Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό"

Transcript

1 Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Επανάληψη Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών

2

3 343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ Ωρεσ Γραφείου: Δευτζρα & Παραςκευι 11-13

4 Θ: διάλεξη (θεωρία) Ε: Εργαστήριο Ημερολόγιο Μακιματοσ Q: Τεστ quiz Εβδομάδα Θζματα Ύλθ βιβλιογραφίασ Οκτώβριος 2013 Πζ, 17 Οκτωβρίου Ειςαγωγικά μακιματοσ & Δυαδικι αναπαράςταςθ *1+: 1.1, Παράρτθμα 3 *2+: Κεφ. 1, Β, Δ Δ Τ Τ Π Π Είςοδοσ/Ζξοδοσ δεδομζνων, τφποι δεδομζνων & *1+: 1.2, 1.3, 1.4, 1.5, Παράρτθμα 1 Πζ, 24 Οκτωβρίου μεταβλθτϊν *2+: Κεφ. 2, Γ Θ Θ 25 Πζ, 31 Οκτωβρίου Προεπεξεργαςτισ, αρικμθτικοί και λογικοί [1]: 2.1, 2.2 Παράρτθμα 2 τελεςτζσ, Ροι ελζγχου: if/else *2+: 4.11, 4.12, Α, Σ Θ Δε Σρ, 4-5 Νοε 1 ο Εργαςτιριο [1]: 2.2, 2.3 Πζ, 7 Νοεμβρίου Ροι ελζγχου for, while, do-while Νοέμβριος 2013 *2+: Κεφ. 4, Κεφ. 5 Δ Τ Τ Π Π Δε Σρ, Νοε 2 ο Εργαςτιριο 4 E 5 E 6 7 Θ 8 Πζ, 14 Νοεμβρίου υναρτιςεισ, εμβζλεια μεταβλθτϊν και αναδρομι [1]: 3.1, 3.2, 3.3, 4.1, 4.2, 13.1, 13.2 *2+: Κεφ E 12 E Θ 15 Δε Σρ, Νοε 3 ο Εργαςτιριο 18 E 19 E Θ 22 Πζ, 21 Νοεμβρίου Επανάλθψθ με Παραδείγματα 25 Q Θ 29 Δε Σρ, Νοε 1 ο Quiz [1]: 5.1, 5.2, 5.4 Πζ, 28 Νοεμβρίου Πίνακεσ (μονοδιάςτατοι και πολυδιάςτατοι) Δεκέμβριος 2013 *2+: Κεφ. 7 Δ Τ Τ Π Π Δε Σρ, 2-3 Δεκ 4 ο Εργαςτιριο 2 E 3 E 4 5 Θ 6 Πζ, 5 Δεκεμβρίου Εφαρμογζσ ςε ταξινομιςεισ και αναηιτθςθ [1]: 5.3, 13.3 ςτοιχείων [2]: 7.7, 7.8, 8.6, Κεφ E 10 E Θ 13 Δε Σρ, 9-10 Δεκ 5 ο Εργαςτιριο 16 Q Θ 20 [1]: 9.1, 9.2, 9.3 Πζ, 12 Δεκεμβρίου Αλφαρικμθτικά και υμβολοςειρζσ *2+: 6.7, 6.8, Κεφ. 18 Ιανουάριος 2014 Δε Σρ, Δεκ 2 ο Quiz Δ Τ Τ Π Π Πζ, 19 Δεκεμβρίου Δομζσ και χριςθ αρχείων [1]: 6.1, 12.1, 12.2, 12.4 *2+: Κεφ. 21, Θ 10 Πζ, 9 Ιανουαρίου Επανάλθψθ ςε δομζσ και χριςθ αρχείων Θ 17 Πζ, 16 Ιανουαρίου Επανάλθψθ 11-2

5 Θ: διάλεξη (θεωρία) Ε: Εργαστήριο Ημερολόγιο Μακιματοσ Q: Τεστ quiz Εβδομάδα Θζματα Ύλθ βιβλιογραφίασ Οκτώβριος 2013 Πζ, 17 Οκτωβρίου Ειςαγωγικά μακιματοσ & Δυαδικι αναπαράςταςθ *1+: 1.1, Παράρτθμα 3 *2+: Κεφ. 1, Β, Δ Δ Τ Τ Π Π Είςοδοσ/Ζξοδοσ δεδομζνων, τφποι δεδομζνων & *1+: 1.2, 1.3, 1.4, 1.5, Παράρτθμα 1 Πζ, 24 Οκτωβρίου μεταβλθτϊν *2+: Κεφ. 2, Γ Θ Θ 25 Πζ, 31 Οκτωβρίου Προεπεξεργαςτισ, αρικμθτικοί και λογικοί [1]: 2.1, 2.2 Παράρτθμα 2 τελεςτζσ, Ροι ελζγχου: if/else *2+: 4.11, 4.12, Α, Σ Θ Δε Σρ, 4-5 Νοε 1 ο Εργαςτιριο [1]: 2.2, 2.3 Πζ, 7 Νοεμβρίου Ροι ελζγχου for, while, do-while Νοέμβριος 2013 *2+: Κεφ. 4, Κεφ. 5 Δ Τ Τ Π Π Δε Σρ, Νοε 2 ο Εργαςτιριο 4 E 5 E 6 7 Θ 8 Πζ, 14 Νοεμβρίου υναρτιςεισ, εμβζλεια μεταβλθτϊν και αναδρομι [1]: 3.1, 3.2, 3.3, 4.1, 4.2, 13.1, 13.2 *2+: Κεφ E 12 E Θ 15 Δε Σρ, Νοε 3 ο Εργαςτιριο 18 E 19 E Θ 22 Πζ, 21 Νοεμβρίου Επανάλθψθ με Παραδείγματα 25 Q Θ 29 Δεκέμβριος 2013 Δ Τ Τ Π Π 2 E 3 E 4 5 Θ 6 9 E 10 E Θ Q Θ 20 Ιανουάριος 2014 Δ Τ Τ Π Π Θ Θ 17 Δε Σρ, Νοε Πζ, 28 Νοεμβρίου Δε Σρ, 2-3 Δεκ Πζ, 5 Δεκεμβρίου Δε Σρ, 9-10 Δεκ Πζ, 12 Δεκεμβρίου Δε Σρ, Δεκ Πζ, 19 Δεκεμβρίου Πζ, 9 Ιανουαρίου Πζ, 16 Ιανουαρίου 1 ο Quiz Πίνακεσ (μονοδιάςτατοι και πολυδιάςτατοι) 4 ο Εργαςτιριο Εφαρμογζσ ςε ταξινομιςεισ και αναηιτθςθ ςτοιχείων 5 ο Εργαςτιριο Αλφαρικμθτικά και υμβολοςειρζσ 2 ο Quiz Δομζσ και χριςθ αρχείων Επανάλθψθ ςε δομζσ και χριςθ αρχείων Επανάλθψθ [1]: 5.1, 5.2, 5.4 *2+: Κεφ. 7 [1]: 5.3, 13.3 [2]: 7.7, 7.8, 8.6, Κεφ. 19 [1]: 9.1, 9.2, 9.3 *2+: 6.7, 6.8, Κεφ. 18 [1]: 6.1, 12.1, 12.2, 12.4 *2+: Κεφ. 21,

6 Ενότθτεσ 1-24 ΕΠΑΝΑΛΗΨΗ 11-4

7 Γραπτζσ Εξετάςεισ Προςοχι ςτθν εκφϊνθςθ Δεν είναι απαραίτθτεσ οι εντολζσ using namespace std; system("pause"); ςε ολοκλθρωμζνα προγράμματα κεφτείτε ξεχωριςτά τον οριςμό των ςυναρτιςεων από τθν ςυνάρτθςθ main() ε επόμενο βιμα γράφτε τθν main() με ςτόχο να καλζςετε τθν ςυν/ςθ που φτιάξατε #include <iostream> void fun1( ); int fun2( ); int main( ) return 0; void fun1( ) int fun2() 11-5

8 Μ.Ο. τριϊν ακεραίων Να γραφεί ζνα πρόγραμμα που διαβάηει τρεισ κετικοφσ ακεραίουσ και υπολογίηει το μζςο όρο των τριϊν ακεραίων 11-6

9 Μ.Ο. τριϊν ακεραίων Να γραφεί ζνα πρόγραμμα που διαβάηει τρεισ κετικοφσ ακεραίουσ και υπολογίηει το μζςο όρο των τριϊν ακεραίων #include <iostream> int main( ) int x, y, z, sum; double avg; cout << "Enter x,y,z:"; cin >> x >> y >> z; sum = x + y + z; avg = static_cast<double>(sum)/3; // ή avg = sum / 3.0 ; cout << "Avg: " << avg; return 0; 11-7

10 Μ.Ο. τριϊν ακεραίων Να γραφεί ζνα πρόγραμμα που διαβάηει τρεισ κετικοφσ ακεραίουσ και υπολογίηει το μζςο όρο των τριϊν ακεραίων. Κατά τθν είςοδο να γίνεται επαναλθπτικόσ ζλεγχοσ τιμϊν. 11-8

11 Μ.Ο. τριϊν ακεραίων Να γραφεί ζνα πρόγραμμα που διαβάηει τρεισ κετικοφσ ακεραίουσ και υπολογίηει το μζςο όρο των τριϊν ακεραίων. Κατά τθν είςοδο να γίνεται επαναλθπτικόσ ζλεγχοσ τιμϊν. #include <iostream> int main( ) int x, y, z, sum; double avg; do cout << "Enter x,y,z:"; cin >> x >> y >> z; while( (x < 0) (y < 0) (z <0) ); sum = x + y + z; avg = static_cast<double>(sum)/3; // ή avg = sum / 3.0 ; cout << "Avg: " << avg; 11-9

12 Μ.Ο. τριϊν ακεραίων Να γραφεί μια ςυνάρτθςθ που δζχεται τρεισ κετικοφσ ακεραίουσ και υπολογίηει το μζςο όρο των τριϊν ακεραίων. main(): Καλζςτε από τθν main() τθν ςυνάρτθςθ που φτιάξατε αφοφ πρϊτα διαβάςετε τουσ αρικμοφσ. Θα πρζπει κατά τθν είςοδο να ελζγχετε (επαναλθπτικά) για επιτρεπτζσ τιμζσ

13 #include <iostream> double avg(int x, int y, int z); int main( ) int x, y, z; double avg; do cout << "Enter x,y,z:"; cin >> x >> y >> z; while( (x < 0) (y < 0) (z <0) ); cout << "Avg: " << avg(x, y, z); double avg(int x, int y, int z) int sum; sum = x + y + z; return ( static_cast<double>(sum) / 3 ); 11-11

14 Μ.Ο. τριϊν ακεραίων Να γραφεί ζνα πρόγραμμα που διαβάηει τρεισ κετικοφσ ακεραίουσ και υπολογίηει το μζςο όρο των τριϊν ακεραίων. Θα πρζπει να χρθςιμοποιιςετε τουλάχιςτον τρεισ ςυν/ςεισ: μια για διάβαςμα μια για υπολογιςμό μια για εκτφπωςθ Θα πρζπει κατά τθν είςοδο να ελζγχετε (επαναλθπτικά) για επιτρεπτζσ τιμζσ

15 #include <iostream> void read(int &x, int &y, int &z); double avg(int x, int y, int z); void print(double a); int main( ) int x, y, z; double mo; read(x,y,z); mo = avg(x,y,z); print(mo); void read(int &x, int &y, int &z) do cout << "Enter x,y,z:"; cin >> x >> y >> z; while( (x < 0) (y < 0) (z <0) ); void print(double a) cout << "Avg: " << a << endl; double avg(int x, int y, int z) int sum; sum = x + y + z; return ( static_cast<double>(sum) / 3 ); 11-13

16 Μ.Ο. τριϊν ακεραίων Να γραφεί ζνα πρόγραμμα που διαβάηει τρεισ κετικοφσ ακεραίουσ και υπολογίηει το μζςο όρο των τριϊν ακεραίων. Θα πρζπει να χρθςιμοποιιςετε τουλάχιςτον τρεισ ςυν/ςεισ: μια για διάβαςμα μια για υπολογιςμό μια για εκτφπωςθ Θα πρζπει κατά τθν είςοδο να ελζγχετε (επαναλθπτικά) για επιτρεπτζσ τιμζσ. Να ςυμπεριλάβετε ζνα βρόχο ο οποίοσ κα επιτρζπει ςτο χριςτθ να επαναλαμβάνει τον υπολογιςμό για νζεσ τιμζσ ειςόδου μζχρι ο χριςτθσ να δθλϊςει ότι δεν κζλει να ςυνεχίςει

17 #include <iostream> void read(int &x, int &y, int &z); double avg(int x, int y, int z); void print(double a); int main( ) int x, y, z; char ans; double mo; do read(x,y,z); mo = avg(x,y,z); print(mo); cout << "again(y/n)?"; cin >> ans; while(ans == 'y'); double avg(int x, int y, int z) int sum; sum = x + y + z; return ( static_cast<double>(sum) / 3 ); void read(int &x, int &y, int &z) do cout << "Enter x,y,z:"; cin >> x >> y >> z; while( (x < 0) (y < 0) (z <0) ); void print(double a) cout << "Avg: " << a << endl; 11-15

18 Γενικά Όλεσ οι προθγοφμενεσ παραλλαγζσ ςτισ εκφωνιςεισ απαιτοφν και διαφορετικό τρόπο επίλυςθσ Πρόγραμμα Πρόγραμμα με ςυναρτιςεισ Πρόγραμμα με ςυναρτιςεισ και ζλεγχο δεδομζνων Πρόγραμμα με επιμζρουσ ςυναρτιςεισ (προςοχι ςτισ &παραμζτρουσ) Πρόγραμμα με επιμζρουσ ςυναρτιςεισ και επαναλθπτικό υπολογιςμό Θα πρζπει να τουσ καταλαβαίνουμε από τθν εκφϊνθςθ ποιο ολοκλθρωμζνο πρόγραμμα ηθτάμε τα υπόλοιπα παραδείγματα μόνο κάποια κατθγορία ηθτάμε και επιλφουμε Θα πρζπει ωςτόςο να μποροφμε να διαχειριςτοφμε και τισ υπόλοιπεσ κατθγορίεσ 11-16

19 Τπολογιςμόσ υνάρτθςθσ Δθμιουργιςτε μια ςυνάρτθςθ που δζχεται δφο ακζραιεσ τιμζσ x και n, και επιςτρζφει τθν τιμι τθσ ακόλουκθσ ςυνάρτθςθσ 3 5 x 2x 4x ( n 1) x n x n i 3,( 2) ( i 1) x i main(): Καλζςτε από τθν main() τθν ςυνάρτθςθ που φτιάξατε αφοφ πρϊτα διαβάςετε τα x και n και εκτυπϊςτε το ανάλογο αποτζλεςμα τθσ ςυνάρτθςθσ. Θα πρζπει κατά τθν είςοδο να ελζγχετε επαναλθπτικά αν το n είναι περιττό

20 #include <iostream> #include <cmath> double fun(int x, int n); int main() int x, n; do cout << "Give x, odd n "; cin >> x >> n; 3 5 x 2x 4x ( n while( n % 2 == 0 ); cout << fun(x, n); return 0; 1) x n x n i 3,( 2) ( i 1) x i double fun(int x, int n) double sum; sum = x; for(int i = 3; i <= n; i = i + 2) sum = sum + (i-1) * pow(x, n) ; return sum; 11-18

21 #include <iostream> #include <cmath> double fun(int x, int n); int main() int x, n; do cout << "Give x, odd n "; cin >> x >> n; while( n % 2 == 0 ); cout << fun(x, n); return 0; double fun(int x, int n) double sum; sum = x; for(int i = 3; i <= n; i = i + 2) sum = sum + (i-1) * pow(x, n) ; return sum; 11-19

22 #include <iostream> #include <cmath> double fun(int x, int n); int main() int x, n; do cout << "Give x, odd n "; cin >> x >> n; while( n % 2 == 0 ); cout << fun(x, n); return 0; double fun(int x, int n) double sum; sum = x; for(int i = 3; i <= n; i = i + 2) sum = sum + (i-1) * pow(x, n) ; return sum; 11-20

23 #include <iostream> #include <cmath> double fun(int x, int n); int main() int x, n; do cout << "Give x, odd n "; cin >> x >> n; while( n % 2 == 0 ); cout << fun(x, n); return 0; double fun(int x, int n) double sum; sum = x; for(int i = 3; i <= n; i = i + 2) sum = sum + (i-1) * pow(x, n) ; return sum; 11-21

24 #include <iostream> #include <cmath> double fun(int x, int n); int main() int x, n; do cout << "Give x, odd n "; cin >> x >> n; while( n % 2 == 0 ); cout << fun(x, n); return 0; double fun(int x, int n) double sum; sum = x; for(int i = 3; i <= n; i = i + 2) sum = sum + (i-1) * pow(x, n) ; return sum; 11-22

25 Πλικοσ ςυγκεκριμζνων ςτοιχείων ενόσ πίνακα Να γραφεί μια ςυνάρτθςθ που κα δζχεται ζναν μονοδιάςτατο πίνακα τφπου int και κα επιςτρζφει το πλικοσ των ςτοιχείων που ζχουν τιμι μεταξφ τθσ τιμισ του πρϊτου ςτοιχείου και του τελευταίου. Ενςωματϊςτε τθν ςυνάρτθςθ ςε ζνα κατάλλθλο πρόγραμμα: Θα διαβάηετε τα ςτοιχεία ενόσ πίνακα με μζγεκοσ 100 Θα εκτυπϊνετε το αποτζλεςμα τθσ ςυνάρτθςθσ 11-23

26 #include <iostream> int count(int x[], int n); int main() const int SIZE = 100; int x[size]; for(int i = 0; i < SIZE; i++) cin >> x[i]; cout << count(x, SIZE); return 0; int count(int x[], int n) int p; p = 0; for(int i = 0; i < n; i++) if( ( x[0] < x[i] && x[i] < x[n-1]) ( x[0] > x[i] && x[i] > x[n-1]) ) p++; return p; 11-24

27 #include <iostream> int count(int x[], int n); int main() const int SIZE = 100; int x[size]; for(int i = 0; i < SIZE; i++) cin >> x[i]; cout << count(x, SIZE); return 0; int count(int x[], int n) int p; p = 0; for(int i = 0; i < n; i++) if( ( x[0] < x[i] && x[i] < x[n-1]) ( x[0] > x[i] && x[i] > x[n-1]) ) p++; return p; 11-25

28 Πλικοσ ςυγκεκριμζνων ςτοιχείων ενόσ πίνακα Να γραφεί μια ςυνάρτθςθ που κα δζχεται ζναν μερικϊσ ςυμπλθρωμζνο μονοδιάςτατο πίνακα τφπου int και κα επιςτρζφει το πλικοσ των ςτοιχείων που ζχουν τιμι μεταξφ τθσ τιμισ του πρϊτου ςτοιχείου και του τελευταίου. Ενςωματϊςτε τθν ςυνάρτθςθ ςε ζνα κατάλλθλο πρόγραμμα: Θα διαβάηετε τα ςτοιχεία ενόσ πίνακα με μζγεκοσ μζχρι 100 Θα εκτυπϊνετε το αποτζλεςμα τθσ ςυνάρτθςθσ 11-26

29 #include <iostream> int count(int x[], int my_n, int n); int main() const int SIZE = 100; int x[size], new_n; do cin >> new_n; while (new_n <= 0 new_n > 100); for(int i = 0; i < new_n; i++) cin >> x[i]; 1 οσ τρόποσ: Διαβάηει πρϊτα το Ν (μζγεκοσ του πίνακα) και ςτθ ςυνζχεια διαβάηει τα Ν ςτοιχεία cout << count(x, new_n, SIZE); return 0; int count(int x[], int my_n, int n) int p; p = 0; for(int i = 0; i < my_n; i++) if((x[0]<x[i] && x[i]<x[my_n-1]) (x[0]>x[i] && x[i]>x[my_n-1])) p++; return p; 11-27

30 #include <iostream> int count(int x[], int my_n, int n); int main() const int SIZE = 100; int x[size], new_n = 0, next; cin >> next; while( next!= -1 new_n < 100) x[new_n] = next; new_n++; cin >> next; cout << count(x, new_n, SIZE); return 0; int count(int x[], int my_n, int n) int p; p = 0; for(int i = 0; i < my_n; i++) if((x[0]<x[i] && x[i]<x[my_n-1]) (x[0]>x[i] && x[i]>x[my_n-1])) p++; return p; 2 οσ τρόποσ: Διαβάηει το επόμενο ςτοιχείο μζχρι το "-1" παρακολουκεί το πλικοσ των ςτοιχείων 11-28

31 Πλικοσ ςυγκεκριμζνων ςτοιχείων ενόσ πίνακα Να γραφεί μια ςυνάρτθςθ που κα δζχεται ζναν μερικϊσ ςυμπλθρωμζνο μονοδιάςτατο πίνακα τφπου int και κα επιςτρζφει το πλικοσ των ςτοιχείων που ζχουν τιμι μεταξφ τθσ τιμισ του πρϊτου ςτοιχείου και του τελευταίου. Ενςωματϊςτε τθν ςυνάρτθςθ ςε ζνα κατάλλθλο πρόγραμμα: Θα ορίςετε και κα χρθςιμοποιείτε μια επιπλζον ςυνάρτθςθ για το διάβαςμα των ςτοιχείων του πίνακα Θα εκτυπϊνετε το αποτζλεςμα τθσ ςυνάρτθςθσ 11-29

32 #include <iostream> void read(int x[], int& my_n, int n); int count(int x[], int my_n, int n); int main() const int SIZE = 100; int x[size], new_n = 0, next; read(x, new_n, SIZE); cout << count(x, new_n, SIZE); return 0; int count(int x[], int my_n, int n) int p; p = 0; for(int i = 0; i < my_n; i++) if((x[0]<x[i] && x[i]<x[my_n-1]) (x[0]>x[i] && x[i]>x[my_n-1])) p++; return p; void read(int x[], int& my_n, int n) cin >> next; while( next!= -1 new_n < 100) x[new_n] = next; new_n++; cin >> next; 11-30

33 Πλθςιζςτερο ςτο μζςο όρο Να γραφεί ζνα πρόγραμμα που κα διαβάηει ζναν μερικϊσ ςυμπλθρωμζνο πίνακα τφπου double και κα επιςτρζφει τθν τιμι του ςτοιχείου που είναι το πληςιέςτερο ςτον μζςο όρο όλων των ςτοιχείων. Θα πρζπει να χρθςιμοποιιςετε τουλάχιςτον τρείσ ςυν/ςεισ: μια για διάβαςμα του πίνακα μζχρι 100 ςτοιχείων δφο για υπολογιςμό 11-31

34 double avg(double a[], int my_n, int n) double sum; sum = 0.0; for(int i = 0; i < my_n; i++) sum = sum + a[i]; if(my_n <= 0) cout << "No avg!"; return -1.0; return (sum / my_n); double closer(double a[], int my_n, int n) double p, mo; mo = avg(a,my_n,n); p = a[0]; for(int i = 0; i < my_n; i++) if( fabs(a[i]-mo) < fabs(p-mo) ) p = a[i]; return p; #include <cmath> 11-32

35 void read(double a[], int& my_n, int n) cin >> next; while( next!= -1 new_n < 100) a[new_n] = next; new_n++; cin >> next; 11-33

36 #include <iostream> #include <cmath> void read(double a[], int& my_n, int n); double avg(double a[], int my_n, int n); double closer(double a[], int my_n, int n); int main() const int SIZE = 100; double a[size], int new_n = 0; read(a, new_n, SIZE); cout << closer(a, new_n, SIZE); return 0; void read(double a[], int& my_n, int n)... double closer(double a[], int my_n, int n)... double avg(double a[], int my_n, int n)

37 Ελάχιςτθ απόλυτθ τιμι Να γραφεί μια ςυνάρτθςθ θ οποία κα δζχεται ζναν μονοδιάςτατο πίνακα τφπου double και κα επιςτρζφει τθν ελάχιςτθ από τισ απόλυτεσ τιμζσ των ςτοιχείων του 11-35

38 Ελάχιςτθ απόλυτθ τιμι Να γραφεί μια ςυνάρτθςθ θ οποία κα δζχεται ζναν μονοδιάςτατο πίνακα τφπου double και κα επιςτρζφει τθν ελάχιςτθ από τισ απόλυτεσ τιμζσ των ςτοιχείων του double closerabs(double a[], int n) double u; u = fabs(a[0]); for(int i = 0; i < n; i++) if( fabs(a[i]) < u ) u = fabs(a[i]); return u; 11-36

39 Τπολογιςμόσ πολυωνφμου Για να υπολογίςουμε τθν τιμι ενόσ πολυωνφμου ς' ζνα ςθμείο x, πρζπει να υπολογίςουμε το άκροιςμα: v 0 + v 1 x + v 2 x 2 + v 3 x Να γραφεί μια ςυνάρτθςθ θ οποία α) Θα δζχεται ζναν μονοδιάςτατο πίνακα v τφπου double και μια τιμι x, επίςθσ double. β) Θα υπολογίηει και κα επιςτρζφει τθν τιμι του πολυωνφμου

40 Τπολογιςμόσ πολυωνφμου Για να υπολογίςουμε τθν τιμι ενόσ πολυωνφμου ς' ζνα ςθμείο x, πρζπει να υπολογίςουμε το άκροιςμα: v 0 + v 1 x + v 2 x 2 + v 3 x Να γραφεί μια ςυνάρτθςθ θ οποία α) Θα δζχεται ζναν μονοδιάςτατο πίνακα v τφπου double και μια τιμι x, επίςθσ double. β) Θα υπολογίηει και κα επιςτρζφει τθν τιμι του πολυωνφμου. double compute(double v[], int n, double x) double s; s = 0; for(int i = 0; i < n; i++) s = s + v[i]*pow(x,i); return s; 11-38

41 Εφρεςθ max από 2 πίνακεσ Να γραφεί ςυνάρτθςθ που δζχεται δφο πίνακεσ a,b και επιςτρζφει ποιοσ πίνακασ από τουσ δφο ζχει το μεγαλφτερο άκροιςμα. Θεωροφμε ότι αν θ ςυνάρτθςθ επιςτρζφει 1 τότε αναφερόμαςτε ςτον πίνακα a (sum(a) > sum(b)), 2 τότε αναφερόμαςτε ςτον πίνακα b (sum(a) < sum(b)), και 3 τότε αναφερόμαςτε και ςτουσ 2 πίνακεσ (sum(a)=sum(b)) 11-39

42 int maxab(int a[], int na, int b[], int nb) int i, suma=0, sumb=0; for(i = 0; i < na; i++) suma = suma + a[i]; for(i = 0; i < nb; i++) sumb = sumb + b[i]; if(suma > sumb) return 1; if(suma < sumb) return 2; if(suma = sumb) return 3; 11-40

43 Σο τρίγωνο του Pascal Να γραφεί μια ςυνάρτθςθ που κα δζχεται ζναν διςδιάςτατο ακζραιο πίνακα με το πολφ 100 ςτιλεσ και κα τον γεμίηει με τισ τιμζσ των ςτοιχείων του τριγϊνου του Pascal. Σο τρίγωνο του Pascal περιζχει ςε κάκε γραμμι τουσ ςυντελεςτζσ τθσ ανάπτυξθσ του (Α+Β) Κ, όπου Κ είναι ο αρικμόσ τθσ γραμμισ: Κ = Κ = Κ = Κ = Κ = Η γραμμι Κ του τριγϊνου ζχει Κ+1 ςτοιχεία. Σο πρϊτο και το τελευταίο είναι μονάδα. Κάκε ενδιάμεςο ςτοιχείο ςχθματίηεται ςαν άκροιςμα των δυο ςτοιχείων τθσ προθγοφμενθσ γραμμισ που βρίςκονται ακριβϊσ πάνω από αυτό και ςτθν αμζςωσ προσ αριςτερά κζςθ. Φυςικά, αυτόσ ο κανόνασ δεν ιςχφει για τθν πρϊτθ γραμμι που δεν ζχει ενδιάμεςα ςτοιχεία, οφτε υπάρχει προθγοφμενθ γραμμι. Σα υπόλοιπα ςτοιχεία του πίνακα ζχουν τιμι

44 Σο τρίγωνο του Pascal void pascal(int p[][100], int n1) int i,j; for(i = 0; i < n1; i++) for(j = 0; j < 100; j++) p[i][j]=0; p[1][0]=1; p[1][1]=1; for(i=2; i<n1; i++) p[i][0]=1; for(j = 1; j < 100; j++) p[i][j] = p[i-1][j-1] + p[i-1][j]; 11-42

45 Ανάςτροφοσ Να γραφεί μια μζκοδοσ θ οποία κα δζχεται ζναν μερικϊσ ςυμπλθρωμζνο διςδιάςτατο τετράγωνο πίνακα τφπου double με το πολφ 100 ςτιλεσ και κα αναςτρζφει τον πίνακα εςωτερικά, μζςα ςτον ίδιο πίνακα

46 Ανάςτροφοσ Να γραφεί μια μζκοδοσ θ οποία κα δζχεται ζναν μερικϊσ ςυμπλθρωμζνο διςδιάςτατο τετράγωνο πίνακα τφπου double με το πολφ 100 ςτιλεσ και κα αναςτρζφει τον πίνακα εςωτερικά, μζςα ςτον ίδιο πίνακα. void reversed(int a[][100], int n1) for(int i = 0; i < n1; i++) for(int j = 0; j < i; j++) double z=a[i][j]; a[i][j]=a[j][i]; a[j][i]=z; 11-44

47 Ανάςτροφοσ Να γραφεί μια μζκοδοσ θ οποία κα δζχεται ζναν μερικϊσ ςυμπλθρωμζνο διςδιάςτατο τετράγωνο πίνακα τφπου double με το πολφ 100 ςτιλεσ και κα αναςτρζφει τον πίνακα εςωτερικά, μζςα ςτον ίδιο πίνακα. void reversed(int a[][100], int n1) for(int i = 0; i < n1; i++) for(int j = 0; j < i; j++) double z=a[i][j]; a[i][j]=a[j][i]; a[j][i]=z; ΠΡΟΟΧΗ: Αν είχαμε a[i][j]=a[j][i]; τότε κα καταςτρζφαμε τον πίνακα a

48 Ανάςτροφοσ Να γραφεί μια μζκοδοσ θ οποία κα δζχεται ζναν μερικϊσ ςυμπλθρωμζνο διςδιάςτατο τετράγωνο πίνακα τφπου double με το πολφ 100 ςτιλεσ και κα αναςτρζφει τον πίνακα εςωτερικά, μζςα ςτον ίδιο πίνακα. void reversed(int a[][100], int n1) for(int i = 0; i < n1; i++) for(int j = 0; j < i; j++) double z=a[i][j]; a[i][j]=a[j][i]; a[j][i]=z; ΠΡΟΟΧΗ: Αν αντί για j < i γράψουμε j<100, τότε θ ςυν/ςθ δεν κα δουλζψει. Προςπακιςτε να εντοπίςετε τθν αιτία τθσ αποτυχίασ. ΠΡΟΟΧΗ: Αν είχαμε a[i][j]=a[j][i]; τότε κα καταςτρζφαμε τον πίνακα a

49 Εφρεςθ γραμμισ μεγίςτου ςτοιχείου Να γραφεί μια ςυνάρτθςθ θ οποία κα δζχεται ζναν πίνακα τφπου double με 50 ςτιλεσ και κα επιςτρζφει τον αρικμό τθσ γραμμισ ςτθν οποία ανικει το μεγαλφτερο ςτοιχείο

50 Εφρεςθ γραμμισ μεγίςτου ςτοιχείου Να γραφεί μια ςυνάρτθςθ θ οποία κα δζχεται ζναν πίνακα τφπου double με 50 ςτιλεσ και κα επιςτρζφει τον αρικμό τθσ γραμμισ ςτθν οποία ανικει το μεγαλφτερο ςτοιχείο. int maxline(int a[][50], int n1) int i,j,im,jm; im = 0; jm = 0; for(i = 0; i < n1; i++) for(j = 0; j < 50; j++) if( b[i][j] > b[im][jm] ) im=i; jm=j; return im; 11-48

51 Βιβλιογραφία Καλι Μελζτθ [1] W. Savitch, Πλιρθσ C++, Εκδόςεισ Σηιόλα, 2011 [2+ Η. Deitel and P. Deitel, C++ Προγραμματιςμόσ 6θ Εκδοςθ, Εκδόςεισ Μ. Γκιοφρδασ, 2013 Ύλθ βιβλιογραφίασ [1]: Κεφάλαια: 1, 2, 3, 4, 5, 9, 13 Ενότθτεσ: 6.1 Παραρτιματα: 1, 2, 3 [2]: Κεφάλαια: 1, 2, 4, 5, 6, 7, 18, 19, 21 Ενότθτεσ: 8.6, Παραρτιματα: Α, Β, Γ, Δ, Σ 11-49

52 Ανοικτά Ακαδημαϊκά Μαθήματα Πανεπιστήμιο Ιωαννίνων Τέλος Ενότητας

53 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Σημειώματα Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων: Λέκτορας Χάρης Παπαδόπουλος «Εισαγωγή στον Προγραμματισμό». Έκδοση: 1.0. Ιωάννινα Διαθέσιμο από τη δικτυακή διεύθυνση: Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1] https://creativecommons.org/licenses/by-sa/4.0/.

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Θ: διάλεξη (θεωρία)

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2013-2014 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα 11-13 & Παραςκευι 11-13

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Επανάληψη σε συναρτήσεις Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Εφαρμογές σε ταξινομήσεις και αναζήτηση στοιχείων Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Τμιματα Εργαςτθρίων

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2013-2014 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα 11-13 & Παραςκευι 11-13

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Ροή ελέγχου: if/else, switch, for, while, do-while Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα

Διαβάστε περισσότερα

16. Πίνακεσ και Συναρτήςεισ

16. Πίνακεσ και Συναρτήςεισ Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 16. Πίνακεσ και Συναρτήςεισ Ιωάννθσ Κατάκθσ Σιμερα o Κλιςθ με τιμι o Κλιςθ με αναφορά o Πίνακεσ και ςυναρτιςεισ o Παραδείγματα Ειςαγωγι o Στισ προθγοφμενεσ

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Πίνακες (μονοδιάστατοι και πολυδιάστατοι) Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Θ: διάλεξη (θεωρία)

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Αλφαριθμητικά και Συμβολοσειρές Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Συναρτήσεις II Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Συναρτήσεις II Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Συναρτήσεις II Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Σμιματα Εργαςτθρίων

Διαβάστε περισσότερα

Οντοκεντρικόσ Προγραμματιςμόσ

Οντοκεντρικόσ Προγραμματιςμόσ Οντοκεντρικόσ Προγραμματιςμόσ Ενότθτα 7: C++ TEMPLATES, ΤΠΕΡΦΟΡΣΩΗ ΣΕΛΕΣΩΝ, ΕΞΑΙΡΕΕΙ Templates Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικών Η/Τ & Πλθροφορικισ Templates Ειςαγωγι Templates o

Διαβάστε περισσότερα

Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 19. Αλφαριθμητικά II. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων

Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 19. Αλφαριθμητικά II. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 19. Αλφαριθμητικά II Ιωάννθσ Κατάκθσ Αλφαρικμθτικά ςτθ C Ζνα string είναι μία ακολουκία αλφαρικμθτικϊν χαρακτήρων, ςθμείων ςτίξθσ κτλ. Π.χ. Hello How are you?

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Δείκτες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Δείκτες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Δείκτες Διδάσκοντες: Αν Καθ Δ Παπαγεωργίου, Αν Καθ Ε Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2015-2016 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 ελίδα Μακιματοσ:

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Ρρογραμματιςμό

343 Ειςαγωγι ςτον Ρρογραμματιςμό 343 Ειςαγωγι ςτον Ρρογραμματιςμό Τμιμα Μακθματικϊν Ρανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2013-2014 Χάρθσ Ραπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα 11-13 & Ραραςκευι 11-13

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Εγγραφές, δομές και χρήση αρχείων Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Ρρογραμματιςμό Τμιμα Μακθματικϊν Ρανεπιςτιμιο

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Εντολές for, while, do-while Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Εντολές for, while, do-while Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Εντολές for, while, do-while Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Συναρτήσεις και ορίσματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Διαφορά καθολικής μεταβλητής και σταθεράς

Διαβάστε περισσότερα

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μεταφραστές Συντακτικός αναλυτής Διδάσκων: Επικ. Καθ. Γεώργιος Μανής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότθτα 10: Συνακροιςτικζσ ςυναρτιςεισ. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ

Βάςεισ Δεδομζνων Ι. Ενότθτα 10: Συνακροιςτικζσ ςυναρτιςεισ. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ Βάςεισ Δεδομζνων Ι Ενότθτα 10: Συνακροιςτικζσ ςυναρτιςεισ Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χριςθσ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ εικόνεσ,

Διαβάστε περισσότερα

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Εντολή if. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Εντολή if. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΝΕΠΙΣΤΗΜΙΟ ΙΩΝΝΙΝΩΝ ΝΟΙΚΤ ΚΔΗΜΪΚ ΜΘΗΜΤ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Εντολή if Διδάσκοντες: ν. Καθ. Δ. Παπαγεωργίου, ν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Γραπτι Εξζταςθ ςτο μάκθμα Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Όνομα: Επϊνυμο: Τμιμα: Ημερομθνία: 20/02/11 Θζμα 1 ο Α. Να χαρακτθρίςετε κακεμιά από τισ παρακάτω προτάςεισ ωσ Σωςτι (Σ) ι Λάκοσ

Διαβάστε περισσότερα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε

Διαβάστε περισσότερα

Μικροβιολογία & Υγιεινή Τροφίμων

Μικροβιολογία & Υγιεινή Τροφίμων ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μικροβιολογία & Υγιεινή Τροφίμων Μικροοργανισμοί που ελέγχονται ανά είδος τροφίμου Διδάσκοντες: Καθ. Χρυσάνθη Παπαδοπούλου, Λέκτορας Ηρακλής Σακκάς Άδειες

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Θ: διάλεξη (θεωρία)

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 15. Πίνακεσ ΙI. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων

Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 15. Πίνακεσ ΙI. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 15. Πίνακεσ ΙI Ιωάννθσ Κατάκθσ Σιμερα o Ειςαγωγι o Διλωςθ o Αρχικοποίθςθ o Πρόςβαςθ o Παραδείγματα Πίνακεσ - Επανάλθψθ o Στθν προθγοφμενθ διάλεξθ κάναμε μια

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Τύποι δεδομένων, μεταβλητές, πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Πληροφορική και Εκπαίδευση

Πληροφορική και Εκπαίδευση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πληροφορική και Εκπαίδευση Πληροφορική, ΤΠΕ, Μαθησιακές τεχνολογίες, Εκπαιδευτική τεχνολογία Διδάσκων: Καθηγητής Αναστάσιος Α. Μικρόπουλος Άδειες Χρήσης

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 11: Αντικειμενοςτραφήσ και αντικείμενοςχεςιακζσ βάςεισ Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εργαςτιριο Πικανοτιτων Σθμειϊςεισ προγραμματιςμοφ: βαςικζσ γνϊςεισ ανάπτυξθσ εφαρμογϊν. Κϊςτασ Αρβανιτάκθσ

Εργαςτιριο Πικανοτιτων Σθμειϊςεισ προγραμματιςμοφ: βαςικζσ γνϊςεισ ανάπτυξθσ εφαρμογϊν. Κϊςτασ Αρβανιτάκθσ Εργαςτιριο Πικανοτιτων Σθμειϊςεισ προγραμματιςμοφ: βαςικζσ γνϊςεισ ανάπτυξθσ εφαρμογϊν Κϊςτασ Αρβανιτάκθσ Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του

Διαβάστε περισσότερα

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν: Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.

Διαβάστε περισσότερα

ςυςτιματα γραμμικϊν εξιςϊςεων

ςυςτιματα γραμμικϊν εξιςϊςεων κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Δείκτες Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Αριθμητική δεικτών στη C++ 1 2 3 4 5 6 7 8 9 10 11 12 13

Διαβάστε περισσότερα

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ Οδηγός Χρήσης Εφαρμογής Ελέγχου Προσφορών Αφοφ πιςτοποιθκεί ο λογαριαςμόσ που δθμιουργιςατε ςτο πρόγραμμα ωσ Πάροχοσ Προςφορϊν, κα λάβετε ζνα e-mail με

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Ιοφνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1.Εθνικό Τυπογραφείο... 3 1.1. Είςοδοσ... 3 1.2. Αρχική Οθόνη... 4 1.3. Διεκπεραίωςη αίτηςησ...

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Πράξεις με αρχεία Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Ανάγνωση και εγγραφή αρχείων με χρήση ρεύματος

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Λουκάσ Βλάχοσ Τμιμα Φυςικισ Α.Π.Θ. Θεςςαλονίκθ, 2014 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα:

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 ο Σετ Ασκήσεων Δομές Δεδομένων - Πίνακες Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές

Ηλεκτρονικοί Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Πίνακες στη C++ Ζαχαρούλα Ανδρεοπούλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Πάτρα, 2013 Περιεχόμενα: Ειςαγωγή... 4 1. Επιμελητήριο... Error! Bookmark not defined. 1.1 Διαχειριςτήσ Αιτήςεων Επιμελητηρίου...

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 5: H ΓΛΩΣΣΑ C++ Εισαγωγή στην C++ ΔΙΔΑΣΚΟΝΤΕΣ:Iωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής H Γλώσσα C++ ΙΣΤΟΡΙΑ 1967:

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 7: C++ TEMPLATES, ΥΠΕΡΦΟΡΤΩΣΗ ΤΕΛΕΣΤΩΝ, ΕΞΑΙΡΕΣΕΙΣ Templates ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική II. Ενότητα 2 : Αλγόριθμοι. Δρ. Γκόγκος Χρήστος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική II. Ενότητα 2 : Αλγόριθμοι. Δρ. Γκόγκος Χρήστος 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική II Ενότητα 2 : Αλγόριθμοι Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

Οντοκεντρικόσ Ρρογραμματιςμόσ

Οντοκεντρικόσ Ρρογραμματιςμόσ Οντοκεντρικόσ Ρρογραμματιςμόσ Ενότθτα 7: C++ TEMPLATES, ΥΡΕΦΟΤΩΣΗ ΤΕΛΕΣΤΩΝ, ΕΞΑΙΕΣΕΙΣ Υπερφόρτωςθ Τελεςτών Ιωάννθσ Χατηθλυγεροφδθσ Ρολυτεχνικι Σχολι Τμιμα Μθχανικών Η/Υ & Ρλθροφορικισ Υπερφόρτωςθ Τελεςτών

Διαβάστε περισσότερα

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ Αντώνης Μαϊργιώτης Να γραφεί αλγόριθμοσ με τη βοήθεια διαγράμματοσ ροήσ, που να υπολογίζει το εμβαδό Ε ενόσ τετραγώνου με μήκοσ Α. ΑΡΧΗ ΔΙΑΒΑΣΕ

Διαβάστε περισσότερα

Δομές Επανάληψης. Εισαγωγή στη C++

Δομές Επανάληψης. Εισαγωγή στη C++ Δομές Επανάληψης Εισαγωγή στη C++ Επαναληπτικές δηλώσεις Οι βρόγχοι (loops) αναγκάζουν ένα τμήμα κώδικα να επαναλαμβάνεται. Η επανάληψη συνεχίζεται για όσο μία λογική συνθήκη είναι αληθής. Όταν η συνθήκη

Διαβάστε περισσότερα

Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική

Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική Ενότητα 6: Πίνακες και Δείκτες Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Ρρογραμματιςμό

343 Ειςαγωγι ςτον Ρρογραμματιςμό 343 Ειςαγωγι ςτον Ρρογραμματιςμό Τμιμα Μακθματικϊν Ρανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Ραπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Ρζμπτθ 11-13 Σελίδα Μακιματοσ:

Διαβάστε περισσότερα

Υπολογιστές Ι. Άδειες Χρήσης. Πολυδιάστατοι πίνακες. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Υπολογιστές Ι. Άδειες Χρήσης. Πολυδιάστατοι πίνακες. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Πολυδιάστατοι πίνακες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

(Α3 1 ) Σασ δίνεται το παρακάτω αλγορικμικό τμιμα

(Α3 1 ) Σασ δίνεται το παρακάτω αλγορικμικό τμιμα Μάθημα: Ανάπτυξη Εφαρμογών ςε Προγραμματιςτικό Περιβάλλον Τάξη Γ Λυκείου, Πληροφορική Οικονομικών Καθηγητής : Σιαφάκασ Γιώργοσ Ημερομηνία : 28/12/2015 Διάρκεια: 3 ώρεσ ΘΕΜΑ Α /40 (Α1) Να γράψετε ςτο τετράδιό

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 5 η : Μερικι Παράγωγοσ Ι Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Εισαγωγή στη C++ Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Αριθμοί κινητής υποδιαστολής (float) στη C++ (1)

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές

Ηλεκτρονικοί Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Επαναληπτικές Εντολές στη C++ Ζαχαρούλα Ανδρεοπούλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Συναρτήσεις I Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Συναρτήσεις I Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Συναρτήσεις I Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων

Διαβάστε περισσότερα

Ιδιότθτεσ πεδίων Γενικζσ.

Ιδιότθτεσ πεδίων Γενικζσ. Οι ιδιότθτεσ των πεδίων διαφζρουν ανάλογα με τον τφπο δεδομζνων που επιλζγουμε. Ορίηονται ςτο κάτω μζροσ του παρακφρου ςχεδίαςθσ του πίνακα, ςτθν καρτζλα Γενικζσ. Ιδιότθτα: Μζγεκοσ πεδίου (Field size)

Διαβάστε περισσότερα

Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ

Διαχείριςθ του φακζλου public_html ςτο ΠΣΔ Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ Οι παρακάτω οδθγίεσ αφοροφν το χριςτθ webdipe. Για διαφορετικό λογαριαςμό χρθςιμοποιιςτε κάκε φορά το αντίςτοιχο όνομα χριςτθ. = πατάμε αριςτερό κλικ ςτο Επιςκεφκείτε

Διαβάστε περισσότερα

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ Στο εργαςτιριο αυτό κα δοφμε πωσ μποροφμε να προςομοιϊςουμε μια κίνθςθ χωρίσ τθ χριςθ εξειδικευμζνων εργαλείων, παρά μόνο μζςω ενόσ προγράμματοσ λογιςτικϊν φφλλων, όπωσ είναι το Calc και το Excel. Τα δφο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός

Δομημένος Προγραμματισμός Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 9: Μνήμη Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Παράγωγοι και ολοκληρώματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Ολοκληρώματα με το πρόγραμμα Maima Αθανάσιος

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική II. Ενότητα 3 : Γλώσσες προγραμματισμού. Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική II. Ενότητα 3 : Γλώσσες προγραμματισμού. Δρ. 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική II Ενότητα 3 : Γλώσσες προγραμματισμού Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 5: H ΓΛΩΣΣΑ C++ Δομές Ελέγχου ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δομές Ελέγχου Εισαγωγή Πριν

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές I

Ηλεκτρονικοί Υπολογιστές I ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ελαστικότητα και εφαρμογές Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Η εντολή if-else. Η απλή μορφή της εντολής if είναι η ακόλουθη: if (συνθήκη) { Η γενική μορφή της εντολής ifelse. εντολή_1; εντολή_2;..

Η εντολή if-else. Η απλή μορφή της εντολής if είναι η ακόλουθη: if (συνθήκη) { Η γενική μορφή της εντολής ifelse. εντολή_1; εντολή_2;.. Επιλογή - Επανάληψη Η εντολή if-else Ο τελεστής παράστασης συνθήκης H εντολή switch Η εντολές for και while Η εντολή do-while Η εντολές break - continue - goto Μαθηματικές συναρτήσεις Λέξεις κλειδιά στη

Διαβάστε περισσότερα

Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική

Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική Ενότητα 4: Δομές Ελέγχου Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1 Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ

Διαβάστε περισσότερα

Ειςαγωγι ςτθν Επιςτιμθ Υπολογιςτϊν. Ειςαγωγι ςτθν Python

Ειςαγωγι ςτθν Επιςτιμθ Υπολογιςτϊν. Ειςαγωγι ςτθν Python Ειςαγωγι ςτθν Επιςτιμθ Υπολογιςτϊν Ειςαγωγι ςτθν Python Γ Μζροσ Modules, Αντικειμενοςτραφισ Προγραμματιςμόσ ςτθν Python, Classes, Objects, Αλλθλεπίδραςθ με αρχεία Ειςαγωγι αρκρωμάτων (modules): import

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 5: H ΓΛΩΣΣΑ C++ Πίνακες & Δείκτες ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πίνακες Πίνακες Τα στοιχεία

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Τμιματα Εργαςτθρίων

Διαβάστε περισσότερα

Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι.

Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι. 1 ο Σετ Ασκήσεων Δομή Επιλογής - Επανάληψης Άςκθςθ 1θ: Ζνα παιχνίδι με ηάρια παίηεται ωσ εξισ: Α. Ο παίκτθσ αρχικά ποντάρει κάποιο ποςό και ρίχνει δφο ηάρια. Β. Ο παίκτθσ κερδίηει (το ποςό που ζχει ποντάρει)

Διαβάστε περισσότερα

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3)

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Το όνομα ενόσ πίνακα, όπωσ και κάκε άλλου αντικειμζνου, μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Το όνομα ενόσ πεδίου μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Κάκε

Διαβάστε περισσότερα

Πωσ δθμιουργώ φακζλουσ;

Πωσ δθμιουργώ φακζλουσ; Πωσ δθμιουργώ φακζλουσ; Για να μπορζςετε να δθμιουργιςετε φακζλουσ ςτο χαρτοφυλάκιό ςασ ςτο Mahara κα πρζπει να μπείτε ςτο ςφςτθμα αφοφ πατιςετε πάνω ςτο ςφνδεςμο Mahara profiles από οποιοδιποτε ςελίδα

Διαβάστε περισσότερα

1 ο Διαγώνιςμα για το Α.Ε.Π.Π.

1 ο Διαγώνιςμα για το Α.Ε.Π.Π. 1 ο Διαγώνιςμα για το Α.Ε.Π.Π. Θ Ε Μ Α Α Α 1. Ν α γ ρ ά ψ ε τ ε ς τ ο τ ε τ ρ ά δ ι ό ς α σ τ ο ν α ρ ι κ μ ό κ α κ ε μ ι ά σ α π ό τ ι σ π α ρ α κ ά τ ω π ρ ο τ ά ς ε ι σ 1-8 κ α ι δ ί π λ α τ θ λ ζ ξ

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 ελίδα Μακιματοσ:

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Ρρογραμματιςμό

343 Ειςαγωγι ςτον Ρρογραμματιςμό 343 Ειςαγωγι ςτον Ρρογραμματιςμό Τμιμα Μακθματικϊν Ρανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Ραπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Ρζμπτθ 11-13 Στόχοσ Μακιματοσ

Διαβάστε περισσότερα

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while )

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) 3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) Στα πιο πολλά προγράμματα απαιτείται κάποια ι κάποιεσ εντολζσ να εκτελοφνται πολλζσ φορζσ για όςο ιςχφει κάποια ςυνκικθ. Ο αρικμόσ των επαναλιψεων μπορεί να είναι

Διαβάστε περισσότερα

Η γραφικι παράςταςθ τθσ ςυνάρτθςθσ f(x)=αx+β είναι μια ευκεία με εξίςωςθ y=αx+β θ οποία τζμνει τον άξονα των y ςτο ςθμείο Β(0,β) και ζχει κλίςθ λ=α.

Η γραφικι παράςταςθ τθσ ςυνάρτθςθσ f(x)=αx+β είναι μια ευκεία με εξίςωςθ y=αx+β θ οποία τζμνει τον άξονα των y ςτο ςθμείο Β(0,β) και ζχει κλίςθ λ=α. ε καρτεςιανό ςφςτθμα ςυντεταγμζνων Οxy δίνεται ευκεία ε. Σί ονομάηουμε : α) γωνία που ςχθματίηει θ ευκεία ε με τον άξονα xϋx; β) ςυντελεςτι διευκφνςεωσ τθσ ευκείασ ε; ΑΠΑΝΤΗΣΗ α) Παρατιρθςθ β) Παρατιρθςθ

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 7: C++ TEMPLATES, ΥΠΕΡΦΟΡΤΩΣΗ ΤΕΛΕΣΤΩΝ, ΕΞΑΙΡΕΣΕΙΣ Χειρισμός Εξαιρέσεων ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ

Διαβάστε περισσότερα

Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7)

Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7) Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων (v.1.0.7) 1 Περίληψη Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ ςτθλών βιβλίου Εςόδων - Εξόδων.

Διαβάστε περισσότερα

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10

Διαβάστε περισσότερα

Δομζσ Δεδομζνων. Αναηιτθςθ και Ταξινόμθςθ Διάλεξθ 3

Δομζσ Δεδομζνων. Αναηιτθςθ και Ταξινόμθςθ Διάλεξθ 3 Δομζσ Δεδομζνων Αναηιτθςθ και Ταξινόμθςθ Διάλεξθ 3 Περιεχόμενα Αλγόρικμοι αναηιτθςθσ Σειριακι αναηιτθςθ Αναηιτθςθ κατά ομάδεσ Δυαδικι Αναηιτθςθ Ταξινόμθςθ Ταξινόμθςθ με παρεμβολι (insertion sort) Ταξινόμθςθ

Διαβάστε περισσότερα

Δισδιάστατοι Πίνακες (2D Arrays) Εισαγωγή στη C++

Δισδιάστατοι Πίνακες (2D Arrays) Εισαγωγή στη C++ Δισδιάστατοι Πίνακες (2D Arrays) Εισαγωγή στη C++ Γενικά Η εντολή: int arr[5][2]; Δηλώνει την μεταβλητή arr σαν πίνακα με πέντε γραμμές (rows) και με δύο στήλες (columns). Η αρίθμηση και των δύο δεικτών

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 7: Υπερφόρτωση διμελών τελεστών Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Ρρογραμματιςμό

343 Ειςαγωγι ςτον Ρρογραμματιςμό 343 Ειςαγωγι ςτον Ρρογραμματιςμό Τμιμα Μακθματικϊν Ρανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Ραπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Ρζμπτθ 11-13 Θ: διάλεξη (θεωρία)

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 9: C++ ΕΙΣΟΔΟΣ - ΕΞΟΔΟΣ / ΑΛΦΑΡΙΘΜΗΤΙΚΑ / ΑΡΧΕΙΑ Διαχείριση Αρχείων ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 10: Πρότυπα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Το Δίκτυο Multi-Layer Perceptron και ο Κανόνασ Back-Propagation. Κϊςτασ Διαμαντάρασ Τμιμα Πλθροφορικισ ΤΕΙ Θεςςαλονίκθσ

Το Δίκτυο Multi-Layer Perceptron και ο Κανόνασ Back-Propagation. Κϊςτασ Διαμαντάρασ Τμιμα Πλθροφορικισ ΤΕΙ Θεςςαλονίκθσ Το Δίκτυο Multi-Layer Percetron και ο Κανόνασ Back-Proagation Κϊςτασ Διαμαντάρασ Τμιμα Πλθροφορικισ ΤΕΙ Θεςςαλονίκθσ Το Πρόβλθμα XOR Περιοριςμζνεσ δυνατότθτεσ Percetron =1 νευρϊνασ. Πχ. Αδυναμία λφςθσ

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 3: Πίνακες, Δομές και Δυναμική Διαχείριση Μνήμης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons

Διαβάστε περισσότερα