ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι"

Transcript

1 Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης

2 το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ υποδιαςτολισ: απλήσ και διπλήσ ακρίβειασ 2

3 Παράςταςθ Ενασ δυαδικόσ αρικμόσ κινθτοφ ςθμείου, R παριςτάνεται από μια αλυςίδα από bits και χαρακτθρίηεται από τισ εξισ παραμζτρουσ: από το πρόςθμο (sign) S του αρικμοφ. από ζναν εκκζτθ (exponent) Ε μιασ βάςθσ Η, από ζνα ςυντελεςτι (mantissa) F, ζτςι ϊςτε να ιςχφει η ςχζςη: R = (-1) S x Η Ε x F 3

4 αποκικευςθ H κζςθ μνιμθσ του Θ/Υ που κ' αποκθκεφςει τον αρικμό χρειάηεται να ζχει τρεισ χϊρουσ. Ζνα για το πρόςημο S, ζνα για τον εκθέτη Ε (M bits) και Ζνα για τον ςυντελεςτή F (K bits), ζτςι ϊςτε n=1+m+k. Θ βάςθ Η είναι ίδια για όλουσ τουσ αρικμοφσ και δεν χρειάηεται να ζχουμε ιδιαίτερο χϊρο γι' αυτιν και ονομάηεται βάςθ του ςυςτιματοσ κινθτισ υποδιαςτολισ 'Όςο μεγαλφτερο είναι το K, τόςο περιςςότερο αυξάνεται θ ακρίβεια του αρικμοφ, αντίκετα όςο αυξάνει το M τόςο αυξάνει το μζγεκοσ του αρικμοφ 4

5 Αναπαράςταςη απλήσ ακρίβειασ Θ αναπαράςταςθ ενόσ αρικμοφ, ςφμφωνα με τθ μορφι απλισ ακρίβειασ του προτφπου ΙΕΕΕ, αποτελείται από τρία πεδία: το ςυντελεςτι f (23 bits), τον πολωμζνο εκκζτθ e (8 bits) και το πρόςθμο s (1 bit). Τα πεδία αυτά αποκθκεφονται ςυνεχόμενα ςε μία λζξθ 32 bits του υπολογιςτι. Τα bits 0-22 περιζχουν το ςυντελεςτι f. Το bit 0 είναι το λιγότερο ςθμαντικό, ενϊ το bit 22 είναι το πιο ςθμαντικό bit του ςυντελεςτι. Τα bits περιζχουν τον πολωμζνο εκκζτθ. Το bit 23 είναι το λιγότερο ςθμαντικό, ενϊ Το bit 30 είναι το πιο ςθμαντικό bit του πολωμζνου εκκζτθ. Το bit 31 αναπαριςτά το πρόςθμο του αρικμοφ. 5

6 Παρατθριςεισ R = (-1) S x Η Ε x F, Δεν υπάρχει κζςθ για το πρόςθμο του εκκζτθ. Η ζλλειψη αρνητικοφ εκθζτη ςημαίνει ότι δεν μποροφν να παραςταθοφν πολφ μικροί αριθμοί. Θ ζλλειψθ αυτι αντιμετωπίηεται μ' ζνα τζχναςμα. Στον πρϊτο τφπο αντί του εκκζτθ E τοποκετείται ο πολωμζνοσ (biased Exponent) εκκζτθσ e, ζτςι ϊςτε Ε = e Θ τιμι 127 ονομάηεται πόλωςθ (bias). 6

7 Παρατθριςεισ R = (-1) S x Η Ε x F, Επειδι ιςχφει 0 e 255 (γιατί;) κα ζχουμε -127 e Το τζχναςμα αυτό άλλαξε τα μεγζκθ των αρικμϊν που μποροφμε να κωδικοποιιςουμε. Χωρίσ τθν πόλωςθ κα είχαμε αρικμοφσ με μεγζκθ από 0 ζωσ ενϊ με τθν προςκικθ τθσ πόλωςθσ μποροφμε να κωδικοποιιςουμε αρικμοφσ με μεγζκθ που περιλαμβάνονται μεταξφ των ορίων και R = (-1) S x 2 e-127 x (1.f) 7

8 απλισ ακρίβειασ αρικμόσ κινθτοφ ζχει τθ μορφι: ςθμείου R R = (-1) S x 2 e-127 x (1.f) Όπου S είναι το πρόςθμο του αρικμοφ (1 bit) e είναι o εκκζτθσ που καταλαμβάνει χϊρο 8 bits f ζνα δυαδικό κλάςμα(fraction ι mantissa) 23 bits Αν ςυνδυάςουμε τθν παραπάνω ςχζςθ με τθν R = (-1) S x Η Ε x F ζχουμε : Ε = e - 127, F = (1.f) και Η = 2 8

9 κανονικοποιθμζνοσ αρικμόσ κατά το πρότυπο τθσ ΙΕΕΕ Ενασ αρικμόσ R κα λζγεται κανονικοποιθμζνοσ ωσ προσ βάςθ 2, όταν μπορεί να γραφεί με τθ μορφι R = (-1) S x 2 e-127 x F, όπου F είναι ζνασ δυαδικόσ αρικμόσ με ζνα ακζραιο bit ίςο με τθν μονάδα, δθλαδι ζχουμε τθ ςχζςθ F = 1.f προκφπτει ότι 1 1.f < 2. Πράγματι, θ μικρότερθ τιμι του f είναι μθδζν και του 1.f είναι 1. Θ μεγαλφτερθ τιμι του f είναι (23 bits) και του (1. f) = θ μονάδα αριςτερά του δυαδικοφ ςθμείου ςτον παράγοντα (1.f) δεν καταλαμβάνει κζςθ μζςα ςτα 32 bit που κωδικοποιείται ο αρικμόσ R 9

10 Aλγόριθμοσ Αποκωδικοποίηςησ Θ αποκωδικοποίθςθ του περιεχομζνου μιασ κζςθσ μνιμθσ που φιλοξενεί ζναν αρικμό κινθτισ υποδιαςτολισ R γίνεται ωσ εξισ: B1 : Μετατρζπουμε τισ ποςότθτεσ e και f ςτο δεκαδικό ςφςτθμα Β2 : Υπολογίηουμε τον πολωμζνο εκκζτθ Ε 10 =e Β3 : Υπολογίηουμε τον αρικμό R με βάςθ το πρότυπο IEEE 10

11 αλγόρικμοσ αποκωδικοποίθςθσ για να βροφμε το δεκαδικό τθσ αντίςτοιχο. Αν υποκζςουμε ότι μια κζςθ μνιμθσ ζχει τθν παρακάτω εικόνα: S ΕXP (E) MANTISSA (F) S = 1 e = και f= R = (-1) S x 2 e-127 x (1.f) Β1 : e 10 = f 10 = Β2 : Ε 10 = = Β3 : R = (-1) 1 x 2 12 x = = (-1) x 4096 x =

12 αποκωδικοποίθςθ S EXP (E) MANTISSA (F) S = 0 e = και f = R = (-1) S x 2 e-127 x (1.f) B1 : e 10 = f 10 = B2 : Ε 10 = = Β3 : R = (-1) 0 x 2-7 x 1.5 =

13 παράδειγμα S EXP (E) MANTISSA (F) R = (-1) S x 2 e-127 x (1.f)

14 παράδειγμα S EXP (E) MANTISSA (F) R = (-1) S x 2 e-127 x (1.f)

15 ,47<10> R = (-1) S x 2 e-127 x (1.f) 15

16 R = (-1) S x 2 e-127 x (1.f)

17 παράδειγμα S EXP (E) MANTISSA (F) R = (-1) S x 2 e-127 x (1.f) 17

18 κωδικοποίθςθ Θ κωδικοποίθςθ ακολουκεί τον αντίκετο δρόμο με το πρόςκετο βιμα τθσ κανονικοποίθςθσ του αρικμοφ. Ζνασ αρικμόσ κινθτοφ ςθμείου R κανονικοποιείται ωσ εξισ: Μετακινοφμε τα bits του παράγοντα F ζτςι ϊςτε να τον φζρουμε ςτη μορφή (1.f). Αν μετακινήςουμε τα ψηφία του F κατά Κ θζςεισ δεξιά μειϊνουμε αντίςτοιχα κατά Κ τον εκθζτη Ε. Η προσ τ' αριςτερά μετακίνηςη ςημαίνει αντίςτοιχα αφξηςη του εκθζτη 18

19 Aλγόριθμοσ κωδικοποίηςησ Β1 : Γράφουμε τον αρικμό R 10 = 2 0 x F 10. B2 : Μεταφζρουμε το F 10 ςτο δυαδικό ςφςτθμα (F 2 ). Β3 : Κανονικοποιοφμε τθν ποςότθτα 2 0 x F 2 και τθν φζρνουμε ςτθν μορφι 2 Ε 10 x (1.f) 2. B4 : Επθρεάηουμε τον εκκζτθ Ε 10 προςκζτοντασ το Δθλαδι, e 10 = E Β5 : Μεταφζρουμε τον e 10 ςτο δυαδικό (e 2 ). Β6 : Αν R είναι Θετικόσ τότε S=0, αν αρνθτικόσ S=1. Β7 : Τοποκετοφμε το S ςτο bit 31. Τοποκετοφμε το e 2 ςτα bits 30 ωσ 23. Τοποκετοφμε το f 2 ςτα bits 22 ωσ 0. 19

20 οι δφο αλγόρικμοι που παρουςιάςαμε υλοποιοφν τθν περίπτωςθ 0 < e < 255 τθσ IEEE και δεν περιζχουν τισ ακραίεσ τιμζσ 0 και 255. Όπωσ φαίνεται από τον οριςμό τθσ ΙΕΕΕ αυτζσ οι τιμζσ χρθςιμοποιοφνται για τθν παράςταςθ κάποιων ειδικϊν καταςτάςεων. (π.χ άπειρο, τίποτα, μθδζν) 20

21 Αντιςτοιχίεσ Αντιςτοιχία μεταξφ των τιμϊν των τριϊν πεδίων s, e, f, και τθσ τιμισ του πραγματικοφ αρικμοφ που αναπαρίςταται. Το ςφμβολο u ςθμαίνει «αδιάφορο», δθλαδι θ τιμι του ςυγκεκριμζνου πεδίου δεν επθρεάηει τον υπολογιςμό τθσ τιμισ του αντίςτοιχου πραγματικοφ αρικμοφ. 21

22 Να κωδικοποιθκεί ο αρικμόσ Β1 : (1.f) = = 2 0 x B2 : (1.f) = = Β3 : (1.f) 2 = 2 0 x = 2 15 x Β4 : e 10 = = B5 : e 2 = B6 : S=1 Β7 : S EXP (E) MANTISSA (F)

23 Να κωδικοποιθκεί ο αρικμόσ

24 Αποκωδικοποιθςθ S = 1 e = f = B1 : e 10 = f 10 = B2 : Ε 10 = = Β3 : R = (-1)1 x 2-2 x = = Το συάλμα ποσ προκύπτει μεγαλώνει ή μικραίνει ανάλογα με το μήκος της mantissa. Αστό ουείλεται στο γεγονός ότι αναγκαστήκαμε να κόψοσμε τα bit τοσ (0.3) 10, πέρα από το 25ο (μετά από την κανονικοποίηση). 24

25 Μζγιςτοσ και ελάχιςτοσ αρικμόσ που μποροφμε να κωδικοποιιςουμε Ασ υποκζςουμε ότι ζχουμε ζναν υπολογιςτι 16 bits. Θ παράςταςθ ενόσ αρικμοφ κινθτοφ ςθμείου ακολουκεί το πρότυπο με μια κζςθ για το πρόςθμο, 5 bits για τον εκκζτθ και 10 bits για τθν mantissa. Υπολογίςτε τον μεγαλφτερο και τον μικρότερο αριθμό που μποροφμε να κωδικοποιήςουμε 25

26 υπολογιςμόσ τθσ πόλωςθσ Ο υπολογιςμόσ τθσ πόλωςθσ εξαρτάται από το μικοσ ςε bits του χϊρου του εκκζτθ. Αν ο εκκζτθσ e ζχει μικοσ K bits τότε e min = 0 και e max = 2 K -1. Ο αρικμόσ που πολϊνει τον εκκζτθ (bias) κα είναι ο 2 K-1-1 και ο εκκζτθσ e -(2 Κ-1-1) κα ζχει μζγιςτο 2 Κ-1 και ελάχιςτο -(2 Κ-1-1). 26

27 Aφοφ το μικοσ για το e είναι 5 τότε ο μεγαλφτεροσ αρικμόσ που μπορεί να χωρζςει ςτο πεδίο αυτό είναι ο = 31. Θ πόλωςθ κα ζχει τιμι =15 Άρα ι ςχζςθ μεταξφ Ε και e γίνεται Ε = e -( ) = e Από τθ ςχζςθ E = e-15 κα υπολογίςουμε το Εmax =2 κ-1 και το Emin=-(2 Κ-1-1). 27

28 Emax = emax -15 = = Εmin = emin -15 = 0-15 = 'Αρα, αν λάβουμε υπόψθ μασ ότι e=0 και e = 31 δεν χρθςιμοποιoφνται, τότε Emax = Εmin = Θα υπολογίςουμε τϊρα το Fmax και το Fmin. Fmax = (1.f)max = = Fmin = (1.f)min = Rmax = 2 Emax x Fmax = 2 15 x = Rmin = 2 Emin x Fmin = 2-14 x 1.0 = x

29 Αναπαράςταςη διπλήσ ακρίβειασ Θ αναπαράςταςθ ενόσ αρικμοφ, ςφμφωνα με τθ μορφι διπλισ ακρίβειασ του προτφπου ΙΕΕΕ, αποτελείται από τρία πεδία: το ςυντελεςτι f (52 bits), τον πολωμζνο εκκζτθ e (11 bits) και το πρόςθμο s (1 bit). Τα πεδία αυτά αποκθκεφονται ςυνεχόμενα ςε δφο λζξεισ 32 bits του υπολογιςτι. Τα bits 0-51 περιζχουν το ςυντελεςτι f. Το bit 0 είναι το λιγότερο ςθμαντικό, ενϊ το bit 51 είναι το πιο ςθμαντικό bit του ςυντελεςτι. Τα bits περιζχουν τον πολωμζνο εκκζτθ. Το bit 52 είναι το λιγότερο ςθμαντικό, ενϊ το bit 62 είναι το πιο ςθμαντικό bit του πολωμζνου εκκζτθ. Το bit 63 αναπαριςτά το πρόςθμο του αρικμοφ 29

30 Ερωτιςεισ - ςυηιτθςθ

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

Θεςιακά ςυςτιματα αρίκμθςθσ

Θεςιακά ςυςτιματα αρίκμθςθσ Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ

Διαβάστε περισσότερα

ςυςτιματα γραμμικϊν εξιςϊςεων

ςυςτιματα γραμμικϊν εξιςϊςεων κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ Αντώνης Μαϊργιώτης Να γραφεί αλγόριθμοσ με τη βοήθεια διαγράμματοσ ροήσ, που να υπολογίζει το εμβαδό Ε ενόσ τετραγώνου με μήκοσ Α. ΑΡΧΗ ΔΙΑΒΑΣΕ

Διαβάστε περισσότερα

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ

Διαβάστε περισσότερα

Μετατροπεσ Παραςταςεων

Μετατροπεσ Παραςταςεων Δρ. Χρήζηος Ηλιούδης Μεηαηποπή 346 10 ζε δςαδικο 346 10 1) 346/2 = 173 με ςπόλοιπο 0 2) 173/2 = 86 με ςπόλοιπο 1 3) 86/2 = 43 με ςπόλοιπο 0 4) 43/2 = 21 με ςπόλοιπο 1 5) 21/2 = 10 με ςπόλοιπο 1 6) 10/2

Διαβάστε περισσότερα

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f. .. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Δρ. Θεοδώρου Παύλοσ theodorou@uoc.gr Περιεχόμενα Τι είναι οι Βάςεισ Δεδομζνων (DataBases) Τι είναι Σφςτθμα Διαχείριςθσ Βάςεων Δεδομζνων (DBMS) Οι Στόχοι

Διαβάστε περισσότερα

Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο

Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο Αριθμητικά κυκλώματα Ημιαθροιστής (Half Adder) Ο ημιαθροιςτήσ είναι ζνα κφκλωμα το οποίο προςθζτει δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα το άθροιςμά τουσ και το κρατοφμενο. Με βάςη αυτή την

Διαβάστε περισσότερα

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3)

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Το όνομα ενόσ πίνακα, όπωσ και κάκε άλλου αντικειμζνου, μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Το όνομα ενόσ πεδίου μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Κάκε

Διαβάστε περισσότερα

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10 Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό Διάλεξθ 10 Γενικό Σχιμα Μετατροπζασ Αναλογικοφ ςε Ψθφιακό Ψθφιακό Τθλεπικοινωνιακό Κανάλι Μετατροπζασ Ψθφιακοφ ςε Αναλογικό Τα αναλογικά ςιματα μετατρζπονται ςε

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων) 1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο

Διαβάστε περισσότερα

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Εκθετική Παράσταση (Exponential Notation) Οι επόµενες είναι ισοδύναµες παραστάσεις του 1,234 123,400.0

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι

Διαβάστε περισσότερα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε

Διαβάστε περισσότερα

Ιδιότθτεσ πεδίων Γενικζσ.

Ιδιότθτεσ πεδίων Γενικζσ. Οι ιδιότθτεσ των πεδίων διαφζρουν ανάλογα με τον τφπο δεδομζνων που επιλζγουμε. Ορίηονται ςτο κάτω μζροσ του παρακφρου ςχεδίαςθσ του πίνακα, ςτθν καρτζλα Γενικζσ. Ιδιότθτα: Μζγεκοσ πεδίου (Field size)

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ. Τμήμα Πληρουορικής και Τεχμολογίας Υπολογιστώμ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ. Τμήμα Πληρουορικής και Τεχμολογίας Υπολογιστώμ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ Αριθμητικά Συςτήματα Ζνασ αριθμόσ m-ψηφίων και βάςησ b, γράφεται ωσ μια ακολουθία m-ψηφίων. x = xm-1xm-2 x1x0 Όπου τα ψηφία xi ανήκουν ςτο διάςτημα 0 xi b-1 Ζτςι, η τιμή

Διαβάστε περισσότερα

Δυαδικοσ πολλαπλαςιαςμοσ και διαιρεςη ακεραιων

Δυαδικοσ πολλαπλαςιαςμοσ και διαιρεςη ακεραιων Δυαδικοσ πολλαπλαςιαςμοσ και διαιρεςη ακεραιων Δρ. Χρήστος Ηλιούδης Πολλαπλαςιαςμόσ μη προςημαςμζνων ακεραίων βρίςκουμε ζνα άκροιςμα το οποίο αποτελείται από μετατοπιςμζνα γινόμενα, τα οποία προζκυψαν

Διαβάστε περισσότερα

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν: Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.

Διαβάστε περισσότερα

Ζρευνα ικανοποίθςθσ τουριςτϊν

Ζρευνα ικανοποίθςθσ τουριςτϊν Ζρευνα ικανοποίθςθσ τουριςτϊν Ammon Ovis_Ζρευνα ικανοποίθςθσ τουριςτϊν_ Ραδιοςτακμόσ Flash 96 1 ΣΤΟΙΧΕΙΑ ΔΕΙΓΜΑΤΟΣ Σο δείγμα περιλαμβάνει 332 τουρίςτεσ από 5 διαφορετικζσ θπείρουσ. Οι περιςςότεροι εξ αυτϊν

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

Slide 1. Εισαγωγή στη ψυχρομετρία

Slide 1. Εισαγωγή στη ψυχρομετρία Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν

Διαβάστε περισσότερα

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας 1 ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας Μόνιμα Φορτία Ίδιον Βάροσ (για Οπλιςμζνο Σκυρόδεμα): g=25 KN/m 3 Σε οδικζσ γζφυρεσ πρζπει

Διαβάστε περισσότερα

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9 Γράφοι Δομζσ Δεδομζνων Διάλεξθ 9 Περιεχόμενα Γράφοι Γενικζσ ζννοιεσ, οριςμόσ, κτλ Παραδείγματα Γράφων Αποκικευςθ Γράφων Βαςικοί Οριςμοί Γράφοι και Δζντρα Διάςχιςθ Γράφων Περιοδεφων Πωλθτισ Γράφοι Οριςμόσ:

Διαβάστε περισσότερα

Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων

Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων Πίνακεσ Διζγερςησ των FF Όπωσ είδαμε κατά τθ μελζτθ των FF, οι χαρακτθριςτικοί πίνακεσ δίνουν τθν τιμι τθσ επόμενθσ κατάςταςθσ κάκε FF ωσ ςυνάρτθςθ τθσ παροφςασ

Διαβάστε περισσότερα

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ Εργονομία, ωςτι ςτάςθ εργαςίασ, Εικονοςτοιχείο (pixel), Ανάλυςθ οκόνθσ (resolution), Μζγεκοσ οκόνθσ Ποιεσ επιπτϊςεισ μπορεί να ζχει θ πολφωρθ χριςθ του υπολογιςτι ςτθν

Διαβάστε περισσότερα

Ενδεικτικζσ Λφςεισ Θεμάτων

Ενδεικτικζσ Λφςεισ Θεμάτων c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.

Διαβάστε περισσότερα

1 ο Διαγώνιςμα για το Α.Ε.Π.Π.

1 ο Διαγώνιςμα για το Α.Ε.Π.Π. 1 ο Διαγώνιςμα για το Α.Ε.Π.Π. Θ Ε Μ Α Α Α 1. Ν α γ ρ ά ψ ε τ ε ς τ ο τ ε τ ρ ά δ ι ό ς α σ τ ο ν α ρ ι κ μ ό κ α κ ε μ ι ά σ α π ό τ ι σ π α ρ α κ ά τ ω π ρ ο τ ά ς ε ι σ 1-8 κ α ι δ ί π λ α τ θ λ ζ ξ

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Βάςεισ Δεδομζνων Ι Ενότητα 12: Κανονικοποίηςη Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ

ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ Θζμα Α Α1: γ, Α2: β, Α3: α, Α4: β, A5: β Θζμα Β Β1: Σ ι Λ (ελλιπισ διατφπωςθ), Λ, Σ, Σ, Σ Β2: α) Οι διαφορζσ μεταξφ ς και π δεςμοφ είναι: α. Στον ς

Διαβάστε περισσότερα

Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ

Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ Δεκζμβριοσ 2016 Άςκθςθ 1 Θεωρείςτε ότι κζλουμε να διαγράψουμε τθν τιμι 43 ςτο Β+ δζντρο τθσ Εικόνασ 1. Η διαγραφι αυτι προκαλεί

Διαβάστε περισσότερα

Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ

Διαχείριςθ του φακζλου public_html ςτο ΠΣΔ Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ Οι παρακάτω οδθγίεσ αφοροφν το χριςτθ webdipe. Για διαφορετικό λογαριαςμό χρθςιμοποιιςτε κάκε φορά το αντίςτοιχο όνομα χριςτθ. = πατάμε αριςτερό κλικ ςτο Επιςκεφκείτε

Διαβάστε περισσότερα

Ανάλυςη κλειςτϊν δικτφων

Ανάλυςη κλειςτϊν δικτφων Ανάλυςη κλειςτϊν δικτφων Θ ανάλυςθ κλειςτϊν δικτφων ςτθρίηεται ςτθ διατιρθςθ τθσ μάηασ και τθσ ενζργειασ. Σε ζνα τυπικό βρόχο ABCDA υπάρχει ζνασ αρικμόσ από κόμβουσ, εδϊ A,B,C,D, ςτουσ οποίουσ ιςχφει θ

Διαβάστε περισσότερα

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα,

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα, Ενδεικτική Οργάνωςη Ενοτήτων Α Σάξη Α/ Μαθηματικό περιεχόμενο Δείκτεσ Επιτυχίασ Ώρεσ Α Διδ. 1 ΕΝΟΣΗΣΑ 1 Αλ1.1 υγκρίνουν και ταξινομοφν αντικείμενα ςφμφωνα με κάποιο χαρακτθριςτικό/κριτιριο/ιδιότθτά Ομαδοποίθςθ,

Διαβάστε περισσότερα

ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο)

ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο) ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο) χήμα Κφκλωμα RLC ςε ςειρά χήμα 2 Διανυςματικι παράςταςθ τάςεων και ρεφματοσ Ζςτω ότι ςτο κφκλωμα του ςχιματοσ που περιλαμβάνει ωμικι, επαγωγικι και χωρθτικι

Διαβάστε περισσότερα

25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ. Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και

25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ. Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και 25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και Γ) Τα ψυκτικά φορτία από είςοδο εξωτερικοφ αζρα. 26. Ποιζσ είναι οι

Διαβάστε περισσότερα

1 θ διάλεξθ Παρουςίαςθ του μακιματοσ

1 θ διάλεξθ Παρουςίαςθ του μακιματοσ 1 θ διάλεξθ Παρουςίαςθ του μακιματοσ 1 2 3 4 5 6 7 Παραπάνω φαίνεται θ χαρακτθριςτικι καμπφλθ μετάβαςθσ δυναμικοφ (voltage transfer characteristic) για ζναν αντιςτροφζα, και φαίνεται θ διαδικαςία εξαγωγισ

Διαβάστε περισσότερα

Καρβέλης Φώτης ΠΕΡΙΟΔΙΚΟ ΠΙΝΑΚΑ

Καρβέλης Φώτης ΠΕΡΙΟΔΙΚΟ ΠΙΝΑΚΑ Καρβέλης Φώτης ΠΕΡΙΟΔΙΚΟ ΠΙΝΑΚΑ ΙΣΟΡΙΚΗ ΑΝΑΔΡΟΜΗ Mendeleev(1869): Ο πρώτοσ που ζκανε ταξινόμθςθ των ςτοιχείων Meyer(1870): Κατάταξθ των ςτοιχείων με βάςθ τθ ςχετικι ατομικι μάηα ΤΜΠΕΡΑΜΑ Οι ιδιότητεσ των

Διαβάστε περισσότερα

3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ

3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ 3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ 1 2 3 4 5 6 7 Παραπάνω φαίνεται θ χαρακτθριςτικι καμπφλθ μετάβαςθσ δυναμικοφ (voltage transfer characteristic) για ζναν αντιςτροφζα,

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ Φιλιοποφλου Ειρινθ Βάςθ Δεδομζνων Βάζη δεδομένων είναι μια οπγανωμένη ζςλλογή πληποθοπιών οι οποίερ πποζδιοπίζοςν ένα ζςγκεκπιμένο θέμα.χπηζιμεύοςν ζηην Σςλλογή

Διαβάστε περισσότερα

Δζντρα. Δομζσ Δεδομζνων

Δζντρα. Δομζσ Δεδομζνων Δζντρα Δομζσ Δεδομζνων Περιεχόμενα Δζντρα Γενικζσ ζννοιεσ Κόμβοσ ενόσ δζντρου Δυαδικά δζντρα αναηιτθςθσ Αναηιτθςθ Κόμβου Ειςαγωγι ι δθμιουργία κόμβου Δζντρα Γενικζσ ζννοιεσ Οι προθγοφμενεσ δομζσ που εξετάςτθκαν

Διαβάστε περισσότερα

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης: Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Λουκάσ Βλάχοσ Τμιμα Φυςικισ Α.Π.Θ. Θεςςαλονίκθ, 2014 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

= = 124

= = 124 Λζξεισ Κάκε μακθτισ μζςα ςτθν ομάδα κα πρζπει να ζχει μια αρικμομθχανι. Ζνασ μακθτισ κα διαβάηει φωναχτά τουσ αρικμοφσ. Οι υπόλοιποι μακθτζσ κα τουσ γράφουν ςτθν αρικμομθχανι πατϊντασ κάκε φορά το πλικτρο

Διαβάστε περισσότερα

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ Στο εργαςτιριο αυτό κα δοφμε πωσ μποροφμε να προςομοιϊςουμε μια κίνθςθ χωρίσ τθ χριςθ εξειδικευμζνων εργαλείων, παρά μόνο μζςω ενόσ προγράμματοσ λογιςτικϊν φφλλων, όπωσ είναι το Calc και το Excel. Τα δφο

Διαβάστε περισσότερα

Ακολουκιακά Λογικά Κυκλώματα

Ακολουκιακά Λογικά Κυκλώματα Ακολουκιακά Λογικά Κυκλώματα Τα ψθφιακά λογικά κυκλϊματα που μελετιςαμε μζχρι τϊρα ιταν ςυνδυαςτικά κυκλϊματα. Στα ςυνδυαςτικά κυκλϊματα οι ζξοδοι ςε κάκε χρονικι ςτιγμι εξαρτϊνται αποκλειςτικά και μόνο

Διαβάστε περισσότερα

Από κεωρια εχουμε μακει ότι ενασ υπολογιςτθσ ςε ζνα δικτυο προςδιοριηεται από μια Ip διευκυνςθ που ζχει τθ γενικι μορφι X.Y.Z.W

Από κεωρια εχουμε μακει ότι ενασ υπολογιςτθσ ςε ζνα δικτυο προςδιοριηεται από μια Ip διευκυνςθ που ζχει τθ γενικι μορφι X.Y.Z.W Ασ αναλυςουμε μερικεσ εννοιεσ που προκαλουν ςυγχυςθ ςε μερικουσ από εμασ ι δεν είναι τοςο ςαφεισ. Για λογουσ ευκολιασ ςτθν αναλυςθ των εννοιων κανουμε τθν παραδοχθ ότι ενα Δικτυο μπορει να φιλοξενθςει

Διαβάστε περισσότερα

Ψθφιακά Ηλεκτρονικά. Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ

Ψθφιακά Ηλεκτρονικά. Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Τμιμα

Διαβάστε περισσότερα

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO Το Micro Worlds Pro είναι ζνα ολοκλθρωμζνο περιβάλλον προγραμματιςμοφ. Χρθςιμοποιεί τθ γλϊςςα προγραμματιςμοφ Logo (εξελλθνιςμζνθ) Το Micro Worlds Pro περιλαμβάνει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) 19 Μαρτίου 2011 10:00-11:15 3 point/μονάδες 1) Στθν πιο κάτω εικόνα πρζπει να υπάρχει αρικμόσ ςε κάκε κουκκίδα ϊςτε το άκροιςμα των αρικμϊν ςτα άκρα κάκε ευκφγραμμου τμιματοσ

Διαβάστε περισσότερα

16. Πίνακεσ και Συναρτήςεισ

16. Πίνακεσ και Συναρτήςεισ Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 16. Πίνακεσ και Συναρτήςεισ Ιωάννθσ Κατάκθσ Σιμερα o Κλιςθ με τιμι o Κλιςθ με αναφορά o Πίνακεσ και ςυναρτιςεισ o Παραδείγματα Ειςαγωγι o Στισ προθγοφμενεσ

Διαβάστε περισσότερα

Είναι μια μελζτθ αςκενι-μάρτυρα (case-control). Όςοι ςυμμετζχουν ςτθν μελζτθ ζχουν επιλεγεί με βάςθ τθν ζκβαςθ.

Είναι μια μελζτθ αςκενι-μάρτυρα (case-control). Όςοι ςυμμετζχουν ςτθν μελζτθ ζχουν επιλεγεί με βάςθ τθν ζκβαςθ. Ερϊτθςθ 1 Μια μελζτθ πραγματοποιείται για να εξετάςει αν θ μετεμμθνοπαυςιακι ορμονικι κεραπεία ζχει προςτατευτικό ρόλο για τθν πρόλθψθ εμφράγματοσ του μυοκαρδίου. 1013 γυναίκεσ με οξφ ζμφραγμα του μυοκαρδίου

Διαβάστε περισσότερα

Ηλιακι Θζρμανςθ οικίασ

Ηλιακι Θζρμανςθ οικίασ Ηλιακι Θζρμανςθ οικίασ Δυνατότθτα κάλυψθσ κερμαντικϊν αναγκϊν ζωσ και 100% (εξαρτάται από τθν τοποκεςία, τθν ςυλλεκτικι επιφάνεια και τθν μάηα νεροφ αποκθκεφςεωσ) βελτιςτοποιθμζνο ςφςτθμα με εγγυθμζνθ

Διαβάστε περισσότερα

Ρρογραμματιςμόσ Μεκόδων Επίλυςθσ Ρροβλθμάτων. 18. Αλφαριθμητικά. Ιωάννθσ Κατάκθσ. ΕΡΛ 032: Ρρογραμματιςμόσ Μεκόδων Επίλυςθσ Ρροβλθμάτων

Ρρογραμματιςμόσ Μεκόδων Επίλυςθσ Ρροβλθμάτων. 18. Αλφαριθμητικά. Ιωάννθσ Κατάκθσ. ΕΡΛ 032: Ρρογραμματιςμόσ Μεκόδων Επίλυςθσ Ρροβλθμάτων Ρρογραμματιςμόσ Μεκόδων Επίλυςθσ Ρροβλθμάτων 18. Αλφαριθμητικά Ιωάννθσ Κατάκθσ Αλφαρικμθτικά o Ζνα string είναι μία ακολουκία χαρακτιρων, ςθμείων ςτίξθσ κτλ Hello How are you? 121212 *Apple#123*% Σιμερα

Διαβάστε περισσότερα

ΑΣΛΑΝΣΙΚΗ ΕΝΩΗ ΠΑΝΕΤΡΩΠΑΪΚΟ STRESS TEST ΑΦΑΛΙΣΙΚΩΝ ΕΣΑΙΡΙΩΝ ΑΠΟΣΕΛΕΜΑΣΑ 2014

ΑΣΛΑΝΣΙΚΗ ΕΝΩΗ ΠΑΝΕΤΡΩΠΑΪΚΟ STRESS TEST ΑΦΑΛΙΣΙΚΩΝ ΕΣΑΙΡΙΩΝ ΑΠΟΣΕΛΕΜΑΣΑ 2014 ΑΣΛΑΝΣΙΚΗ ΕΝΩΗ ΠΑΝΕΤΡΩΠΑΪΚΟ STRESS TEST ΑΦΑΛΙΣΙΚΩΝ ΕΣΑΙΡΙΩΝ ΑΠΟΣΕΛΕΜΑΣΑ 2014 τθ διάρκεια του τρζχοντοσ ζτουσ εξελίχκθκε θ ευρωπαϊκι άςκθςθ προςομοίωςθσ ακραίων καταςτάςεων για τισ Αςφαλιςτικζσ Εταιρίεσ

Διαβάστε περισσότερα

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 5 η : Η Μζθοδοσ Simplex Παρουςίαςη τησ μεθόδου Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ

Διαβάστε περισσότερα

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΟΙ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ (ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ) Γ Τσιατούχας Παράρτηµα Β ιάρθρωση 1 Το σύστημα κινητής υποδιαστολής 2 Αναπαράσταση πραγματικών δυαδικών αριθμών 3 Το πρότυπο

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει

Διαβάστε περισσότερα

Virtualization. Στο ςυγκεκριμζνο οδηγό, θα παρουςιαςτεί η ικανότητα δοκιμήσ τησ διανομήσ Ubuntu 9.04, χωρίσ την ανάγκη του format.

Virtualization. Στο ςυγκεκριμζνο οδηγό, θα παρουςιαςτεί η ικανότητα δοκιμήσ τησ διανομήσ Ubuntu 9.04, χωρίσ την ανάγκη του format. Virtualization Στο ςυγκεκριμζνο οδηγό, θα παρουςιαςτεί η ικανότητα δοκιμήσ τησ διανομήσ Ubuntu 9.04, χωρίσ την ανάγκη του format. Το virtualization πρόκειται για μια τεχνολογία, θ οποία επιτρζπει το διαχωριςμό

Διαβάστε περισσότερα

NH 2 R COOH. Σο R είναι το τμιμα του αμινοξζοσ που διαφζρει από αμινοξφ ςε αμινοξφ. 1 Πρωτεΐνες

NH 2 R COOH. Σο R είναι το τμιμα του αμινοξζοσ που διαφζρει από αμινοξφ ςε αμινοξφ. 1 Πρωτεΐνες 1 Πρωτεΐνες Πρωτεΐνεσ : Οι πρωτεΐνεσ είναι ουςίεσ «πρώτθσ» γραμμισ για τουσ οργανιςμοφσ (άρα και για τον άνκρωπο). Σα κφτταρα και οι ιςτοί αποτελοφνται κατά κφριο λόγο από πρωτεΐνεσ. Ο ςθμαντικότεροσ όμωσ

Διαβάστε περισσότερα

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox 03 05 ΙΛΤΔΑ ΠΛΗΡΟΦΟΡΙΚΗ Α.Ε. αρμά Ιηαμπζλλα Βαρλάμθσ Νίκοσ Ειςαγωγι... 1 Σι είναι το Databox...... 1 Πότε ανανεϊνεται...... 1 Μπορεί να εφαρμοςτεί

Διαβάστε περισσότερα

Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον

Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον Ο ν ο μ α τ ε π ώ ν υ μ ο : _ Θ Ε Μ Α 1 ο Α. Ν α χ α ρ α κ τ θ ρ ι ς τ ο φ ν ο ι α κ ό λ ο υ κ ε σ π ρ ο τ ά ς ε ι σ μ ε τ ο

Διαβάστε περισσότερα

Σθλεςκόπιο. Ιςτορία. Σο τθλεςκόπιο εφευρζκθκε το 1608 ςτθν Ολλανδία και θ αρχικι

Σθλεςκόπιο. Ιςτορία. Σο τθλεςκόπιο εφευρζκθκε το 1608 ςτθν Ολλανδία και θ αρχικι Σθλεςκόπιο Σο τθλεςκόπιο είναι ζνα όργανο ςχεδιαςμζνο για τθν παρατιρθςθ μακρινϊν αντικειμζνων μζςω τθσ ςυλλογισ θλεκτρομαγνθτικισ ακτινοβολίασ. Σα πρϊτα γνωςτά ςχεδόν λειτουργικά τθλεςκόπια ανακαλφφκθκαν

Διαβάστε περισσότερα

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while )

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) 3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) Στα πιο πολλά προγράμματα απαιτείται κάποια ι κάποιεσ εντολζσ να εκτελοφνται πολλζσ φορζσ για όςο ιςχφει κάποια ςυνκικθ. Ο αρικμόσ των επαναλιψεων μπορεί να είναι

Διαβάστε περισσότερα

Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι.

Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι. 1 ο Σετ Ασκήσεων Δομή Επιλογής - Επανάληψης Άςκθςθ 1θ: Ζνα παιχνίδι με ηάρια παίηεται ωσ εξισ: Α. Ο παίκτθσ αρχικά ποντάρει κάποιο ποςό και ρίχνει δφο ηάρια. Β. Ο παίκτθσ κερδίηει (το ποςό που ζχει ποντάρει)

Διαβάστε περισσότερα

τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014

τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014 τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014 Ειςαγωγι Στο παρόν κείμενο παρουςιάηονται και αναλφονται τα ςτατιςτικά ςτοιχεία του ιςτοτόπου τθσ ΚΕΠΑ-ΑΝΕΜ,

Διαβάστε περισσότερα

3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ

3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 1) Τίτλοσ τθσ ζρευνασ: «Ποια είναι θ επίδραςθ τθσ κερμοκραςίασ ςτθ διαλυτότθτα των ςτερεϊν ςτο νερό;» 2) Περιγραφι του ςκοποφ τθσ ζρευνασ: Η ζρευνα

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Γραπτι Εξζταςθ ςτο μάκθμα Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Όνομα: Επϊνυμο: Τμιμα: Ημερομθνία: 20/02/11 Θζμα 1 ο Α. Να χαρακτθρίςετε κακεμιά από τισ παρακάτω προτάςεισ ωσ Σωςτι (Σ) ι Λάκοσ

Διαβάστε περισσότερα

Διαγώνισμα χημείας Κεφ. 1 ο & 2 Ο. Ον/μο:.. Ημ/νια:.. Θέμα1

Διαγώνισμα χημείας Κεφ. 1 ο & 2 Ο. Ον/μο:.. Ημ/νια:.. Θέμα1 Διαγώνισμα χημείας Κεφ. 1 ο & 2 Ο Ον/μο:.. Ημ/νια:.. Θέμα1 Α) Να χαπακηηπίζεηε ηιρ πποηάζειρ ωρ ζωζηέρ ή λάθορ και να δικαιολογήζεηε ηην επιλογή ζαρ: a. Όταν πρόκειται να ενωκοφν δυο άτομα, τα θλεκτρόνια

Διαβάστε περισσότερα

ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΣΗ ΒΙΟΛΟΓΙΑ ΚΑΣΕΤΘΤΝΗ 2013

ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΣΗ ΒΙΟΛΟΓΙΑ ΚΑΣΕΤΘΤΝΗ 2013 ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΣΗ ΒΙΟΛΟΓΙΑ ΚΑΣΕΤΘΤΝΗ 2013 ΘΕΜΑ Α Α1. γ Α2. β Α3. α Α4. δ Α5. α ΘΕΜΑ Β Β1. ελ. 123-124 «Η γονιδιακι κεραπεία εφαρμόςτθκε και ειςάγονται πάλι ς αυτόν.» Β2. ελ. 133 «Διαγονιδιακά ονομάηονται

Διαβάστε περισσότερα

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1 Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου) ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου) 19 Μαρτίου 011 10:00-11:15 3 point/μονάδες 1) Μια διάβαςθ πεηϊν ζχει άςπρεσ και μαφρεσ λωρίδεσ, πλάτουσ 50 cm. ε ζνα δρόμο θ διάβαςθ ξεκινά και τελειϊνει με άςπρεσ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ Ειρινθ Φιλιοποφλου Ειςαγωγι Ο Παγκόςμιοσ Ιςτόσ (World Wide Web - WWW) ι πιο απλά Ιςτόσ (Web) είναι μία αρχιτεκτονικι για τθν προςπζλαςθ διαςυνδεδεμζνων εγγράφων

Διαβάστε περισσότερα

α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα

α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα ΘΕΜΑ Α ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΔΕΤΣΕΡΑ 8 ΜΑΪΟΤ ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΣΙΚΑ ΘΕΣΙΚΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ ΤΝΟΛΟ ΕΛΙΔΩΝ: ΣΕΕΡΙ A. Ζςτω μια ςυνάρτθςθ f θ

Διαβάστε περισσότερα

Ραραμετροποίθςθ ειςαγωγισ δεδομζνων περιόδων

Ραραμετροποίθςθ ειςαγωγισ δεδομζνων περιόδων Παραμετροποίηςη ειςαγωγήσ δεδομζνων περιόδων 1 1 Περίληψη Το παρόν εγχειρίδιο παρουςιάηει αναλυτικά τθν παραμετροποίθςθ τθσ ειςαγωγισ αποτελεςμάτων μιςκοδοτικϊν περιόδων. 2 2 Περιεχόμενα 1 Ρερίλθψθ...2

Διαβάστε περισσότερα

Πνομα Ρεριγραφι Σφμβολο. Θ διάρκεια μιασ δραςτθριότθτασ (αρχικό πρόγραμμα ζργου)

Πνομα Ρεριγραφι Σφμβολο. Θ διάρκεια μιασ δραςτθριότθτασ (αρχικό πρόγραμμα ζργου) Ονοματολογία Συπολόγιο Τπολογιςμοί - Παραδείγματα Πνομα Ρεριγραφι Σφμβολο Αρχικι διάρκεια Εναπομζνουςα διάρκεια Ροςοςτό ςυμπλιρωςθσ Νωρίτεροσ χρόνοσ ζναρξθσ Νωρίτεροσ χρόνοσ ςυμπλιρωςθσ Βραδφτεροσ χρόνοσ

Διαβάστε περισσότερα

Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις

Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί

Διαβάστε περισσότερα

Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά

Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά Τα νύλιμα! ΧΟΡΗΓΟΣ Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά τα ξφλινα! 1. Γιατί τα λζμε ξφλινα πνευςτά; Πνευςτά ονομάηονται τα όργανα ςτα οποία ο ιχοσ παράγεται μζςα ςε ζνα ςωλινα απ όπου περνάει ο

Διαβάστε περισσότερα

1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιςτικι είναι ο κλάδοσ των μακθματικϊν που αςχολείται με τθ ςυλλογι, τθν οργάνωςθ, τθν παρουςίαςθ και τθν ανάλυςθ αρικμθτικϊν

Διαβάστε περισσότερα

Ενεργειακά Τηάκια. Πουκεβίλ 2, Ιωάννινα Τθλ. 26510.23822 www.energeiaka-ktiria.gr www.facebook.com/energeiaka.ktiria

Ενεργειακά Τηάκια. Πουκεβίλ 2, Ιωάννινα Τθλ. 26510.23822 www.energeiaka-ktiria.gr www.facebook.com/energeiaka.ktiria Ενεργειακά Τηάκια Πουκεβίλ 2, Ιωάννινα Τθλ. 26510.23822 www.facebook.com/energeiaka.ktiria Σελ. 2 Η ΕΣΑΙΡΕΙΑ Η εταιρεία Ενεργειακά Κτίρια δραςτθριοποιείται ςτθν παροχι ολοκλθρωμζνων υπθρεςιϊν και ςτθν

Διαβάστε περισσότερα

Διαδικαςία Προγράμματοσ Ωρομζτρθςθσ. (v.1.0.7)

Διαδικαςία Προγράμματοσ Ωρομζτρθςθσ. (v.1.0.7) (v.1.0.7) 1 Περίλθψθ Σο ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ Διαδικαςίασ Προγράμματοσ Ωρομζτρθςθσ. Παρακάτω προτείνεται μια αλλθλουχία ενεργειϊν τθν οποία ο χριςτθσ πρζπει

Διαβάστε περισσότερα

ΝΟΜΟΙ ΚΙΝΗΗ ΠΛΑΝΗΣΩΝ ΣΟΤ ΚΕΠΛΕΡ

ΝΟΜΟΙ ΚΙΝΗΗ ΠΛΑΝΗΣΩΝ ΣΟΤ ΚΕΠΛΕΡ ΝΟΜΟΙ ΚΙΝΗΗ ΠΛΑΝΗΣΩΝ ΣΟΤ ΚΕΠΛΕΡ 1. Νόμοσ των ελλειπτικών τροχιών Η τροχιζσ των πλανθτϊν είναι ελλείψεισ, των οποίων τθ μία εςτία κατζχει ο Ήλιοσ. Προφανϊσ όλοι οι πλανιτεσ του ίδιου πλανθτικοφ ςυςτιματοσ

Διαβάστε περισσότερα

Παραπάνω παρουςιάηεται ο πιο ςυνικθσ χωροκζτθςθ αρικμθτικϊν, λογικϊν κυκλωμάτων. Η μονάδα επεξεργαςίασ είναι θ λζξθ (λ.χ. 32-bit ςε επεξεργαςτζσ,

Παραπάνω παρουςιάηεται ο πιο ςυνικθσ χωροκζτθςθ αρικμθτικϊν, λογικϊν κυκλωμάτων. Η μονάδα επεξεργαςίασ είναι θ λζξθ (λ.χ. 32-bit ςε επεξεργαςτζσ, 1 2 3 4 Παραπάνω παρουςιάηεται ο πιο ςυνικθσ χωροκζτθςθ αρικμθτικϊν, λογικϊν κυκλωμάτων. Η μονάδα επεξεργαςίασ είναι θ λζξθ (λ.χ. 32-bit ςε επεξεργαςτζσ, 8-bit ςε DSP) και αυτι κακορίηει και τθν δομι τθσ

Διαβάστε περισσότερα

Άπειρεσ κροφςεισ. Τθ χρονικι ςτιγμι. t, ο δακτφλιοσ ςυγκροφεται με τον τοίχο με ταχφτθτα (κζντρου μάηασ) μζτρου

Άπειρεσ κροφςεισ. Τθ χρονικι ςτιγμι. t, ο δακτφλιοσ ςυγκροφεται με τον τοίχο με ταχφτθτα (κζντρου μάηασ) μζτρου Άπειρεσ κροφςεισ Δακτφλιοσ ακτίνασ κυλάει ςε οριηόντιο δάπεδο προσ ζνα κατακόρυφο τοίχο όπωσ φαίνεται ςτο ςχιμα. Ο ςυντελεςτισ τριβισ ίςκθςθσ του δακτυλίου με το δάπεδο είναι, ενϊ ο τοίχοσ είναι λείοσ.

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα

Διαβάστε περισσότερα

Πόροι και διεθνές εμπόριο: Το σπόδειγμα Heckscher-Ohlin

Πόροι και διεθνές εμπόριο: Το σπόδειγμα Heckscher-Ohlin Πόροι και διεθνές εμπόριο: Το σπόδειγμα Heckscher-Ohlin 1 Το υπόδειγμα Heckscher-Ohlin με δφο παραγωγικοφσ ςυντελεςτζσ: Υποκζςεισ 1. Δφο χϊρεσ, δφο ομογενι προϊόντα, δφο ομογενείσ ςυντελεςτζσ τθσ παραγωγισ

Διαβάστε περισσότερα

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ Λεπτζσ Αξονικζσ γραμμζσ χρθςιμοποιοφνται για να δθλϊςουν τθν φπαρξθ ςυμμετρίασ του αντικειμζνου. Υπενκυμίηουμε ότι οι άξονεσ ςυμμετρίασ χρθςιμοποιοφνται μόνον όταν το ίδιο το εξάρτθμα είναι πραγματικά

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ:

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: 1. Ομάδα Ανκρωπιςτικών Σπουδών 2. Ομάδα Οικονομικών, Πολιτικών, Κοινωνικών & Παιδαγωγικών Σπουδών 3. Ομάδα Θετικών

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Ιοφνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1.Εθνικό Τυπογραφείο... 3 1.1. Είςοδοσ... 3 1.2. Αρχική Οθόνη... 4 1.3. Διεκπεραίωςη αίτηςησ...

Διαβάστε περισσότερα

Αναφορά Εργαςίασ Nim Game

Αναφορά Εργαςίασ Nim Game Αναφορά Εργαςίασ Nim Game Αυτόνομοι Πράκτορεσ (ΠΛΗ 513) Βαγενάσ Σωτιριοσ 2010030034 Ειςαγωγή Για τθν εργαςία του μακιματοσ αςχολικθκα με το board game Nim. Ρρόκειται για ζνα παιχνίδι δφο παιχτϊν (2-player

Διαβάστε περισσότερα

Η αυτεπαγωγή ενός δακτυλίου

Η αυτεπαγωγή ενός δακτυλίου Η αυτεπαγωγή ενός δακτυλίου Υποκζςτε ότι κρατάτε ςτο χζρι ςασ ζναν μεταλλικό δακτφλιο διαμζτρου πχ 5 cm. Ζνασ φυςικόσ πικανότθτα κα προβλθματιςτεί: τι αυτεπαγωγι ζχει άραγε; Νομίηω κα ιταν μια καλι ιδζα

Διαβάστε περισσότερα

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν Παράλλθλεσ Διεργαςίεσ (1/5) Δφο διεργαςίεσ λζγονται «παράλλθλεσ» (concurrent) όταν υπάρχει ταυτοχρονιςμόσ, δθλαδι οι εκτελζςεισ τουσ επικαλφπτονται

Διαβάστε περισσότερα

ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ:

ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ: ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ: 2008030075 ΕΙΑΓΩΓΗ Το Heartstone είναι ζνα ψθφιακό παιχνίδι καρτϊν που διεξάγιεται πάνω ςτο Battle.net, ζναν διακομιςτι τθσ εταιρίασ

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων

Διαβάστε περισσότερα