο στην επιφάνεια του πλαισίου. Ύστερα από μετρήσεις σε πραγματικά κρυσταλλικά φωτοβολταϊκά πλαίσια προέκυψε μια ενδεικτική τιμή για την παράμετρο b o, b o = 0.05, η οποία και λαμβάνεται σταθερή κατά την εξομοίωση. Να σημειωθεί ότι στην μεταβλητή b o συχνά αποδίδεται η τιμή

47 Απώλειες Σχέδιο 19. Επίδραση οπτικών απωλειών στην προσπίπτουσα ακτινοβολία. Στο παραπάνω σχήμα μπορούμε να δούμε για κάθε ένα μήνα του χρόνου την μέση ημερήσια προσπίπτουσα ακτινοβολία στην επιφάνεια του φωτοβολταϊκού. Με κόκκινο χρώμα αν θεωρήσουμε μηδενικές οπτικές απώλειες του παραπάνω τύπου ενώ με πράσινο χρώμα αν λάβουμε υπόψη τις οπτικές απώλειες. Φαίνεται η αρκετά σημαντική επίδραση αυτών των απωλειών στην προσπίπτουσα ωφέλιμη ακτινοβολία στα φβ κύτταρα του πλαισίου. Το πλαίσιο βρίσκεται στο γεωγραφικό τόπο της Αθήνας έχοντας κλίση 30º και κατεύθυνση προς Νότο. Σημείωση : Μια ικανοποιητική προσέγγιση των απωλειών τέτοιου τύπου προκύπτει αν χρησιμοποιήσουμε ένα συντελεστή απωλειών περίπου -3%. (6) Εξάλλου όπως παρατηρούμε και από το σχήμα 4.75 KWh/m 2 x (1-0,3) 6 KWh/m 2. Το ίδιο σχεδόν αποτέλεσμα παίρνουμε χοντρικά και από το πρόγραμμα PVSYST για εξομοίωση ενός έτους Θερμικές απώλειες λόγω της θερμοκρασίας των κυψελίδων. 47

48 Απώλειες Στις Πρότυπες Συνθήκες Δοκιμής (STC) η θερμοκρασία λειτουργίας των κυττάρων λαμβάνεται 25ºC. Ωστόσο στις πραγματικές συνθήκες λειτουργίας η θερμοκρασία των κυττάρων ανέρχεται σε τιμές αρκετά πιο υψηλές κάτι που όπως έχουμε δει επηρεάζει τα ηλεκτρικά χαρακτηριστικά των κύτταρων και συνεπώς των πλαισίων και των συστοιχιών που αποτελούν τη φωτοβολταϊκή γεννήτρια. Έχουμε αλλαγές στη I-V χαρακτηριστική, μετατοπίζεται το MPP και μειώνεται ο βαθμός απόδοσης. Για τον καθορισμό λοιπόν των θερμικών απωλειών, ο οποίος βασίζεται στο μοντέλο της μιας διόδου, καθοριστικό ρόλο παίζει η εκτίμηση της θερμοκρασίας λειτουργίας του κυττάρου. Η θερμοκρασία λειτουργίας των κυττάρων του πλαισίου καθορίζεται από μια θερμική ισορροπία. Η ηλιακή ακτινοβολία που προσπίπτει στα κύτταρα εν μέρει μετατρέπεται σε θερμότητα και εν μέρει σε ηλεκτρική ενέργεια. Οι παράγοντες που εμπλέκονται σε αυτή τη διαδικασία είναι η προσπίπτουσα ακτινοβολία που φτάνει στα κύτταρα αφού διαδοθεί δια μέσου των διάφορων στρώσεων υλικών που τα καλύπτουν, η ικανότητα των κυττάρων να απορροφούν ακτινοβολία και να την μετατρέπουν σε ηλεκτρική ενέργεια, η ικανότητα συνολικά του πλαισίου να απάγει θερμότητα, η θερμοκρασία του περιβάλλοντος και η θερμοκρασία των κυττάρων. (2) Μια σχέση που περιγράφει την παραπάνω ισορροπία είναι: k (T cell - T amb ) = A G inc (1-Eta). (3) Έτσι η θερμοκρασία του φωτοβολταϊκού κυττάρου μπορεί να δοθεί από την παρακάτω σχέση : Tc = A Ginc (1 Eta) + k Tamb k k : ο παράγοντας θερμικών απωλειών που εκφράζει την απαγωγή θερμότητας στο περιβάλλον ή σε οποιαδήποτε κατασκευή εφάπτεται με τα πλαίσια και λαμβάνεται να έχει θερμοκρασία περιβάλλοντος. T c : η θερμοκρασία λειτουργίας του κυττάρου. T amb : η θερμοκρασία περιβάλλοντος. 48

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ 1. ΓΕΝΙΚΑ Τα ηλιακά στοιχεία χρησιμοποιούνται για τη μετατροπή του φωτός (που αποτελεί μία μορφή ηλεκτρομαγνητικής ενέργειας) σε ηλεκτρική ενέργεια. Κατασκευάζονται από

Διαβάστε περισσότερα

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Επικ. καθηγητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Επικ. καθηγητής ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Επικ. καθηγητής Αγωγοί- μονωτές- ημιαγωγοί Ενεργειακά διαγράμματα ημιαγωγού Ηλεκτρόνια (ΖΑ) Οπές (ΖΣ) Ενεργειακό χάσμα και απορρόφηση hc 1,24 Eg h Eg ev m max max Χρειάζονται

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 1. Σκοπός Το φωτοβολταϊκό στοιχείο είναι μία διάταξη ημιαγωγών η οποία μετατρέπει την φωτεινή ενέργεια που προσπίπτει σε αυτήν σε ηλεκτρική.. Όταν αυτή φωτιστεί με φωτόνια κατάλληλης συχνότητας

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ:

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ: ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΒΕΛΤΙΣΤΗΣ ΙΣΧΥΟΣ ΤΩΝ INVERTER ΣΕ ΦΩΤΟΒΟΛΤΑΪΚΕΣ

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΥΚΛΩΜΑΤΑ AC-DC ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ Βασικά στοιχεία κυκλωμάτων Ένα ηλεκτρονικό κύκλωμα αποτελείται από: Πηγή ενέργειας (τάσης ή ρεύματος) Αγωγούς Μονωτές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ MM505 ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Εργαστήριο ο - Θεωρητικό Μέρος Βασικές ηλεκτρικές μετρήσεις σε συνεχές και εναλλασσόμενο

Διαβάστε περισσότερα

3 η Εργαστηριακή Άσκηση

3 η Εργαστηριακή Άσκηση 3 η Εργαστηριακή Άσκηση Βρόχος υστέρησης σιδηρομαγνητικών υλικών Τα περισσότερα δείγματα του σιδήρου ή οποιουδήποτε σιδηρομαγνητικού υλικού που δεν έχουν βρεθεί ποτέ μέσα σε μαγνητικά πεδία δεν παρουσιάζουν

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,

Διαβάστε περισσότερα

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing).

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Κεφάλαιο 4 Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Οι ενδείξεις (τάσεις εξόδου) των θερμοζευγών τύπου Κ είναι δύσκολο να

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ. ίοδος zener. Χαρακτηριστική καµπύλη διόδου zener. Χαρακτηριστική καµπύλη διόδου Zener

ΤΕΙ - ΧΑΛΚΙ ΑΣ 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ. ίοδος zener. Χαρακτηριστική καµπύλη διόδου zener. Χαρακτηριστική καµπύλη διόδου Zener 4. Ειδικές ίοδοι - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ ίοδος zener Χαρακτηριστική καµπύλη διόδου zener Τάση Zener ( 100-400 V για µια απλή δίοδο) -V Άνοδος Ι -Ι Κάθοδος V Τάση zener V Z I Ζ 0,7V

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την:

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: Σκοπός της Άσκησης: ΑΣΚΗΣΗ η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: α. Κατασκευή μετασχηματιστών. β. Αρχή λειτουργίας μετασχηματιστών.

Διαβάστε περισσότερα

3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Kρυσταλλοδίοδος ή δίοδος επαφής. ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν ΤΕΙ ΧΑΛΚΙ ΑΣ

3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Kρυσταλλοδίοδος ή δίοδος επαφής. ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν ΤΕΙ ΧΑΛΚΙ ΑΣ 3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 3. ΙΟ ΟΣ ΚΑΙ ΚΥΚΛΩΜΑΤΑ ΙΟ ΩΝ Kρυσταλλοδίοδος ή δίοδος επαφής ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν 3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια

Διαβάστε περισσότερα

Φωτοδίοδος. 1.Σκοπός της άσκησης. 2.Θεωρητικό μέρος

Φωτοδίοδος. 1.Σκοπός της άσκησης. 2.Θεωρητικό μέρος Φωτοδίοδος 1.Σκοπός της άσκησης Ο σκοπός της άσκησης είναι να μελετήσουμε την συμπεριφορά μιας φωτιζόμενης επαφής p-n (φωτοδίοδος) όταν αυτή είναι ορθά και ανάστροφα πολωμένη και να χαράξουμε την χαρακτηριστική

Διαβάστε περισσότερα

ΚΑΤΟΙΚΙΑ ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ. Από : Ηµ/νία : 07-01-2011

ΚΑΤΟΙΚΙΑ ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ. Από : Ηµ/νία : 07-01-2011 Από : Ηµ/νία : 07-01-2011 Προς : Αντικείµενο : Παράδειγµα (Demo) υπολογισµού αυτόνοµου και συνδεδεµένου Φ/Β συστήµατος εξοχικής κατοικίας Έργο : Εγκατάσταση Φ/Β συστήµατος στη Σάµο (Ελλάδα, Γεωγραφικό

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

«ΜΕΘΟΔΟΣ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟΤΙΜΗΣΗΣ ΦΩΤΟΒΟΛΤΑΪΚΟΥ ΠΑΡΚΟΥ 1MWp»

«ΜΕΘΟΔΟΣ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟΤΙΜΗΣΗΣ ΦΩΤΟΒΟΛΤΑΪΚΟΥ ΠΑΡΚΟΥ 1MWp» ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΜΕΘΟΔΟΣ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟΤΙΜΗΣΗΣ ΦΩΤΟΒΟΛΤΑΪΚΟΥ ΠΑΡΚΟΥ 1MWp» ΕΠΙΒΛΕΠΩΝ

Διαβάστε περισσότερα

Άσκηση 3 Η ΔΙΟΔΟΣ ΩΣ ΗΜΙΑΓΩΓΟΣ

Άσκηση 3 Η ΔΙΟΔΟΣ ΩΣ ΗΜΙΑΓΩΓΟΣ Άσκηση 3 Η ΔΙΟΔΟΣ ΩΣ ΗΜΙΑΓΩΓΟΣ Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike Greece 3.0. Ονοματεπώνυμο: Μητρόπουλος Σπύρος Α.Ε.Μ.: 3215 Εξάμηνο: Β' Σκοπός της εργαστηριακής

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Γ Γυμνασίου >> Αρχική σελίδα ΗΛΕΚΤΡΙΙΚΗ ΕΝΕΡΓΕΙΙΑ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. ) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμεε ααππααννττήήσσεει ιςς

Διαβάστε περισσότερα

Tεχνική Πληροφορία Διαδικασία Derating για Sunny Boy και Sunny Tripower

Tεχνική Πληροφορία Διαδικασία Derating για Sunny Boy και Sunny Tripower Tεχνική Πληροφορία Διαδικασία Derating για Sunny Boy και Sunny Tripower Με τη διαδικασία Derating, ο μετατροπέας μειώνει την απόδοσή του, ώστε να προστατεύσει τα εξαρτήματα από υπερθέρμανση. Αυτό το έγγραφο

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ. Η πειραματική διάταξη που χρησιμοποιείται στην άσκηση φαίνεται στην φωτογραφία του σχήματος 1:

ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ. Η πειραματική διάταξη που χρησιμοποιείται στην άσκηση φαίνεται στην φωτογραφία του σχήματος 1: ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ 1. Πειραματική Διάταξη Η πειραματική διάταξη που χρησιμοποιείται στην άσκηση φαίνεται στην φωτογραφία του σχήματος 1: Σχήμα 1 : Η πειραματική συσκευή για τη μελέτη της απόδοσης φωτοβολταϊκού

Διαβάστε περισσότερα

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι αυτό που προϋποθέτει την ύπαρξη μιας συνεχούς προσανατολισμένης ροής ηλεκτρονίων; Με την επίδραση διαφοράς δυναμικού ασκείται δύναμη στα ελεύθερα ηλεκτρόνια του μεταλλικού

Διαβάστε περισσότερα

ΚΑΤΟΙΚΙΑ ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ. Από : Ηµ/νία : 10-02-2010

ΚΑΤΟΙΚΙΑ ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ. Από : Ηµ/νία : 10-02-2010 Από : Ηµ/νία : 10-02-2010 Προς : Αντικείµενο : Παράδειγµα (Demo) υπολογισµού αυτόνοµου και συνδεδεµένου Φ/Β συστήµατος εξοχικής κατοικίας Έργο : Εγκατάσταση Φ/Β συστήµατος στη Σάµο (Ελλάδα, Γεωγραφικό

Διαβάστε περισσότερα

http://www.electronics.teipir.gr /personalpages/papageorgas/ download/3/

http://www.electronics.teipir.gr /personalpages/papageorgas/ download/3/ Δίοδος επαφής 1 http://www.electronics.teipir.gr /personalpages/papageorgas/ download/3/ 2 Θέματα που θα καλυφθούν Ορθή πόλωση Forward bias Ανάστροφη πόλωση Reverse bias Κατάρρευση Breakdown Ενεργειακά

Διαβάστε περισσότερα

Φωτοβολταϊκά συστήματα και σύστημα συμψηφισμού μετρήσεων (Net metering) στην Κύπρο

Φωτοβολταϊκά συστήματα και σύστημα συμψηφισμού μετρήσεων (Net metering) στην Κύπρο Ενεργειακό Γραφείο Κυπρίων Πολιτών Φωτοβολταϊκά συστήματα και σύστημα συμψηφισμού μετρήσεων (Net metering) στην Κύπρο Βασικότερα τμήματα ενός Φ/Β συστήματος Τα φωτοβολταϊκά (Φ/Β) συστήματα μετατρέπουν

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΕΡΩΤΗΣΕΩΝ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΕΡΩΤΗΣΕΩΝ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΕΡΩΤΗΣΕΩΝ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ Χρησιμοποίησε και εφάρμοσε τις έννοιες που έμαθες:

Διαβάστε περισσότερα

INNTENSOL ΕΝΗΜΕΡΩΤΙΚΟ ΣΗΜΕΙΩΜΑ ΓΙΑ ΠΑΡΟΧΗ ΥΠΗΡΕΣΙΩΝ ΣΥΝΤΗΡΗΣΗΣ,ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΔΟΣΗΣ ΚΑΙ ΕΠΙΤΗΡΗΣΗΣ ΤΟΥ ΦΩΤΟΒΟΛΤΑΪΚΟΥ ΣΤΑΘΜΟΥ

INNTENSOL ΕΝΗΜΕΡΩΤΙΚΟ ΣΗΜΕΙΩΜΑ ΓΙΑ ΠΑΡΟΧΗ ΥΠΗΡΕΣΙΩΝ ΣΥΝΤΗΡΗΣΗΣ,ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΔΟΣΗΣ ΚΑΙ ΕΠΙΤΗΡΗΣΗΣ ΤΟΥ ΦΩΤΟΒΟΛΤΑΪΚΟΥ ΣΤΑΘΜΟΥ INNTENSOL 2014 INNTENSOL ΚΑΙΝΟΤΟΜΕΣ ΤΕΧΝΙΚΕΣ & ΕΝΕΡΓΕΙΑΚΕΣ ΛΥΣΕΙΣ ΕΛΛΗΝΟΣ ΣΤΡΑΤΙΩΤΟΥ 85 & ΛΕΥΚΩΣΙΑΣ 21, ΤΚ: 26441, ΠΑΤΡΑ ΤΗΛ: 2610424680 FAX: 2610426850 website: www.inntensol.gr, email: info@inntensol.gr

Διαβάστε περισσότερα

Ημερίδα «Η επανεκκίνηση της αγοράς των φωτοβολταϊκών και οι προϋποθέσεις για την μεγάλη διείσδυσή τους στα ηλεκτρικά δίκτυα»

Ημερίδα «Η επανεκκίνηση της αγοράς των φωτοβολταϊκών και οι προϋποθέσεις για την μεγάλη διείσδυσή τους στα ηλεκτρικά δίκτυα» Ημερίδα «Η επανεκκίνηση της αγοράς των φωτοβολταϊκών και οι προϋποθέσεις για την μεγάλη διείσδυσή τους στα ηλεκτρικά δίκτυα» ΔΕΔΔΗΕ Α.Ε. Ν. Δρόσος Διευθυντής Διεύθυνσης Διαχείρισης Δικτύου (ΔΔΔ) Διοργανωτής:

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Επαφή p- Στάθμη Fermi Χαρακτηριστική ρεύματος-τάσης Ορθή και ανάστροφη πόλωση Περιεχόμενο της άσκησης Οι επαφές p- παρουσιάζουν σημαντικό ενδιαφέρον επειδή βρίσκουν εφαρμογή στη

Διαβάστε περισσότερα

Μέσα Προστασίας II. Τ.Ε.Ι. Κρήτης Σ.Τ.ΕΦ./ Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Εργαστήριο Υψηλών Τάσεων. Ηλεκτρικές Εγκαταστάσεις Ι

Μέσα Προστασίας II. Τ.Ε.Ι. Κρήτης Σ.Τ.ΕΦ./ Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Εργαστήριο Υψηλών Τάσεων. Ηλεκτρικές Εγκαταστάσεις Ι Τ.Ε.Ι. Κρήτης Σ.Τ.ΕΦ./ Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Μέσα Προστασίας II Προστασία από την ηλεκτροπληξία Ηλεκτρικές Εγκαταστάσεις Ι Επίκουρος Καθηγητής Τηλ:2810379231 Email: ksiderakis@staff.teicrete.gr

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΜΗΧΑΝΙΚΗΣ ΜΕΤΑΤΡΟΠΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΜΗΧΑΝΙΚΗΣ ΜΕΤΑΤΡΟΠΗΣ ΕΝΕΡΓΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΜΗΧΑΝΙΚΗΣ ΜΕΤΑΤΡΟΠΗΣ ΕΝΕΡΓΕΙΑΣ «ΠΡΟΣΟΜΟΙΩΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΔΙΑΤΑΞΕΩΝ ΑΝΥΨΩΣΗΣ ΤΑΣΗΣ ΓΙΑ ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Σάββατο 8 ΕΚΕΜΒΡΙΟΥ 2012 ΕΚΦΕ ΑΧΑΪΑΣ (ΑΙΓΙΟΥ) (Διάρκεια εξέτασης 60 min) Μαθητές: Σχολική Μονάδα

Διαβάστε περισσότερα

ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Οι γεννήτριες συνεχούς ρεύματος διαχωρίζονται στις ακόλουθες κατηγορίες: Ανεξάρτητης (ξένης) διέγερσης. Παράλληλης διέγερσης. Διέγερσης σειράς. Αθροιστικής σύνθετης διέγερσης.

Διαβάστε περισσότερα

Το υποσύστηµα "αίσθησης" απαιτήσεις και επιδόσεις φυσικά µεγέθη γενική δοµή και συγκρότηση

Το υποσύστηµα αίσθησης απαιτήσεις και επιδόσεις φυσικά µεγέθη γενική δοµή και συγκρότηση Το υποσύστηµα "αίσθησης" απαιτήσεις και επιδόσεις φυσικά µεγέθη γενική δοµή και συγκρότηση Το υποσύστηµα "αίσθησης" είσοδοι της διάταξης αντίληψη του "περιβάλλοντος" τροφοδοσία του µε καθορίζει τις επιδόσεις

Διαβάστε περισσότερα

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Ενότητα: Άσκηση 5: Η σύγχρονη μηχανή (γεννήτρια/κινητήρας ) Νικόλαος Βοβός, Γαβριήλ Γιαννακόπουλος, Παναγής Βοβός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας

Διαβάστε περισσότερα

ΦΩΤΟΒΟΛΤΑΪΚΑ ΠΛΑΙΣΙΑ ΠΟΛΥΚΡΥΣΤΑΛΛΙΚΑ ΣΤΟΙΧΕΙΑ - SI-ESF-M-P156-60

ΦΩΤΟΒΟΛΤΑΪΚΑ ΠΛΑΙΣΙΑ ΠΟΛΥΚΡΥΣΤΑΛΛΙΚΑ ΣΤΟΙΧΕΙΑ - SI-ESF-M-P156-60 Αυτά τα Φ/Β στοιχεία χρησιµοποιούν ψευδο-τετράγωνο πολυκρυσταλλικά στοιχεία πυριτίου υψηλής απόδοσης, (οι κυψέλες αποτελούνται από ένα ενιαίο κρύσταλλο πυριτίου, υψηλής καθαρότητας) για να µετασχηµατίσουν

Διαβάστε περισσότερα

6 Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας

6 Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας Πρόλογος Σ το βιβλίο αυτό περιλαμβάνεται η ύλη του μαθήματος «Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας» που διδάσκεται στους φοιτητές του Γ έτους σπουδών του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας

Διαβάστε περισσότερα

Κατηγορίες και Βασικές Ιδιότητες Θερμοστοιχείων.

Κατηγορίες και Βασικές Ιδιότητες Θερμοστοιχείων. Κεφάλαιο 3 Κατηγορίες και Βασικές Ιδιότητες Θερμοστοιχείων. Υπάρχουν διάφοροι τύποι μετατροπέων για τη μέτρηση θερμοκρασίας. Οι βασικότεροι από αυτούς είναι τα θερμόμετρα διαστολής, τα θερμοζεύγη, οι μετατροπείς

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE

Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE ΤΕΙ ΧΑΛΚΙΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Α/Α ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ : ΑΣΚΗΣΗ 3 η Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE Σκοπός Η κατανόηση της λειτουργίας και

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΕΣ ΓΕΝΝΗΤΡΙΕΣ

ΣΥΓΧΡΟΝΕΣ ΓΕΝΝΗΤΡΙΕΣ ΣΥΓΧΡΟΝΕΣ ΓΕΝΝΗΤΡΙΕΣ Για τη λειτουργία των σύγχρονων γεννητριών (που ονομάζονται και εναλλακτήρες) απαραίτητη προϋπόθεση είναι η τροοδοσία του τυλίγματος του δρομέα με συνεχές ρεύμα Καθώς περιστρέεται

Διαβάστε περισσότερα

Διακόπτης προστασίας αγωγών:

Διακόπτης προστασίας αγωγών: Διακόπτης προστασίας αγωγών: Διαστασιολόγηση των κατάλληλων διακοπτών προστασίας αγωγών για μετατροπείς υπό ειδικές συνθήκες Περιεχόμενα Η επιλογή του σωστού διακόπτη προστασίας αγωγών εξαρτάται από διάφορους

Διαβάστε περισσότερα

γ ρ α π τ ή ε ξ έ τ α σ η σ τ ο μ ά θ η μ α Φ Υ Σ Ι Κ Η Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ B Λ Υ Κ Ε Ι Ο Υ

γ ρ α π τ ή ε ξ έ τ α σ η σ τ ο μ ά θ η μ α Φ Υ Σ Ι Κ Η Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ B Λ Υ Κ Ε Ι Ο Υ η εξεταστική περίοδος από 9//5 έως 9//5 γ ρ α π τ ή ε ξ έ τ α σ η σ τ ο μ ά θ η μ α Φ Υ Σ Ι Κ Η Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ B Λ Υ Κ Ε Ι Ο Υ Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητής: Θ

Διαβάστε περισσότερα

Εισαγωγή στη Μικροηλεκτρονική (ETY-482) 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΤΑΣΗΣ-ΡΕΥΜΑΤΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΕΥΘΕΙΑ ΦΟΡΤΟΥ

Εισαγωγή στη Μικροηλεκτρονική (ETY-482) 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΤΑΣΗΣ-ΡΕΥΜΑΤΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΕΥΘΕΙΑ ΦΟΡΤΟΥ Εισαγωγή στη Μικροηλεκτρονική (ETY-482) 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΤΑΣΗΣ-ΡΕΥΜΑΤΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΕΥΘΕΙΑ ΦΟΡΤΟΥ Σχήµα 1. Κύκλωµα DC πόλωσης ηλεκτρονικού στοιχείου Στο ηλεκτρονικό στοιχείο του σχήµατος

Διαβάστε περισσότερα

Ποσοστό απόδοσης. Ποιοτικός παράγοντας για την φωτοβολταϊκή εγκατάσταση

Ποσοστό απόδοσης. Ποιοτικός παράγοντας για την φωτοβολταϊκή εγκατάσταση Ποσοστό απόδοσης Ποιοτικός παράγοντας για την φωτοβολταϊκή εγκατάσταση Περιεχόμενα Το ποσοστό απόδοσης είναι ένα από τα σημαντικότερα μεγέθη για την αξιολόγηση της αποδοτικότητας μίας φωτοβολταϊκής εγκατάστασης.

Διαβάστε περισσότερα

Φυσική Γενικής Παιδείας Β Λυκείου. Τράπεζα θεμάτων

Φυσική Γενικής Παιδείας Β Λυκείου. Τράπεζα θεμάτων Φυσική Γενικής Παιδείας Β Λυκείου Τράπεζα θεμάτων Φώτης Μπαμπάτσικος www.askisopolis.gr Συνεχές Ηλεκτρικό ρεύμα Δ Θέμα Συνεχές ηλεκτρικό ρεύμα Θέμα Δ 4_15559 Δίνονται δύο αντιστάτες (1) και (2). Ο αντιστάτης

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ ΥΛΙΚΑ & ΣΧΕΔΙΑΣΗ

ΗΛΕΚΤΡΟΝΙΚΑ ΥΛΙΚΑ & ΣΧΕΔΙΑΣΗ ΗΛΕΚΤΡΟΝΙΚΑ ΥΛΙΚΑ & ΣΧΕΔΙΑΣΗ ΚΕΦΑΛΑΙΟ 2ο ΑΝΤΙΣΤΑΣΕΙΣ Θερμική ενέργεια Q και Ισχύς Ρ Όταν μια αντίσταση R διαρρέεται από ρεύμα Ι για χρόνο t, τότε παράγεται θερμική ενέργεια Q. Για το συνεχές ρεύμα η ισχύς

Διαβάστε περισσότερα

MainTech Υπηρεσίες Κατασκευής και Συντήρησης Φωτοβολταϊκά έργα Συστήματα Εξοικονόμησης Ενέργειας

MainTech Υπηρεσίες Κατασκευής και Συντήρησης Φωτοβολταϊκά έργα Συστήματα Εξοικονόμησης Ενέργειας MainTech Υπηρεσίες Κατασκευής και Συντήρησης Φωτοβολταϊκά έργα Συστήματα Εξοικονόμησης Ενέργειας ΔΙΑΓΡΑΜΜΑ ΥΠΗΡΕΣΙΩΝ ΛΕΙΤΟΥΡΓΙΑΣ ΚΑΙ ΣΥΝΤΗΡΗΣΗΣ ΠΡΟΛΗΠΤΙΚΗ ΣΥΝΤΗΡΗΣΗ A/A ΕΡΓΑΣΙΕΣ ΠΡΟΛΗΠΤΙΚΗΣ ΣΥΝΤΗΡΗΣΗΣ

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ήπιες Μορφές Ενέργειας Ενότητα 8: Φωτοβολταϊκά Καββαδίας Κ.Α. Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΗΛΙΑΚΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΦΩΤΟΒΟΛΤΑΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. 1. Ηλιακή ακτινοβολία

ΗΛΙΑΚΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΦΩΤΟΒΟΛΤΑΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. 1. Ηλιακή ακτινοβολία ΗΛΙΑΚΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΦΩΤΟΒΟΛΤΑΙΚΗ ΤΕΧΝΟΛΟΓΙΑ 1. Ηλιακή ακτινοβολία Ο ήλιος ενεργεί σχεδόν, ως μια τέλεια πηγή ακτινοβολίας σε μια θερμοκρασία κοντά στους 5.800 Κ Το ΑΜ=1,5 είναι το τυπικό ηλιακό φάσμα πάνω

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

αγωγοί ηµιαγωγοί µονωτές Σχήµα 1

αγωγοί ηµιαγωγοί µονωτές Σχήµα 1 Η2 Μελέτη ηµιαγωγών 1. Σκοπός Στην περιοχή της επαφής δυο ηµιαγωγών τύπου p και n δηµιουργούνται ορισµένα φαινόµενα τα οποία είναι υπεύθυνα για τη συµπεριφορά της επαφής pn ή κρυσταλλοδιόδου, όπως ονοµάζεται,

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ανάπτυξη αλγορίθµου εύρεσης σηµείου

Διαβάστε περισσότερα

ιπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

ιπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ:ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ: ΠΑΡΑΓΩΓΗΣ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΧΡΗΣΙΜΟΠΟΙΗΣΕΩΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωματική Εργασία

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές Ι. Ενότητα 4: Εύρεση Παραμέτρων. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές Ι. Ενότητα 4: Εύρεση Παραμέτρων. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές Ι Ενότητα 4: Εύρεση Παραμέτρων Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΘΕΡΜΙΚΗ ΑΠΟΔΟΣΗ ΤΟΙΧΟΥ TROMBE & ΤΟΙΧΟΥ ΜΑΖΑΣ ΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΩΣ ΔΕΞΑΜΕΝΗ ΝΕΡΟΥ ΜΕ ΤΟΙΧΩΜΑΤΑ ΑΠΟ ΜΑΡΜΑΡΟ

ΘΕΡΜΙΚΗ ΑΠΟΔΟΣΗ ΤΟΙΧΟΥ TROMBE & ΤΟΙΧΟΥ ΜΑΖΑΣ ΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΩΣ ΔΕΞΑΜΕΝΗ ΝΕΡΟΥ ΜΕ ΤΟΙΧΩΜΑΤΑ ΑΠΟ ΜΑΡΜΑΡΟ ΘΕΡΜΙΚΗ ΑΠΟΔΟΣΗ ΤΟΙΧΟΥ TROMBE & ΤΟΙΧΟΥ ΜΑΖΑΣ ΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΩΣ ΔΕΞΑΜΕΝΗ ΝΕΡΟΥ ΜΕ ΤΟΙΧΩΜΑΤΑ ΑΠΟ ΜΑΡΜΑΡΟ Α1) ΓΕΝΙΚΗ ΠΕΡΙΓΡΑΦΗ ΗΛΙΑΚΟΥ ΤΟΙΧΟΥ Ο ηλιακός τοίχος Trombe και ο ηλιακός τοίχος μάζας αποτελούν

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΕΦΑΛΑΙΟ 3ο ΚΡΥΣΤΑΛΛΟΔΙΟΔΟΙ Επαφή ΡΝ Σε ένα κομμάτι κρύσταλλο πυριτίου προσθέτουμε θετικά ιόντα 5σθενούς στοιχείου για τη δημιουργία τμήματος τύπου Ν από τη μια μεριά, ενώ από την

Διαβάστε περισσότερα

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος

Διαβάστε περισσότερα

Άσκηση 14. Τριφασική γεννήτρια εναλλασσόμενου ρεύματος. Δυναμική συμπεριφορά

Άσκηση 14. Τριφασική γεννήτρια εναλλασσόμενου ρεύματος. Δυναμική συμπεριφορά 1 ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ ΟΧΗΜΑΤΩΝ ΗΜΕΡΟΜΗΝΙΑ. ΗΜΕΡΑ. ΩΡΑ. ΟΜΑΔΑ... ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΥΛΛΟ ΕΡΓΟΥ Άσκηση 1 Σύστημα φόρτισης αυτοκινήτου Τριφασική γεννήτρια εναλλασσόμενου ρεύματος. Δυναμική συμπεριφορά ΚΑΘΗΓΗΤΗΣ

Διαβάστε περισσότερα

Διπλωματική Εργασία της φοιτήτριας του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Διπλωματική Εργασία της φοιτήτριας του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΣΥΡΜΑΤΟΥ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ Διπλωματική Εργασία της φοιτήτριας

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΕΠΑΛ ΚΑΒΑΛΙΕΡΟΣ ΔΗΜΗΤΡΙΟΣ ΗΛΕΚΤΡΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ ΠΕ 17

ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΕΠΑΛ ΚΑΒΑΛΙΕΡΟΣ ΔΗΜΗΤΡΙΟΣ ΗΛΕΚΤΡΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ ΠΕ 17 ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΕΠΑΛ ΚΑΒΑΛΙΕΡΟΣ ΔΗΜΗΤΡΙΟΣ ΗΛΕΚΤΡΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ ΠΕ 17 Είδη ηλεκτρικών μηχανών και εφαρμογές τους. 1. Οι ηλεκτρογεννήτριες ή απλά γεννήτριες, που χρησιμοποιούνται για την παραγωγή ηλ

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ήπιες Μορφές Ενέργειας Ενότητα 7: Ηλιακοί Συλλέκτες Καββαδίας Κ.Α. Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

τα μεταλλικά Μια στρώμα. Για την έννοια πως αν και νανοσωματίδια (με εξάχνωση Al). πρέπει κανείς να τοποθετήσει τα μερικές δεκάδες nm πράγμα

τα μεταλλικά Μια στρώμα. Για την έννοια πως αν και νανοσωματίδια (με εξάχνωση Al). πρέπει κανείς να τοποθετήσει τα μερικές δεκάδες nm πράγμα Φραγή Coulomb σε διατάξεις που περιέχουν νανοσωματίδια. Ι. Φραγή Coulomb σε διατάξεις που περιέχουν μεταλλικά νανοσωματίδια 1. Περιγραφή των διατάξεων Μια διάταξη που περιέχει νανοσωματίδια μπορεί να αναπτυχθεί

Διαβάστε περισσότερα

Διακόπτες και μέσα ζεύξης και προστασίας ΧΤ

Διακόπτες και μέσα ζεύξης και προστασίας ΧΤ Διακόπτες και μέσα ζεύξης και προστασίας ΧΤ Οι διακόπτες κλείνουν ή ανοίγουν ένα ή περισσότερα κυκλώματα όταν τους δοθεί εντολή λειτουργίας Η εντολή μπορεί να προέρχεται από άνθρωπο ή από σήμα (π.χ. τάση

Διαβάστε περισσότερα

ENCO Μ.Ε.Π.Ε. - Νίκαιας 9, 55132 Καλαμαριά - Θεσσαλονίκη. 3. Τοπική Αντιστάθμιση Αέργου Ισχύος. EnCo ΣΥΣΤΗΜΑΤΑ ΕΞΟΙΚΟΝΟΜΗΣΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ENCO Μ.Ε.Π.Ε. - Νίκαιας 9, 55132 Καλαμαριά - Θεσσαλονίκη. 3. Τοπική Αντιστάθμιση Αέργου Ισχύος. EnCo ΣΥΣΤΗΜΑΤΑ ΕΞΟΙΚΟΝΟΜΗΣΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ 3. Τοπική Αντιστάθμιση Αέργου Ισχύος Η τεχνική προσέγγιση για την επίτευξη του εγγυημένου ποσοστού εξοικονόμησης που σας προτείνει η εταιρεία μας αποσκοπεί στην μείωση των απωλειών (W) που εμφανίζονται

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ

ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ Σκοπός της Άσκησης: Σκοπός της εργαστηριακής άσκησης είναι α) η κατανόηση της λειτουργίας της γεννήτριας συνεχούς ρεύματος

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα 3: Δίοδος. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα 3: Δίοδος. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα ενότητας (1/2) Η ιδανική δίοδος και η χρήση της. Η πραγματική χαρακτηριστική - της διόδου πυριτίου. Τα γραμμικά μοντέλα

Διαβάστε περισσότερα

Επίδραση του συνδυασμού μόνωσης και υαλοπινάκων στη μεταβατική κατανάλωση ενέργειας των κτιρίων

Επίδραση του συνδυασμού μόνωσης και υαλοπινάκων στη μεταβατική κατανάλωση ενέργειας των κτιρίων Επίδραση του συνδυασμού μόνωσης και υαλοπινάκων στη μεταβατική κατανάλωση ενέργειας των κτιρίων Χ. Τζιβανίδης, Λέκτορας Ε.Μ.Π. Φ. Γιώτη, Μηχανολόγος Μηχανικός, υπ. Διδάκτωρ Ε.Μ.Π. Κ.Α. Αντωνόπουλος, Καθηγητής

Διαβάστε περισσότερα

V CB V BE. Ορθό ρεύμα έγχυσης οπών. Συλλέκτης Collector. Εκπομπός Emitter. Ορθό ρεύμα έγχυσης ηλεκτρονίων. Ανάστροφο ρεύμα κόρου.

V CB V BE. Ορθό ρεύμα έγχυσης οπών. Συλλέκτης Collector. Εκπομπός Emitter. Ορθό ρεύμα έγχυσης ηλεκτρονίων. Ανάστροφο ρεύμα κόρου. ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ ιπολικό Τρανζίστορ Επαφής Επα φής Ι VLS Technology and omputer Archtecture Lab ιπολικό ΤρανζίστορΓ. Επαφής Τσιατούχας 1 ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση

Διαβάστε περισσότερα

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά Ακτίνες Χ (Roentgen) Είναι ηλεκτρομαγνητικά κύματα με μήκος κύματος μεταξύ 10 nm και 0.01 nm, δηλαδή περίπου 10 4 φορές μικρότερο από το μήκος κύματος της ορατής ακτινοβολίας. ( Φάσμα ηλεκτρομαγνητικής

Διαβάστε περισσότερα

Εργαστήριο Ηλεκτρικών Εγκαταστάσεων Ι

Εργαστήριο Ηλεκτρικών Εγκαταστάσεων Ι Εργαστήριο 08-10: Μονοφασικός Πίνακας 1) Ο γενικός διακόπτης μπορεί να είναι μονοπολικός ή διπολικός για συστήματα ουδετερογείωσης (για συστήματα ΤΤ είναι υποχρεωτικά διπολικός). Συνίσταται διπολικός (αν

Διαβάστε περισσότερα

2. ΓΕΝΝΗΤΡΙΕΣ ΕΝΑΛΛΑΣΣΟΜΕΝΟΥ ΡΕΥΜΑΤΟΣ

2. ΓΕΝΝΗΤΡΙΕΣ ΕΝΑΛΛΑΣΣΟΜΕΝΟΥ ΡΕΥΜΑΤΟΣ 28 2. ΓΕΝΝΗΤΡΙΕΣ ΕΝΑΛΛΑΣΣΟΜΕΝΟΥ ΡΕΥΜΑΤΟΣ Οι γεννήτριες εναλλασσόµενου ρεύµατος είναι δύο ειδών Α) οι σύγχρονες γεννήτριες ή εναλλακτήρες και Β) οι ασύγχρονες γεννήτριες Οι σύγχρονες γεννήτριες παράγουν

Διαβάστε περισσότερα

Μετασχηματιστές Ισοδύναμα κυκλώματα

Μετασχηματιστές Ισοδύναμα κυκλώματα Μετασχηματιστές Ισοδύναμα κυκλώματα Σε ένα πρώτο επίπεδο μπορούμε να θεωρήσουμε το μετασχηματιστή ως μια ιδανική συσκευή χωρίς απώλειες. Το ισοδύναμο κύκλωμα λοιπόν ενός ιδανικού μετασχηματιστή είναι το:

Διαβάστε περισσότερα

Κεφάλαιο 6: Δυναμικός Ηλεκτρισμός

Κεφάλαιο 6: Δυναμικός Ηλεκτρισμός Κεφάλαιο 6: Δυναμικός Ηλεκτρισμός Ηλεκτρική Αγωγιμότητα ονομάζουμε την ευκολία με την οποία το ηλεκτρικό ρεύμα περνά μέσα από τα διάφορα σώματα. Τα στερεά σώματα παρουσιάζουν διαφορετική ηλεκτρική αγωγιμότητα.

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΛΕΙΤΟΥΡΓΙΑ ΜΕ ΦΟΡΤΙΟ

ΑΣΚΗΣΗ 2 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΛΕΙΤΟΥΡΓΙΑ ΜΕ ΦΟΡΤΙΟ ΑΣΚΗΣΗ η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΛΕΙΤΟΥΡΓΙΑ ΜΕ ΦΟΡΤΙΟ Σκοπός της Άσκησης: Στόχος της εργαστηριακής άσκησης είναι η μελέτη των χαρακτηριστικών λειτουργίας ενός μονοφασικού μετασχηματιστή υπό φορτίο. 1. Λειτουργία

Διαβάστε περισσότερα

Φωτοβολταϊκά Συστήματα και Εφαρμογές

Φωτοβολταϊκά Συστήματα και Εφαρμογές Φωτοβολταϊκά Συστήματα και Εφαρμογές 1 Πρώτο Κεφάλαιο Το Ηλιακό φάσμα Η πηγή της ηλιακής ακτινοβολίας είναι φυσικά ο ήλιος, 3,8 x 1020 MW ηλεκτρομαγνητικής ενέργειας ακτινοβολούνται από την εξωτερική του

Διαβάστε περισσότερα

0 Φυσική Γενικής Παιδείας Β Λυκείου Συνεχές ηλεκτρικό ρεύμα - 3.2. Συνεχές ηλεκτρικό ρεύμα. Κώστας Παρασύρης - Φυσικός

0 Φυσική Γενικής Παιδείας Β Λυκείου Συνεχές ηλεκτρικό ρεύμα - 3.2. Συνεχές ηλεκτρικό ρεύμα. Κώστας Παρασύρης - Φυσικός 0 Φυσική Γενικής Παιδείας Β Λυκείου Συνεχές ηλεκτρικό ρεύμα - 3. Συνεχές ηλεκτρικό ρεύμα Φυσική Γενικής Παιδείας Β Λυκείου Συνεχές ηλεκτρικό ρεύμα -. Ηλεκτρική πηγή Ηλεκτρικό ρεύμα Ο ρόλος της ηλεκτρικής

Διαβάστε περισσότερα

Ημιαγωγοί ΦΒ φαινόμενο

Ημιαγωγοί ΦΒ φαινόμενο Διάγραμμα ενεργειακής κατανομής ηλεκτρονίων σε μεμονωμένο άτομο και σε στερεό σώμα Ημιαγωγοί ΦΒ φαινόμενο Διάκριση υλικών ανάλογα με την ολική ή μερική πληρότητα της ενεργειακής ζώνης Αγωγοί (μέταλλα)

Διαβάστε περισσότερα

T.E.I ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΠΙΩΝ ΜΟΡΦΩΝ ΕΝΕΡΓΕΙΑΣ

T.E.I ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΠΙΩΝ ΜΟΡΦΩΝ ΕΝΕΡΓΕΙΑΣ T.E.I ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΠΙΩΝ ΜΟΡΦΩΝ ΕΝΕΡΓΕΙΑΣ PV-CELL calibration to solar-radiation based on a lux-meter performance ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ : Dr.ΚΑΠΛΑΝΗΣ ΣΩΚΡΑΤΗΣ ΜΕΪΔΑΝΗΣ ΕΥΑΓΓΕΛΟΣ

Διαβάστε περισσότερα

Εργαστήριο Ηλεκτροτεχνικών Εφαρμογών

Εργαστήριο Ηλεκτροτεχνικών Εφαρμογών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εργαστήριο Ηλεκτροτεχνικών Εφαρμογών Ενότητα: Χωρητική Αντιστάθμιση Ισχύος Γεώργιος Χ. Ιωαννίδης Τμήμα Ηλεκτρολογίας Άδειες Χρήσης

Διαβάστε περισσότερα

Ακρίβεια μέτρησης. Τιμές ενέργειας και βαθμός απόδοσης για Φωτοβολταϊκοί μετατροπείς Sunny Boy και Sunny Mini Central

Ακρίβεια μέτρησης. Τιμές ενέργειας και βαθμός απόδοσης για Φωτοβολταϊκοί μετατροπείς Sunny Boy και Sunny Mini Central Ακρίβεια μέτρησης Τιμές ενέργειας και βαθμός απόδοσης για Φωτοβολταϊκοί μετατροπείς Sunny Boy και Sunny Mini Central ΠΕΡΙΕΧΟΜΕΝΑ Ο κάθε ιδιοκτήτης μιας φωτοβολταϊκής εγκατάστασης θέλει να τις καλύτερες

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΥΚΛΩΜΑΤΩΝ ΜΕ ΠΑΛΜΟΓΡΑΦΟ

ΜΕΛΕΤΗ ΚΥΚΛΩΜΑΤΩΝ ΜΕ ΠΑΛΜΟΓΡΑΦΟ 4.1 ΑΣΚΗΣΗ 4 ΜΕΛΕΤΗ ΚΥΚΛΩΜΑΤΩΝ ΜΕ ΠΑΛΜΟΓΡΑΦΟ A. ΣΥΝΘΕΣΗ ΚΑΘΕΤΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΥΡΕΣΗ ΤΗΣ ΔΙΑΦΟΡΑΣ ΦΑΣΕΩΣ ΤΟΥΣ Η σύνθεση δύο καθέτων ταλαντώσεων, x x0 t, y y0 ( t ) του ίδιου πλάτους της ίδιας συχνότητας

Διαβάστε περισσότερα

Κριτήρια για την επιλογή ενός RCD

Κριτήρια για την επιλογή ενός RCD Κριτήρια για την επιλογή ενός RCD Χρήση διακοπτών προστασίας από ρεύματα διαφυγής (RCD) στο SUNNY BOY και SUNNY MINI CENTRAL Περιεχόμενα Κατά την εγκατάσταση των μετατροπέων προκύπτουν συχνά προβλήματα

Διαβάστε περισσότερα

Υπολογίστε τη Vout. Aπ: Άγει η κάτω δίοδος:

Υπολογίστε τη Vout. Aπ: Άγει η κάτω δίοδος: Παράδειγµα 8 Υπολογίστε τη Vout. Aπ: Άγει η κάτω δίοδος: 0,7 + 2200I 5V = 0 V D 4,3 I D = = 1, 95mA 2200 + 5 2200I D + Vout = 0 Vout=-0,7V Παράδειγµα 9 Το παρακάτω σχήµα παριστάνει κύκλωµα φόρτισης µιας

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΗΛΕΚΤΡΙΚΩΝ

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΗΛΙΑΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΤΗΝ ΚΡΗΤΗ

ΔΥΝΑΜΙΚΟ ΗΛΙΑΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΤΗΝ ΚΡΗΤΗ ΣΕΠΤΕΜΒΡΙΟΣ-ΟΚΤΩΒΡΙΟΣ 2006 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 1 ΔΥΝΑΜΙΚΟ ΗΛΙΑΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΤΗΝ ΚΡΗΤΗ Γ. ΖΗΔΙΑΝΑΚΗΣ, Μ. ΛΑΤΟΣ, Ι. ΜΕΘΥΜΑΚΗ, Θ. ΤΣΟΥΤΣΟΣ Τμήμα Μηχανικών Περιβάλλοντος, Πολυτεχνείο Κρήτης ΠΕΡΙΛΗΨΗ Στην εργασία

Διαβάστε περισσότερα

SUNNY CENTRAL. 1 Εισαγωγή. Υποδείξεις για τη γειωμένη λειτουργία της φωτοβολταϊκής γεννήτριας

SUNNY CENTRAL. 1 Εισαγωγή. Υποδείξεις για τη γειωμένη λειτουργία της φωτοβολταϊκής γεννήτριας SUNNY CENTRAL Υποδείξεις για τη γειωμένη λειτουργία της φωτοβολταϊκής γεννήτριας 1 Εισαγωγή Μερικοί κατασκευαστές μονάδων συνιστούν ή/και απαιτούν, κατά τη χρήση των φωτοβολταϊκών μονάδων λεπτής μεμβράνης

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 9 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2Η ΕΝΟΤΗΤΑ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι ; Ηλεκτρικό ρεύμα ονομάζεται η προσανατολισμένη κίνηση των ηλεκτρονίων ή γενικότερα των φορτισμένων σωματιδίων Που μπορεί να

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α Α1. Για τις ημιτελείς προτάσεις Α1.1 και Α1. να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Σχεδίαση τριφασικού αντιστροφέα για διασύνδεση φωτοβολταϊκών στο δίκτυο με δυνατότητα

Διαβάστε περισσότερα

Μέτρηση βαθμού απόδοσης φωτοβολταϊκών στοιχείων και μελέτη της εξάρτησής του από τη θερμοκρασία

Μέτρηση βαθμού απόδοσης φωτοβολταϊκών στοιχείων και μελέτη της εξάρτησής του από τη θερμοκρασία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Μέτρηση βαθμού απόδοσης φωτοβολταϊκών στοιχείων και μελέτη της

Διαβάστε περισσότερα

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία)

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Διάδοση Θερμότητας (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Τρόποι διάδοσης θερμότητας Με αγωγή Με μεταφορά (με τη βοήθεια ρευμάτων) Με ακτινοβολία άλλα ΠΑΝΤΑ από το θερμότερο προς το ψυχρότερο

Διαβάστε περισσότερα

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια (παράγραφοι ά φ 3.1 31& 3.6) 36) Φυσική Γ Γυμνασίου Εισαγωγή Τα σπουδαιότερα χαρακτηριστικά της ηλεκτρικής ενέργειας είναι η εύκολη μεταφορά της σε μεγάλες αποστάσεις και

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ ΧΑΤΖΟΠΟΥΛΟΣ ΑΡΓΥΡΗΣ ΚΟΖΑΝΗ 2005 ΕΙΣΑΓΩΓΗ ΣΥΜΒΟΛΙΣΜΟΙ Για τον καλύτερο προσδιορισµό των µεγεθών που χρησιµοποιούµε στις εξισώσεις, χρησιµοποιούµε τους παρακάτω συµβολισµούς

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7. Θερµοϊονικό φαινόµενο - ίοδος λυχνία

ΑΣΚΗΣΗ 7. Θερµοϊονικό φαινόµενο - ίοδος λυχνία ΑΣΚΗΣΗ 7 Θερµοϊονικό φαινόµενο - ίοδος λυχνία ΣΥΣΚΕΥΕΣ : Πηγή συνεχούς 0-50 Volts, πηγή 6V/2A, βολτόµετρο συνεχούς, αµπερόµετρο συνεχούς, βολτόµετρο, ροοστάτης. ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ Όταν η θερµοκρασία ενός

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΗΛΕΚΤΡΙΚΩΝ

Διαβάστε περισσότερα

Μετασχηματιστές Ισοδύναμα κυκλώματα

Μετασχηματιστές Ισοδύναμα κυκλώματα 9/5/0 Μετασχηματιστές Ισοδύναμα κυκλώματα Συνολικά οι απώλειες πυρήνα εκφράζονται στο ισοδύναμο κύκλωμα του μετασχηματιστή με τη χρήση μιας εγκάρσιας ωμικής αντίστασης: I R jx jx R I + + jx ϕ R C N N Αυτό

Διαβάστε περισσότερα