ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ"

Transcript

1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά Μη εμπορική Χρήση Όχι Παράγωγο Έργο 3.0 Ελλάδα (Attribution Non Commercial Non derivatives 3.0 Greece) CC BY NC ND 3.0 GR [ή επιλογή ενός άλλου από τους έξι συνδυασμούς] [και αντικατάσταση λογότυπου άδειας όπου αυτό έχει μπει (σελ. 1, σελ. 2 και τελευταία)] Εξαιρείται από την ως άνω άδεια υλικό που περιλαμβάνεται στις διαφάνειες του μαθήματος, και υπόκειται σε άλλου τύπου άδεια χρήσης. Η άδεια χρήσης στην οποία υπόκειται το υλικό αυτό αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 ευτέρα α ΠΕΡΙΓΡΑΦΙΚΗ ΚΑΙ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισηγητής: Βασίλης Δαφέρμος, Αναπληρωτής Καθηγητής ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΑΙ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

5 Τι είναι η Μηδενική και τι η Εναλλακτική υπόθεση Οι στατιστικές υποθέσεις οι οποίες εμπλέκονται σε ένα οποιοδήποτε στατιστικό έλεγχο είναι πάντα δύο: Η πρώτη από αυτές ονομάζεται Μηδενική Υπόθεση και τη συμβολίζουμε με Ho, ενώ η δεύτερη ονομάζεται Εναλλακτική υπόθεση και τη συμβολίζουμε με Η 1. Δεν υπάρχει γενικός ορισμός ούτε για τη μηδενική, ούτε για την εναλλακτική υπόθεση. Πως ακριβώς διατυπώνεται τόσο η μία, όσο και η άλλη, εξαρτάται από το στατιστικό έλεγχο ή αλλιώς από το στατιστικό κριτήριο που θα χρησιμοποιήσουμε. Και βέβαια είναι ορθό να πούμε ότι η μηδενική υπόθεση τίθεται πάντα για ένα σκοπό και μόνον: Να ελεγχθεί, να αμφισβητηθεί ή για να το πούμε αλλιώς, να κριθεί. Ποιος όμως θα την κρίνει; Με άλλα λόγια σε τίνος την κρίση θα τεθεί; Η απάντηση είναι ότι θα τεθεί στην κρίση ενός συγκεκριμένου (κάθε φορά) στατιστικού κριτηρίου.

6 μ2. Η μηδενική υπόθεση, είναι μια υπόθεση μηδενικής διαφοράς, όπως λέει και το όνομά της. Και προφανώς, ή θα γίνει δεκτή ή θα απορριφθεί. Αν γίνει δεκτή, αυτό θα σημαίνει όχι κατ ανάγκη ότι είναι αληθινή, αλλά ότι δεν υπάρχουν αρκετά στοιχεία ή πληροφορίες για να την απορρίψουμε. Αν απορριφτεί, αυτό θα σημαίνει ότι οι πληροφορίες, η μαρτυρία που διαθέτουμε είναι ικανή να κλονίσει την ισχύ της. Παραδείγματα μηδενικών και εναλλακτικών υποθέσεων Παράδειγμα1. Ας υποθέσουμε ότι έχουμε να συγκρίνουμε δύο μέσους όρους μ 1 και μ 2 δύο ανεξάρτητων πληθυσμών. Τότε είναι γνωστό ότι ένα κατάλληλο στατιστικό κριτήριο, αρμόδιο για να ελέγχει την ύπαρξη πιθανής διαφοράς μ 2 -μ 1 είναι το λεγόμενο t-test για δύο ανεξάρτητα δείγματα (two samples independent t-test). Στην περίπτωση αυτού του στατιστικού ελέγχου, η μηδενική και η εναλλακτική υπόθεση διατυπώνονται ως εξής: Η ο : ΔΕΝ υπάρχει διαφορά ανάμεσα στους πληθυσμιακούς μέσους όρους μ 1 και μ 2, δηλ. μ 1 =μ 2. Η 1 : Υπάρχει διαφορά ανάμεσα στους πληθυσμιακούς μέσους όρους μ 1 και μ 2, δηλ. μ 1

7 Παραδείγματα μηδενικών και εναλλακτικών υποθέσεων Παράδειγμα2. Ας υποθέσουμε τώρα ότι έχουμε να συγκρίνουμε αντί για δύο, τρεις πληθυσμιακούς μέσους όρους μ 1 και μ 2 και μ 3 με τη βοήθεια της μονοπαραγοντικής Ανάλυσης Διασποράς (One Way ANOVA). Τότε η μηδενική και εναλλακτική υπόθεση διατυπώνονται ως εξής: Ηο: μ 1 = μ 2 = μ 3 Η 1 : Υπάρχει τουλάχιστον μία διαφορά ανάμεσα στους τρεις πληθυσμιακούς μέσους όρους μ 1 και μ 2 και μ 3 Παράδειγμα3. Ας υποθέσουμε ότι θέλουμε να ελέγξουμε την κανονικότητα ενός δείγματος, να ελέγξουμε δηλ. αν αυτό προέρχεται από ένα κανονικό πληθυσμό. Τότε η μηδενική και εναλλακτική υπόθεση διατυπώνονται ως εξής: Η ο : Η κατανομή του δείγματός μας ΔΕΝ απέχει και πολύ από την κανονική. Η 1 : Η κατανομή του δείγματός μας απέχει πολύ από την κανονική.

8 Για όλα, και πάντοτε, υπάρχει, τίθεται ένα όριο Για παράδειγμα, να δούμε μέχρι πού μ αγαπάς. Σ όλα τα παραπάνω παραδείγματα, η υπόθεση που κρίνεται, είναι η μηδενική υπόθεση. Αλλά για να κριθεί αυτή η υπόθεση χρειάζεται να λάβουμε και ένα πιθανοθεωρητικό όριο, να καθορίσουμε δηλ. ένα επίπεδο στατιστικής σημαντικότητας, πάνω από το οποίο θα δεχθούμε ως αληθινή τη μηδενική μας υπόθεση, ενώ κάτω από αυτό το όριο θα την απορρίψουμε ως ψευδή. Ορισμός. Θα λέμε επίπεδο στατιστικής σημαντικότητας (significance level), και θα το συμβολίζουμε με a, την πιθανότητα, την τιμή της οποίας εμείς, ως ερευνητές ορίζουμε, και η οποία αντιστοιχεί στο ενδεχόμενο απόρριψης της μηδενικής μας υπόθεσης, ενώ αυτή (η μηδενική μας υπόθεση), είναι στην πραγματικότητα αληθής.

9 Στο χώρο της Κοινωνικής Έρευνας, ως τιμές του επιπέδου στατιστικής σημαντικότητας επιλέγονται οι τιμές 5%, 3 %, 1% ή τέλος 1%ο. Η πιο συνηθισμένη τιμή επιπέδου σ.σ. είναι 5 %. Αυτή την τιμή θα λαμβάνουμε κι εμείς στις έρευνές μας, ως πιθανοθεωρητικό όριο, αν βέβαια δεν μας πουν κάτι διαφορετικό. Η ελάχιστη τιμή του επιπέδου στατιστικής σημαντικότητας, που αντιστοιχεί στην απόρριψη της μηδενικής υπόθεσης, είναι γνωστή στην αγγλική βιβλιογραφία, με τον όρο p value. Τι κάνουμε στην πράξη; Στην πράξη, δηλ. στο πλαίσιο του SPSS, και του STATA, με τα οποία εμείς συνεχώς εργαζόμαστε, θα κάνουμε λόγο για δύο επίπεδα στατιστικής σημαντικότητας: Το πρώτο αφορά το παρατηρούμενο επίπεδο σ.σ., το οποίο πάντα θα μας το προσφέρει το SPSS (observed significance level), όταν εφαρμόζουμε ένα οποιοδήποτε στατιστικό κριτήριο. Το δεύτερο αφορά το θεωρητικό επίπεδο σ.σ., αυτό δηλ. που εμείς σαν ερευνητές καθορίζουμε και με βάση το οποίο θα κριθεί η μηδενική μας υπόθεση.

10 Οι συλλογισμοί πρακτικοί Κανόνες για να καταλήξουμε σε συμπέρασμα Αν το παρατηρούμενο επίπεδο σ.σ. είναι μεγαλύτερο του θεωρητικού Ηο ισχύει. Αντίθετα ======================= ================ == === Αν το παρατηρούμενο επίπεδο σ.σ. είναι μικτότερο του θεωρητικού Ηο απορρίπτεται. Τελικά αυτό που πάντα μας ενδιαφέρει είναι η τύχη της Μηδενικής Υπόθεσης

11 Μονόπλευρος και αμφίπλευρος έλεγχος υποθέσεων Παράδειγμα 4. Ας υποθέσουμε ότι μας έχει δοθεί δείγμα φοιτητών, οι οποίοι έχουν υποβληθεί σε κάποιο τεστ γνώσεων και μας τίθεται το ερώτημα: Ο μέσος όρος μ του πληθυσμού από τον οποίο προέρχεται το δείγμα αυτών των φοιτητών διαφέρει από την τιμή 80; Η μηδενική και η εναλλακτική μας υπόθεση είναι τότε αντίστοιχα: Η ο : Ο μέσος όρος μ του πληθυσμού από το οποίο προέρχεται το δείγμα των φοιτητών, δεν διαφέρει από την τιμή 80. Συμβολικά: μ=80. Η 1 : Ο μέσος όρος του πληθυσμού από το οποίο προέρχεται το δείγμα των φοιτητών, διαφέρει από την τιμή 80. Συμβολικά: μ 80. Το παραπάνω παράδειγμα 4, είναι ένα παράδειγμα ελέγχου υποθέσεων διπλής κατεύθυνσης. Διότι, όταν λέμε ότι μ 80, ίσως αυτό το μ να είναι μικρότερο του 80, οπότε έχουμε έλεγχο προς τα αριστερά (μ<80), ή αυτό το μ να είναι μεγαλύτερο του 80, οπότε έχουμε έλεγχο προς τα δεξιά (μ>80). Με άλλα λόγια, η λέξη διαφέρει, επειδή μας παραπέμπει σε έλεγχο και προς τα αριστερά (αρνητική κατεύθυνση) και προς τα δεξιά (θετική κατεύθυνση), αντανακλά αμφίπλευρο έλεγχο, δηλ. έλεγχο σε διπλή κατεύθυνση (two way testing hypothesis).

12 Τι κάνουμε στην πράξη όταν βρεθούμε μπροστά σε ένα ερευνητικό πρόβλημα; Με βάση όλα τα παραπάνω, και πάντα στο πλαίσιο του SPSS, όταν βρεθούμε μπροστά σε κάποιο στατιστικό πρόβλημα τα βήματα είναι τα εξής: Αποφασίζουμε ποιο είναι το κατάλληλο στατιστικό κριτήριο που θα πρέπει να επιστρατεύσουμε για να λύσουμε το πρόβλημα. Διατυπώνουμε με σαφήνεια τόσο τη μηδενική, όσο και την εναλλακτική μας υπόθεση. Καθορίζουμε, μελετώντας τη βιβλιογραφία, την ιστορία του πράγματος, τις προηγούμενες σχετικές έρευνες, το θεωρητικό επίπεδο στατιστικής σημαντικότητας, με βάση το οποίο θα κρίνουμε τη μηδενική μας υπόθεση. Τότε, αν το παρατηρούμενο επίπεδο στατιστικής σημαντικότητας, εκείνο δηλ. που μας δίνει το SPSS, είναι μικρότερο από το θεωρητικό τότε απορρίπτουμε τη μηδενική μας υπόθεση ως μη αληθή, θεωρούμε ότι αυτή δεν ισχύει και δεχόμαστε ως αληθή και επομένως ως αληθή την εναλλακτική μας υπόθεση. Αντίθετα, αν το παρατηρούμενο επίπεδο στατιστικής σημαντικότητας, εκείνο δηλ. που μας δίνει το SPSS, είναι μεγαλύτερο από το θεωρητικό, τότε δεχόμαστε τη μηδενική μας υπόθεση ως αληθή, δηλ. λέμε ότι αυτή ισχύει.

13 Σφάλματα στους ελέγχους υποθέσεων Σφάλμα τύπου Ι. Σε ένα έλεγχο υποθέσεων, αν απορρίψουμε ως εσφαλμένη τη μηδενική μας υπόθεση, ενώ αυτή είναι στην πραγματικότητα αληθής, τότε διαπράττουμε σφάλμα τύπου Ι. Η πιθανότητα να διαπράξουμε σφάλμα τύπου Ι, ονομάζεται συντελεστής α. Συμβολικά: P(I)=α. Σφάλμα τύπου ΙΙ. Σε ένα έλεγχο υποθέσεων, αν δεχθούμε ως αληθή τη μηδενική μας υπόθεση, ενώ αυτή στην πραγματικότητα είναι εσφαλμένη, τότε διαπράττουμε σφάλμα τύπου ΙΙ. Η πιθανότητα να διαπράξουμε σφάλμα τύπου ΙI, ονομάζεται συντελεστής β. Συμβολικά: P(ΙI)=β.

14 Οι μεταβολές ή αλλιώς τα παιχνίδια του συντελεστή β Οπωσδήποτε συντελεστής β γίνεται μεγαλύτερος: 1. Όσο κινούμαστε από την ποσοτική προς την ποιοτική ανάλυση, όσο δηλ. στις στατιστικές μας αναλύσεις κυριαρχούν τα ποιοτικά δεδομένα, σε βάρος των ποσοτικών. 2. Όσο ο συντελεστής α γίνεται μικρότερος. 3. Όσο το μέγεθος του δείγματος είναι μικρότερο. 4. Όσο μεγαλύτερη είναι η διασπορά του πληθυσμού. 5. Όσο πιο αναξιόπιστες είναι οι μετρήσεις.

15 Ας συζητήσουμε Τα σφάλματα τύπου α και β, δεν είναι σφάλματα σταθερού αθροίσματος, παρά το γεγονός ότι αυξανομένου του ενός μειώνεται το άλλο. Με άλλα λόγια, δεν ισχύει α+β=σταθ. Για παράδειγμα στα μαθηματικά μπορεί να έχουμε τη σχέση α+β=σταθ=10 Και όσο μειώνουμε το α τόσο θα πρέπει να αυξάνουμε το β για να είναι σταθερό το άθροισμά τους στο 10. Κάτι τέτοιο όμως δεν ισχύει στη Στατιστική, αν τα α και β είναι σφάλματα.

16 Ωστόσο εμείς στις Έρευνές μας πάντα θέλουμε : μικρό σφάλμα τύπου Ι και μικρό σφάλμα τύπου ΙΙ Είναι σαφές ότι, αν θέλουμε να περιορίσουμε την πιθανότητα σφάλματος τύπου Ι, θα πρέπει να πάρουμε, όσο το δυνατόν μικρότερο επίπεδο στατιστικής σημαντικότητας α. Αλλά, όσο μικρότερο είναι το επίπεδο στατιστικής σημαντικότητας α, τόσο μεγαλύτερη είναι η πιθανότητα να διαπράξουμε σφάλμα τύπου ΙΙ: Να δεχθούμε, εσφαλμένα, τη μηδενική μας υπόθεση, ως αληθή. Τελικά, τι πρέπει να κάνει ο Κοινωνικός Ερευνητής αφού αυξανομένου του ενός μειώνεται το άλλο και αντίστροφα; Να πούμε δηλ. εδώ στη στατιστική ανάλυση ότι ισχύει το γνωστό εμπρός γκρεμός και πίσω ρέμα ; Η απάντηση είναι πως ο Κοινωνικός ερευνητής θα πρέπει να καταφέρει το φαινομενικά ακατόρθωτο: την ταυτόχρονη μείωση και των δύο σφαλμάτων. Και κάτι τέτοιο είναι απολύτως εφικτό με την αύξηση του μεγέθους του δείγματος, στο μέτρο βέβαια του δυνατού.

17 Η διαφοροποιητική δύναμη ενός στατιστικού κριτηρίου (Power) Ορισμός. Θα λέμε διαφοροποιητική δύναμη ενός στατιστικού κριτηρίου, και θα τη συμβολίζουμε με P, την πιθανότητα να μην διαπράξουμε σφάλμα τύπου ΙΙ. Συμβολικά ισχύει: Ρ=1 β Με άλλα λόγια, θα λέμε διαφοροποιητική δύναμη ενός στατιστικού κριτηρίου, την πιθανότητα να κηρύξουμε αληθινή την εναλλακτική μας υπόθεση Η 1, όταν αυτή είναι πράγματι αληθινή. Αυτό το τελευταίο πώς το λέμε με πολιτικούς όρους; Αν θέλαμε να το πούμε αυτό με πολιτικούς όρους, θα λέγαμε πως είναι η πιθανότητα να κηρύξουμε ένοχο τον κατηγορούμενο, όταν πράγματι αυτός είναι ένοχος.

18 Η διαφοροποιητική δύναμη ενός στατιστικού κριτηρίου μας δείχνει πόσο βέβαιοι είμαστε ότι δεν διαπράξαμε σφάλμα τύπου ΙΙ και επομένως είναι λογικό να είναι ίση με το αποτέλεσμα της διαφοράς 1 β. Γι αυτό ακριβώς ισχύει η σχέση που γράψαμε παραπάνω για την Power: Ρ=1 β Από τη σχέση αυτή είναι προφανές ότι όσο μικρότερος είναι ο συντελεστής β, τόσο μεγαλύτερη είναι η Ρ. Έτσι, Η διαφοροποιητική δύναμη ενός στατιστικού κριτηρίου, αφού είναι συνάρτηση του συντελεστή β, είναι λογικό να εξαρτάται όπως και εκείνος, από μια σειρά παραγόντων της ερευνητικής διαδικασίας.

19 Το περιεχόμενο των όρων στατιστικώς σημαντική διαφορά, Και στατιστικώς ασήμαντη διαφορά Ας υποθέσουμε και πάλι ότι έχουμε ένα τυχαίο δείγμα, μεγέθους n και μέσης τιμής, το οποίο θέλουμε να ξέρουμε αν προέρχεται από ένα πληθυσμό με μέση τιμή μ. Εάν σχηματίσουμε τη διαφορά, τότε αυτή η διαφορά μπορεί να είναι μια μικρή, συνήθης διαφορά ή να είναι μια μεγάλη, ασυνήθης διαφορά. Γενικά, αν μια διαφορά μεταξύ ενός στατιστικού δείκτη ενός δείγματος και της αντίστοιχης παραμέτρου του πληθυσμού είναι τόσο μεγάλη, ώστε να μην είναι δυνατόν να αποδοθεί στη φυσική διακύμανση των τυχαίων δειγμάτων που λαμβάνουμε από αυτόν τον πληθυσμό, τότε λέμε ότι μπορεί να γίνεται λόγος για στατιστικώς σημαντική διαφορά. Η εμφάνιση στατιστικώς σημαντικής διαφοράς, οφείλεται στη δράση ενός συστηματικού εξωτερικού παράγοντα και όχι στην τυχαία δειγματοληψία. Αν όμως η διαφορά ανάμεσα σε ένα στατιστικό δείκτη ενός δείγματος και στην αντίστοιχη παράμετρο του πληθυσμού είναι τόσο μικρή ώστε να τη θεωρούμε συνήθη διαφορά, τότε είναι δυνατόν να γίνει λόγος για στατιστικώς ασήμαντη διαφορά. Τέλος Β Εισήγησης

20 Τέλος Ενότητας

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Α: Απλή Τυχαία Δειγματοληψία Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4Β: Έλεγχοι Κανονικότητας Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 6Α: Ανάλυση Συσχέτισης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 7: Έλεγχοι σημαντικότητας πολλών ανεξάρτητων δειγμάτων Κωνσταντίνος Ζαφειρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Έλεγχοι υποθέσεων Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

τατιςτική ςτην Εκπαίδευςη II

τατιςτική ςτην Εκπαίδευςη II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΝΕΟ ΟΔΗΓΗΤΙΚΟ ΠΛΑΙΣΙΟ ΓΙΑ ΤΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης έχουν ληφθεί

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17 ΚΕΦΑΛΑΙΟ 17 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Στο κεφάλαιο αυτό θα αναφερθούμε σε ένα άλλο πρόβλημα της Στατιστικής που έχει κυρίως (αλλά όχι μόνο) σχέση με τις παραμέτρους ενός πληθυσμού (τις παραμέτρους της κατανομής

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΚΕΦΑΛΑΙΟ 4: Δειγματοληπτική διαδικασία Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗΣ

Διαβάστε περισσότερα

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Ενότητα 3 Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Εκτός από τις μέσες τιμές, τυπικές αποκλίσεις κλπ, θέλουμε να βρούμε κατά πόσον αυτές οι παρατηρούμενες τάσεις εξαρτώνται από συγκεκριμένες συνθήκες ή προϋποθέσεις.

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΛΩΣΟΡΙΣΜΑ ΕΝΗΜΕΡΩΣΗ Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΣΧΟΛΕΙΟΥ ΚΕΦΑΛΑΙΟ 11: Σκοπός, στόχοι, φορείς, αντικείμενα, κριτήρια, μέσα, αξιοποίηση των αποτελεσμάτων της

Διαβάστε περισσότερα

Γνωστική Ψυχολογία 3

Γνωστική Ψυχολογία 3 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #3: Εισαγωγή στη Μνήμη Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ. Ενότητα #10: ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΔΙΑΔΙΚΑΣΙΑΣ

ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ. Ενότητα #10: ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΔΙΑΔΙΚΑΣΙΑΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ Ενότητα #10: ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΔΙΑΔΙΚΑΣΙΑΣ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και

Διαβάστε περισσότερα

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης Ν161_(262)_Στατιστική στη Φυσική Αγωγή 06_01_Έλεγχος_Υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Υπόθεση: "μπορεί ο αριθμητικός μέσος του δείγματος να είναι ίδιος με τον αριθμητικό

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Έστω τυχαίο δείγμα παρατηρήσεων από πληθυσμό του οποίου η κατανομή εξαρτάται από μία ή περισσότερες παραμέτρους, π.χ. μ. Επειδή σε κάθε δείγμα αναμένεται διαφορετική τιμή του μ, είναι προτιμότερο να επιδιώκεται

Διαβάστε περισσότερα

Γνωστική Ψυχολογία 3

Γνωστική Ψυχολογία 3 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #2: Μνημονικές Δομές και Λειτουργίες Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ

ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ Ενότητα #8: ΑΞΙΟΛΟΓΗΣΗ ΣΧΕΔΙΟΥ ΜΕΤΑΒΑΣΗΣ ΚΑΙ ΔΙΔΑΚΤΙΚΩΝ ΠΡΑΚΤΙΚΩΝ

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΣΧΟΛΕΙΟΥ ΚΕΦΑΛΑΙΟ 12: Η αξιολόγηση του έργου των εκπαιδευτικών στη χώρα μας σήμερα

ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΣΧΟΛΕΙΟΥ ΚΕΦΑΛΑΙΟ 12: Η αξιολόγηση του έργου των εκπαιδευτικών στη χώρα μας σήμερα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΣΧΟΛΕΙΟΥ ΚΕΦΑΛΑΙΟ 12: Η αξιολόγηση του έργου των εκπαιδευτικών στη χώρα μας σήμερα Διδάσκων: Νίκος Ανδρεαδάκης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #7: ΚΑΤΑΝΑΛΩΤΕΣ, ΠΑΡΑΓΩΓΟΙ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΓΟΡΩΝ

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #7: ΚΑΤΑΝΑΛΩΤΕΣ, ΠΑΡΑΓΩΓΟΙ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΓΟΡΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #7: ΚΑΤΑΝΑΛΩΤΕΣ, ΠΑΡΑΓΩΓΟΙ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΓΟΡΩΝ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 3: Εργαλεία Κανονιστικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΚΕΦΑΛΑΙΟ 3: ΑΝΤΙΚΕΙΜΕΝΑ, ΣΚΟΠΟΙ ΚΑΙ ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ Διδάσκων: Βασίλης Γραμματικόπουλος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΠΡΟΣΧΟΛΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ

Διαβάστε περισσότερα

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος Το σύμβολο μ απεικονίζει 92.4% το μέσο όρο του πληθυσμού 121 92.4% το μέσο όρο του δείγματος 8 6.1% το μέσο όρο της κατανομής t 0 0% το μέσο όρο της κανονικής κατανομής 2 1.5% Το σύμβολο X απεικονίζει

Διαβάστε περισσότερα

Μέρος IV. Ελεγχοι Υποθέσεων (Hypothesis Testing)

Μέρος IV. Ελεγχοι Υποθέσεων (Hypothesis Testing) Μέρος IV. Ελεγχοι Υποθέσεων (ypothesis Testig) Βασικές έννοιες Γενική μεθοδολογία Σφάλμα τύπου Ι και -vlue Στατιστικοί έλεγχοι υποθέσεων για ειδικές περιπτώσεις Εφαρμοσμένη Στατιστική Μέρος 4 ο - Κ. Μπλέκας

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ Ενότητα 3: Συναθροιστική Ζήτηση- Εφαρμόζοντας το Υπόδειγμα IS-LM Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Ενότητα: Παρουσίαση εισαγωγικής παράδοσης Διδάσκων: Κατσαρού Ελένη ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΣΠΟΥΔΩΝ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ Άδειες Χρήσης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ 2 Ενότητα #9: Η μέτρηση του κόστους ζωής

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ 2 Ενότητα #9: Η μέτρηση του κόστους ζωής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ 2 Ενότητα #9: Η μέτρηση του κόστους ζωής Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 4: Παιδαγωγική και κοινωνική υπόσταση της αξιολόγησης

ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 4: Παιδαγωγική και κοινωνική υπόσταση της αξιολόγησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 4: Παιδαγωγική και κοινωνική υπόσταση της αξιολόγησης Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

Διαβάστε περισσότερα

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθ η γη

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ελεγκτική

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ελεγκτική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ελεγκτική Ενότητα # 12: Εισαγωγή στην επιλογή μονάδων και τη δειγματοληψία Νικόλαος Συκιανάκης Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ

ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ Ενότητα #9: Η ΜΕΤΑΒΑΣΗ ΤΩΝ ΠΑΙΔΙΩΝ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ ΣΤΟ ΔΗΜΟΤΙΚΟ

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 8: Επεξεργασία και ερμηνεία αξιολογικών δεδομένων του μαθητή

ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 8: Επεξεργασία και ερμηνεία αξιολογικών δεδομένων του μαθητή ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 8: Επεξεργασία και ερμηνεία αξιολογικών δεδομένων του μαθητή Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ Ενότητα 1: Οικονομικοί Κύκλοι Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΚΕΦΑΛΑΙΟ 4γ: ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΚΑΙ ΛΕΙΤΟΥΡΓΙΕΣ ΑΞΙΟΛΟΓΗΣΗΣ Διδάσκων: Βασίλης Γραμματικόπουλος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΠΡΟΣΧΟΛΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #3: ΟΙ ΑΓΟΡΑΙΕΣ ΔΥΝΑΜΕΙΣ ΤΗΣ ΠΡΟΣΦΟΡΑΣ ΚΑΙ ΖΗΤΗΣΗΣ

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #3: ΟΙ ΑΓΟΡΑΙΕΣ ΔΥΝΑΜΕΙΣ ΤΗΣ ΠΡΟΣΦΟΡΑΣ ΚΑΙ ΖΗΤΗΣΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #3: ΟΙ ΑΓΟΡΑΙΕΣ ΔΥΝΑΜΕΙΣ ΤΗΣ ΠΡΟΣΦΟΡΑΣ ΚΑΙ ΖΗΤΗΣΗΣ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 11: Κριτική αποτίμηση των διαδικασιών αξιολόγησης στο ελληνικό δημοτικό σχολείο

ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 11: Κριτική αποτίμηση των διαδικασιών αξιολόγησης στο ελληνικό δημοτικό σχολείο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 11: Κριτική αποτίμηση των διαδικασιών αξιολόγησης στο ελληνικό δημοτικό σχολείο Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ

Διαβάστε περισσότερα

Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2

Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2 Έλεγχοι Υποθέσεων 7-2 7 Έλεγχοι Υποθέσεων Χρήση της Στατιστικής Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-3 7 Μαθησιακοί Στόχοι Όταν θα έχετε ολοκληρώσει την μελέτη του κεφαλαίου θα πρέπει να

Διαβάστε περισσότερα

ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΕΦΑΛΑΙΟ 2#: ΕΙΣΑΓΩΓΗ ΣTΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ

ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΕΦΑΛΑΙΟ 2#: ΕΙΣΑΓΩΓΗ ΣTΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΕΦΑΛΑΙΟ 2#: ΕΙΣΑΓΩΓΗ ΣTΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και

Διαβάστε περισσότερα

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40] Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης

Διαβάστε περισσότερα

Εισαγωγή στις Βάσεις Δεδομζνων II

Εισαγωγή στις Βάσεις Δεδομζνων II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ Εισαγωγή στις Βάσεις Δεδομζνων II Ενότητα: Λογική και Θεωρία Συνόλων Διδάσκων: Πηγουνάκης Κωστής ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΚΕΦΑΛΑΙΟ 1: Η εκπαιδευτική έρευνα και ο σχεδιασμός της Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011 Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα

Διαβάστε περισσότερα

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ Ενότητα 7: Η Ανοικτή Οικονομία Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΚΕΦΑΛΑΙΟ 6: ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΑΞΙΟΛΟΓΗΣΗΣ Διδάσκων: Βασίλης Γραμματικόπουλος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΠΡΟΣΧΟΛΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Ένα Ερευνητικό Παράδειγμα Σκοπός της έρευνας ήταν να διαπιστωθεί εάν ο τρόπος αντίδρασης μιας γυναίκας απέναντι σε φαινόμενα

Διαβάστε περισσότερα

Μακροοικονομική Θεωρία Ι

Μακροοικονομική Θεωρία Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μακροοικονομική Θεωρία Ι Διάλεξη 5: Συνολική Ζήτηση και Συνολική Προσφορά (Μέρος Α) Διδάσκων: Γιαννέλλης Νικόλαος ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΚΕΦΑΛΑΙΟ 9: Κριτήρια αξιολόγησης αυτοαξιολόγησης γραπτής ερευνητικής εργασίας με έμφαση στην πτυχιακή εργασία

Διαβάστε περισσότερα

Ενότητα 4 η : Ανάλυση ερευνητικών δεδομένων. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Ενότητα 4 η : Ανάλυση ερευνητικών δεδομένων. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 4 η : Ανάλυση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 1: Εισαγωγή στη Στατιστική Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Εισαγωγή Στα προβλήµατα που έχουµε ασχοληθεί µέχρι τώρα, υποστηρίζουµε ότι έχουµε ένα δείγµα X = (X 1, X 2,...,X n ) F(,θ). π.χ. X 1, X 2,...,X n τ.δ. N(µ,σ 2 ),

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Ενότητα: Το Παραπρόγραμμα ή κρυφό Αναλυτικό Πρόγραμμα Διδάσκων: Κατσαρού Ελένη ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΣΠΟΥΔΩΝ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ Άδειες

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΚΕΦΑΛΑΙΟ 5: ΑΞΙΟΛΟΓΗΣΗ ΜΑΘΗΤΗ Διδάσκων: Βασίλης Γραμματικόπουλος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΠΡΟΣΧΟΛΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 8: Κανονικότητα Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ Ενότητα 5: Σταθεροποιητική Πολιτική Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Γνωστική Ψυχολογία 3

Γνωστική Ψυχολογία 3 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #8: Θεωρητικά μοντέλα Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Λογική. Δημήτρης Πλεξουσάκης. Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση

Λογική. Δημήτρης Πλεξουσάκης. Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση Λογική Δημήτρης Πλεξουσάκης Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης a. Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εξαμηνιαία Εργασία Β. Κανονική Κατανομή - Επαγωγική Στατιστική

Εξαμηνιαία Εργασία Β. Κανονική Κατανομή - Επαγωγική Στατιστική 1 ΕΞΑΜΗΝΙΑΙΑ Β ΤΟ ΦΩΤΟΒΟΛΤΑΙΚΟ ΠΑΡΚΟ ΑΣΠΑΙΤΕ Τμήμα Εκπαιδευτικών Ηλεκτρολογίας Εργαστήριο Συλλογής και Επεξεργασίας Δεδομένων Διδάσκοντες: Σπύρος Αδάμ, Λουκάς Μιχάλης, Παναγιώτης Καράμπελας Εξαμηνιαία

Διαβάστε περισσότερα

T-tests One Way Anova

T-tests One Way Anova William S. Gosset Student s t Sir Ronald Fisher T-tests One Way Anova ΣΤΑΤΙΣΤΙΚΗ Νίκος Ζουρμπάνος Ρούσσος, Π.Λ., & Τσαούσης, Γ. (2002). Στατιστική εφαρμοσμένη στις κοινωνικές επιστήμες. Αθήνα: Ελληνικά

Διαβάστε περισσότερα

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) .5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην

Διαβάστε περισσότερα

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 4: Δημόσια Αγαθά Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 8: Πιθανότητες ΙΙ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΣΧΟΛΕΙΟΥ ΚΕΦΑΛΑΙΟ 7: Η αξιολόγηση των σχολικών μονάδων στην χώρα μας σήμερα

ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΣΧΟΛΕΙΟΥ ΚΕΦΑΛΑΙΟ 7: Η αξιολόγηση των σχολικών μονάδων στην χώρα μας σήμερα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΣΧΟΛΕΙΟΥ ΚΕΦΑΛΑΙΟ 7: Η αξιολόγηση των σχολικών μονάδων στην χώρα μας σήμερα Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #: Επαγωγική Στατιστική - Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ

ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 7: Τα τεστ ως τεχνική αξιολόγησης Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗΣ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Μακροοικονομική Θεωρία Ι

Μακροοικονομική Θεωρία Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μακροοικονομική Θεωρία Ι Διάλεξη 2: Εισόδημα και Δαπάνη Διδάσκων: Γιαννέλλης Νικόλαος ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα