Συστήματα Αυτομάτου Ελέγχου II

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συστήματα Αυτομάτου Ελέγχου II"

Transcript

1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #8: Χώρος Κατάστασης: Μεταβλητές, Εξισώσεις, Κανονικές Μορφές Δημήτριος Δημογιαννόπουλος Τμήμα Μηχανικών Αυτοματισμού Τ.Ε

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 Σκοποί Ενότητας Συνάρτηση Μεταφοράς και εσωτερική δομή συστήματος. (σήματα) Χώρος Κατάστασης και εσωτερική δομή (σήματα) συστήματος - Σχέση με Συνάρτηση Μεταφοράς. Μεθοδολογία αναπαράστασης συστήματος στο Χώρος Κατάστασης - Χρήση τυποποιημένων μορφών. 4

5 Περιεχόμενα Ενότητας - 1 Αναπαράσταση Συστημάτων στο Χώρο Κατάστασης (State- Space) Παρατηρήσεις Παράδειγμα Επιλογή των μεταβλητών κατάστασης 5

6 Περιεχόμενα Ενότητας - 2 Κανονικές μορφές εξισώσεων κατάστασης (Canonical Forms) Controller Canonical Form (CCF) Observer Canonical Form (OCF) Παρατηρήσεις στις εξισώσεις κατάστασης Μετατροπή εξισώσεων κατάστασης σε συνάρτηση μεταφοράς 6

7 Αναπαράσταση Συστημάτων στο Χώρο Κατάστασης (State-Space) 7

8 Αναπαράσταση Συστημάτων στο Χώρο Κατάστασης (State-Space) - 1 Έστω σύστημα που μπορεί να περιγραφεί από τη διαφορική εξίσωση: n n-1 n-2 n yt () a n-1 yt () a n-2 yt ()... a yt () a yt () d d d d dt n 1 dt n 2 dt 1 dt 0 m m-1 b ut () + b m-1 ut () b ut () + b ut () m = d d d m dt m 1 dt 1 dt 0 (1) 8

9 Αναπαράσταση Συστημάτων στο Χώρο Κατάστασης (State-Space) - 2 Έστω σύστημα που μπορεί να περιγραφεί από τη διαφορική εξίσωση: n n-1 n-2 n yt () a n-1 yt () a n-2 yt ()... a yt () a yt () d d d d dt n 1 dt n 2 dt 1 dt 0 m m-1 b ut () + b m-1 ut () b ut () + b ut () m = d d d m dt m 1 dt 1 dt 0 Ο γνωστός, μέχρι τώρα, τρόπος αναπαράστασής του είναι η συνάρτηση μεταφοράς, έστω, G(s) με την ακόλουθη μορφή: (1) G(s) Y(s) b s + b s + b s b s + b = = U(s) s s s... s m m 1 m 2 m m 1 m n n 1 n 2 + an 1 + an a1 + a0 (2) 9

10 Αναπαράσταση Συστημάτων στο Χώρο Κατάστασης (State-Space) - 3 Η συνάρτηση μεταφοράς επιτρέπει την απ ευθείας εύρεση της συνάρτησης εξόδου y(t) για δεδομένη είσοδο u(t) μέσω: Υπολογισμού του Y(s) για το δεδομένο U(s) Ανάλυσης του Y(s) σε απλά κλάσματα και Χρήσης αντίστρ. μετασχηματισμών Laplace για υπολογισμό y(t). Δηλαδή, για δεδομένο u(t) μόνο η συγκεκριμένη επιλογή εξόδου είναι άμεσα υπολογίσιμη. 10

11 Αναπαράσταση Συστημάτων στο Χώρο Κατάστασης (State-Space) - 4 Π.χ έστω σύστημα μάζας- ελατηρίου- αποσβεστήρα Αν η συνάρτηση μεταφοράς θεωρεί ως είσοδο u(t) τη δύναμη και έξοδο y(t) τη μετατόπιση, μόνο η μετατόπιση είναι δυνατό να υπολογιστεί άμεσα. Σχ. 1: Σύστημα μάζας, ελατηρίου, αποσβεστήρα 11

12 Αναπαράσταση Συστημάτων στο Χώρο Κατάστασης (State-Space) - 5 Π.χ. έστω σύστημα μάζας- ελατηρίου- αποσβεστήρα Αν η συνάρτηση μεταφοράς θεωρεί ως είσοδο u(t) τη δύναμη και έξοδο y(t) τη μετατόπιση, μόνο η μετατόπιση είναι δυνατό να υπολογιστεί άμεσα. Σχ. 1 Σύστημα μάζας, ελατηρίου, αποσβεστήρα Η ταχύτητα και επιτάχυνση, παρότι εσωτερικά (άρα σημαντικά!) σήματα του συστήματος είναι υπολογίσιμα μόνο έμμεσα, θεωρώντας διαδοχικές παραγώγους της συνάρτησης εξόδου. 12

13 Αναπαράσταση Συστημάτων στο Χώρο Κατάστασης (State-Space) - 6 Εναλλακτικά, γίνεται αναπαράσταση της δομής του συστήματος, στον λεγόμενο χώρο κατάστασης (state-space): μάζα m, 2 d d m 2 yt B yt K yt f t 2 d dt 2 dt dt ελατήριο K, () + () + () = () B d K 1 yt () + dt yt () + yt () = f() t m m m αποσβεστήρας B είσοδος δύναμη f(t), έξοδος μετατόπιση y(t) (3) 13

14 Αναπαράσταση Συστημάτων στο Χώρο Κατάστασης (State-Space) - 7 Αν θέλουμε συνάρτηση μεταφοράς, άρα υποθέτοντας μηδενικές αρχικές συνθήκες για τη μετατόπιση και την ταχύτητα: Y() s 1 K / m = Fs () K 2 B K s + s + m m Για την αναπαράσταση στο χώρο κατάστασης: Θεωρήσατε τόσες βοηθητικές μεταβλητές, όση και η τάξης της διαφορικής εξίσωσης: x() t = yt () 1 d 2 = dt x() t yt () (4) (5) 14

15 Αναπαράσταση Συστημάτων στο Χώρο Κατάστασης (State-Space) - 8 Για την αναπαράσταση στο χώρο κατάστασης: Θεωρήσατε τόσες βοηθητικές μεταβλητές, όση και η τάξης της διαφορικής εξίσωσης: x() t = yt () x() t yt () 1 d 2 = dt Πρακτικά, λοιπόν, οι ονομαζόμενες μεταβλητές κατάστασης αντιστοιχούν στις n-1 παραγώγους του συστήματος με διαφορική εξίσωση τάξεως n. (5) 15

16 Αναπαράσταση Συστημάτων στο Χώρο Κατάστασης (State-Space) - 9 Παραγωγίζοντας την (5) θα έχουμε: x () t = y() t = x () t = x () t d d d dt 1 dt dt 1 2 B K 1 x t yt x t yt yt f t m m m B K 1 = x2() t x1() t + f() t m m m 2 () = 2 () = () = () () + () d d d d dt 2 dt dt 2 dt (6) Η (6) γράφεται σε μητρωική μορφή ως εξής: d dt x1() t 0 1 x1() t 0 d = f() t dt xt () A xt () B f() t x () t + = + K / m B/ m x () t 1/ m 2 2 x1 () t yt () = ( 1 0) + ( 0 ) f() t yt () = C xt () + D f() t x2() t (7) 16

17 Αναπαράσταση Συστημάτων στο Χώρο Κατάστασης (State-Space) - 10 Στο Σχ. 2 δίδεται και το αναλογικό διάγραμμα του συστήματος: Σχ. 2: Το αναλογικό διάγραμμα του συστήματος μάζας m, ελατηρίου K, αποσβεστήρα B 17

18 Αναπαράσταση Συστημάτων στο Χώρο Κατάστασης (State-Space) - 11 Στην μητρωική διαφορική εξίσωση πρώτης τάξης (7) διακρίνουμε: το διάνυσμα κατάστασης x(t) που για ένα σύστημα n- οστού βαθμού (άρα με διαφορική εξίσωση n-οστής τάξης) θα περιέχει τις μεταβλητές κατάστασης x 1 (t),...,x n (t), και 18

19 Αναπαράσταση Συστημάτων στο Χώρο Κατάστασης (State-Space) - 12 Στην μητρωική διαφορική εξίσωση πρώτης τάξης (7) διακρίνουμε: το διάνυσμα κατάστασης x(t) που για ένα σύστημα n- οστού βαθμού (άρα με διαφορική εξίσωση n-οστής τάξης) θα περιέχει τις μεταβλητές κατάστασης x 1 (t),...,x n (t), και τα μητρώα A, B, C και D, που για ένα σύστημα n-οστού βαθμού θα πρέπει να έχουν τις κατάλληλες διαστάσεις ώστε να ικανοποιείται η μητρωική εξίσωση (7). Το A θα έχει διάσταση n n, ενώ η αντίστοιχη του B θα είναι n 1. 19

20 Παρατηρήσεις 20

21 Παρατηρήσεις (1) Παρατηρήσατε ότι: Στην αναπαράσταση ενός συστήματος στο χώρο κατάστασης η μεταβλητή εξόδου προκύπτει σαν συνδυασμός όλων των μεταβλητών κατάστασης που εξελίσσονται και μπορούν να καταγραφούν κατά τη διάρκεια του πειράματος. 21

22 Παρατηρήσεις (2) Παρατηρήσατε ότι: Στην αναπαράσταση ενός συστήματος στο χώρο κατάστασης η μεταβλητή εξόδου προκύπτει σαν συνδυασμός όλων των μεταβλητών κατάστασης που εξελίσσονται και μπορούν να καταγραφούν κατά τη διάρκεια του πειράματος. Οι μεταβλητές κατάστασης αντιστοιχούν σε όλα τα «εσωτερικά» σήματα που υπάρχουν και εξελίσσονται κατά τη διάρκεια ενός πειράματος με το σύστημα. 22

23 Παρατηρήσεις (3) Παρατηρήσατε ότι: Στην αναπαράσταση ενός συστήματος στο χώρο κατάστασης η μεταβλητή εξόδου προκύπτει σαν συνδυασμός όλων των μεταβλητών κατάστασης που εξελίσσονται και μπορούν να καταγραφούν κατά τη διάρκεια του πειράματος. Οι μεταβλητές κατάστασης αντιστοιχούν σε όλα τα «εσωτερικά» σήματα που υπάρχουν και εξελίσσονται κατά τη διάρκεια ενός πειράματος με το σύστημα. 23

24 Παρατηρήσεις (4) Τα «εσωτερικά» σήματα είναι, τώρα, απολύτως παρατηρήσιμα σε αντίθεση με ότι συνέβαινε για τη συνάρτηση μεταφοράς. Έτσι π.χ. καταγράφουμε την ταχύτητα της μάζας για το δεδομένο σύστημα του Σχ. 1, με την επιλογή μητρώου C=[0 1]. Δεν υπάρχει μοναδικός τρόπος επιλογής μεταβλητών κατάστασης. Θα μπορούσαμε στο παράδειγμά μας να επιλέξουμε x 1 (t)=d/dt[y(t)], x 2 (t)=y(t). 24

25 Παρατηρήσεις (5) Δεν υπάρχει μοναδικός τρόπος επιλογής μεταβλητών κατάστασης. Θα μπορούσαμε στο παράδειγμά μας να επιλέξουμε x 1 (t)=d/dt[y(t)], x 2 (t)=y(t). Γενικά, όπως φαίνεται και από το Σχ. 2, μια τυπική επιλογή μεταβλητών κατάστασης αντιστοιχεί στις εξόδους των ολοκληρωτών, ή στις μεταβλητές των στοιχείων που συσσωρεύουν ενέργεια. 25

26 Παρατηρήσεις (6) Δεν υπάρχει μοναδικός τρόπος επιλογής μεταβλητών κατάστασης. Θα μπορούσαμε στο παράδειγμά μας να επιλέξουμε x 1 (t)=d/dt[y(t)], x 2 (t)=y(t). Γενικά, όπως φαίνεται και από το Σχ. 2, μια τυπική επιλογή μεταβλητών κατάστασης αντιστοιχεί στις εξόδους των ολοκληρωτών, ή στις μεταβλητές των στοιχείων που συσσωρεύουν ενέργεια. Σε πρακτικό επίπεδο, επιτυγχάνεται αναπαράσταση του συστήματος με n διαφορικές εξισώσεις πρώτης τάξης που γράφονται σε μητρωική μορφή [βλ. σετ εξισώσεων (7)], αντί με μία διαφορική n-οστής τάξης 26

27 Παράδειγμα 27

28 Παράδειγμα (1) Δίδεται το παρακάτω ηλεκτρικό κύκλωμα του Σχ. 3 που θα πρέπει να γραφεί στο χώρο κατάστασης. Σχ. 3: Ηλεκτρικό κύκλωμα RL-RL Χρησιμοποιώντας τη μέθοδο εντάσεων βρόχων θα έχουμε την ακόλουθη μητρωική αναπαράσταση: R1+ s L1 s L1 I1() s U() s = s L1 R1 s L1 s L2 I2() s (8) 28

29 Παράδειγμα (2) και με αντικατάσταση των τιμών των αντιστάσεων και πηνίων: ενώ 1 + s s I1() s U() s = s 1 2 s I2() s + 0 y() t = L2 d i2() t Y() s = s L2 I2() s = s I2() s dt Από τις δύο εξισώσεις που προκύπτουν από την (9) με αντίστροφο μετασχηματισμό Laplace: (1 + s) I1() s s I2() s = U() s s I () s + (1+ 2 s) I () s = d d i () t + i () t i () t = u() t (9) (10) L dt dt (11) d d i1() t + i2() t + 2 i2() t = 0 dt dt 29

30 Παράδειγμα (3) λύνοντας την πρώτη των (11) ως προς d/dt[i 1 (t)] και αντικαθιστώντας στη δεύτερη των (11): d i 2() t = i 1() t i 2() t + u () t dt (12) οπότε και η δεύτερη των (11) θα γραφεί μέσω της (12) ως εξής: d i 1() t = 2 i 1() t i 2() t + 2 u () t dt (13) και, άρα, μέσω της (12) η (10) γίνεται: d d y() t = L2 i2() t = i2() t = i1() t i2() t + u() t dt dt (14) 30

31 Επιλογή των Μεταβλητών Κατάστασης 31

32 Επιλογή των Μεταβλητών Κατάστασης - 1 Επιλογή των μεταβλητών κατάστασης: Ποια στοιχεία συσσωρεύουν ενέργεια; Τα δύο πηνία, άρα σαν μεταβλητές κατάστασης επιλέγονται οι εντάσεις των ρευμάτων i 1 (t) και i 2 (t). Έτσι x 1 (t)=i 1 (t) και x 1 (t)= i 2 (t). 32

33 Επιλογή των Μεταβλητών Κατάστασης - 2 Επιλογή των μεταβλητών κατάστασης: Ποια στοιχεία συσσωρεύουν ενέργεια; Τα δύο πηνία, άρα σαν μεταβλητές κατάστασης επιλέγονται οι εντάσεις των ρευμάτων i 1 (t) και i 2 (t). Έτσι x 1 (t)=i 1 (t) και x 1 (t)= i 2 (t). Με τον τρόπο αυτό οι (12), (13) και (14) λαμβάνουν τη μορφή: d x 2() t = x 1() t x 2() t + u () t dt d x 1() t = 2 x 1() t x 2() t + 2 u () t dt yt () = x() t x() t + ut () 1 2 (15) 33

34 Επιλογή των Μεταβλητών η τελικά σε μητρωική μορφή: Κατάστασης - 3 d dt x1() t 2 1 x1() t 2 d = ut () dt xt () A xt () B ut () x () t + = x () t x1 () t yt () = ( 1 1) + ( 1 ) ut () yt () = C xt () + Dut () x2() t (16) Παρατήρηση: Από τις εξισώσεις (11) με επίλυση του 2Χ2 συστήματος η συνάρτηση μεταφοράς Y(s)/U(s) προκύπτει ως ακολούθως: (1 + s) I1() s s I2() s = U() s s I () s + (1+ 2 s) I () s = Y() s s (17) = U s s s 2 ()

35 Επιλογή των Μεταβλητών Κατάστασης - 4 Παρατήρηση: Από τις εξισώσεις (11) με επίλυση του 2Χ2 συστήματος η συνάρτηση μεταφοράς Y(s)/U(s) προκύπτει ως ακολούθως: (1 + s) I1() s s I2() s = U() s s I () s + (1+ 2 s) I () s = Y() s s U s s s = (17) 2 () Συγκρίνοντας τις (14) και (17), διαπιστώνεται ότι όταν n=m, εμφανίζεται μη-μηδενικό μητρώο D στις αντίστοιχες εξισώσεις κατάστασης. 35

36 Κανονικές Μορφές Εξισώσεων Κατάστασης (Canonical Forms) 36

37 Κανονικές Μορφές Εξισώσεων Κατάστασης (Canonical Forms) - 1 Γενικά, ένα σύστημα θα έχει την ακόλουθη διαφορική εξίσωση και συνάρτηση μεταφοράς: n n-1 n-2 n () n-1 () n-2 ()... () () d d d d dt n 1 dt n 2 dt 1 dt 0 m m-1 b ut () + b m-1 ut () b ut () + b ut () m yt + a yt + a yt + + a yt + a yt = d d d m dt m 1 dt 1 dt 0 (18) G(s) Y(s) b s + b s + b s b s + b = = U(s) s s s... s m m 1 m 2 m m 1 m n n 1 n 2 + an 1 + an a1 + a0 37

38 Κανονικές Μορφές Εξισώσεων Κατάστασης (Canonical Forms) - 2 Για αποφυγή της χρονοβόρας επεξεργασίας των διαφορικών εξισώσεων ενός συστήματος για την αναπαράστασή του στο χώρο κατάστασης, υπάρχουν τυποποιημένοι τρόποι για τη γραφή μιας διαφορική εξίσωση n-οστής στο χώρο κατάστασης, εφόσον ισχύει ότι n>m. Οι μορφές μητρωικών εξισώσεων που προκύπτουν αναφέρονται ως κανονικές μορφές (Canonical Forms). 38

39 Κανονικές Μορφές Εξισώσεων Κατάστασης (Canonical Forms) Controller Canonical Form (CCF) 39

40 Controller Canonical Form (CCF) - (1) H κανονική μορφή αυτή έχει την ακόλουθη μορφή: x1( t) x1( t) 0 x ( t) x ( t) 0 = + ut ( ), M M 0 xn( t) a0 a1 a2... a n 1 xn( t) 1 x1 () t x2() t yt ( ) = ( b0 b bn 1) M M xn () t 2 2 d dt M M O M M (19) 40

41 Controller Canonical Form (CCF) - (2) Η (19) Controller Canonical Form (CCF), αν παραβλέψουμε την αναστροφή πρόσημων λόγω των ενισχυτών, έχει το αναλογικό διάγραμμα του Σχ. 4: Σχ. 4: Αναλογικό διάγραμμα της μορφής Controller Canonical Form (έχουμε παραβλέψει την αναστροφή πρόσημων λόγω των ενισχυτών) 41

42 Κανονικές Μορφές Εξισώσεων Κατάστασης (Canonical Forms) Observer Canonical Form (OCF) 42

43 Observer Canonical Form (OCF) - 1 Μια άλλη κανονική μορφή είναι αυτή που δίδεται στις εξισώσεις (20) και αναφέρεται ως Observer Canonical Form (OCF): x1( t) a0 x1( t) b0 x ( t) a x ( t) b = a + b ut ( ), M M MO... M M M x ( t) a x ( t) b d dt M 2 M 2 n n 1 n n 1 x1 () t x2() t yt ( ) = ( ) M M xn () t (20) 43

44 Observer Canonical Form (OCF) - 2 Το αναλογικό διάγραμμα της Observer Canonical Form (OCF) δίδεται στο Σχ. 5: Σχ. 5: Αναλογικό διάγραμμα της μορφής Observer Canonical Form (έχουμε παραβλέψει την αναστροφή πρόσημων λόγω των ενισχυτών) 44

45 Παρατηρήσεις στις Εξισώσεις Κατάστασης 45

46 Παρατηρήσεις (1) Αν για τη διαφορική εξίσωση/ συνάρτηση μεταφοράς ισχύει n=m, όπως έγινε στην περίπτωση του κυκλώματος RL-RL του Σχ.3, η αναπαράσταση στο χώρο κατάστασης είναι δυνατή με τη χρήση των CCF (19) και OCF (20), ως εξής: Y s s s ± s+ s+ U s s s s s s s 2 2 ( ) (3 1) 3 1 = = = ( ) s + 1 Y() s = U() s U() s = U() s Y 2 1() s s + 3 s+ 1 (21) 46

47 Παρατηρήσεις (2) Αν για τη διαφορική εξίσωση/ συνάρτηση μεταφοράς ισχύει n=m, όπως έγινε στην περίπτωση του κυκλώματος RL-RL του Σχ.3, η αναπαράσταση στο χώρο κατάστασης είναι δυνατή με τη χρήση των CCF (19) και OCF (20), ως εξής: Y s s s ± s+ s+ U s s s s s s s 2 2 ( ) (3 1) 3 1 = = = ( ) s + 1 Y() s = U() s U() s = U() s Y 2 1() s s + 3 s+ 1 (21) Απλά, το Y(s) προκύπτει έτσι ως άθροισμα του γνωστού και καθορισμένου U(s) και του Y 1 (s) που έρχεται από ένα υποσύστημα που επίσης τροφοδοτείται από U(s). 47

48 Παρατηρήσεις (3) Άρα, αρκεί να θέσουμε σε CCF ή OCF το υποσύστημα που παράγει το Y 1 (s) και κατόπιν να κάνουμε την πράξη που επιβάλλει η δεύτερη από τις (21). Για το Y 1 (s) σε CCF θα έχουμε με βάση την (19) : d dt x1() t 0 1 x1() t 0 d = ut () dt xt () A xt () B ut () x () t + = x () t x1 () t y1() t = ( 1 3 ) y1() t = C y x() t 1 x2() t και εφόσον από την (21) x () t Y s U s Y s yt ut y t ut 1 () = () 1() () = () 1() = ( 1 3) + (1) () x2() t (22) (23) 48

49 Παρατηρήσεις (4) Τελικά συνδυάζοντας τα παραπάνω, για το συνολικό σύστημα Y(s)/U(s) τα μητρώα A, B, C και D δίδονται ως: A=, B=, C = ( 1 3 ), D= (1)

50 Παρατηρήσεις (5) Τελικά συνδυάζοντας τα παραπάνω, για το συνολικό σύστημα Y(s)/U(s) τα μητρώα A, B, C και D δίδονται ως: Προσοχή: A=, B=, C = ( 1 3 ), D= (1) Τα μητρώα A, B, C και D που μόλις υπολογίσαμε είναι διαφορετικά από αυτά που βρήκαμε στην (16). Γενικά δεν υπάρχει μοναδική έκφραση του συστήματος στο χώρο κατάστασης, αντιθέτως από ότι συμβαίνει για τη συνάρτηση μεταφοράς αυτού η οποία έχει μια και μοναδική μορφή. 50

51 Μετατροπή Εξισώσεων Κατάστασης σε Συνάρτηση Μεταφοράς 51

52 Μετατροπή Εξισώσεων Κατάστασης σε Συνάρτηση Μεταφοράς - 1 Έχοντας την έκφραση συστήματος στο χώρο κατάστασης, υπολογίζουμε εύκολα τη συνάρτηση μεταφοράς του. Έστω: d dt xt () = A xt () + B ut () yt () = C xt () + D ut () εφαρμόζοντας μετ/μο Laplace θα λάβουμε: s X() s x(0) = A X() s + B U() s Y() s = C X() s+ DUs () (24) 52

53 Μετατροπή Εξισώσεων Κατάστασης σε Συνάρτηση Μεταφοράς - 2 Από την πρώτη των (24) προκύπτει: X s s I A x s I A B U s 1 1 () ( ) = (0) + ( ) () (25) και μέσω της (25) η δεύτερη των (24) γίνεται: Y s C s I A x C s I A B D U s 1 1 () ( ) = (0) + { ( ) + } () (26) 53

54 Μετατροπή Εξισώσεων Κατάστασης σε Συνάρτηση Μεταφοράς - 3 Για τον υπολογισμό της συνάρτησης μεταφοράς συστήματος θεωρούμε μηδενικές αρχικές συνθήκες, οπότε και η (26) γίνεται: Y() s U() s 1 1 Y() s = { C ( s I A) B+ D} U() s = C ( s I A) B+ D (27) 54

55 Μετατροπή Εξισώσεων Κατάστασης σε Συνάρτηση Μεταφοράς - 4 Για τον υπολογισμό της συνάρτησης μεταφοράς συστήματος θεωρούμε μηδενικές αρχικές συνθήκες, οπότε και η (26) γίνεται: Y() s () = { ( ) + } () = ( ) + U() s 1 1 Y s C s I A B D U s C s I A B D (27) Οι πόλοι του συστήματος προκύπτουν από την εξίσωση της ορίζουσας det(s I -A)=0. 55

56 Μετατροπή Εξισώσεων Κατάστασης σε Συνάρτηση Μεταφοράς - 5 Για τον υπολογισμό της συνάρτησης μεταφοράς συστήματος θεωρούμε μηδενικές αρχικές συνθήκες, οπότε και η (26) γίνεται: Y() s U() s 1 1 Y() s = { C ( s I A) B+ D} U() s = C ( s I A) B+ D (27) Οι πόλοι του συστήματος προκύπτουν από την εξίσωση της ορίζουσας det(s I -A)=0. Παρατηρώντας καλύτερα, η επίλυση του det(s I -A)=0 αντιστοιχεί στην εύρεση των ιδιοτιμών του μητρώου A: Οι ιδιοτιμές λ i, i=1,...,n του μητρώου A είναι οι πόλοι του συστήματος. 56

57 Τέλος Ενότητας

Συστήματα Αυτομάτου Ελέγχου ΙΙ

Συστήματα Αυτομάτου Ελέγχου ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου ΙΙ Ενότητα #1: Ποιοτικά Χαρακτηριστικά Συστημάτων Κλειστού Βρόχου Δημήτριος Δημογιαννόπουλος Τμήμα

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1

Συστήματα Αυτομάτου Ελέγχου 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου Ενότητα # 3: Ανάλογα Συστήματα-Αναλογικά Διαγράμματα Δ. Δημογιαννόπουλος, imogian@eipir.gr Επ. Καθηγητής Τμήματος

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1

Συστήματα Αυτομάτου Ελέγχου 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 2: Μοντελοποίηση φυσικών συστημάτων στο πεδίο του χρόνου Διαφορικές Εξισώσεις Δ. Δημογιαννόπουλος, dimogian@teipir.gr

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Περιγραφή και Ανάλυση Συστημάτων Ελέγχου στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΧΩΡΟ ΚΑΤΑΣΤΑΣΗΣ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ψηφιακά Σ.Α.Ε: Περιγραφή στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #2: Ποιοτικά Χαρακτηριστικά Συστημάτων Κλειστού Βρόχου - Μόνιμα Σφάλματα Δημήτριος Δημογιαννόπουλος

Διαβάστε περισσότερα

Έλεγχος Κίνησης

Έλεγχος Κίνησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Συστήματα Ελέγχου Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τίτλος Μαθήματος Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Έλεγχος Κίνησης

Έλεγχος Κίνησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Αυτόματος Έλεγχος Συστημάτων Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 4: Μετασχηματισμοί Ισοδυναμίας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

8 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

8 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 8 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: Μ/Σ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Δυναμική Ηλεκτρικών Μηχανών

Δυναμική Ηλεκτρικών Μηχανών Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Δυναμική Ηλεκτρικών Μηχανών

Δυναμική Ηλεκτρικών Μηχανών Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο

Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο Ενότητα 2: Μέθοδοι Eκκίνησης Tριφασικών Aσύγχρονων Kινητήρων Ηρακλής Βυλλιώτης Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 8: Πιθανότητες ΙΙ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #7: Ευφυής Ελεγκτής Μέρος Α Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητς: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμ: Σ. ΒΑΣΙΛΕΙΑΔΟΥ

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΔΙΔΑΣΚΩΝ: ΑΡΙΣΤΕΙΔΗΣ Νικ. ΠΑΥΛΙΔΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Τ.Ε. 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Συστήματα Αυτομάτου Ελέγχου Ενότητα #6: Σχεδιασμός ελεγκτών με χρήση αναλυτικής μεθόδου υπολογισμού παραμέτρων 2 Δ. Δημογιαννόπουλος, dimogian@teipir.gr

Διαβάστε περισσότερα

Υδραυλικά & Πνευματικά ΣΑΕ

Υδραυλικά & Πνευματικά ΣΑΕ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Υδραυλικά & Πνευματικά ΣΑΕ Ενότητα # 2: Βαλβίδες Ελέγχου Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Πληροφορική. Εργαστηριακή Ενότητα 3 η : Επεξεργασία Κελιών Γραμμών & Στηλών. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Εργαστηριακή Ενότητα 3 η : Επεξεργασία Κελιών Γραμμών & Στηλών. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Εργαστηριακή Ενότητα 3 η : Επεξεργασία Κελιών Γραμμών & Στηλών Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ψηφιακός Έλεγχος Συστημάτων Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016 ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 016 Θέμα 1. α) (Μον.1.5) Αποδείξτε ότι αν το σύστημα στο χώρο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Συνάρτηση Μεταφοράς Σ.Δ.Δ. Διακριτοποίηση Συν. Μεταφοράς Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός

Δομημένος Προγραμματισμός ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Δομημένος Προγραμματισμός Ενότητα: Αλφαριθμητικά θεωρία Δ. Ε. Μετάφας Τμ. Ηλεκτρονικών Μηχ. Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙΙ

Ηλεκτρικές Μηχανές ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Ενότητα 7: Μέθοδοι Εκκίνησης και Πέδησης Ασύγχρονων Τριφασικών Κινητήρων Ηρακλής Βυλλιώτης Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (hhp://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγή στο Χώρο

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ευστάθεια Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #12: Παραδείγματα Αναλογικών Συστημάτων Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #11: Ελεγκτές PID & Συντονισμός Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

9 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

9 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 9 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ ΣΥΣΤΗΜΑΤΟΣ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα 5: DC λειτουργία Πόλωση του διπολικού τρανζίστορ. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα 5: DC λειτουργία Πόλωση του διπολικού τρανζίστορ. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Ενότητα 5: D λειτουργία Πόλωση του διπολικού τρανζίστορ Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης reative

Διαβάστε περισσότερα

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 11: ΟΡΘΟΓΩΝΙΚΟΤΗΤΑ ΤΩΝ ΙΔΙΟΜΟΡΦΩΝ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 11: ΟΡΘΟΓΩΝΙΚΟΤΗΤΑ ΤΩΝ ΙΔΙΟΜΟΡΦΩΝ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα : ΟΡΘΟΓΩΝΙΚΟΤΗΤΑ ΤΩΝ ΙΔΙΟΜΟΡΦΩΝ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Ε.Μ.Π. ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΟΙΚΟΔΟΜΙΚΗΣ ntua ACADEMIC OPEN COURSES ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΔΟΜΙΚΗΣ II Β. ΤΣΟΥΡΑΣ Επίκουρος Καθηγητής Άδεια

Διαβάστε περισσότερα

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 3: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αυτόματος Έλεγχος. Ενότητα 11 η : Σχεδίαση ελεγκτών στο πεδίο του χώρου μεταβλητών κατάστασης. Παναγιώτης Σεφερλής

Αυτόματος Έλεγχος. Ενότητα 11 η : Σχεδίαση ελεγκτών στο πεδίο του χώρου μεταβλητών κατάστασης. Παναγιώτης Σεφερλής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα η : Σχεδίαση ελεγκτών στο πεδίο του χώρου μεταβλητών κατάστασης Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης

Διαβάστε περισσότερα

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ενότητα #1: Περιοδικά σήματα, τριγωνομετρικές σειρές περιοδικών σημάτων Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμού

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 4.1: Μεθοδολογία Παράστασης Τομών Επιφανειών Στερεών Σωμάτων (Συμπαγών και μη Συμπαγών) Σταματίνα Γ. Μαλικούτη

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές Ι. Ενότητα 3: Κυκλώματα Μετασχηματιστών. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές Ι. Ενότητα 3: Κυκλώματα Μετασχηματιστών. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές Ι Ενότητα 3: Κυκλώματα Μετασχηματιστών Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6 η : Μερική Παράγωγος ΙΙ Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Εισαγωγή Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Σύστημα ονομάζουμε ένα σύνολο στοιχείων κατάλληλα συνδεδεμένων μεταξύ τους για να επιτελέσουν κάποιο έργο Είσοδο ονομάζουμε τη διέγερση, εντολή ή αιτία η οποία

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Περιγραφή συστημάτων στο πεδίο της συχνότητας Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο

Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο Ενότητα 1: Προσδιορισμός των Σταθερών του Ισοδύναμου Κυκλώματος Ασύγχρονης Μηχανής Ηρακλής Βυλλιώτης

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

4 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

4 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 4 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΣΥΣΤΗΜΑΤΑ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Προσαρμοστικός και Συμπερασματικός Έλεγχος Αλαφοδήμος Κωνσταντίνος Τμήμα Μηχανικών Αυτοματισμού

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #9: Αναλογικά Συστήματα Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΥΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΥΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΥΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 2 : Ενέργεια Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μετασχηματισμοί Laplace

Μετασχηματισμοί Laplace Μετασχηματισμοί Laplace Ιδιότητες μετασχηματισμών Laplace Βασικά ζεύγη μετασχηματισμών Laplace f(t) F(s) δ(t) 1 u(t) 1 / s t 1 / s 2 t n n! / s n1 e αt, α>0 1 / (s α) te αt, α>0 1 / (s α) 2 ημωt ω / (s

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 8

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 8 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 8: Ταλαντωτές Γεννήτριες σήματος Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Απόκριση Συχνότητας Αναλογικών Σ.Α.Ε Διαγράμματα BODE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες

Διαβάστε περισσότερα

Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική

Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 5: Τρανζίστορ Επίδρασης Πεδίου (MOS-FET, J-FET) Δρ. Δημήτριος Γουστουρίδης Τμήμα

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φυσική. Ενότητα # 6: Βαρυτικό Πεδίο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φυσική. Ενότητα # 6: Βαρυτικό Πεδίο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Φυσική Ενότητα # 6: Βαρυτικό Πεδίο Μυροφόρα Πηλακούτα Τμήμα Μηχανικών Αυτοματισμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

5 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

5 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 5 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΣΥΝΕΛΙΞΗ ΜΕΡΟΣ Α Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΑ ΠΕΔΙΑ ΣΤΗΝ ΥΛΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 12: Ασυνεχείς Κατανομές Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 4.2: Μεθοδολογία Παράστασης Τομών Επιφανειών Στερεών Σωμάτων (Συμπαγών και μη Συμπαγών) Σταματίνα Γ. Μαλικούτη

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου (Ιούνιος 2014)

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου (Ιούνιος 2014) Λύσεις θεμάτων Α εξεταστικς περιόδου χειμερινού εξαμνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (2,0 μονάδες) Να σχεδιαστεί το δομικό (λειτουργικό) διάγραμμα του για τον ηλεκτρικό θερμοσίφωνα του σχματος. Είσοδος

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Συναρτήσεις Μεταφοράς, Δομικά Διαγράμματα, Διαγράμματα Ροής Σημάτων Aναστασία Βελώνη Τμήμα

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΠΕΙΚΟΝΙΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1

Συστήματα Αυτομάτου Ελέγχου 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 1: Βασικές έννοιες Μπλόκ διαγράμματα Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής Τμήματος Μηχανικών

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 3: Νόμος του Ohm Κανόνες του Kirchhoff Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μηχανική Ι - Στατική

Μηχανική Ι - Στατική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μηχανική Ι - Στατική Ενότητα #2: Δυνάμεις στο Επίπεδο Δρ. Κωνσταντίνος Ι. Γιαννακόπουλος Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 4: Το Πρόβλημα Ανάθεσης Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

3 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

3 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 3 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΔΟΥΛΕΥΟΝΤΑΣ ΜΕ ΣΗΜΑΤΑ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 5: Δειγματοληψία και ανακατασκευή σημάτων Προσομοίωση σε Η/Υ Δρ.

Διαβάστε περισσότερα

Αστικά υδραυλικά έργα

Αστικά υδραυλικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Βιομηχανικοί Ελεγκτές. Ενότητα: ΕΡΓΑΣΤΗΡΙΟ 7 ΜΕΣΗ ΤΙΜΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Βιομηχανικοί Ελεγκτές. Ενότητα: ΕΡΓΑΣΤΗΡΙΟ 7 ΜΕΣΗ ΤΙΜΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Βιομηχανικοί Ελεγκτές Ενότητα: ΕΡΓΑΣΤΗΡΙΟ 7 ΜΕΣΗ ΤΙΜΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΑΛΑΦΟΔΗΜΟΣ Τμήμα Μηχ. Αυτοματισμού ΤΕ Άδειες

Διαβάστε περισσότερα

Εργαστήριο Εδαφομηχανικής

Εργαστήριο Εδαφομηχανικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εργαστήριο Εδαφομηχανικής Ενότητα 12η: Δοκιμή Άμεσης Διάτμησης Πλαστήρα Βιολέττα Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 2: Όργανα Μετρήσεων Ηλεκτρικών Κυκλωμάτων Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εργαστήριο Εδαφομηχανικής

Εργαστήριο Εδαφομηχανικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εργαστήριο Εδαφομηχανικής Ενότητα 11η: Δοκιμή Ανεμπόδιστης Θλίψης Πλαστήρα Βιολέττα Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Δημογραφία. Ενότητα 10: Προτυποποίηση. Βύρων Κοτζαμάνης Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Δημογραφία. Ενότητα 10: Προτυποποίηση. Βύρων Κοτζαμάνης Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Δημογραφία Ενότητα 10: Προτυποποίηση Βύρων Κοτζαμάνης Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μαθηματική Ανάλυση ΙI

Μαθηματική Ανάλυση ΙI Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 6: Παράγωγος κατά κατεύθυνση, κλίση, εφαπτόμενα επίπεδα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 12: Αρχή ελαχίστου του Pontryagin Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 7: Έλεγχοι σημαντικότητας πολλών ανεξάρτητων δειγμάτων Κωνσταντίνος Ζαφειρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Μάθημα ασκήσεων 6: Μακριά γραμμή μεταφοράς -Τετράπολα Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Δούκας Δημήτριος

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Συστήματα Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Προστασία Σ.Η.Ε. Ενότητα 2: Θεμελιώδεις αρχές λειτουργίας των ηλεκτρονόμων και χαρακτηριστικές

Προστασία Σ.Η.Ε. Ενότητα 2: Θεμελιώδεις αρχές λειτουργίας των ηλεκτρονόμων και χαρακτηριστικές Προστασία Σ.Η.Ε Ενότητα 2: Θεμελιώδεις αρχές λειτουργίας των ηλεκτρονόμων και χαρακτηριστικές Νικόλαος Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Ηλεκτροτεχνία ΙΙ. Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας

Ηλεκτροτεχνία ΙΙ. Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Ηλεκτροτεχνία ΙΙ Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα