Δομές Δεδομένων και Αλγόριθμοι
|
|
- Ἀστάρτη Ζαΐμης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου, Τμήμα Μηχανικών Πληροφορικής ΤΕ Χειμερινό Εξάμηνο (Παρουσίαση 6) 1 / 20
2 Ρυθμοί αύξησης Γραμμικός ρυθμός αύξησης: n, 2n, Πολυωνυμικός ρυθμός αύξησης: n 2, n 3 Εκθετικός ρυθμός αύξησης: 2 n, e n, 10 n Ρυθμός αύξησης παραγοντικού: n!, n n για μέγεθος εισόδου n = 1000 n 10 3 n n n e n n n! n n / 20
3 Λογάριθμος - Λογαριθμική κλίμακα log b a Λογάριθμος: Πόσες φορές πρέπει να πολλαπλασιάσουμε έναν αριθμό b (την βάση) για να φτάσουμε σε έναν αριθμό a πχ log 2 16 = 4 διότι = 16 Λογαριθμική κλίμακα Η λογαριθμική κλίμακα χρησιμοποιείται όταν χρειάζεται να απεικονιστούν ταυτόχρονα μικρές και μεγάλες τιμές σε ένα γράφημα Σε μια λογαριθμική κλίμακα με βάση το 10 αύξηση μιας μονάδας στην κλίμακα αντιστοιχεί σε δεκαπλασιασμό της αντίστοιχης ποσότητας ενώ μείωση μιας μονάδας στην κλίμακα αντιστοιχεί σε υποδεκαπλασιασμό της αντίστοιχης ποσότητας F(x) = (x 10 )(10 20 ) log(f(x)) = 10log(x)+20 3 / 20
4 xkcd Log Scale 4 / 20
5 Γραμμική συνάρτηση - Πολυωνυμική (τετραγωνική) συνάρτηση 5 / 20
6 Τετραγωνική συνάρτηση - Κυβική συνάρτηση - Εκθετική συνάρτηση 6 / 20
7 Κυβική συνάρτηση - Εκθετικές συναρτήσεις 7 / 20
8 Εκθετική συνάρτηση - Συναρτήσεις παραγοντικού 8 / 20
9 Ασυμπτωτικός συμβολισμός Προτάθηκε από τον D Knuth το 1976 Ο ασυμπτωτικός συμβολισμός είναι ένας χρήσιμος τρόπος εκτίμησης της χρονικής ή χωρικής πολυπλοκότητας ενός αλγορίθμου για μεγάλα στιγμιότυπα προβλημάτων Τοποθετεί ένα άνω όριο κόστους στην εκτέλεση του αλγορίθμου 9 / 20
10 Ο συμβολισμός O H f(n) = O(g(n)) αν υπάρχουν θετικές σταθερές c, n 0 τέτοιες ώστε f(n) cg(n) για κάθε n n 0 f(n) = O(g(n)) αν όπου c είναι μια σταθερά lim n inf f(n) g(n) = c 10 / 20
11 Πρακτική θεώρηση του συμβολισμού O Μια συνάρτηση f(n) είναι O(g(n)) αν για επαρκώς μεγάλα n η f(n) είναι άνω φραγμένη από ένα πολλαπλάσιο του g(n) 11 / 20
12 Παράδειγμα 1 Δείξτε ότι η συνάρτηση f(n) = 2n + 10 είναι O(n) Αν η f(n) = 2n + 10 είναι O(n) θα πρέπει να υπάρχουν θετικές θετικές σταθερές c, n 0 έτσι ώστε να ισχύει 2n + 10 cn n n 0 12 / 20
13 Παράδειγμα 1 Δείξτε ότι η συνάρτηση f(n) = 2n + 10 είναι O(n) Αν η f(n) = 2n + 10 είναι O(n) θα πρέπει να υπάρχουν θετικές θετικές σταθερές c, n 0 έτσι ώστε να ισχύει 2n + 10 cn n n 0 (c 2)n 10 n 10 c 2 Μπορούμε να επιλέξουμε c = 3 και n 0 = 10 έτσι ώστε να ικανοποιείται η παραπάνω ανισότητα 12 / 20
14 Παράδειγμα 2 Δείξτε ότι η συνάρτηση f(n) = n 2 δεν είναι O(n) Αν η f(n) = n 2 ήταν O(n) τότε θα έπρεπε να ισχύει ότι n 2 cn για κάποιες θετικές σταθερές c και n 0 και n n 0 13 / 20
15 Παράδειγμα 2 Δείξτε ότι η συνάρτηση f(n) = n 2 δεν είναι O(n) Αν η f(n) = n 2 ήταν O(n) τότε θα έπρεπε να ισχύει ότι n 2 cn για κάποιες θετικές σταθερές c και n 0 και n n 0 Όμως αν ισχύει n 2 cn n c αυτό σημαίνει ότι υπάρχει σταθερά c μεγαλύτερη ή ίση από οποιαδήποτε τιμή από το σύνολο των ακεραίων τιμών (άτοπο άρα δεν ισχύει η αρχική υπόθεση ότι η n 2 ήταν O(n)) 13 / 20
16 Παράδειγμα 3 Δείξτε ότι η συνάρτηση f(n) = 2 n+5 είναι O(2 n ) Αν η f(n) = 2 n+5 είναι O(2 n ) θα πρέπει να ισχύει ότι 2 n+5 c2 n n n 0 για κάποιες θετικές σταθερές c και n 0 14 / 20
17 Παράδειγμα 3 Δείξτε ότι η συνάρτηση f(n) = 2 n+5 είναι O(2 n ) Αν η f(n) = 2 n+5 είναι O(2 n ) θα πρέπει να ισχύει ότι 2 n+5 c2 n n n 0 για κάποιες θετικές σταθερές c και n 0 Ισχύει ότι 2 n+5 = 2 n 2 5 = 2 n 32 Άρα αν επιλεγεί ως c η τιμή 32 και ως n 0 η τιμή 1 τότε ισχύει ότι 2 n+5 <= 32 2 n n 1 14 / 20
18 Παράδειγμα 4 Δείξτε ότι η συνάρτηση f(n) = a k n k + a k 1 n k a 1 n + a 0 είναι O(n k ) f(n) = a k n k + a k 1 n k a 1 n + a 0 a k n k + a k 1 n k a 1 n + a 0 a k n k + a k 1 n k + + a 1 n k + a 0 n k Άρα για c = a k + a k a 1 + a 0 και n 0 = 1 ισχύει ότι f(n) = a k n k + a k 1 n k a 1 n + a 0 cn k n 1 15 / 20
19 Παράδειγμα 5 Δείξτε ότι η συνάρτηση f(n) = 2 5n δεν είναι O(2 n ) Αν η f(n) = 2 5n ήταν O(2 n ) τότε θα έπρεπε να ισχύει ότι 2 5n c2 n n n 0 για κάποιες θετικές σταθερές c και n 0 16 / 20
20 Παράδειγμα 5 Δείξτε ότι η συνάρτηση f(n) = 2 5n δεν είναι O(2 n ) Αν η f(n) = 2 5n ήταν O(2 n ) τότε θα έπρεπε να ισχύει ότι 2 5n c2 n n n 0 για κάποιες θετικές σταθερές c και n 0 Όμως αν ισχύει 2 5n c2 n 25n 2 n c2n 2 2 4n c αυτό σημαίνει n ότι υπάρχει σταθερά c μεγαλύτερη ή ίση από μια αυθαίρετα μεγάλη τιμή η οποία μπορεί να σχηματιστεί επιλέγοντας κατάλληλο n (άτοπο άρα δεν ισχύει η αρχική υπόθεση ότι η f(n) = 2 5n είναι O(2 n )) 16 / 20
21 Ο συμβολισμός Ω H f(n) = Ω(g(n)) αν υπάρχουν θετικές σταθερές c, n 0 τέτοιες ώστε f(n) cg(n) για κάθε n n 0 δηλαδή για επαρκώς μεγάλα n ισχύει ότι το f(n) είναι κάτω φραγμένο από ένα πολλαπλάσιο του g(n) 17 / 20
22 Ο συμβολισμός Θ H f(n) = Θ(g(n)) αν υπάρχουν θετικές σταθερές c 1, c 2, n 0 τέτοιες ώστε c 1 g(n) f(n) c 2 g(n) για κάθε n n 0 δηλαδή για επαρκώς μεγάλα n ισχύει ότι το f(n) είναι φραγμένο από πάνω και από κάτω από πολλαπλάσια του g(n) 18 / 20
23 Οι συμβολισμοί ο, ω, θ Οι συμβολισμοί ο, ω, θ διαφέρουν από τους αντίστοιχους Ο, Ω, Θ στο ότι είναι αυστηρότεροι καθώς επιβάλλουν για κάθε σταθερά c > 0 να υπάρχει σταθερά n 0 έτσι ώστε να ισχύει η κατά περίπτωση ανισότητα Για παράδειγμα στην περίπτωση του συμβολισμού ο θα πρέπει να ισχύει ότι f(n) cg(n) για κάθε θετική σταθερά c και για κάθε n n 0 19 / 20
24 Αναφορές apac_comp3600/module1/growth_of_functionsxhtml / 20
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 2: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εισαγωγή στους Αλγόριθμους. Παύλος Εφραιμίδης, Λέκτορας
Εισαγωγή στους Αλγόριθμους Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr 1 Περιεχόμενα Μαθήματος Εισαγωγή στου Αλγόριθμους Πολυπλοκότητα Αλγορίθμων Ασυμπτωτική Ανάλυση Θεωρία Γράφων Κλάσεις Πολυπλοκότητας
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθµου Α: Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση µεγέθους στιγµιότυπου εισόδου. Χρόνος, µνήµη, επεξεργαστές, επικοινωνία,
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική
ρυθιμός αύξησης συναρτήσεων
ρυθμός αύξησης συναρτήσεων Παύλος Εφραιμίδης 1 περιεχόμενα Ασυμπτωτικός συμβολισμός Καθιερωμένοι συμβολισμοί και συνήθεις συναρτήσεις 2 ασυμπτωτική πολυπλοκότητα Πολυπλοκότητα χειρότερης περίπτωσης Συγχωνευτική
Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018
Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018 Αλγόριθμοι Ρυθμός αύξησης συναρτήσεων [Rosen 3.2] Αριθμητικές συναρτήσεις Τάξη αριθμητικών συναρτήσεων
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://elss.ueb.gr/ourses/inf6/ Άνοιξη 6 - I. ΜΗΛΗΣ ΑΣΥΜΠΤΩΤΙΚΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 6 - Ι. ΜΗΛΗΣ - - ASYMPTOTICS Αλγόριθμοι Τρείς κρίσιμες ερωτήσεις για κάθε αλγόριθμο για ένα πρόβλημα:
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3)
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3) 3.1 Ασυμπτωτικός συμβολισμός (Ι) Οι ορισμοί που ακολουθούν μας επιτρέπουν να επιχειρηματολογούμε με ακρίβεια για την ασυμπτωτική συμπεριφορά. Οι f(n) και g(n) συμβολίζουν
Ασκήσεις (2) Άσκηση 1
Άσκηση 1 Ασκήσεις () Εισαγωγή στην Ανάλυση Αλγορίθμων Υποθέστε ότι συγκρίνουμε την υλοποίηση της ταξινόμησης με εισαγωγή και της ταξινόμησης με συγχώνευση στον ίδιο υπολογιστή. Για εισόδους μεγέθους n,
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:
Συµβολισµός Ω( ) Τάξη των Συναρτήσεων () Εκτίµηση Πολυπλοκότητας Αλγορίθµων Ορέστης Τελέλης telelis@unipi.gr Ορισµός. Εστω συναρτήσεις: f : N R και g : N R η f(n) είναι Ω( g(n) ) αν υπάρχουν σταθερές C
οµές εδοµένων 3 ο Εξάµηνο Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ
Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ ΕΝΟΤΗΤΑ 1 ΕΙΣΑΓΩΓΗ 1 εδοµένα Σύνολο από πληροφορίες που πρέπει να αποθηκευτούν σε έναν υπολογιστή Υπολογιστικό Μοντέλο ένας επεξεργαστής και µεγάλος
Κεφάλαιο 5 Ανάλυση Αλγορίθμων
Κεφάλαιο 5 Ανάλυση Αλγορίθμων 5.1 Επίδοση αλγορίθμων Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: 1. πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 2. πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι
1 Ανάλυση αλγορίθµων. 2 Συµβολισµοί O, Ω και Θ. 3 Αναδροµικές εξισώσεις
Γενικό πλάνο Μαθηµατικά για Πληροφορική 6ο Μάθηµα 1 Ανάλυση αλγορίθµων Ηλίας Κουτσουπιάς, Γιάννης Εµίρης 2 Συµβολισµοί O, Ω και Θ Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 27/11/2008 3
Δομές Δεδομένων Ενότητα 2
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Θέματα Απόδοσης Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μαθηµατικά για Πληροφορική
Μαθηµατικά για Πληροφορική 6ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 27/11/2008 27/11/2008 1 / 55 Γενικό πλάνο 1 Ανάλυση αλγορίθµων 2 Συµβολισµοί
Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Ανάλυση Αλγορίθμων Θέματα Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα Προσεγγίσεις: Θεωρητική ανάλυση Εμπειρική ανάλυση Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Θεωρητική
Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Παράδειγµα (1/2) O( g(n) ) είναι σύνολο συναρτήσεων:
Ανω Φράγµα στην Τάξη των Συναρτήσεων Ορισµός. Εστω συναρτήσεις: f : N R και g : N R Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων Ορέστης Τελέλης η (τάξη της) f(n) είναι O( g(n) ) αν υπάρχουν σταθερές C και n
Αλγόριθμοι και πολυπλοκότητα Ανάλυση αλγορίθμων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Ανάλυση αλγορίθμων Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Aνάλυση Αλγορίθμων Είσοδος Αλγόριθμος Έξοδος Ένας αλγόριθμος είναι μια
Δομές Δεδομένων (Data Structures)
Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 25 Φεβρουαρίου 2015 1 / 53 Περιεχόµενα
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη - Πολυπλοκότητα Αλγορίθμων / Επανάληψη Χρήσιμων Μαθηματικών Ορισμών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αλγόριθμοι, Κριτήρια Αξιολόγησης Αλγόριθμων, Γιατί αναλύουμε τους Αλγορίθμων
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΚΑΠΟΙΟΙ ΒΑΣΙΚΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΚΑΙ ΕΝΝΟΙΕΣ Ν = {1,2,3,...} το σύνολο των φυσικών αριθμών Ζ = {0, ±1, ±2, ±3,..
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,
Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;
5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 1. α. Να βάλετε σε αύξουσα σειρά μεγέθους τις παρακάτω συναρτήσεις χρονικής πολυπλοκότητας αλγορίθμων: nlogn, n logn,
Τηλ , Fax: , URL:
Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ Παναγιώτα Φατούρου faturu@cs.uoi.gr Σεπτέµβριος, 2005 Τµήµα Πληροφορικής, Πανεπιστήµιο Ιωαννίνων, Τ.Θ. 1186, Γραφείο Α26, Τηλ. +30 26510 98808, Fax:
Κεφάλαιο 2. Βασικά στοιχεία ανάλυσης αλγορίθμων. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 2 Βασικά στοιχεία ανάλυσης αλγορίθμων Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 2.1 Υπολογιστική Επιλυσιμότητα "For me, great algorithms are the poetry of computation.
Δομές Δεδομένων & Αλγόριθμοι
Απόδοση Αλγορίθμων Πληροφορικής 1 Απόδοση Αλγορίθμων Συνήθως υπάρχουν πολλοί τρόποι (αλγόριθμοι) για την επίλυση ενός προβλήματος. Πώς επιλέγουμε μεταξύ αυτών; Πρέπει να ικανοποιηθούν δύο (αντικρουόμενοι)
Διακριτά Μαθηματικά. Γιάννης Εμίρης. Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ. Οκτώβριος
ΔιακριτάΜαθηματικά Γιάννης Εμίρης http://eclass.uoa.gr/ Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ Οκτώβριος 2016 Διακριτά Μαθηματικά Αλγόριθμοι Ρυθμόςαύξησηςσυναρτήσεων[Rosen 3.2] Διακριτά Μαθηματικά Ορισμοί
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Αν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε;
Αν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε; Πως θα υπολογίσουμε το χρόνο εκτέλεσης ενός αλγόριθμου; Για να απαντήσουμε
Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου
Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική
3 Ρυθμός αύξησης συναρτήσεων
3 Ρυθμός αύξησης συναρτήσεων Ο αυξητικός χαρακτήρας του χρόνου εκτέλεσης ενός αλγορίθμου, ο οποίος ορίστηκε στο Κεϕάλαιο 2, μας παρέχει ένα απλό μέτρο για την αποδοτικότητα του αλγορίθμου, ενώ παράλληλα
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 2: Ανάλυση Αλγορίθμων. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 2: Ανάλυση Αλγορίθμων Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
ΚΕΦΑΛΑΙΟ 4 Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ
50 ΚΕΦΑΛΑΙΟ Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ Εισαγωγή. Η αρχή του εγκλεισμού αποκλεισμού είναι ένα ισχυρό μέσο απαρίθμησης με το οποίο υπολογίζεται ο αριθμός των στοιχείων της ένωσης και της τομής των συμπληρωμάτων
Κεφάλαιο 2. Βασικά στοιχεία ανάλυσης αλγορίθµων. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 2 Βασικά στοιχεία ανάλυσης αλγορίθµων Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 2.1 Υπολογιστική Επιλυσιµότητα "For me, great algorithms are the poetry of computation.
Διάλεξη 2 - Σημειώσεις
Διάλεξη 2 - Σημειώσεις Συναρτήσεις 1. Συνάρτηση: μία συνάρτηση είναι ένας κανόνας που αναθέτει σε κάθε στοιχείο του συνόλου ακριβώς ένα στοιχείο του συνόλου. Το σύνολο καλείται πεδίο ορισμού της συνάρτησης
περιεχόμενα ρυθιμός αύξησης συναρτήσεων ασυμπτωτική πολυπλοκότητα ασυμπτωτική επίδοση ασυμπτωτικοί συμβολισμοί ασυμπτωτικός συμβολισμος
ρυθμός αύξησης συναρτήσεων περιεχόμενα Ασυμπτωτικός συμβολισμός Καθιερωμένοι συμβολισμοί και συνήθεις συναρτήσεις Παύλος Εφραιμίδης 2 ασυμπτωτική πολυπλοκότητα ασυμπτωτική επίδοση Πολυπλοκότητα χειρότερης
ΗΥ240: οµές εδοµένων. ιδάσκουσα: Παναγιώτα Φατούρου ΗΥ240 - Παναγιώτα Φατούρου 2
ΗΥ240: οµές εδοµένων ιδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθηµα 2ου έτους Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Ενότητα 1 Εισαγωγή ΗΥ240 - Παναγιώτα Φατούρου 2 Εισαγωγικά Θέµατα Αντικείµενο
Αλγόριθμοι. Μάρθα Σιδέρη. ιαδικαστικά: ύο πρόοδοι 31 Μαρτίου, 18 Μαΐου 7-9μμ 20% η μία, ύο Προγραμματιστικές 1 προσθετικό βαθμό η μία.
Αλγόριθμοι Μάρθα Σιδέρη epl333 lect 011 1 ιαδικαστικά: ύο πρόοδοι 31 Μαρτίου, 18 Μαΐου 7-9μμ 0% η μία, ύο Προγραμματιστικές 1 προσθετικό βαθμό η μία. Οι πρόοδοι είναι προαιρετικές και το ποσοστό μετράει
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου, Τμήμα Μηχανικών Πληροφορικής ΤΕ Χειμερινό Εξάμηνο 2014-2015 (Παρουσίαση 5) 1 / 17 Απόδοση προγραμμάτων Συχνά χρειάζεται να εκτιμηθεί η απόδοση
Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 5: Ασκήσεις Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Παραδείγµατα. Τάξη των Συναρτήσεων (1) Παράδειγµα (2) Να δειχθεί ότι 7n 2 = O(n 3 ). Ορέστης Τελέλης
Τάξη των Συναρτήσεων (1) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 1. Να δειχθεί ότι 7n 2 = O(n 3 ) 2. Να δειχθεί ότι η n 2 δεν είναι O(n). 3. Αληθεύει ότι n 3 =
ΗΥ240: οµές εδοµένων
ΗΥ240: οµές εδοµένων ιδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθηµα 2ου έτους Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Ενότητα 1 Εισαγωγή ΗΥ240 - Παναγιώτα Φατούρου 2 Εισαγωγικά Θέµατα Αντικείµενο
x < A y f(x) < B f(y).
Χειμερινό Εξάμηνο 2016 2017 Ασκήσεις στα Κεφάλαια 5 & 6 1. Αυτή είναι ουσιαστικά η Άσκηση 5.2 (σελ. 119), από τις σημειώσεις του Σκανδάλη. Εστω A, < καλά διατεταγμένο σύνολο και έστω στοιχείο a A. Αποδείξτε
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 1 Εισαγωγικές έννοιες Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 1 1 / 57 Περιεχόµενα 1.
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση συναρτήσεων Συµβολισµός µεγάλου όµικρον Παραδείγµατα
Κεφάλαιο 2 Ανάλυση Αλγορίθμων
Κεφάλαιο Ανάλυση Αλγορίθμων Περιεχόμενα.1 Εισαγωγή... 0. Εμπειρική και Θεωρητική Ανάλυση Αλγορίθμων.....1 Εμπειρική Πολυπλοκότητα..... Θεωρητική Πολυπλοκότητα... 3.3 Ανάλυση Χειρότερης και Αναμενόμενης
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις πρώτου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 208-9.. Για καθεμία από τις ανισότητες Λύσεις πρώτου φυλλαδίου ασκήσεων. x + > 2, x x +, x x+2 > x+3 3x+, (x )(x 3) (x 2) 2 0 γράψτε ως διάστημα ή ως ένωση διαστημάτων
Ενότητα 1 Εισαγωγή. ΗΥ240: Δοµές Δεδοµένων. Διδάσκουσα: Παναγιώτα Φατούρου
ΗΥ240: Δοµές Δεδοµένων Διδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθηµα 2ου έτους Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Ενότητα 1 Εισαγωγή ΗΥ240 - Παναγιώτα Φατούρου 2 Εισαγωγικά Θέµατα Αντικείµενο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 231 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΤ ΟΙΚΟΝ ΕΡΓΑΣΙΑ 1 ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 22/02/10
ΠΑΝΕΠΙΣΤΗΜΙΟΚΥΠΡΟΥ ΕΠΛ231 ΔΟΜΕΣΔΕΔΟΜΕΝΩΝΚΑΙΑΛΓΟΡΙΘΜΟΙ ΚΑΤ ΟΙΚΟΝΕΡΓΑΣΙΑ1 ΗΜΕΡΟΜΗΝΙΑΠΑΡΑΔΟΣΗΣ:22/02/10 1.Νααποφασίσετεποιεςαπότιςπιοκάτωπροτάσειςείναιαληθείςαποδεικνύοντας τιςαπαντήσειςσας. (i)αν και,τότε
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 1η: Εισαγωγή Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 1η: Εισαγωγή Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ240: Δομές Δεδομένων Διδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθημα 2ου
ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-1-)
ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος--) .. Μια χρήσιμη ανασκόπηση... Δυνάμεις Πραγματικών Αριθμών Ο συνοπτικός τρόπος για να εκφράσουμε το γινόμενο : 2*2*2*2 4 είναι να το γράψουμε:
ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ
ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ Όρια συναρτήσεων. Άσκηση. Ποιό είναι το σύνολο στο οποίο έχει νόημα και ποιό το σύνολο στο οποίο ισχύει καθεμιά από τις ανισότητες: x+2 > 00, > 000, < < ; x 2 x
Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Λογάριθµοι ΛΟΓΑΡΙΘΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΛΟΓΑΡΙΘΜΟΥΣ
ΛΟΓΑΡΙΘΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΛΟΓΑΡΙΘΜΟΥΣ Παραθέτουµε αρχικά τις βασικές ιδιότητες των δυνάµεων µε βάση έ- ναν θετικό πραγµατικό αριθµό και εκθέτη έναν ρητό αριθµό. α x.α y = α x+y (α.β) x = α x.β x α x :α
Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
ΑΣΥΜΠΤΩΤΙΚΗ ΑΝΑΛΥΣΗ & ΠΡΟΣΘΕΣΗ
ΑΣΥΜΠΤΩΤΙΚΗ ΑΝΑΛΥΣΗ & ΠΡΟΣΘΕΣΗ Θέματα μελέτης Ορθότητα και απόδοση αλγορίθμων Παρουσίαση και ανάλυση αλγορίθμου για πρόσθεση Al Khwarizmi Αλγόριθμοι Το δεκαδικό σύστημα εφευρέθηκε στην Ινδία περίπου το
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ Έστω συνάρτηση f ορισμένη σε διάστημα I. Λέμε ότι η F είναι αντιπαράγωγος της f στο I αν ισχύει F = f στο I. ΠΡΟΤΑΣΗ. Αν η F είναι αντιπαράγωγος της f στο
Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι. 3. Πολυπλοκότητα Αλγορίθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 3. Πολυπλοκότητα Αλγορίθμων Διάλεξη 3: - Πολυπλοκότητα Αλγορίθμων / Επανάληψη Χρήσιμων Μαθηματικών Ορισμών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έκτου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 208-9. Λύσεις έκτου φυλλαδίου ασκήσεων.. Παρατηρήστε ότι ο πρώτος κανόνας αλλαγής μεταβλητής εφαρμόζεται μόνο στα εφτά πρώτα όρια ενώ ο δεύτερος κανόνας εφαρμόζεται
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 2018-19. Λύσεις έβδομου φυλλαδίου ασκήσεων. 1. Έχουν οι παρακάτω συναρτήσεις μέγιστη ή ελάχιστη τιμή στο διάστημα (0, 1); Στο διάστημα (, + ); Στο διάστημα [0,
Συνδυαστική Βελτιστοποίηση
Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 1 Άγγελος Σιφαλέρας sifalera@uom.gr 4 η Διάλεξη Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 2 Knapsack Problem, (1/9) Ένας επενδυτής διαθέτει ένα χρηματικό
Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012
Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012 Ενδεικτικές απαντήσεις 1 ου σετ ασκήσεων. Άσκηση 1 Πραγματοποιήσαμε μια σειρά μετρήσεων του χρόνου εκτέλεσης τριών
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ &ΕΠΙΚΟΙΝΩΝΙΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ &ΕΠΙΚΟΙΝΩΝΙΩΝ Πολυπλοκότητα αλγορίθμων πολυωνυμικής παρεμβολής συνάρτησης μιας μεταβλητής Πτυχιακή εργασία του Λυπίτκα
«Η Αλγοριθμική Πολυπλοκότητα στο Γενικό Λύκειο»
4ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Κεντρικής Μακεδονίας «Η Αλγοριθμική Πολυπλοκότητα στο Γενικό Λύκειο» Αραμπατζής Γιώργος Καθηγητής Πληροφορικής, Πειραματικό ΓΕΛ ΠΑΜΑΚ arabatzis4@gmail.com ΠΕΡΙΛΗΨΗ Η
1o Φροντιστήριο ΗΥ240
1o Φροντιστήριο ΗΥ240 Άσκηση 1 Αποδείξτε τη μεταβατική και τη συμμετρική ιδιότητα του Θ Μεταβατική Ιδιότητα (ορισμός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)) Για να ισχύει f(n)= Θ(h(n))
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΕΙΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Έστω μια δυναμοσειρά a (x ξ) = a 0 + a (x ξ) + a 2 (x ξ) 2 + με ακτίνα σύγκλισης R και με ρ = lim a. Αν x = ξ, η δυναμοσειρά συγκλίνει και έχει άθροισμα
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 7: Αλγόριθμοι γραμμικής άλγεβρας
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 7: Αλγόριθμοι γραμμικής άλγεβρας Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αλγόριθµοι γραµµικής άλγεβρας 1 Ο συµβολισµός µεγάλο O Εστω συναρτήσεις f(n), g(n)
Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013
Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013 Λυμένες Ασκήσεις Σετ Α: Ανάλυση Αλγορίθμων Άσκηση 1 Πραγματοποιήσαμε μια σειρά μετρήσεων του
Θεωρητικό Υπόβαθρο. Περιεχόμενα Κεφαλαίου
2 Θεωρητικό Υπόβαθρο Περιεχόμενα Κεφαλαίου 2.1 Μαθηματικά Εργαλεία.................... 34 2.2 Συμβολισμοί Πολυπλοκότητας............... 39 2.3 Χρήση Συμβολισμών στην Ανάλυση............ 45 2.4 Χειρισμός
Σχόλια στα όρια. Γενικά
Σχόλια στα όρια. Γενικά Η αναζήτηση του ορίου έχει νόημα όταν η συνάρτηση ορίζεται κοντά στο x, δηλαδή σε διάστημα (α,x ) (x,β) ή φυσικά σε (α,β) με x (α,β) και όχι κατ ανάγκη στο ίδιο το x. Για παράδειγμα
Πολυπλοκότητα Αλγορίθµων
Πολυπλοκότητα Αλγορίθµων Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εµπειρική Θεωρητική Ανάλυση Αλγορίθµων Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις
ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Η έννοια του ορίου στο x ο Υπάρχουν συναρτήσεις οι τιμές των οποίων πλησιάζουν ένα πραγματικό αριθμό L, όταν η ανεξάρτητη μεταβλητή
Εισαγωγή στην Ανάλυση Αλγορίθμων
Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών 1 Συναρτήσεις και ο υπολογισµός τους 2 Μηχανές Turing 3 Καθολικές γλώσσες προγραµµατισµού 4 Μια µη υπολογίσιµη συνάρτηση 5 Πολυπλοκότητα προβληµάτων 1 Συναρτήσεις Μία συνάρτηση
Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x
Γενικά Μαθηματικά Κεφάλαιο Εισαγωγή Αριθμοί Φυσικοί 0,,,3, Ακέραιοι 0,,, 3, Ρητοί,, 0 Πραγματικοί Αν, με, :: x, :: x, :: x, :: x, :: x, :: x, :: x, :: x Συνάρτηση Κάθε διαδικασία αντιστοίχησης η οποία
O Χρόνος Εκτέλεσης. προγραμμάτων ΚΕΦΑΛΑΙΟ 3. Τα θέματα αυτού του κεφαλαίου
ΚΕΦΑΛΑΙΟ 3 O Χρόνος Εκτέλεσης Προγραμμάτων Στο Κεφάλαιο 2 είδαμε δύο ριζικά διαφορετικούς αλγόριθμους ταξινόμησης: τον αλγόριθμο ταξινόμησης με εισαγωγή και τον αλγόριθμο ταξινόμησης με συγχώνευση. Υπάρχουν,
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη -5: -Πολυπλοκότητα Αλγορίθμων / Επανάληψη Χρήσιμων Μαθηματικών Ορισμών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Αλγόριθμοι, Κριτήρια Αξιολόγησης Αλγόριθμων, Γιατί αναλύουμε τους
Θεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 14. Χρονική Πολυπλοκότητα 17, 20, 24 Απριλίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να
(β ) ((X c Y ) (X c Y c )) c
Λύσεις Ασκήσεων στα Θεμέλια των Μαθηματικών II Ρωμανός-Διογένης Μαλικιώσης Παρασκευή, 29 Οκτωβρίου 2010 Άσκηση 1. Απλοποιήστε τις ακόλουθες εκφράσεις (α ) (D c F ) c (D F ) (β ) ((X c Y ) (X c Y c )) c
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις ενδέκατου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 8-9. Λύσεις ενδέκατου φυλλαδίου ασκήσεων.. (i) Βρείτε μία παράγουσα της + στο (, + ). Ποιές είναι όλες οι παράγουσες της + στο (, + ); (ii) Βρείτε μία παράγουσα
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις τέταρτου φυλλαδίου ασκήσεων. ( n(n+1) e 1 (
. Αποδείξτε ότι: Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 08-9. Λύσεις τέταρτου φυλλαδίου ασκήσεων. +) 7 +) +), 5 +7 5 5, +log ) 7 log 4, +, ++ + + ) +4+4 + +4, + si +, +) +), + [ ], + + 0, + +, ) +,,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 11 ΟΚΤΩΒΡΙΟΥ 2016 ΜΗ ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Οικονομικές Συναρτήσεις με μεταβλητούς ρυθμούς
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 3: -Πολυπλοκότητα Αλγορίθμων / Επανάληψη Χρήσιμων Μαθηματικών Ορισμών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Αλγόριθμοι, Κριτήρια Αξιολόγησης Αλγόριθμων, Γιατί αναλύουμε τους
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }
Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το
O1 ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f x
O ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f ) Εντοπίζω τα σημεία που συναντώνται οι δύο καμπύλες ) Η τεταγμένη y αυτού του σημείου είναι το όριο της f και η τετμημένη η θέση y lim f Πλευρικά όρια lim f λ lim
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στο μάθημα Ανάλυση Ι & Εφαρμογές 26 Φεβρουαρίου 2015
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στο μάθημα Ανάλυση Ι & Εφαρμογές 26 Φεβρουαρίου 25 Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Όσοι έχουν πάρει προβιβάσιμο βαθμό στην Πρόοδο (πάνω
. Σήματα και Συστήματα
Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/14 Πρόβλημα 1 (βιβλίο σελίδα 27) Να υπολογιστεί η βασική
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις πρώτου φυλλαδίου ασκήσεων.. Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις πείτε αν είναι γραμμική ή όχι και προσδιορίστε την τάξη της. α. y + y +
Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }
Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το
ProapaitoÔmenec gn seic.
ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία
GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c
GENIKA MAJHMATIKA ΓΙΩΡΓΙΟΣ ΚΑΡΑΒΑΣΙΛΗΣ TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c 26 Μαΐου 2011 Συνάρτηση f ονομάζεται κάθε σχέση από ένα σύνολο A (πεδίο ορισμού) σε σύνολο B με την οποία