Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις"

Transcript

1 Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για να ισχύει f(n)= Θ(h(n)) πρέπει να δείξουµε ότι f(n)= Ο(h(n)) και ότι f(n)= Ω(h(n)). Αποδεικνύουµε πρώτα ότι f(n)= Ο(h(n)). Αφού f(n) = Θ(g(n)) f(n) = Ο(g(n)), άρα: Ů c 1 R + και n 1 0 τ.ω. f(n) c 1 * g(n), n n 1 (1) Αφού g(n) = Θ(h(n)) g(n)= Ο(h(n)), άρα: Ů c 2 R + και n 2 0 τ.ω. g(n) c 2 * h(n), n n 2 (2) Επιλέγουµε n 0 = max{n 1,n 2 } και τότε από (1) και (2) f(n) c 1 * g(n) c 1 * c 2 * h(n), n n 0 Άρα, αν επιλέξουµε c = c 1 * c 2, ισχύει πως c = c 1 * c 2 και n 0 = max{n 1,n 2 } τ.ω. Εποµένως, ισχύει πως f(n) = O(h(n)). f(n) c * h(n), n n 0. Αποδεικνύουµε στη συνέχεια ότι f(n) = Ω(h(n)). Αφού f(n) = Θ(g(n)) f(n)= Ω(g(n)), άρα: Ů c 1 R + και n 1 0 τ.ω. f(n) c 1 * g(n), n n 1 (1) Αφού g(n) = Θ(h(n)) g(n)= Ω(h(n)), άρα Ů c 2 R + και n 2 0 τ.ω. g(n) c 2 * h(n), n n 2 (2) Επιλέγουµε n 0 = max{n 1,n 2 } και τότε από (1) και (2) f(n) c 1 * g(n) c 1 * c 2 * h(n), n n 0 Άρα, αν επιλέξουµε c = c 1 * c 2, ισχύει πως c = c 1 * c 2 και n 0 = max{n 1,n 2 } τ.ω. Άρα f(n) = Ω(h(n)). f(n) c * h(n), n n 0. Αφού ισχύει ότι f(n) = O(h(n)) και ότι f(n) = Ω(h(n)), συµπεραίνουµε ότι f(n) = Θ(h(n)), όπως απαιτείται.

2 Συµµετρική ιδιότητα (ορισµός): f(n) = Θ(g(n)) αν και µόνο αν g(n) = Θ(f(n)). Θα αποδείξουµε πως αν f(n) = Θ(g(n)) τότε ισχύει πως g(n) = Θ(f(n)). Η απόδειξη του αντίστροφου, δηλαδή η απόδειξη πως αν g(n) = Θ(f(n)) τότε ισχύει πως f(n) = Θ(g(n)), είναι συµµετρική. Για να δείξω ότι g(n) = Θ(f(n)) πρέπει να δείξω ότι g(n) = Ο(f(n)) και g(n) = Ω(f(n)) (1) Αφού f(n) = Θ(g(n)) τότε f(n) = Ο(g(n)). Άρα c 1 R + και n 1 0 τ.ω.: f(n) c 1 g(n), n n 1 g(n) 1/c 1 * f(n), n n 1 Εποµένως, αν επιλέξουµε c = 1/c 1 και n 0 = n 1 προκύπτει ότι g(n) c * f(n), n n 0. Άρα, g(n) = Ω(f(n)). (2) Επιπρόσθετα, αφού f(n) = Θ(g(n)) τότε f(n) = Ω(g(n)). Άρα c 2 R + και n 2 0 τ.ω.: f(n) c 2 g(n), n n 2 g(n) 1/c 2 * f(n), n n 2 Εποµένως, αν επιλέξουµε c = 1/c 2 και n 0 = n 2 προκύπτει ότι g(n) c * f(n), n n 0. Άρα, g(n) = Ο(f(n)). (3) Από (2) και (3) g(n) = Θ(f(n)), όπως απαιτείται. Άσκηση 2 1. Ισχύει ότι log ( ) = O(n 3 ); 2. Ισχύει ότι log ( = Θ( log(n) ); Λύση 1. Εξετάζουµε εάν log ( ) O(n 3 ). Αναζητούµε c R + και ακέραιο n 0 0 τ.ω. log ( ) c * n 3, n n 0 n 5/2 * log n 5/2 c * n 3 n 5/2 * (5/2) log n c * n 3 Ισχύει ότι: 2.5 * n 2.5 * log n 2.5 * n 2.5 * = 2.5 * n 3, n 4 Εποµένως, αν επιλέξουµε c = 2.5 και n 0 = 4 προκύπτει ότι log ( ) c * n 3, n n 0. Άρα, ισχύει ότι log ( ) Ο(n 3 ).

3 2. Εξετάζουµε εάν log ( ) O(log(n)). Αναζητούµε c R + και ακέραιο n 0 0 τ.ω.: log ( ) c * log(n), n n 0 log n 1/2 c * log(n) ½ log(n) c * log(n) Εποµένως, αν επιλέξουµε c = 1/2 και n 0 = 1 προκύπτει ότι Άρα, ισχύει ότι log ( ) Ο(log n ). log ( ) c * log(n), n n 0 Οµοίως, εξετάζουµε και αν ισχύει ότι log ( ) Ω(log n)). Άσκηση 3 1. Αποδείξτε επαγωγικά ότι αν Τ(0) = 0 και Τ(n) = 2* Τ(n-1) + 1, n > 0, τότε Τ(n) = 2 n Θεωρήστε τη συνάρτηση f : N N που ορίζεται ως εξής : f(0) = 1, f(1) = 2, f(n) = 4 * f(n-2) + 2 n αν n > 1. Αποδείξτε επαγωγικά ότι για κάθε ακέραιο n 3 ισχύει ότι f(n) 3 * n * 2 n-2 Λύση: 1. Με επαγωγή ως προς n. Βάση επαγωγής (n=1): Η αναδροµική σχέση, για n=1 µας δίνει Τ(1) = 2*Τ(1-1) + 1 = 2*Τ(0) +1 = = 1. Επιπρόσθετα, ισχύει πως = 2-1 = 1 = Τ(1), όπως απαιτείται. Επαγωγική Υπόθεση: Θεωρούµε οποιονδήποτε ακέραιο n > 1. Έστω ότι ο ισχυρισµός ισχύει για n -1, δηλαδή υποθέτουµε πως ισχύει ότι Τ(n-1) = 2 n-1-1. Επαγωγικό Βήµα: Θα δείξουµε πως ο ισχυρισµός ισχύει και για την τιµή n, δηλαδή θα δείξουµε πως T(n) = 2 n - 1. Από την αναδροµική σχέση, συµπεραίνουµε ότι

4 T(n) = 2T(n-1) +1. Εποµένως, από την επαγωγική υπόθεση προκύπτει: όπως απαιτείται. 2. Με επαγωγή ως προς n. Τ(n) = 2T(n-1) +1 = 2(2 n-1 1) +1 = 2 n = 2 n -1, Βάση επαγωγής (n=3): Από την αναδροµική σχέση προκύπτει ότι: f(3) = 4 * f(1) +2 3 = 4 * = 16 (1) Επιπρόσθετα, ισχύει ότι 3 * 3 * 2 1 = = f(3) (από (1)). Άρα, ο ισχυρισµός ισχύει για n = 3. Επαγωγική Υπόθεση: Θεωρούµε οποιοδήποτε ακέραιο n > 3 και υποθέτουµε ότι ο ισχυρισµός ισχύει για κάθε τιµή n τ.ω., 3 n < n, δηλαδή υποθέτουµε ότι ισχύει f(n ) 3 * (n ) * 2 n -2, n τ.ω. 3 n < n (2) Επαγωγικό Βήµα: Θα αποδείξουµε ότι ο ισχυρισµός ισχύει για την τιµή n. Από την αναδροµική σχέση προκύπτει ότι f(n) = 4 * f(n-2) +2 n. (3) ιακρίνουµε περιπτώσεις. Περίπτωση 1: n = 4. Στην περίπτωση αυτή, ισχύει ότι f(4) = 4 * f(2) = 4 * f(2) Από την αναδροµική σχέση προκύπτει ότι f(2) = 4*f(1) = 4 * = 8. Εποµένως, f(4) = 4 * = 48. Επιπρόσθετα, ισχύει ότι 3 * 4 * 2 2 = 12 * 4 = 48 f(4). Εποµένως, ο ισχυρισµός ισχύει σε αυτή την περίπτωση. (Είναι αξιοσηµείωτο ότι σε αυτή την περίπτωση, δεν µπορώ να εφαρµόσω την επαγωγική υπόθεση για n = 2, αφού η επαγωγική υπόθεση ισχύει µόνο για κάθε n 3. Περίπτωση 2: n > 4. Από (1) f(n) = 4 * f(n-2) +2 n 4 * (3 * (n-2) * 2 n-4 ) + 2 n = 2 2 (3 * (n-2) * 2 n-4 ) * 2 n-2 3 * (n-2) * 2 n * 2 n-2 = 3 * n * 2 n-2 6 * 2 n * 2 n-2 = 3 * n * 2 n-2-2 * 2 n-2 < 3 * n * 2 n-2, (από επαγωγική υπόθεση, όπου n = n-2)

5 όπως απαιτείται. (Είναι αξιοσηµείωτο ότι, αφού n > 4 σε αυτή την περίπτωση, ισχύει ότι n-2 3 και άρα µπορώ να εφαρµόσω την επαγωγική υπόθεση). Άσκηση 4 Βρείτε την τάξη (βάσει των συµβολισµών Ο,Ω,Θ) της χρονικής πολυπλοκότητας Τ(n) του ακόλουθου αλγόριθµου } Procedure f (integer n){ for (i=1; i n; i++) for(k = n; k n+5; k++) x = x+1; Λύση Το i θα πάρει n διαφορετικές τιµές (i = 1, 2,, n). Για κάθε µια από αυτές τις τιµές, θα εκτελεστεί ο εσωτερικός for βρόγχος. Άρα, ο εσωτερικός for βρόγχος θα εκτελεστεί συνολικά n φορές. Κάθε φορά που εκτελείται ο εσωτερικός for βρόγχος, η µεταβλητή k παίρνει 6 διαφορετικές τιµές (k = n. n+1, n+2, n+3, n+4, n+5). Εποµένως, κάθε φορά που εκτελείται ο εσωτερικός for βρόγχος, η εντολή x = x+1 εκτελείται 6 φορές. Συµπεραίνουµε πως ο συνολικός αριθµός φορών που θα εκτελεστεί η εντολή x = x+1 είναι 6*n. Άρα, η χρονική πολυπλοκότητα T(n) της f() είναι T(n) = O(n). Συνοπτική ιχνηλάτιση της εκτέλεσης της f() παρουσιάζεται στη συνέχεια. Εξωτερικό for loop (ανακύκλωση i=1): (Εσωτερικό for loop:) k =n k=n+1 k=n+2 k=n+3 k=n+4 k=n+5 (τέλος εκτέλεσης εσωτερικού for loop) Εξωτερικό for loop (ανακύκλωση i=2): (Εσωτερικό for loop:) k =n k=n+1 k=n+2 k=n+3 k=n+4 k=n+5 (τέλος εκτέλεσης εσωτερικού for loop)... Εξωτερικό for loop (ανακύκλωση i=n):

6 (Εσωτερικό for loop:) k =n k=n+1 k=n+2 k=n+3 k=n+4 k=n+5 (τέλος εκτέλεσης εσωτερικού for loop) (Τέλος εκτέλεσης εξωτερικού for loop). Άσκηση 5 ίνεται ο αλγόριθµος Binary Search(), ο οποίος χρησιµοποιείται για την αναζήτηση ενός στοιχείου σε έναν ήδη ταξινοµηµένο πίνακα. Index BinarySearch(Type A[0 N-1], Type value, Index low, Index high) { 1. if (high < low) 2. return -1; //not found 3. mid = low + (high - low) / 2; 4. if (A[mid] > value) 5. return BinarySearch(A, value, low, mid-1); 6. else if (A[mid] < value) 7. return BinarySearch(A, value, mid+1, high); 8. else 9. return mid; //found } 1. Παρουσιάστε σύντοµη περιγραφή του τρόπου λειτουργίας του αλγορίθµου. 2. Ιχνηλατήστε την BinarySearch (Α, 14, 0, 9) για την περίπτωση που Α= [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]. Πρέπει να παρουσιαστούν όλες οι αναδροµικές κλήσεις της BinarySearch µε τη σειρά που καλούνται καθώς και οι τιµές των παραµέτρων Α, value, low, high σε κάθε κλήση. Πρέπει επίσης να παρουσιαστεί ο χώρος στη µνήµη που κατανέµεται για την εκτέλεση των αναδροµικών κλήσεων της BinarySearch. 3. Παρουσιάστε αναδροµική σχέση που να περιγράφει τη χρονική πολυπλοκότητα Τ(n) της BinarySearch για την περίπτωση που n = 2 k, για κάποιο k (δηλαδή για την περίπτωση που το n είναι µια δύναµη του 2). 4. Τι τάξης είναι η πολυπλοκότητα της BinarySearch, αποδείξτε τον ισχυρισµό σας. Λύση 1. Περιγραφή Η BinarySearch() βασίζεται στην τεχνική του διαίρει και κυρίευε, η οποία περιλαµβάνει τρία βήµατα: a. ιαίρεση του προβλήµατος σε διάφορα υποπροβλήµατα που είναι παρόµοια µε το αρχικό πρόβληµα αλλά µικρότερου µεγέθους.

7 b. Κυριαρχία επί των υποπροβληµάτων, επιλύοντας τα αναδροµικά µέχρι αυτά να γίνουν αρκετά µικρού µεγέθους οπότε και τα επιλύουµε απευθείας. c. Συνδυασµός των επιµέρους λύσεων των υποπροβληµάτων ώστε να συνθέσουµε µια λύση του αρχικού προβλήµατος. Η συνάρτηση παίρνει ως ορίσµατα έναν ταξινοµηµένο πίνακα Α, µία τιµή προς αναζήτηση value, και δύο ακεραίους low και high οι οποίοι υποδηλώνουν τα όρια του πίνακα µέσα στα οποία θα γίνει η αναζήτηση (δηλαδή η αναζήτηση για την τιµή value θα πραγµατοποιηθεί στο µέρος Α[low high] του πίνακα). Η συνάρτηση βρίσκει το µεσαίο στοιχείο mid του προς εξέταση πίνακα A[low high] και ελέγχει αν το στοιχείο στη θέση Α[mid] είναι µεγαλύτερο ή µικρότερο από την προς αναζήτηση τιµή value. Στην περίπτωση που είναι µικρότερο, κάνει αναδροµική κλήση της BinarySearch(A, value, mid+1, high), δηλαδή αναζητά την τιµή value στο άνω µισό του πίνακα Α (αφού το κάτω µισό περιέχει στοιχεία µικρότερα του A[mid] και άρα, αφού ο πίνακας είναι ταξινοµηµένος, µικρότερα και του προς αναζήτηση στοιχείου value). Αντίχτοιχα, αν το A[mid] είναι µεγαλύτερο κάνει αναδροµική κλήση της BinarySearch(A, value, low, mid-1) δηλαδή αναζητά την τιµή value στο κάτω µισό του πίνακα Α (αφού το άνω µισό περιέχει στοιχεία µεγαλύτερα του A[mid] και άρα, αφού ο πίνακας είναι ταξινοµηµένος, µεγαλύτερα και του προς αναζήτηση στοιχείου value). Αν το στοιχείο δε βρεθεί στον πίνακα (δηλαδή φτάσουµε στο σηµείο όπου high < low τότε η συνάρτηση επιστρέφει -1. Αν βρεθεί στοιχείο µε τιµή value, τότε επιστρέφεται η θέση (mid) του πίνακα στην οποία βρέθηκε. 2. Ιχνηλάτιση Ταξινοµηµένος πίνακας: [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] BinarySearch ([2, 4, 6, 8, 10, 12, 14, 16, 18, 20], 14, 0, 9): if (9 < 0) mid = 0+(9-0)/2 = 4 if (10 > 14) else if (10 < 14) --> αποτιµάται σε true BinarySearch ([2, 4, 6, 8, 10, 12, 14, 16, 18, 20], 14, 5, 9): if (9 < 5) mid = 5+(9-5)/2 = 7 if (16 > 14) --> αποτιµάται σε true BinarySearch ([2, 4, 6, 8, 10, 12, 14, 16, 18, 20], 14, 5, 6): if (6 < 5) mid = 5+(6-5)/2 = 5 if (12 > 14) else if (12 < 14) --> αποτιµάται σε true BinarySearch ([2, 4, 6, 8, 10, 12, 14, 16, 18, 20], 14, 6, 6): if (6 < 6) mid = 6 + (6-6) / 2 = 6

8 if (14 > 14) else if (14 < 14) else return 6 //Found Το στοιχείο βρίσκεται στη θέση 6 του πίνακα A[2, 4, 6, 8, 10, 12, 14, 16, 18, 20] -->A[6]=14. Μνήµη Ο πίνακας Α = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] σε όλες τις κλήσεις της BinarySearch(). Value : 6 Low: 0 BinarySearch(A,14,0,9) High: 9 Mid: 4 Value : 6 Low: 5 BinarySearch(A,14,5,9) High: 9 Mid: 7 Value : 6 Low: 5 BinarySearch(A,14,5,5) High: 6 Mid: 5 Value : 6 Low: 6 BinarySearch(A,14,6,6) High: 6 Mid: 6 3. Αναδροµική Σχέση H αναδροµική σχέση είναι η εξής: T(0) = c 1 (1) T(n) = T(n/2) + c 2 (2) Η αναδροµική σχέση προκύπτει ως εξής. Για να προκύψει το µέρος (1) της αναδροµικής σχέσης, µετράµε πόσες στοιχειώδεις εντολές θα εκτελέσει ο αλγόριθµος αν n = 0, δηλαδή µε παράµετρο ένα µέρος του πίνακα µηδενικού µεγέθους (δηλαδή αν high < low). Σε αυτή την

9 περίπτωση θα εκτελεστούν οι γραµµές 1 και 2 και άρα σε αυτή την περίπτωση δεν θα εκτελεστούν περισσότερες από 3 στοιχειώδεις εντολές (µια για την αρχική κλήση της BinarySearch(), µια για τον έλεγχο της if της γραµµής 1 και µια για την εκτέλεση της return της γραµµής 2). Είναι αξιοσηµείωτο πως, αφού το 3 είναι µια σταθερά, δεν χρειάζεται να είµαστε ακριβείς στην µέτρηση των στοιχειωδών εντολών σε αυτή την περίπτωση, δηλαδή µπορούµε να γράψουµε πως T(0) = c 1, όπως παραπάνω (παρότι τώρα γνωρίζουµε πως c 1 = 3 για τη BinarySearch() που µελετάµε). Για να εξάγουµε το µέρος (2) της αναδροµικής σχέσης, µετράµε πόσες στοιχειώδεις εντολές θα εκτελέσει ο αλγόριθµος σε µια οποιαδήποτε κλήση της ΒinarySearch() χωρίς να υπολογίσουµε το κόστος για τις αναδροµικές κλήσεις. Στην περίπτωση της ΒinarySearch() το κόστος αυτός είναι το κόστος εκτέλεσης των γραµµών 1, 3 και 4, ή 1, 3, 4 και 6, ή 1, 3, 4, 6 και 9 (ανάλογα µε την περίπτωση κάθε φορά). Αν υπολογίσουµε το κόστος εκτέλεσης αυτών των στοιχειωδών εντολών, συµπεραίνουµε ότι αυτό είναι ίσο µε κάποια σταθερά c 2. Σηµειώνουµε ότι δεν είναι σηµαντικό να προσδιορίσουµε την σταθερά αυτή επ ακριβώς, αφού η τιµή της δεν επηρεάζει τη λύση της αναδροµικής εξίσωσης (και άρα η τάξη της πολυπλοκότητας του αλγορίθµου θα προκύψει να είναι η ίδια, όποια και αν είναι η πραγµατική τιµή της σταθεράς c 2 ). 4. Λύση Αναδροµικής Σχέσης Τάξη Χρονικής Πολυπλοκότητας T(n) = T(n/2) + c 2 = (T(n/2 2 ) + c 2 ) +c 2 = Τ(n/2 2 ) + 2 * c 2 = (T(n/2 3 ) + c 2 ) + 2 * c2 = T(n/2 3 ) + 3 * c 2 =... = T(n/2 k ) + k * c 2 Η επαναληπτική αντικατάσταση σταµατάει όταν n/2 k < 1 k > logn. Τότε: T(n) T(0) + (logn + 1) * c 2 = c 1 + (logn + 1) * c 2 = log n + (c 1 + c 2 ) = O(logn). Ευχαριστίες Ευχαριστούµε θερµά την, επί τρία χρόνια, βοηθό του µαθήµατος Χρυσή Μπιρλιράκη για την παραγωγή της ηλεκτρονικής έκδοσης του παραπάνω υλικού.

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι 5.1 Η έννοια του αλγορίθμου 5.2 Αναπαράσταση αλγορίθμων 5.3 Επινόηση αλγορίθμων 5.4 Δομές επανάληψης 5.5 Αναδρομικές δομές 5.6 Απόδοση και ορθότητα Οι διαφάνειες βασίζονται σε μεγάλο

Διαβάστε περισσότερα

O Χρόνος Εκτέλεσης. προγραμμάτων ΚΕΦΑΛΑΙΟ 3. Τα θέματα αυτού του κεφαλαίου

O Χρόνος Εκτέλεσης. προγραμμάτων ΚΕΦΑΛΑΙΟ 3. Τα θέματα αυτού του κεφαλαίου ΚΕΦΑΛΑΙΟ 3 O Χρόνος Εκτέλεσης Προγραμμάτων Στο Κεφάλαιο 2 είδαμε δύο ριζικά διαφορετικούς αλγόριθμους ταξινόμησης: τον αλγόριθμο ταξινόμησης με εισαγωγή και τον αλγόριθμο ταξινόμησης με συγχώνευση. Υπάρχουν,

Διαβάστε περισσότερα

Εργαστήριο 2: Πίνακες

Εργαστήριο 2: Πίνακες Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

ΗΥ240 - Παναγιώτα Φατούρου 2

ΗΥ240 - Παναγιώτα Φατούρου 2 ΕΝΟΤΗΤΑ ΥΛΟΠΟΙΗΣΗ ΛΕΞΙΚΩΝ ΜΕ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ΗΥ24 - Παναγιώτα Φατούρου 1 Ισοζυγισµένα ένδρα Χρονική Πολυπλοκότητα αναζήτησης σε δοµές που έχουν ήδη διδάχθει: Στατική Μη-Ταξινοµηµένη Λίστα -> Ο(n), όπου

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ενδρικές οµές για Υλοποίηση υναµικών Λεξικών υναµικά λεξικά λειτουργίες LookUp( ), Insert( ) και Delete( ) Αναζητούµε δένδρα για την αποτελεσµατική υλοποίηση

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND)

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) Ένωση Ξένων Συνόλων (Disjoint Sets with Union) S 1,, S k : ξένα υποσύνολα ενός συνόλου U δηλ., S i S j =, αν i j, και S 1 S k = U. Λειτουργίες που θέλουµε

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση

Συνδυαστική Βελτιστοποίηση Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 1 Άγγελος Σιφαλέρας sifalera@uom.gr 4 η Διάλεξη Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 2 Knapsack Problem, (1/9) Ένας επενδυτής διαθέτει ένα χρηματικό

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ Έστω fµια συνάρτηση µε πεδίο ορισµού το Α. Το σύνολο των τιµών της είναι f( A) { R = υπάρχει (τουλάχιστον) ένα A : f () = }. Ο προσδιορισµός του συνόλου τιµών f( A) της

Διαβάστε περισσότερα

Δυναμικός Προγραμματισμός

Δυναμικός Προγραμματισμός πρόβλημα μεγέθους Ν «Διαίρει και βασίλευε» : ανεξάρτητα υποπροβλήματα διάσπαση πρόβλημα μεγέθους k πρόβλημα μεγέθους Ν-k πρόβλημα μεγέθους Ν Σε κάποιες περιπτώσεις όμως τα υποπροβλήματα δεν είναι ανεξάρτητα

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Runtime Checking (1/3) Runtime Checking (2/3) Runtime Checking (3/3) ΗΥ 340 Γλώσσες και Μεταφραστές Φροντιστήριο

Runtime Checking (1/3) Runtime Checking (2/3) Runtime Checking (3/3) ΗΥ 340 Γλώσσες και Μεταφραστές Φροντιστήριο ΗΥ 340 Γλώσσες και Μεταφραστές Φροντιστήριο Runtime Checking (1/3) Η γλώσσα alpha είναι μια dynamic typing γλώσσα (ο τύπος μιας μεταβλητής αλλάζει ακολουθώντας τον τύπο της τιμής που κάθε φορά αποθηκεύεται

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία

Διαβάστε περισσότερα

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Μορφές Εντολών Είδη εντολών Απλές εντολές Εκτελούν κάποια ενέργεια Εντολές ελέγχου Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Εντολές και παραστάσεις Μιαεντολήείναιμιαπαράστασηπου ακολουθείται

Διαβάστε περισσότερα

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών»)

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών») Πρώτοι αριθµοί: Τι µας λέει στο βιβλίο (σελ.25-26): 1. Μου αρέσουν οι πρώτοι αριθµοί, γι αυτό αρίθµησα µε πρώτους τα κεφάλαια. Οι πρώτοι αριθµοί είναι αυτό που αποµένει όταν αφαιρέσεις όλα τα στερεότυπα

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ Περίγραµµα Εισαγωγή Στοιχεία Πολυπλοκότητας Ηλίας Κ. Σάββας Επίκουρος Καθηγητής Τμήμα: Τεχνολογίας Πληροφορικής & Τηλεπικοινωνιών Email: savvas@teilar teilar.gr Αλγόριθµοι

Διαβάστε περισσότερα

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος Θεωρια Αριθµων Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html 25 Μαιου 2013 2

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ0 Ε ρ γ α σ ί α η Ε ρ ω τ ή µ α τ α Ερώτηµα 1. (1) Να διατυπώστε αλγόριθµο που θα υπολογίζει το ν-οστό όρο της ακολουθίας a ν : ν = 1,,3,..., όπου a 1 = 1, a

Διαβάστε περισσότερα

Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα

Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) 10-1 Εντολές Επανάληψης που θα καλυφθούν σήμερα Διάλεξη 9 - Δευτέρα while() τελεστές postfix/prefix (++, --,...) και σύνθετοι τελεστές

Διαβάστε περισσότερα

Dr. Garmpis Aristogiannis - EPDO TEI Messolonghi

Dr. Garmpis Aristogiannis - EPDO TEI Messolonghi Προϋποθέσεις για Αµοιβαίο Αποκλεισµό Μόνο µία διεργασία σε κρίσιµο τµήµασεκοινό πόρο Μία διεργασία που σταµατά σε µη κρίσιµο σηµείο δεν πρέπει να επιρεάζει τις υπόλοιπες διεργασίες εν πρέπει να υπάρχει

Διαβάστε περισσότερα

ιαχείριση Πληροφοριών στο ιαδίκτυο

ιαχείριση Πληροφοριών στο ιαδίκτυο ιαχείριση Πληροφοριών στο ιαδίκτυο Εργαστήριο (Φυλλάδιο 8) ΤΕΙ Καβάλας - Σχολή ιοίκησης & Οικονοµίας Τµήµα ιαχείρισης Πληροφοριών ιδάσκων: Μαρδύρης Βασίλειος, ιπλ. Ηλ. Μηχανικός & Μηχ. Υπολογιστών, MSc

Διαβάστε περισσότερα

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Περίληψη Αλγόριθµοι τύπου Brute-Force Παραδείγµατα Αναζήτησης Ταξινόµησης Πλησιέστερα σηµεία Convex hull Βελτιστοποίηση Knapsack problem Προβλήµατα Ανάθεσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΜΕΡΟΣ ΠΕΜΠΤΟ Triggers, Stored procedures Γιώργος Μαρκοµανώλης Περιεχόµενα Triggers-Ενηµέρωση δεδοµένων άλλων πινάκων... 1 Ασφάλεια...

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton. ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΑΚΑΔ. ΕΤΟΣ - Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 9 Ιανουαρίου ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Ομάδα Α ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΜΑ ον (+ μονάδες) Δίνεται ο πρόβολος, με μήκος = m, με κατανεμημένο φορτίο που

Διαβάστε περισσότερα

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

Διάλεξη 6: Δείκτες και Πίνακες

Διάλεξη 6: Δείκτες και Πίνακες Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 6: Δείκτες και Πίνακες (Κεφάλαιο 12, KNK-2ED) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 6-1 Περιεχόμενο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

Διάλεξη 4: Προγραμματισμός σε JAVA IΙ. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 4: Προγραμματισμός σε JAVA IΙ. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 4: Προγραμματισμός σε JAVA IΙ Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: -Μέθοδοι - Πίνακες, Πολυδιάστατοι Πίνακες - Boxing/Unboxing - Χρήσιμες βιβλιοθήκες

Διαβάστε περισσότερα

Κεφάλαιο 8.6. Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ

Κεφάλαιο 8.6. Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 8.6 Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 16-1 Πίνακες - Επανάληψη Στην προηγούµενη διάλεξη κάναµε µια εισαγωγή στην δοµή δεδοµένων Πίνακας Σε ένα πίνακα ένα σύνολο αντικειµένων

Διαβάστε περισσότερα

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0 Σελίδα από 53 Κεφάλαιο 3 Πίνακες Περιεχόµενα 3 Ορισµοί Επεξεργασµένα Παραδείγµατα Ασκήσεις 3 3 Πράξεις µε Πίνακες Πρόσθεση Πινάκων Πολλαπλασιασµός Πίνακα µε Αριθµό Πολλαπλασιασµός Πινάκων ιωνυµικό Ανάπτυγµα

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους.

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους. Να βρεθεί ΠΓΠ ώστε να ελαχιστοποιηθεί το κόστος µεταφοράς (το πρόβληµα βασίζεται σε αυτό των Aarik και Randolph, 975). Λύση: Για κάθε δυϊλιστήριο i (i=, 2, ) και πόλη j (j=, 2,, 4), θεωρούµε την µεταβλητή

Διαβάστε περισσότερα

Μαθησιακές δυσκολίες ΙΙ. Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

Μαθησιακές δυσκολίες ΙΙ. Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας Μαθησιακές δυσκολίες ΙΙ Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας Μάρτιος 2010 Προηγούμενη διάλεξη Μαθησιακές δυσκολίες Σε όλες

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Βασικά Στοιχεία Το αλφάβητο της C Οι βασικοί τύποι της C Δηλώσεις μεταβλητών Είσοδος/Έξοδος Βασικές εντολές της C Αλφάβητο

Διαβάστε περισσότερα

C: Από τη Θεωρία στην Εφαρμογή

C: Από τη Θεωρία στην Εφαρμογή Δρ. Γ. Σ. Τσελίκης Δρ. Ν. Δ. Τσελίκας C: Από τη Θεωρία στην Εφαρμογή Ενδεικτικές Ασκήσεις από το Βιβλίο C: Από τη Θεωρία στην Εφαρμογή (Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας) Ενδεικτικές Ασκήσεις του Βιβλίου Ε.Α.1

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Pascal Βασικοί τύποι δεδοµένων

Pascal Βασικοί τύποι δεδοµένων Pasal Βασικοί τύποι δεδοµένων «ΜΗ ΕΝ ΠΟΛΛΟΙΣ ΟΛΙΓΑ ΛΕΓΕ, ΑΛΛ ΕΝ ΟΛΙΓΟΙΣ ΠΟΛΛΑ» Σηµαίνει: "Μη λες πολλά χωρίς ουσία, αλλά λίγα που να αξίζουν πολλά" (Πυθαγόρας) Κουλλάς Χρίστος www.oullas.om oullas 2 Στόχοι

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης ΚΕΦΑΛΑΙΟ 1ο 3ο 1. Συμπληρώστε τα κενά με τη λέξη που λείπει. α. Ένα πρόβλημα το χωρίζουμε σε άλλα απλούστερα, όταν είναι ή όταν έχει τρόπο επίλυσης. β. Η επίλυση ενός προβλήματος προϋποθέτει την του. γ.

Διαβάστε περισσότερα

ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ. φυσικό σύστηµα; Πρόκειται για κίνηση σε συντηρητικό πεδίο δυνάµεων;

ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ. φυσικό σύστηµα; Πρόκειται για κίνηση σε συντηρητικό πεδίο δυνάµεων; ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ Είδαµε ότι η φυσική κίνηση ενός σωµατιδίου σε συντηρητικό πεδίο ικανοποιεί την αρχή ελάχιστης δράσης του Hamilton µε Λαγκρανζιανή, όπου η κινητική ενέργεια του

Διαβάστε περισσότερα

Κεφάλαιο 10. Υποπρογράμματα

Κεφάλαιο 10. Υποπρογράμματα Κεφάλαιο 10 Υποπρογράμματα 10.1 Γενικός διδακτικός σκοπός Ο γενικός σκοπός του κεφαλαίου είναι να καταστούν ικανοί οι μαθητές να χρησιμοποιούν υποπρογράμματα για τη δημιουργία συνθέτων προγραμμάτων. 194

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο Α. Να αναπτύξετε τις παρακάτω ερωτήσεις: 1. Τι καλείται βρόγχος; 2. Σε ποιες κατηγορίες διακρίνονται τα προβλήματα ανάλογα με

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ 1 1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΘΕΩΡΙΑ 1. Φυσικοί αριθµοί : Είναι οι αριθµοί 0, 1, 2, 3,, 10000, 10001,.50000 2. Προηγούµενος επόµενος : Κάθε φυσικός αριθµός εκτός από το 0 έχει έναν προηγούµενο

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Άπληστοι Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015. Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015. Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ Δρ. Ιωάννης Λυχναρόπουλος 2014-2015 Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Τι είναι τα υποπρογράμματα Αυτόνομες μονάδες κώδικα Γραμμένα από τον χρήστη Η δομή

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Visual Basic Βασικές Έννοιες

Visual Basic Βασικές Έννοιες Visual Basi Βασικές Έννοιες «Είδα στον ύπνο µου ότι η ζωή είναι χαρά. Ξύπνησα και είδα ότι είναι χρέος. Αγωνίστηκα και είδα ότι τo χρέος είναι χαρά.» Ραµπριτανάθ Ταγκόρ Κουλλάς Χρίστος www.oullas.om oullas

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

«Μηχανή Αναζήτησης Αρχείων» Ημερομηνία Παράδοσης: 30/04/2015, 09:00 π.μ.

«Μηχανή Αναζήτησης Αρχείων» Ημερομηνία Παράδοσης: 30/04/2015, 09:00 π.μ. ΕΡΓΑΣΙΑ 4 «Μηχανή Αναζήτησης Αρχείων» Ημερομηνία Παράδοσης: 30/04/2015, 09:00 π.μ. Στόχος Στόχος της Εργασίας 4 είναι να η εξοικείωση με την αντικειμενοστρέφεια (object oriented programming). Πιο συγκεκριμένα,

Διαβάστε περισσότερα

Γραµµικες Μορφες Λογαριθµων Αλγεβρικων Αριθµων και Εφαρµογες

Γραµµικες Μορφες Λογαριθµων Αλγεβρικων Αριθµων και Εφαρµογες Γραµµικες Μορφες Λογαριθµων Αλγεβρικων Αριθµων και Εφαρµογες Νικόλαος Κατσίπης Μεταπτυχιακή Εργασία Επιβλέπων Καθηγητής Ν.Γ. Τζανάκης Τµήµα Μαθηµατικών - Πανεπιστήµιο Κρήτης Φθινοπωρινό εξάµηνο 2007 έκδοση

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)

Διαβάστε περισσότερα

Προγραµµατιστική Εργασία 1 ο Μέρος

Προγραµµατιστική Εργασία 1 ο Μέρος Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών 4 Νοεµβρίου 2011 ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος 2011-12 ιδάσκουσα: Παναγιώτα Φατούρου Προγραµµατιστική Εργασία 1 ο Μέρος Ηµεροµηνία

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1 ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 27 MAΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΑ ΣΧΕ ΙΑ ΛΥΣΕΩΝ - ΥΠΟ ΕΙΞΕΙΣ

ΕΝ ΕΙΚΤΙΚΑ ΣΧΕ ΙΑ ΛΥΣΕΩΝ - ΥΠΟ ΕΙΞΕΙΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ42 - ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΛΟΓΙΣΜΙΚΟΥ 2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΑΚΑ ΗΜΑΪΚΟΥ ΕΤΟΥΣ 2009-2010 2 oς Τόµος ΕΝ ΕΙΚΤΙΚΑ ΣΧΕ ΙΑ ΛΥΣΕΩΝ - ΥΠΟ ΕΙΞΕΙΣ ΕΡΓΑΣΙΑ 2 i. υναµική τεχνική επικύρωσης:

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή Φυσική Β Λυκειου, Γενικής Παιδείας - Οριζόντια Βολή Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, M Sc Φυσικός http://perifysikhs.wordpress.com 1 Εισαγωγικές Εννοιες - Α Λυκείου Στην Φυσική της Α Λυκείου κυριάρχησαν

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ : Πληροφορική Κατεύθυνσης ΤΑΞΗ : Β Αρ. σελίδων : 11 Ηµεροµηνία : 10/6/2008 Ώρα Έναρξης : 7:45 π.µ ιάρκεια : 2 ώρες Ονοµατεπώνυµο :...Τµήµα : Αριθµός :...Βαθµός

Διαβάστε περισσότερα

1. Να αναφέρετε ονοµαστικά τις λειτουργίες µε τις οποίες ο υπολογιστής µπορεί να επιτελέσει µε επιτυχία οποιαδήποτε επεξεργασία. Ï.Å.Ö.Å.

1. Να αναφέρετε ονοµαστικά τις λειτουργίες µε τις οποίες ο υπολογιστής µπορεί να επιτελέσει µε επιτυχία οποιαδήποτε επεξεργασία. Ï.Å.Ö.Å. 1 Γ' ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1: Α. 1. Να αναφέρετε ονοµαστικά τις λειτουργίες µε τις οποίες ο υπολογιστής µπορεί να επιτελέσει µε επιτυχία

Διαβάστε περισσότερα

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Το φάσµα ενός χρονικά εξαρτώµενου σήµατος µας πληροφορεί πόσο σήµα έχουµε σε µία δεδοµένη συχνότητα. Έστω µία συνάρτηση µίας µεταβλητής, τότε από το θεώρηµα

Διαβάστε περισσότερα

ΘΕΜΑ : «ιδακτικό υλικό Μαθηµατικών Γ Γυµνασίου» Aγαπητοί συνάδελφοι,

ΘΕΜΑ : «ιδακτικό υλικό Μαθηµατικών Γ Γυµνασίου» Aγαπητοί συνάδελφοι, ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ /ΝΣΗ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΡΗΤΗΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ.Ε. Ν. ΗΡΑΚΛΕΙΟΥ ηµήτριος Μπουνάκης Σχολικός Σύµβουλος Μαθηµατικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Ονοµατεπώνυµο: Αριθµός Μητρώου: Επαναληπτική Εξέταση (3 ώρες) Ηµεροµηνία:

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: ΠΛΗΡΟΦΟΡΙΚΗ Ημερομηνία και ώρα εξέτασης: Τρίτη, 6 Ιουνίου 2006 07:30 10:30

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής

Διαβάστε περισσότερα

Η πολυνηματική γλώσσα προγραμματισμού Cilk

Η πολυνηματική γλώσσα προγραμματισμού Cilk Η πολυνηματική γλώσσα προγραμματισμού Cilk Β Καρακάσης Ερευνητικά Θέματα Υλοποίησης Γλωσσών Προγραμματισμού Μεταπτυχιακό Μάθημα (688), ΣΗΜΜΥ Νοέμβριος 2009 Β Καρακάσης (CSLab, NTUA) ΣΗΜΜΥ, Μετ/κό 688 9/2009

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟ ΟΙ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟ ΟΙ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟ ΟΙ 1. ίνεται η αριθµητική πρόοδος µε α 2 =0 και α 4 =4. α) Να δείξετε ότι ω=2 και α 1 = 2. β) Να δείξετε ότι α ν =2ν 4 και να βρείτε ποιος όρος της είναι το 98. (51 ος ) 2. α) Να

Διαβάστε περισσότερα

Άσκηση 1 (α) Να διατυπώσετε την πιο κάτω λογική έκφραση στη Visual Basic κάνοντας χρήση μεταβλητών:

Άσκηση 1 (α) Να διατυπώσετε την πιο κάτω λογική έκφραση στη Visual Basic κάνοντας χρήση μεταβλητών: Άσκηση 1 (α) Να διατυπώσετε την πιο κάτω λογική έκφραση στη Visual Basic κάνοντας χρήση μεταβλητών: (Μον.2) Η ηλικία είναι μεταξύ των 15 και 18 συμπεριλαμβανομένων (β) Αν Χ= 4, Υ=2, Κ=2 να βρείτε το αποτέλεσμα

Διαβάστε περισσότερα

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις Σελίδα 1 από 9 Κεφάλαιο 8 1 Γραµµικές Απεικονίσεις Τα αντικείµενα µελέτης της γραµµικής άλγεβρας είναι σύνολα διανυσµάτων που χαρακτηρίζονται µε την αλγεβρική δοµή των διανυσµατικών χώρων. Όπως λοιπόν

Διαβάστε περισσότερα