17. Πολυδιάςτατοι πίνακεσ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "17. Πολυδιάςτατοι πίνακεσ"

Transcript

1 Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 17. Πολυδιάςτατοι πίνακεσ Ιωάννθσ Κατάκθσ

2 Πολυδιάςτατοι πίνακεσ o Μζχρι τϊρα μιλοφςαμε για μονοδιάςτατουσ πίνακεσ ι int age[5]= 31,28,31,30,31; o Για παράλλθλουσ πίνακεσ int id[5] = 1029,1132,1031,9991,1513; int age[5] = 31,28,31,30,31; o Σιμερα κα μιλιςουμε για πολυδιάςτατουσ πίνακεσ (κυρίωσ διςδιάςτατουσ).

3 Πολυδιάςτατοι πίνακεσ o Η C διακζτει ορκογϊνιουσ πολυδιάςτατουσ πίνακεσ char array[3][7] /*[γραμμι+*ςτιλθ]*/ o Αυτό ςυνεπάγεται ότι δεςμεφουμε ακριβϊσ 3*7 = 21 χαρακτιρεσ ςτθ μνιμθ o Για να αναφερκοφμε ςε κάποιο ςτοιχείο του πίνακα χρθςιμοποιοφμε δείκτεσ κζςθσ π.χ. array*0][0]= Α, array[2][3]= Β array[3][2]= Α Δεν υπάρχει το *3+* A B

4 Συχνζσ ερωτιςεισ Ερώτηςη Α o Μποροφμε να δθλϊςουμε μθ-ορκογϊνιουσ πολυδιάςτατουσ πίνακεσ? ΌΧΙ o Θα μποροφςε να γίνει κάτι αντίςτοιχο, με χριςθ δυναμικισ δζςμευςθσ μνιμθσ, αλλά όχι ςε αυτό το μάκθμα Ερώτηςη Β o Μποροφν τα ςτοιχεία του πίνακα να είναι ανομοιογενι (δθλαδι κάποιεσ γραμμζσ ι ςτιλεσ να φζρουν διαφορετικό τφπο (int, char, float)? ΌΧΙ o Θα μποροφςε να γίνει κάτι αντίςτοιχο, με τθν χριςθ κάποιων ειδικϊν δομϊν που λζγονται structs, αλλά όχι ςε αυτό το μάκθμα A B

5 Διςδιάςτατοι πίνακεσ o Ζνασ πολυδιάςτατοσ πίνακασ είναι ζνασ μονοδιάςτατοσ πίνακασ κάκε ςτοιχείο του οποίου είναι ζνασ πίνακασ o Μποροφν να υπάρχουν πίνακεσ ςε πολλζσ διαςτάςεισ (θ ΑΝSI-C που χρθςιμοποιοφμε υποδεικνφει ςτουσ καταςκευαςτζσ μεταγλωττιςτϊν να προςφζρουν μζχρι 6 διαςτάςεισ) o Σε αυτό το μάκθμα κα μελετιςουμε διςδιάςτατουσ πίνακεσ (μια άλλθ χριςιμθ κατθγόρια πινάκων είναι οι τριςδιάςτατοι) o Παράδειγμα 3-διάςτατου πίνακα int enrolled[course_id][professor_id][year]; εγγραφζσ τθσ μορφισ 32,1,2004, 132,2,2005,131,3,2005

6 Πολυδιάςτατοι πίνακεσ (ςυν.) o Αρχικοποίθςθ διςδιάςτατου πίνακα Μια λίςτα αρχικϊν τιμϊν κλειςμζνθ ςε άγκιςτρα, όπου κάκε τιμι παίρνει αρχικι τιμι από μία αντίςτοιχθ υπολίςτα int studentgrades[100][6] = ; 99, 76, 88, 74, 65, 53, 67, 71, 77, 71, 80, 47, o Αρχικοποίθςθ διςδιάςτατου πίνακα με FOR loop for(i=0;i<100;i++) // γραμμζσ for(j=0;j<6; j++) // ςτιλεσ studentgrades[i][j]=0; Οι πρϊτεσ δυο γραμμζσ (από τισ 100) περιζχουν τισ 6 βακμολογίεσ δυο φοιτθτϊν)

7 Παράδειγμα Γράψετε ζνα πρόγραμμα το οποίο: α) Δθμιουργεί ζναν πίνακα 10x10 β) Αρχικοποιεί κάκε κζςθ του πίνακα ςε 0 γ) Εκτυπϊνει τον πίνακα

8 Παράδειγμα 1 Λφςθ Α #include <stdio.h> #define SIZE 10 main () // Διλωςθ Πίνακα int matrix[size][size], i, j; // Αρχικοποίθςθ πίνακα for (i=0; i<size; i++) for (j=0; j<size; j++) matrix[i][j] = 0; // Εκτφπωςθ πίνακα for (i=0; i<size; i++) for (j=0; j<size; j++) printf("%d", matrix[i][j]); Εκτυπϊνει printf("\n"); //Μετά το τζλοσ εκτφπωςθσ μίασ γραμμισ αλλάηουμε //γραμμι

9 Παράδειγμα 1 Λφςθ Β #include <stdio.h> #define SIZE 10 main () int matrix[size][size] = ; int i,j; // Εκτφπωςθ πίνακα for (i=0; i<size; i++) for (j=0; j<size; j++) printf("%d", matrix[i][j]); printf("\n"); Η Αρχικοποίθςθ γίνεται εδϊ με δυο παρενκζςεισ αντί for loop. To μειονζκτθμα είναι ότι δουλεφει μόνο για αρχικοποίθςθ ςε 0

10 Παράδειγμα 2 - Αρχικοποίθςθ Πίνακα Γράψετε ζνα πρόγραμμα το οποίο δθμιουργεί τον πιο κάτω διςδιάςτατο πίνακα ςτθν μνιμθ και ςτθν ςυνζχεια τον εκτυπϊνει

11 Παράδειγμα 2 - Αρχικοποίθςθ Πίνακα Βλζπουμε ότι ο πίνακασ Α μπορεί να παραχκεί από τον Β εάν προςκζςουμε ςε κάκε κζςθ του Β τον αρικμό 3 Α Β

12 Παράδειγμα 2 - Αρχικοποίθςθ Πίνακα #include <stdio.h> #define SIZE 5 main () int matrix[size][size]; int i,j; // Αρχικοποιθςθ for (i=0; i<size; i++) for (j=0; j<size; j++) matrix[i][j] = j+3; Για κάκε i (γραμμι): j 0+3=3 1+3=4 2+3=5 3+3=6 4+3=7 for (i=0; i<size; i++) for (j=0; j<size; j++) printf("%d", matrix[i][j]); printf("\n");

13 Παράδειγμα 3 - Άκροιςμα Διαγωνίου Γράψετε ζνα πρόγραμμα το οποίο δθμιουργεί τον παρακάτω διςδιάςτατο πίνακα ςτθ μνιμθ και ςτθν ςυνζχεια εκτυπϊνει το άκροιςμα τθσ διαγωνίου Α Παρατθροφμε ότι οι τιμζσ που κζλουμε είναι για i=j

14 Παράδειγμα 3 - Άκροιςμα Διαγωνίου #include <stdio.h> #define SIZE 5 main () int matrix[size][size]; int i,j; int sum = 0; // Μεταβλθτι που αποκθκεφεται το άκροιςμα // Αρχικοποίθςθ for (i=0; i<size; i++) for (j=0; j<size; j++) matrix[i][j] = j+3; // Εφρεςθ Ακροίςματοσ for (i=0; i<size; i++) for (j=0; j<size; j++) if (i==j) sum += matrix[i][j]; //Εναλλατικά for (i=0; i<size; i++) sum += matrix[i][i]; printf( Sum: %d, sum);

15 Παράδειγμα 4 - Άκροιςμα Στιλθσ Γράψετε ζνα πρόγραμμα το οποίο δθμιουργεί τον πιο κάτω διςδιάςτατο πίνακα ςτθ μνιμθ και ςτθ ςυνζχεια εκτυπϊνει το άκροιςμα τθσ τρίτθσ ςτιλθσ (index 2) = 25 Παρατθροφμε ότι κζλουμε τισ τιμζσ όπου το j=2

16 Παράδειγμα 3 - Άκροιςμα Στιλθσ #include <stdio.h> #define SIZE 5 main () int matrix[size][size]; int i,j; int sum = 0; // Αρχικοποίθςθ for (i=0; i<size; i++) for (j=0; j<size; j++) matrix[i][j] = j+3; // Εφρεςθ Ακροίςματοσ for (i=0; i<size; i++) sum += matrix[i][2]; printf( Sum: %d, sum);

17 Πολυδιάςτατοι Πίνακεσ & Συναρτιςεισ o Όταν περνάμε πολυδιάςτατουσ πίνακεσ ςε ςυναρτιςεισ, τότε ακολουκείται θ ίδια λογικι με τθν περίπτωςθ των μονοδιάςτατων πινάκων (κλιςθ με τιμι) o Επομζνωσ δεν παράγεται ζνα νζο αντίγραφο του πίνακα αλλά αντίκετα, θ ςυνάρτθςθ μπορεί να κάνει κατευκείαν αλλαγζσ πάνω ςε αυτόν

18 Πίνακεσ και Συναρτιςεισ #include <stdio.h> #define SIZE 4 // Πρότυπο void FillArrayOne (int[ ][ ]) ; main ( ) int array [SIZE][SIZE]=; // Κλιςθ Συνάρτθςθσ FillArrayOne (array); Μετά τθν κλιςθ τθσ FillArrayOne: // Οριςμόσ Συνάρτθςθσ void FillArrayOne( int table[ ][SIZE] ) int i,j; for ( i = 0; i < SIZE; i++) for ( j = 0; j < SIZE; j++) table[i][j] = 1; array[0][1] = 1 array[0] [1] = 1 array[0] [2] = 1 array[0] [3] = 1 array[1][1] = 1 array[1] [1] = 1 array[1] [2] = 1 array[1] [3] = 1 array[2][1] = 1 array[2] [1] = 1 array[2] [2] = 1 array[2] [3] = 1 array[3][1] = 1 array[3] [1] = 1 array[3] [2] = 1 array[3] [3] = 1 Μόνο η πρώηη διάζηαζη μπορεί να παραληθθεί

19 Παράδειγμα Επεξεργαςίασ Βακμϊν o Γράψετε ζνα πρόγραμμα Το οποίο διαβάηει από τo πλθκτρολόγιο βακμοφσ 80 φοιτθτϊν. Για κάκε φοιτθτι διαβάηονται βακμοί για 5 μακιματα (βακμοί 1ου φοιτθτι) (βακμοί 2ου φοιτθτι) υπολογίηει και τυπϊνει (α) βακμοφσ κάκε φοιτθτι (β) το μζςο όρο για κάκε φοιτθτι Επικυμθτι εκτφπωςθ: Μζςοσ Όροσ

20 Παράδειγμα Επεξεργαςίασ Βακμϊν Τι πρζπει να γίνει; α) Να διαβαςτοφν δεδομζνα από το πλθκτρολόγιο και να αποκθκευτοφν ςε ζνα 2-διαςτάςεων πίνακα β) Υπολογιςμόσ μζςου όρου ανά φοιτθτι γ) Εκτφπωςθ αποτελεςμάτων

21 Παράδειγμα Επεξεργαςίασ Βακμϊν // Στακερζσ #define NUM_STUDENTS 80 #define NUM_COURSES 5 // Πίνακασ ο οποίοσ κρατά για κάκε φοιτθτι τθ βακμολογία // για κάκε μάκθμα float grade_table[num_students][num_courses] = ; // Πίνακασ ο οποίοσ κρατά για κάκε φοιτθτι τον // μζςο όρο τθσ βακμολογίασ float average_per_student[num_students]= ;

22 Παράδειγμα επεξεργαςίασ βακμϊν main() float grade_table[num_students][num_courses] = ; float average_per_student[num_students]= ; // Διάβαςμα δεδομζνων read_data(grade_table); // Υπολογιςμόσ μζςων όρων compute_averages(grade_table, average_per_student); // Εκτφπωςθ αποτελεςμάτων display_results(grade_table, average_per_student);

23 Παράδειγμα επεξεργαςίασ βακμϊν void read_data(float grade_table[][num_courses]) int i,j; for(i=0;i<num_students;i++) printf("student %d\n", i); for(j=0;j<num_courses;j++) scanf("%f", &grade_table[i][j]);

24 Παράδειγμα Επεξεργαςίασ Βακμϊν void compute_averages(float grade_table[][num_courses], float average_per_student[]) int i,j; for(i=0;i<num_students; i++) for(j=0;j<num_courses; j++) average_per_student[i]+=grade_table[i][j]; for(i=0;i<num_students; i++) average_per_student[i]/=num_courses;

25 Παράδειγμα Επεξεργαςίασ Βακμϊν void display_results(float grade_table[][num_courses], float average_per_student[]) int i,j; for(i=0;i<num_students; i++) for(j=0;j<num_courses;j++) printf("%5.2f ",grade_table[i][j]); printf("%5.2f\n",average_per_student[i]);

26 Τζλοσ διάλεξθσ

Κεφάλαιο 8.7. Πολυδιάστατοι Πίνακες (Διάλεξη 19)

Κεφάλαιο 8.7. Πολυδιάστατοι Πίνακες (Διάλεξη 19) Κεφάλαιο 8.7 Πολυδιάστατοι Πίνακες (Διάλεξη 19) Πολυδιάστατοι πίνακες Μέχρι τώρα μιλούσαμε για Μονοδιάστατους Πίνακες. ή π.χ. int age[5]= {31,28,31,30,31; για Παράλληλους πίνακες, π.χ. int id[5] = {1029,1132,1031,9991,1513;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα:

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 ο Σετ Ασκήσεων Δομές Δεδομένων - Πίνακες Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8

Διαβάστε περισσότερα

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ Αντώνης Μαϊργιώτης Να γραφεί αλγόριθμοσ με τη βοήθεια διαγράμματοσ ροήσ, που να υπολογίζει το εμβαδό Ε ενόσ τετραγώνου με μήκοσ Α. ΑΡΧΗ ΔΙΑΒΑΣΕ

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Γραπτι Εξζταςθ ςτο μάκθμα Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Όνομα: Επϊνυμο: Τμιμα: Ημερομθνία: 20/02/11 Θζμα 1 ο Α. Να χαρακτθρίςετε κακεμιά από τισ παρακάτω προτάςεισ ωσ Σωςτι (Σ) ι Λάκοσ

Διαβάστε περισσότερα

Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)».

Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εφδοξοσ+ Διαθζτοντασ βιβλία μζςω του «Εφδοξοσ+» Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εμφανίηεται θ λίςτα με όλα ςασ τα βιβλία. Από εδϊ μπορείτε: -

Διαβάστε περισσότερα

ΟΔΗΓΙΕ ΔΗΜΙΟΤΡΓΙΑ ΚΑΙ ΡΤΘΜΙΗ ΔΩΡΕΑΝ ΗΛΕΚΣΡΟΝΙΚΟΤ ΣΑΧΤΔΡΟΜΕΙΟΤ ΣΟ GOOGLE (G-MAIL)

ΟΔΗΓΙΕ ΔΗΜΙΟΤΡΓΙΑ ΚΑΙ ΡΤΘΜΙΗ ΔΩΡΕΑΝ ΗΛΕΚΣΡΟΝΙΚΟΤ ΣΑΧΤΔΡΟΜΕΙΟΤ ΣΟ GOOGLE (G-MAIL) ΟΔΗΓΙΕ ΔΗΜΙΟΤΡΓΙΑ ΚΑΙ ΡΤΘΜΙΗ ΔΩΡΕΑΝ ΗΛΕΚΣΡΟΝΙΚΟΤ ΣΑΧΤΔΡΟΜΕΙΟΤ ΣΟ GOOGLE (G-MAIL) Ανοίγουμε το πρόγραμμα περιιγθςθσ ιςτοςελίδων (εδϊ Internet Explorer). Αν θ αρχικι ςελίδα του προγράμματοσ δεν είναι θ ςελίδα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ Φιλιοποφλου Ειρινθ Βάςθ Δεδομζνων Βάζη δεδομένων είναι μια οπγανωμένη ζςλλογή πληποθοπιών οι οποίερ πποζδιοπίζοςν ένα ζςγκεκπιμένο θέμα.χπηζιμεύοςν ζηην Σςλλογή

Διαβάστε περισσότερα

22. Ασκήσεις Επανάληψης

22. Ασκήσεις Επανάληψης Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 22. Ασκήσεις Επανάληψης Ιωάννθσ Κατάκθσ Μετατροπι χαρακτιρων Να γίνει πρόγραμμα που κα δζχεται ςυνεχώσ χαρακτιρεσ μζχρι να πατθκεί το ESC και να μετατρζπει

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων).

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_ (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). Βαςικοί παράμετροι @EDT@_ @CHK@_ @CXD@_ @CXDC@_ @CMB@_ @CHKLB@_ Παράμετροσ που

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

Δζντρα. Δομζσ Δεδομζνων

Δζντρα. Δομζσ Δεδομζνων Δζντρα Δομζσ Δεδομζνων Περιεχόμενα Δζντρα Γενικζσ ζννοιεσ Κόμβοσ ενόσ δζντρου Δυαδικά δζντρα αναηιτθςθσ Αναηιτθςθ Κόμβου Ειςαγωγι ι δθμιουργία κόμβου Δζντρα Γενικζσ ζννοιεσ Οι προθγοφμενεσ δομζσ που εξετάςτθκαν

Διαβάστε περισσότερα

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 5 η : Η Μζθοδοσ Simplex Παρουςίαςη τησ μεθόδου Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Δρ. Θεοδώρου Παύλοσ theodorou@uoc.gr Περιεχόμενα Τι είναι οι Βάςεισ Δεδομζνων (DataBases) Τι είναι Σφςτθμα Διαχείριςθσ Βάςεων Δεδομζνων (DBMS) Οι Στόχοι

Διαβάστε περισσότερα

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2013-2014 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα 11-13 & Παραςκευι 11-13

Διαβάστε περισσότερα

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox 03 05 ΙΛΤΔΑ ΠΛΗΡΟΦΟΡΙΚΗ Α.Ε. αρμά Ιηαμπζλλα Βαρλάμθσ Νίκοσ Ειςαγωγι... 1 Σι είναι το Databox...... 1 Πότε ανανεϊνεται...... 1 Μπορεί να εφαρμοςτεί

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΡΥΘΜΙΣΗΣ ΔΩΡΕΑΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΑΧΥΔΡΟΜΕΙΟΥ ΣΤΟ YAHOO

ΟΔΗΓΙΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΡΥΘΜΙΣΗΣ ΔΩΡΕΑΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΑΧΥΔΡΟΜΕΙΟΥ ΣΤΟ YAHOO ΟΔΗΓΙΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΡΥΘΜΙΣΗΣ ΔΩΡΕΑΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΑΧΥΔΡΟΜΕΙΟΥ ΣΤΟ YAHOO Ανοίγουμε το πρόγραμμα περιιγθςθσ ιςτοςελίδων (εδώ Internet Explorer). Κάνουμε κλικ ςτθ γραμμι διεφκυνςθσ του προγράμματοσ και

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO Το Micro Worlds Pro είναι ζνα ολοκλθρωμζνο περιβάλλον προγραμματιςμοφ. Χρθςιμοποιεί τθ γλϊςςα προγραμματιςμοφ Logo (εξελλθνιςμζνθ) Το Micro Worlds Pro περιλαμβάνει

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Επανάληψη σε συναρτήσεις Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Support

Εγχειρίδιο Χρήςησ Support Εγχειρίδιο Χρήςησ Support Περιεχόμενα 1) Αρχικι Σελίδα...2 2) Φόρμα Σφνδεςθσ...2 3) Μετά τθ ςφνδεςθ...2 4) Λίςτα Υποκζςεων...3 5) Δθμιουργία Νζασ Υπόκεςθσ...4 6) Σελίδα Υπόκεςθσ...7 7) Αλλαγι Κωδικοφ...9

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ:

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: 1. Ομάδα Ανκρωπιςτικών Σπουδών 2. Ομάδα Οικονομικών, Πολιτικών, Κοινωνικών & Παιδαγωγικών Σπουδών 3. Ομάδα Θετικών

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιςτικι είναι ο κλάδοσ των μακθματικϊν που αςχολείται με τθ ςυλλογι, τθν οργάνωςθ, τθν παρουςίαςθ και τθν ανάλυςθ αρικμθτικϊν

Διαβάστε περισσότερα

Διορκώνω τισ εργαςίεσ των ςυμφοιτθτών μου

Διορκώνω τισ εργαςίεσ των ςυμφοιτθτών μου Διορκώνω τισ εργαςίεσ των ςυμφοιτθτών μου Ένασ φοιτητήσ έγραψε ςτην αναφορά του το παρακάτω: Κατά τθ γνώμθ μου θ πλθροφορία για τισ επιχειριςεισ λαμβάνει πολφ ςθμαντικό ρόλο. Κατά τθ γνώμθ μου, ο ρόλοσ

Διαβάστε περισσότερα

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while )

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) 3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) Στα πιο πολλά προγράμματα απαιτείται κάποια ι κάποιεσ εντολζσ να εκτελοφνται πολλζσ φορζσ για όςο ιςχφει κάποια ςυνκικθ. Ο αρικμόσ των επαναλιψεων μπορεί να είναι

Διαβάστε περισσότερα

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9 Γράφοι Δομζσ Δεδομζνων Διάλεξθ 9 Περιεχόμενα Γράφοι Γενικζσ ζννοιεσ, οριςμόσ, κτλ Παραδείγματα Γράφων Αποκικευςθ Γράφων Βαςικοί Οριςμοί Γράφοι και Δζντρα Διάςχιςθ Γράφων Περιοδεφων Πωλθτισ Γράφοι Οριςμόσ:

Διαβάστε περισσότερα

Νζεσ Τάςεισ ςτην εκπαιδευτική διαδικαςία: Gamification

Νζεσ Τάςεισ ςτην εκπαιδευτική διαδικαςία: Gamification Νζεσ Τάςεισ ςτην εκπαιδευτική διαδικαςία: Gamification Δρ. Παναγιϊτθσ Ζαχαριάσ Οικονομικό Πανεπιςτιμιο Ακθνϊν - 15/5/2014 Ημερίδα με κζμα: «Οικονομία τθσ Γνϊςθσ: Αξιοποίθςθ τθσ καινοτομίασ ςτθ Β Βάκμια

Διαβάστε περισσότερα

Πωσ δθμιουργώ φακζλουσ;

Πωσ δθμιουργώ φακζλουσ; Πωσ δθμιουργώ φακζλουσ; Για να μπορζςετε να δθμιουργιςετε φακζλουσ ςτο χαρτοφυλάκιό ςασ ςτο Mahara κα πρζπει να μπείτε ςτο ςφςτθμα αφοφ πατιςετε πάνω ςτο ςφνδεςμο Mahara profiles από οποιοδιποτε ςελίδα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Πίνακες Πίνακες (arrays) Πολύ συχνά είναι απαραίτητο το πρόγραμμα μας να χειριστεί

Διαβάστε περισσότερα

Τεχνικι Παρουςιάςεων με PowerPoint

Τεχνικι Παρουςιάςεων με PowerPoint Τεχνικι Παρουςιάςεων με PowerPoint Δρ. Παφλοσ Θεοδϊρου Ανϊτατθ Εκκλθςιαςτικι Ακαδθμία Ηρακλείου Κριτθσ Περιεχόμενα Ειςαγωγι Γιατί πρζπει να γίνει παρουςίαςθ τθσ εργαςίασ μου Βαςικι προετοιμαςία Δομι παρουςίαςθσ

Διαβάστε περισσότερα

Γομέρ Γεδομένων (Data Structures) Χαπμανδάπηρ Δςάγγελορ, Τμήμα Δθαπμοζμένων Μαθημαηικών, Δαπινό Δξάμηνο 2010/11. Διζαγωγή: Σύνηομη Δπιζκόπηζη ηηρ C++

Γομέρ Γεδομένων (Data Structures) Χαπμανδάπηρ Δςάγγελορ, Τμήμα Δθαπμοζμένων Μαθημαηικών, Δαπινό Δξάμηνο 2010/11. Διζαγωγή: Σύνηομη Δπιζκόπηζη ηηρ C++ Γομέρ Γεδομένων (Data Structures) Χαπμανδάπηρ Δςάγγελορ, Τμήμα Δθαπμοζμένων Μαθημαηικών, Δαπινό Δξάμηνο 2010/11 Διζαγωγή: Σύνηομη Δπιζκόπηζη ηηρ C++ Βαζικά Θέμαηα. Σςναπηήζειρ και παπάμεηποι. Αναδπομικέρ

Διαβάστε περισσότερα

Κατά τθν ενεργοποίθςθ τθσ ιδιότθτασ αυτισ ενδζχεται να εμφανιςτεί ζνα μινυμα ςαν αυτό τθσ παρακάτω εικόνασ. Απλά επιβεβαιϊςτε πατϊντασ ΟΚ.

Κατά τθν ενεργοποίθςθ τθσ ιδιότθτασ αυτισ ενδζχεται να εμφανιςτεί ζνα μινυμα ςαν αυτό τθσ παρακάτω εικόνασ. Απλά επιβεβαιϊςτε πατϊντασ ΟΚ. Δημιουργία Πινάκων Για τθ δθμιουργία πινάκων ςτο περιβάλλον phpmyadmin μποροφμε είτε να χρθςιμοποιιςουμε τθ φόρμα δθμιουργίασ πίνακα, είτε να εκτελζςουμε ζνα ερϊτθμα SQL Στθ παρακάτω εικόνα φαίνεται μια

Διαβάστε περισσότερα

Visual C Express - Οδηγός Χρήσης

Visual C Express - Οδηγός Χρήσης Visual C++ 2008 Express - Οδηγός Χρήσης Ζερβός Μιχάλης, Πρίντεζης Νίκος Σκοπόσ του οδθγοφ αυτοφ είναι να παρουςιάςει τισ βαςικζσ δυνατότθτεσ του Visual C++ 2008 Express Edition και πωσ μπορεί να χρθςιμοποιθκεί

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2013-2014 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα 11-13 & Παραςκευι 11-13

Διαβάστε περισσότερα

Ακολουκιακά Λογικά Κυκλώματα

Ακολουκιακά Λογικά Κυκλώματα Ακολουκιακά Λογικά Κυκλώματα Τα ψθφιακά λογικά κυκλϊματα που μελετιςαμε μζχρι τϊρα ιταν ςυνδυαςτικά κυκλϊματα. Στα ςυνδυαςτικά κυκλϊματα οι ζξοδοι ςε κάκε χρονικι ςτιγμι εξαρτϊνται αποκλειςτικά και μόνο

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μάθημα 5ο Τμήμα Διοίκησης Επιχειρήσεων α εξάμηνο Β. Φερεντίνος Πίνακες 77 Στατική δομή αποθήκευσης δεδομένων (το μέγεθος ορίζεται εξαρχής και δεν αλλάζει) Αποθήκευση πολλών μεταβλητών

Διαβάστε περισσότερα

Κάνουμε κλικ ςτθν επιλογι του οριηόντιου μενοφ «Get Skype»για να κατεβάςουμε ςτον υπολογιςτι μασ το πρόγραμμα του Skype.

Κάνουμε κλικ ςτθν επιλογι του οριηόντιου μενοφ «Get Skype»για να κατεβάςουμε ςτον υπολογιςτι μασ το πρόγραμμα του Skype. ΟΔΗΓΙΕ ΔΗΜΙΟΤΡΓΙΑ ΛΟΓΑΡΙΑΜΟΤ ΣΟ SKYPE Ανοίγουμε το πρόγραμμα περιιγθςθσ ιςτοςελίδων (εδϊ Internet Explorer). Κάνουμε κλικ ςτθ γραμμι διεφκυνςθσ του προγράμματοσ και πλθκτρολογοφμε: www.skype.com Κάνουμε

Διαβάστε περισσότερα

eorder Eγχειρίδιο Χρήσης

eorder Eγχειρίδιο Χρήσης Eγχειρίδιο Χρήσης Περιεχόμενα Σχετικά.. 3 Ειςαγωγι ςτο ςφςτθμα. 4 Λιψθ Παραγγελιάσ.. 5 Διαχείριςθ τραπεηιϊν. 9 Μετακίνθςθ Τραπεηιοφ... 10 Λογαριαςμόσ Τραπεηιοφ 11 Παραγγελίεσ χωρίσ τραπζηι. 12 Σθμειϊματα

Διαβάστε περισσότερα

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα,

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα, Ενδεικτική Οργάνωςη Ενοτήτων Α Σάξη Α/ Μαθηματικό περιεχόμενο Δείκτεσ Επιτυχίασ Ώρεσ Α Διδ. 1 ΕΝΟΣΗΣΑ 1 Αλ1.1 υγκρίνουν και ταξινομοφν αντικείμενα ςφμφωνα με κάποιο χαρακτθριςτικό/κριτιριο/ιδιότθτά Ομαδοποίθςθ,

Διαβάστε περισσότερα

Διαδικαςία Προγράμματοσ Ωρομζτρθςθσ. (v.1.0.7)

Διαδικαςία Προγράμματοσ Ωρομζτρθςθσ. (v.1.0.7) (v.1.0.7) 1 Περίλθψθ Σο ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ Διαδικαςίασ Προγράμματοσ Ωρομζτρθςθσ. Παρακάτω προτείνεται μια αλλθλουχία ενεργειϊν τθν οποία ο χριςτθσ πρζπει

Διαβάστε περισσότερα

Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ

Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ Διαδίκτυο: μια πόρτα ςτον κόςμο Πϊσ μπορεί κανείσ ςε λίγα λεπτά να μάκει ποιεσ ταινίεσ παίηονται ςτουσ κινθματογράφουσ, να ςτείλει

Διαβάστε περισσότερα

(3Μονάδεσ) Δεδομζνα //Α// Για i από 1 μζχρι 10 k (100+i)mod 101 B[k] A[i] Τζλοσ_επανάλθψθσ Αποτελζςματα //Β,k//

(3Μονάδεσ) Δεδομζνα //Α// Για i από 1 μζχρι 10 k (100+i)mod 101 B[k] A[i] Τζλοσ_επανάλθψθσ Αποτελζςματα //Β,k// Μάθημα: Ανάπτυξη Εφαρμογών ςε Προγραμματιςτικό Περιβάλλον Τάξη Γ Λυκείου, Πληροφορική Οικονομικών Καθηγητής : Σιαφάκασ Γιώργοσ Ημερομηνία : 21/2/2016 Διάρκεια: 3 ώρεσ ΘΕΜΑ Α /40 (Α1)Να απαντήςετε αν είναι

Διαβάστε περισσότερα

groupsms Interface: Εργαλείο μαζικών αποζηολών SMS

groupsms Interface: Εργαλείο μαζικών αποζηολών SMS groupsms Interface: Εργαλείο μαζικών αποζηολών SMS Έκδοζη: 27 Μαρηίου 2012 Τποδομι groupsms: Γενικά Πλεονεκτιματα Βελτιςτοποιθμζνθ διαδικαςία SMS αποςτολϊν Μαηικζσ αποςτολζσ μζςω πολλαπλϊν γραμμϊν που

Διαβάστε περισσότερα

Σύ ντομος Οδηγο ς χρη σης wikidot για τα projects

Σύ ντομος Οδηγο ς χρη σης wikidot για τα projects Σύ ντομος Οδηγο ς χρη σης wikidot για τα projects Ειςαγωγή κοπόσ αυτοφ του κειμζνου είναι να δϊςει ςφντομεσ οδθγίεσ για τθν επεξεργαςία των ςελίδων του wiki τθσ ερευνθτικισ εργαςίασ. Πλιρθσ οδθγόσ για

Διαβάστε περισσότερα

Joomla! - User Guide

Joomla! - User Guide Joomla! - User Guide τελευταία ανανέωση: 10/10/2013 από την ICAP WEB Solutions 1 Η καταςκευι τθσ δυναμικισ ςασ ιςτοςελίδασ ζχει ολοκλθρωκεί και μπορείτε πλζον να προχωριςετε ςε αλλαγζσ ι προςκικεσ όςον

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Πίνακες Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Πίνακες Πολλές φορές θέλουμε να κρατήσουμε στην μνήμη πολλά αντικείμενα

Διαβάστε περισσότερα

Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών. (v )

Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών. (v ) Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών (v.1. 0.7) 1 Περίλθψθ Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ Εκτφπωςθσ

Διαβάστε περισσότερα

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων) 1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ

Διαβάστε περισσότερα

Οδθγίεσ εγκατάςταςθσ και ρυκμίςεισ του ηυγοφ DIGI SM100

Οδθγίεσ εγκατάςταςθσ και ρυκμίςεισ του ηυγοφ DIGI SM100 Οδθγίεσ εγκατάςταςθσ και ρυκμίςεισ του ηυγοφ DIGI SM100 ΠΕΡΙΕΧΟΜΕΝΑ Γενικά Είςοδοσ ςτο πρόγραμμα Ρυιμίςεισ ζυγοφ Αλλαγι IP διεφκυνςθσ ηυγοφ Ρυκμίςεισ επικοινωνίασ Αποκικευςθ Ρυιμίςεισ εφαρμογθσ DIGICOM

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 6 Πίνακες Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Τύπος πίνακα (array) Σύνθετος τύπος δεδομένων Αναπαριστά ένα σύνολο ομοειδών

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 11: Αντικειμενοςτραφήσ και αντικείμενοςχεςιακζσ βάςεισ Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1]

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1] Το e-class του Πανελλινιου Σχολικοφ Δίκτυου [ΠΣΔ/sch.gr] είναι μια πολφ αξιόλογθ και δοκιμαςμζνθ πλατφόρμα για αςφγχρονο e-learning. Ανικει ςτθν κατθγορία του ελεφκερου λογιςμικοφ. Αρχίηουμε από τθ διεφκυνςθ

Διαβάστε περισσότερα

Ανάλυςη κλειςτϊν δικτφων

Ανάλυςη κλειςτϊν δικτφων Ανάλυςη κλειςτϊν δικτφων Θ ανάλυςθ κλειςτϊν δικτφων ςτθρίηεται ςτθ διατιρθςθ τθσ μάηασ και τθσ ενζργειασ. Σε ζνα τυπικό βρόχο ABCDA υπάρχει ζνασ αρικμόσ από κόμβουσ, εδϊ A,B,C,D, ςτουσ οποίουσ ιςχφει θ

Διαβάστε περισσότερα

Βαςεις δεδομενων 1. Δρ. Aλεξανδροσ Βακαλουδθσ

Βαςεις δεδομενων 1. Δρ. Aλεξανδροσ Βακαλουδθσ Βαςεις δεδομενων 1 Δρ. Aλεξανδροσ Βακαλουδθσ Επεξεργαςία βάςθσ δεδομζνων Μιλιςαμε για ςχεδίαςθ με το μοντζλο οντοτιτων ςυςχετίςεων Και τθν υλοποίθςθ ςε πίνακεσ Ρολφ ωραία, ζχουμε καταςκευάςει τθ βάςθ Με

Διαβάστε περισσότερα

Ειςαγωγι ςτθν Αςαφι Λογικι

Ειςαγωγι ςτθν Αςαφι Λογικι Ειςαγωγι ςτθν Αςαφι Λογικι Matlab fuzzy logic toolbox Ειςαγωγικά Η αςαφισ λογικι μπορεί να κεωρθκεί ωσ μια επζκταςθ τθσ μακθματικισ λογικισ, όπου οι λογικζσ προτάςεισ δεν ζχουν απόλυτεσ τιμζσ αλικειασ

Διαβάστε περισσότερα

Σύνθεζη LRGB ζηο CCDstack2

Σύνθεζη LRGB ζηο CCDstack2 Σε αυηόν ηον οδηγό θα δούμε πώς κάνουμε LRGB ζύνθεζη ζηο CCDstack2 Ππιν ξεκινήζοςμε παπαθέηυ κάποιερ πληποθοπίερ για ηον εξοπλιζμό μος και ηιρ λήτειρ πος σπηζιμοποιηθήκαν ζηα παπακάηυ βήμαηα. Εξοπλιζμόρ:

Διαβάστε περισσότερα

Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε:

Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε: ΔΟΜΗ ΑΠΟΦΑΗ Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε: Όταν το if που χρθςιμοποιοφμε παρζχει μόνο μία εναλλακτικι διαδρομι εκτζλεςθ, ο τφποσ δομισ

Διαβάστε περισσότερα

1 Εγκατϊςταςη λογαριαςμού email

1 Εγκατϊςταςη λογαριαςμού email 1 Εγκατϊςταςη λογαριαςμού email 1.1 Εγκατϊςταςη λογαριαςμού ςε Microsoft Office Outlook 2003 1.1.1 Αν δεν χρηςιμοποιεύτε όδη το Outlook. ε περίπτωςθ που δεν ζχετε εγκαταςτιςει άλλο λογαριαςμό ςτο Microsoft

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ

Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Σκοπός του μαθήματος Σκοπός του παρόντος μαθήματος είναι να μάθετε να κάνετε εισαγωγή δεδομένων σε πίνακες και περαιτέρω επεξεργασία

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Ιούνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1. Περιφζρεια... 3 1.1 Διαχειριςτήσ Αιτήςεων Περιφζρειασ... 3 1.1.1. Είςοδοσ... 3 1.1.2. Αρχική

Διαβάστε περισσότερα

(Α3 1 ) Σασ δίνεται το παρακάτω αλγορικμικό τμιμα

(Α3 1 ) Σασ δίνεται το παρακάτω αλγορικμικό τμιμα Μάθημα: Ανάπτυξη Εφαρμογών ςε Προγραμματιςτικό Περιβάλλον Τάξη Γ Λυκείου, Πληροφορική Οικονομικών Καθηγητής : Σιαφάκασ Γιώργοσ Ημερομηνία : 28/12/2015 Διάρκεια: 3 ώρεσ ΘΕΜΑ Α /40 (Α1) Να γράψετε ςτο τετράδιό

Διαβάστε περισσότερα

Slide 1. Εισαγωγή στη ψυχρομετρία

Slide 1. Εισαγωγή στη ψυχρομετρία Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν

Διαβάστε περισσότερα

ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ:

ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ: ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ: 2008030075 ΕΙΑΓΩΓΗ Το Heartstone είναι ζνα ψθφιακό παιχνίδι καρτϊν που διεξάγιεται πάνω ςτο Battle.net, ζναν διακομιςτι τθσ εταιρίασ

Διαβάστε περισσότερα

Κεφάλαιο 8.7. Πίνακες & Συναρτήσεις ( ιάλεξη 17) ιδάσκων: ηµήτρης Ζεϊναλιπούρ

Κεφάλαιο 8.7. Πίνακες & Συναρτήσεις ( ιάλεξη 17) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 8.7 Πίνακες & Συναρτήσεις ( ιάλεξη 17) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 17-1 Εισαγωγή Στις προηγούµενες διαλέξεις µάθαµε πώς να δηλώνουµε, αρχικοποιούµε και να επεξεργαζόµαστε πίνακες. Σήµερα θα µελετήσουµε

Διαβάστε περισσότερα

Τφποι δεδομζνων MPI. Κώςτασ Διαμαντάρασ Τμιμα Πλθροφορικισ ΤΕΙ Θεςςαλονίκθσ

Τφποι δεδομζνων MPI. Κώςτασ Διαμαντάρασ Τμιμα Πλθροφορικισ ΤΕΙ Θεςςαλονίκθσ Τφποι δεδομζνων MPI Κώςτασ Διαμαντάρασ Τμιμα Πλθροφορικισ ΤΕΙ Θεςςαλονίκθσ MPI datatypes Σκοπόσ MPI datatypes: θ ςυνεργαςία μεταξφ ετερογενών υπολογιςτών και αρχιτεκτονικών Η χριςθ μθ ςυνεχών κζςεων μνιμθσ.

Διαβάστε περισσότερα

η τζχνη τησ εκπαίδευςησ ο καθηγητήσ ςτο ςπίτι, 24 ώρεσ το 24ωρο

η τζχνη τησ εκπαίδευςησ ο καθηγητήσ ςτο ςπίτι, 24 ώρεσ το 24ωρο η τζχνη τησ εκπαίδευςησ ο καθηγητήσ ςτο ςπίτι, 24 ώρεσ το 24ωρο 210-9519043, info@odsk.gr Ειςαγωγή ιμερα, με τθν αλματϊδθ πρόοδο τθσ τεχνολογίασ και ειδικότερα ςτον τομζα των τθλεπικοινωνιϊν, ανοίγονται

Διαβάστε περισσότερα

Θεςιακά ςυςτιματα αρίκμθςθσ

Θεςιακά ςυςτιματα αρίκμθςθσ Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ

Διαβάστε περισσότερα

Επαναλθπτικζσ Αςκιςεισ

Επαναλθπτικζσ Αςκιςεισ Επαναλθπτικζσ Αςκιςεισ Αςκιςεισ Ρίνακεσ Τιμϊν Άσκηση 1 η Γίλεηαη o παξαθάησ αιγόξηζκνο, ζηνλ νπνίν έρνπλ αξηζκεζεί νη εληνιέο εθρώξεζεο: Αιγόξηζκνο Πνιιαπιαζηαζκόο Γεδνκέλα //α,β// Αλ α > β ηόηε αληηκεηάζεζε

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ Ειρινθ Φιλιοποφλου Ετικέτεσ ςτυλ Εκτόσ από τισ παραγράφουσ και τισ επικεφαλίδεσ, όταν κζλουμε να δϊςουμε ζμφαςθ ςε κάποιο κείμενο μποροφμε να χρθςιμοποιιςουμε και

Διαβάστε περισσότερα

Η διαδικαςία επιλογήσ μαθημάτων

Η διαδικαςία επιλογήσ μαθημάτων Η διαδικαςία επιλογήσ μαθημάτων 1. Ηθτιςτε από τθν Κοςμθτεία τθσ χολισ Οικονομικϊν Επιςτθμϊν και Διοίκθςθσ (Κτιριο ΟΕΔ02, 0 όροφοσ, γραφείο 027Α) τθν λίςτα με τα μακιματα αντιςτοιχίασ που ιδθ υπάρχουν

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΕΓΚΑΣΑΣΑΗ ΠΛΑΣΦΟΡΜΑ TUBE

ΕΓΧΕΙΡΙΔΙΟ ΕΓΚΑΣΑΣΑΗ ΠΛΑΣΦΟΡΜΑ TUBE ΕΓΧΕΙΡΙΔΙΟ ΕΓΚΑΣΑΣΑΗ ΠΛΑΣΦΟΡΜΑ TUBE Ζκδοςη 1.2 1 Ειςαγωγή ςτο ςφςτημα Μπαίνουμε ςτο www.datalabs.edu.gr και με κλικ ςτθν καρτζλα tube μεταφερόμαςτε ςτθ ςελίδα του. Κάτω δεξιά μασ ηθτάει να ειςάγουμε το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) 19 Μαρτίου 2011 10:00-11:15 3 point/μονάδες 1) Στθν πιο κάτω εικόνα πρζπει να υπάρχει αρικμόσ ςε κάκε κουκκίδα ϊςτε το άκροιςμα των αρικμϊν ςτα άκρα κάκε ευκφγραμμου τμιματοσ

Διαβάστε περισσότερα

Εγκατάσταση «Μισθός 2005»

Εγκατάσταση «Μισθός 2005» Εγκατάσταση «Μισθός 2005» Έκδοση 8.5 ΟΔΗΓΙΕΣ ΕΓΚΑΤΑΣΤΑΣΗΣ Βιμα 1 ο. Κάνουμε φφλαξθ των αρχείων από τθν προθγοφμενθ ζκδοςθ του προγράμματοσ. Εργαλεία Φφλαξθ c:\msteuro\20111001 *Εντάξει+ Όποσ: 20111001

Διαβάστε περισσότερα

Εγχειρίδιο Χριςθσ: Εφαρμογι Αιτιςεων για τα Εκπαιδευτικά Προγράμματα του Προςωπικοφ των Επιχειριςεων Τροφίμων

Εγχειρίδιο Χριςθσ: Εφαρμογι Αιτιςεων για τα Εκπαιδευτικά Προγράμματα του Προςωπικοφ των Επιχειριςεων Τροφίμων Εγχειρίδιο Χριςθσ: Εφαρμογι Αιτιςεων για τα Εκπαιδευτικά Προγράμματα του Προςωπικοφ των Επιχειριςεων ΕΚΔΟΣΗ 1.0 Περιεχόμενα Εφαρμογι Αιτιςεων για τα Εκπαιδευτικά Προγράμματα του Προςωπικοφ των Επιχειριςεων...

Διαβάστε περισσότερα

Προγραμματισμό για ΗΜΥ

Προγραμματισμό για ΗΜΥ ΕΠΛ 34: Εισαγωγή στον Προγραμματισμό για ΗΜΥ Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 12 Πίνακες εικτών (Pointers Arrays) Θέματα ιάλεξης Στην ενότητα

Διαβάστε περισσότερα

Διδάςκων: Κωνςταντίνοσ τεφανίδθσ

Διδάςκων: Κωνςταντίνοσ τεφανίδθσ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΧΟΛΗ ΘΕΣΙΚΩΝ ΕΠΙΣΗΜΩΝ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΤΠΟΛΟΓΙΣΩΝ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗ ΗΤ-564 ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΣΑ ΕΠΙΚΟΙΝΩΝΙΑ ΑΝΘΡΩΠΟΤ - ΜΗΧΑΝΗ Διδάςκων: Κωνςταντίνοσ τεφανίδθσ τόχοσ τθσ ςυγκεκριμζνθσ εργαςίασ

Διαβάστε περισσότερα

Ειςαγωγή ςτισ Συναρτήςεισ τησ PHP

Ειςαγωγή ςτισ Συναρτήςεισ τησ PHP Ειςαγωγή ςτισ Συναρτήςεισ τησ PHP Οι ςυναρτιςεισ (functions) τθσ PHP, δθλ. αυτζσ που υπάρχουν ενςωματωμζνεσ μζςα ςτθν PHP αλλά και αυτζσ που δθμιουργοφμε μόνοι μασ, διευκολφνουν πολφ το γράψιμο του κϊδικα

Διαβάστε περισσότερα

Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων»

Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων» Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων» Το Πλθροφοριακό Σφςτθμα τθσ δράςθσ «e-κπαιδευτείτε» ζχει ςτόχο να αυτοματοποιιςει τισ ακόλουκεσ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει

Διαβάστε περισσότερα

Οδηγίες αναβάθμισης χαρτών

Οδηγίες αναβάθμισης χαρτών Οδηγίες αναβάθμισης χαρτών Για να κάνετε τθν αναβάκμιςθ χαρτϊν Ελλάδοσ κα πρζπει να εγγραφείτε ωσ νζο μζλοσ ςτθν ιςτοςελίδα http://www.mls.gr. 1) Εγγραφή νέου μέλουσ ςτην ιςτοςελίδα αναβαθμίςεων Α) Αντιγράψτε

Διαβάστε περισσότερα

ΠΡΟΦΟΡΗΓΗΗ ΥΑΡΜΑΚΩΝ (ΔΑΝΕΙΚΑ Ε ΠΕΛΑΣΗ)

ΠΡΟΦΟΡΗΓΗΗ ΥΑΡΜΑΚΩΝ (ΔΑΝΕΙΚΑ Ε ΠΕΛΑΣΗ) ΠΡΟΦΟΡΗΓΗΗ ΥΑΡΜΑΚΩΝ (ΔΑΝΕΙΚΑ Ε ΠΕΛΑΣΗ) Για να χορηγήςετε ςε πελάτθ ςασ κάποια φάρμακα με τη μορφή «δανεικών» (δθλαδι φάρμακα για τα οποία κα φζρει ςτο επόμενο διάςτθμα ςυνταγι του ταμείου του), ακολουκιςτε

Διαβάστε περισσότερα

Seventron Limited. Οδηγίες χρήσης EnglishOnlineTests.com

Seventron Limited. Οδηγίες χρήσης EnglishOnlineTests.com Seventron Limited Οδηγίες χρήσης EnglishOnlineTests.com EnglishOnlineTests.com Seventron.com March 2013 Περιεχόμενα Πίνακασ ελζγχου/control Panel... 2 Προςκικθ μακθτι... 3 Ανάκεςθ μακθτι ςε ενότθτα...

Διαβάστε περισσότερα

Οδηγίες Πρόζβαζης ζηο EndNote Web. Πρόζβαζη ζηο EndNote Web

Οδηγίες Πρόζβαζης ζηο EndNote Web. Πρόζβαζη ζηο EndNote Web Οδηγίες Πρόζβαζης ζηο EndNote Web Το EndNote Web είναι εργαλείο διαχείριςθσ βιβλιογραφικϊν αναφορϊν, ενςωματωμζνο ςτθ βάςθ Web of Science. Απαιτείται εγγραφι και δθμιουργία password (Sign in / Register)

Διαβάστε περισσότερα

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ Οδηγός Χρήσης Εφαρμογής Ελέγχου Προσφορών Αφοφ πιςτοποιθκεί ο λογαριαςμόσ που δθμιουργιςατε ςτο πρόγραμμα ωσ Πάροχοσ Προςφορϊν, κα λάβετε ζνα e-mail με

Διαβάστε περισσότερα

Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε)

Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα Σεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνασ Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε) Ενδεικτική επίλυςη άςκηςησ 1 Δρ. Θωμάσ Π. Μαηαράκοσ Τμιμα Ναυπθγϊν Μθχανικϊν ΤΕ Το

Διαβάστε περισσότερα

Κεφάλαιο 8.6. Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ

Κεφάλαιο 8.6. Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 8.6 Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 16-1 Πίνακες - Επανάληψη Στην προηγούµενη διάλεξη κάναµε µια εισαγωγή στην δοµή δεδοµένων Πίνακας Σε ένα πίνακα ένα σύνολο αντικειµένων

Διαβάστε περισσότερα

ΣΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΗΜΙΟ ΚΤΠΡΟΤ ΣΜΗΜΑ ΠΟΛΤΜΕΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ ΣΕΧΝΩΝ

ΣΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΗΜΙΟ ΚΤΠΡΟΤ ΣΜΗΜΑ ΠΟΛΤΜΕΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ ΣΕΧΝΩΝ ΠΓΣ 518: ΧΕΔΙΑΜΟ ΠΑΙΧΝΙΔΙΩΝ ΗΛΕΚΣΡΟΝΙΚΩΝ ΤΠΟΛΟΓΙΣΩΝ Θζμα: Triggers και αλληλεπίδραςη με περιβάλλον Για αυτό το tutorial χρθςιμοποιείςτε βάςθ τον κϊδικα που ςασ δίνεται ςτο Resources/projectUnityToStartWithForTutorial_TriggersInteraction[_WithPrefabsCreated]

Διαβάστε περισσότερα

Οδηγός χρήσης Blackboard Learning System για φοιτητές

Οδηγός χρήσης Blackboard Learning System για φοιτητές Οδηγός χρήσης Blackboard Learning System για φοιτητές Ειςαγωγή Το Blackboard Learning System είναι ζνα ολοκλθρωμζνο ςφςτθμα διαχείριςθσ μακθμάτων (Course Management System). Στισ δυνατότθτεσ του Blackboard

Διαβάστε περισσότερα

Συστήματα Παράλληλης & Κατανεμημένης Επεξεργασίας

Συστήματα Παράλληλης & Κατανεμημένης Επεξεργασίας Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Συστήματα Παράλληλης & Κατανεμημένης Επεξεργασίας Ενότητα 5: MPI_Reduce Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής

Διαβάστε περισσότερα

είκτες και Πίνακες (2)

είκτες και Πίνακες (2) είκτες και Πίνακες (2) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πολυδιάστατοι πίνακες Πέρασµα παραµέτρων σε προγράµµατα C ΕΠΛ 132 Αρχές Προγραµµατισµού ΙΙ 1-1 Πίνακες εικτών Πίνακας δεικτών είναι

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Βάςεισ Δεδομζνων Ι Ενότητα 12: Κανονικοποίηςη Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εγτειρίδιο διατείριζης online ερεσνών

Εγτειρίδιο διατείριζης online ερεσνών Εγτειρίδιο διατείριζης online ερεσνών Περιεχόμενα Ειςαγωγι... 3 Δθμιουργία ερωτθματολογίων... 5 Δθμιουργία, Αντιγραφι ι Ειςαγωγι Νζου Ερωτθματολογίου... 6 Δθμιουργία Ομάδων Ερωτιςεων... 7 Δθμιουργία Ερωτιςεων...

Διαβάστε περισσότερα

Εύρεςη Διαμέςου ςε κατανεμημένα δεδομένα με ΜΡΙ

Εύρεςη Διαμέςου ςε κατανεμημένα δεδομένα με ΜΡΙ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Τ ΑΠΘ ΣΟΜΕΑ ΗΛΕΚΣΡΟΝΙΚΗ ΚΑΙ Η/Τ Εύρεςη Διαμέςου ςε κατανεμημένα δεδομένα με ΜΡΙ Παράλλθλα και Διανεμθμζνα υςτιματα 2θ Εργαςία Μόςχογλου τυλιανόσ(697) - Καηά

Διαβάστε περισσότερα

Μάρκετινγκ V Κοινωνικό Μάρκετινγκ. Πόπη Σουρμαΐδου. Σεμινάριο: Αναπτφςςοντασ μια κοινωνική επιχείρηςη

Μάρκετινγκ V Κοινωνικό Μάρκετινγκ. Πόπη Σουρμαΐδου. Σεμινάριο: Αναπτφςςοντασ μια κοινωνική επιχείρηςη Μάρκετινγκ V Κοινωνικό Μάρκετινγκ Πόπη Σουρμαΐδου Σεμινάριο: Αναπτφςςοντασ μια κοινωνική επιχείρηςη Σφνοψη Τι είναι το Marketing (βαςικι ειςαγωγι, swot ανάλυςθ, τα παλιά 4P) Τι είναι το Marketing Plan

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium I

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium I Σ ΤΑΤ Ι Σ Τ Ι Κ Η Statisticum collegium I Τι κάνει η Στατιςτική Στατιςτικι (Statistics) Μετατρζπει αρικμθτικά δεδομζνα ςε χριςιμθ πλθροφορία. Εξάγει ςυμπεράςματα για ζναν πλθκυςμό. Τισ περιςςότερεσ φορζσ,

Διαβάστε περισσότερα

ΤΙΤΛΟΣ: "SWITCH-ΠΩ ΝΑ ΚΑΣΑΦΕΡΕΙ ΣΗΝ ΑΛΛΑΓΗ ΟΣΑΝ Η ΑΛΛΑΓΗ ΕΙΝΑΙ ΔΤΚΟΛΗ" Σσγγραφείς: Chip Heath & Dan Heath. Εκδόζεις: Κσριάκος Παπαδόποσλος/ΕΕΔΕ

ΤΙΤΛΟΣ: SWITCH-ΠΩ ΝΑ ΚΑΣΑΦΕΡΕΙ ΣΗΝ ΑΛΛΑΓΗ ΟΣΑΝ Η ΑΛΛΑΓΗ ΕΙΝΑΙ ΔΤΚΟΛΗ Σσγγραφείς: Chip Heath & Dan Heath. Εκδόζεις: Κσριάκος Παπαδόποσλος/ΕΕΔΕ ΤΙΤΛΟΣ: "SWITCH-ΠΩ ΝΑ ΚΑΣΑΦΕΡΕΙ ΣΗΝ ΑΛΛΑΓΗ ΟΣΑΝ Η ΑΛΛΑΓΗ ΕΙΝΑΙ ΔΤΚΟΛΗ" Σσγγραφείς: Chip Heath & Dan Heath Εκδόζεις: Κσριάκος Παπαδόποσλος/ΕΕΔΕ www.dimitrazervaki.com Περιεχόμενα ΣΡΕΙ ΑΝΑΠΑΝΣΕΧΕ ΔΙΑΠΙΣΩΕΙ

Διαβάστε περισσότερα