Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2"

Transcript

1 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης

2 Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ. 2

3 Μθ Προςθμαςμζνοι Ακζραιοι Αν ο ακζραιοσ προσ αποκικευςθ είναι μεγαλφτεροσ από το μζγιςτο μθ προςθμαςμζνο τότε ζχουμε μια κατάςταςθ που ονομάηεται υπερχείλιςη Δεκαδικός Δέζμευζη 8 μπιη Δέζμευζη 16 μπιη Υπερχείλιζη Υπερχείλιζη Υπερχείλιζη Υπερχείλιζη Αποθήκεσζη μη προζημαζμένων ακεραίων ζε δύο διαθορεηικούς σπολογιζηές με δέζμεσζη 8 και 16 μπιη ανηίζηοιτα 3

4 Θζματα διάλεξησ Παράςταςθ πρόςθμο-μζγεκοσ Παράςταςθ ςυμπλιρωμα ωσ προσ 2 ι ΣΤ2 Παράςταςθ ςυμπλιρωμα ωσ προσ 1 ι ΣΤ1 4

5 παραςταςθ ςυνθκιςμζνοσ τρόποσ παραςταςθσ το ςφμβολο του πρόςθμου (+ ι - ) μπροςτά από το μζγεκοσ (απόλυτθ τιμι) του αρικμοφ. Η μζκοδοσ αυτι ονομάηεται πρόςημομζγεθοσ (αλγεβρικι μζκοδοσ). λογικά κυκλϊματα? Ανάγκθ για ευζλικτα ςυςτιματα παράςταςθσ. 5

6 ςυςτιματα παράςταςθσ Παράςταςθ πρόςθμο-μζγεκοσ Παράςταςθ ςυμπλιρωμα ωσ προσ 2 ι ΣΤ2 Παράςταςθ ςυμπλιρωμα ωσ προσ 1 ι ΣΤ1 6

7 ςφςτθμα πρόςθμο-μζγεκοσ Στο ςφςτθμα πρόςθμο-μζγεκοσ (Signed- Magnitude Representation), αν ο χϊροσ αποκικευςθσ ενόσ ακεραίου αρικμοφ ζχει μικοσ n bits, τότε θ παράςταςθ του χωρίηεται ςε δφο τμιματα. Πρόσημο Μέγεθος 0 1 n-1 7

8 ςφςτθμα πρόςθμο-μζγεκοσ Το πρϊτο τμιμα αποτελείται από το bit 0 (κεςθ 0) και το δεφτερο τμιμα από τα bits 1 ζωσ n-1. (κεςεισ 1 ζωσ n-1) Το πρϊτο τμιμα περιζχει το πρόςημο του αρικμοφ και το δεφτερο το μζγεθοσ. Αν το πρόςθμο περιζχει το ψθφίο 0 τότε o αρικμόσ κα κεωρείται κετικόσ, αν περιζχει το 1 ο αρικμόσ κα κεωρείται αρνθτικόσ 8

9 Η αρίκμθςθ των bits γίνεται από αριςτερά προσ τα δεξιά. MSB βρίςκεται ςτθ κζςθ 1 LSB ςτθ κζςθ n-1. Το ςφςτθμα αυτό τθσ παράςταςθσ των αρνθτικϊν και κατ' επζκταςθ όλων των ακεραίων ονομάηεται πρόςημο-μζγεθοσ 9

10 Παραδείγματα Aν n = 8 τότε: = = = = = = O μζγιςτοσ ακζραιοσ είναι: = 2 7-1=128-1=127 10

11 Στθν παράςταςθ πρόςημο μζγεθοσ ςε ζναν υπολογιςτι με μικοσ κζςθσ n bits οι ακζραιοι αρικμοί περιζχονται μεταξφ των αρικμϊν -(2 n-1-1) και (2 n-1-1). ζνασ υπολογιςτισ με μικοσ κζςθσ n bits μπορεί, ςτο ςφςτθμα πρόςθμο-μζγεκοσ, να κάνει πράξεισ μόνο με ακεραίουσ προςθμαςμζνουσ αρικμοφσ που περιλαμβάνονται ςτα παραπάνω όρια. 11

12 Ζχει ςθμαςία το μικοσ κζςθσ για τθν δυνατότθτα του υπολογιςτι. Στο ςφςτθμα αυτό μποροφν να κωδικοποιθκοφν 2 n -1 διαφορετικοί προςθμαςμζνοι ακζραιοι, από τουσ οποίουσ οι 2 n-1-1 είναι αρνθτικοί, οι 2 n-1-1 είναι κετικοί και υπάρχουν δφο παραςτάςεισ του μθδενόσ. 12

13 μικροχπολογιςτισ με επεξεργαςτι (ζχει μικοσ κζςθσ μνιμθσ 16 bits ) ο μεγαλφτεροσ προςθμαςμζνοσ ακζραιοσ πρζπει να είναι ο = επεξεργάηεται και μεγαλφτερουσ ακζραιουσ. τοποκετεί τουσ προςθμαςμζνουσ ακεραίουσ ςε δφο ςυνεχόμενεσ κζςεισ τθσ μνιμθσ. Αμζςωσ αυξάνεται το μζγεκοσ των αρικμϊν που μποροφμε ν' αποκθκεφςουμε, ςε βάροσ όμωσ τθσ χωρθτικότθτασ τθσ μνιμθσ. 13

14 αλγεβρικοί κανόνεσ Oι πράξεισ τθσ πρόςκεςθσ και τθσ αφαίρεςθσ ακολουκοφν τουσ κλαςςικοφσ αλγεβρικοφσ κανόνεσ 14

15 Πρόςθεςη ΑN τα πρόςθμα είναι ίδια ΣΟΣΕ προςκζτουμε τα μεγζκθ και δίνουμε ςτο αποτζλεςμα το κοινό πρόςθμο. ΔΙΑΦΟΡΕΣΙΚΑ αφαιροφμε το μικρότερο μζγεκοσ από το μεγαλφτερο και δίνουμε ςτο αποτζλεςμα το πρόςθμο του μεγαλφτερου. 15

16 Αφαίρεςη Αλλάηουμε το πρόςθμο του αφαιρετζου και κάνουμε πρόςκεςθ με τον αλγόρικμο πρόςκεςθσ. 16

17 Παράςταςη ςυμπλήρωμα ωσ προσ 2 ή Σ2 17

18 Προςθμαςμζνοι Ακζραιοι ςε Μορφι Συμπλθρϊματοσ ωσ προσ Δφο Εφαρμογζσ Η αναπαράςταςθ ςυμπλθρϊματοσ ωσ προσ δφο αποτελεί τον τυπικό τρόπο αναπαράςταςθσ για τθν αποκικευςθ ακζραιων ςτουσ ςφγχρονουσ υπολογιςτζσ 18

19 Συμπλιρωμα μθ προςθμαςμζνου αρικμοφ ωσ προσ βάςθ R Εςτω οτι ζχουμε ζναν υπολογιςτι με μικοσ κζςθσ n bits. 'Ένασ ακζραιοσ δυαδικόσ αρικμόσ Χ με n ψθφία παριςτάνεται από το διάνυςμα (Χ n-1 Χ n-2... Χ 0 ). Ονομάηουμε ςυμπλιρωμα ωσ προσ τθ βάςθ R του ςυςτιματοσ παράςταςθσ του Χ, ζναν ακζραιο αρικμό Χ' τζτοιον ϊςτε Χ + Χ' = R n. Aν R = 2 τότε X + X' = 2 n. Το Χ' ονομάηεται ςυμπλιρωμα ωσ προσ 2 (two's complement) του Χ. Το ςυμπλιρωμα του Χ ωσ προσ 2 κα το ςυμβολίηουμε με Σ2(Χ) 19

20 υπολογιςμόσ του Σ2(Χ) X + X' = 2 n ι Χ+Σ2(Χ)=2 n Σ2(Χ) = 2 n -Χ = ( ) - (Χ n-1 Χ n-2... Χ 0 ). n+1 όροι n όροι Σ2(Χ) = ( ) + ( ) - (Χ n-1 Χ n-2... Χ 0 ). n όροι nόροι Σ2(Χ) = (1-Χ n-1 1-Χ n X 0 ) + ( ) 20

21 Κανόνασ υπολογιςμοφ ςυμπλθρϊματοσ Σ2(Χ) = (1-Χ n-1 1-Χ n X 0 ) + ( ) Το ςυμπλιρωμα ωσ προσ 2 ενόσ δυαδικοφ αρικμοφ Χ, υπολογίηεται αν αντιςτρζψουμε ζνα προσ ζνα τα ψθφία του και προςκζςουμε τθ μονάδα (δυαδικι πρόςκεςθ). 21

22 παραδειγμα Αν n = 8 τότε : Χ = = Αντιςτροφι + 1 Πρόςκεςθ Σ2(17) = =

23 Σ2(127) Χ = = Σ2(127) = =

24 Σ2(99) Χ = = Σ2(99) = =

25 δεφτεροσ πρακτικόσ κανόνασ Αντιςτρζφουμε τα ψθφία ζνα προσ ζνα αρχίηοντασ από αριςτερά προσ τα δεξιά μζχρι να ςυναντιςουμε τθ δεξιότερθ μονάδα Χ = = Σ2(99) = =

26 φςτημα παράςταςησ Σ2 Οι μθ αρνθτικοί (κετικοί ι μθδζν) αρικμοί που είναι μικρότεροι ι ίςοι από 2 n-1-1 παριςτάνονται όπωσ ακριβϊσ ςτθν παράςταςθ πρόςθμο-μζγεκοσ. Οι αρνθτικοί αρικμοί από -2 n-1 μζχρι -1 ςυμπεριλαμβανομζνων παριςτάνονται με το ςυμπλιρωμα ωσ προσ 2 τθσ απολφτου τιμισ του Χ. αν κζλουμε ν' ανιχνεφςουμε τθν αρνθτικότθτα μιασ παράςταςθσ ςτο ΣΤ2 δεν ζχουμε παρά ν' ανιχνεφςουμε το MSB τθσ παράςταςθσ. Σε καμία περίπτωςθ όμωσ το ΜSB δεν μπορεί να κεωρθκεί πρόςθμο. 26

27 Παράςταςθ ςτο ΣΤ2 Στο ΣΤ2 οι ακζραιοι που μποροφν να παραςτακοφν ςε μια κζςθ των n bits πρζπει να βρίςκονται ςτο διάςτθμα (-2 n-1, 2 n-1-1) των ορίων ςυμπεριλαμβανομζνων. Στο ςφςτθμα αυτό μποροφν να κωδικοποιθκοφν 2 n διαφορετικοί προςθμαςμζνοι ακζραιοι, από τουσ οποίουσ οι 2 n-1 είναι αρνθτικοί, οι 2 n-1-1 είναι κετικοί και υπάρχει και μια παράςταςθ του μθδενόσ. 27

28 Παράδειγμα Να βρεκεί θ παράςταςθ του (-7) ςτο ΣΤ2 ςε υπολογιςτι με μικοσ κζςθσ 4 ψθφία. θ παράςταςθ του -7 ςτο ΣΤ2 για n=4 είναι : 7 = 0111 αντιςτροφι Σ2(-7) =

29 θ παράςταςθ του -7 ςτο ΣΤ2 είναι το Σ2(7) για n=8 7 = αντιςτροφι Σ2(-7) =

30 Παραςτάςεισ το 8 ςτο Σ2 n Παράσταση στο ΣΤ2 2 Δεν υπάρχει 3 Δεν υπάρχει

31 εφκολθ αρικμθτικι Χωρθτικότθτα μιασ κζςθσ μικουσ n bits Ονομάηουμε ζτςι το μζγιςτο πλικοσ των προςθμαςμζνων ακεραίων που μποροφν να παραςτακοφν με n bits. θ χωρθτικότθτα εξαρτάται και από το ςφςτθμα παράςταςθσ. O κρίςιμοσ παράγοντασ για τθν επιλογι του ενόσ ι του άλλου ςυςτιματοσ δεν είναι θ χωρθτικότθτα, αλλά θ "ευκολία" πραγματοποίθςθσ των αρικμθτικϊν πράξεων. Η "εφκολθ αρικμθτικι" είναι φανερό πωσ ζχει άμεςθ επίπτωςθ ςτθν πολυπλοκότθτα των λογικϊν κυκλωμάτων και κατ' επζκταςθ ςτο κόςτοσ του υπολογιςτι. 31

32 Παράςταςθ ςτο ΣΤ2 Στο ΣΤ2 οι ακζραιοι που μποροφν να παραςτακοφν ςε μια κζςθ των n bits πρζπει να βρίςκονται ςτο διάςτθμα (-2 n-1, 2 n-1-1) των ορίων ςυμπεριλαμβανομζνων. Στο ςφςτθμα αυτό μποροφν να κωδικοποιθκοφν 2 n διαφορετικοί προςθμαςμζνοι ακζραιοι, από τουσ οποίουσ οι 2 n-1 είναι αρνθτικοί, οι 2 n-1-1 είναι κετικοί και υπάρχει και μια παράςταςθ του μθδενόσ. 32

33

34 Κανόνασ πρόςθεςησ ςτο Σ2 Ακολουκοφμε τουσ κανόνεσ τθσ πρόςκεςθσ μθ προςθμαςμζνων δυαδικϊν Αρικμϊν και αγνοοφμε κάκε κρατοφμενο πζρα από το ΜSB. Εάν μια πράξθ πρόςκεςθσ παράγει ζνα αποτζλεςμα το οποίο είναι ζξω από τα όρια του ςυςτιματοσ παράςταςθσ τότε λζμε ότι ζχουμε υπερχείλιςη (Overflow). 34

35 υπερχείλιςη υπερχείλιςη είναι το φαινόμενο όπου αρικμοί n bits μετά τθν διαδικαςία μιασ πράξθσ δίνουν αποτζλεςμα που δεν παριςτάνεται με n bits. ςτθν πρόςκεςθ, αρικμοί με διαφορετικό πρόςθμο δεν παρουςιάηουν υπερχείλιςθ ενϊ αντίκετα αρικμοί με το ίδιο πρόςθμο παρουςιάηουν. 35

36 Παραδείγματα πρόςκεςθσ ςτο ΣΤ NO overflow NO overflow 36

37 NO overflow NO overflow 37

38

39 **overflow** **overflow** ΑΝ οι αρικμοί είναι ετερόςθμοι ΣΟΣΕ δεν υπάρχει υπερχείλιςθ ΔΙΑΦΟΡΕΣΙΚΑ ΑΝ το MSB του ενόσ προςκετζου είναι το ίδιο με το MSB του αποτελζςματοσ ΣΟΣΕ δεν υπάρχει υπερχείλιςθ ΔΙΑΦΟΡΕΣΙΚΑ υπάρχει υπερχείλιςθ 39

40 **overflow** **overflow* ΑΝ οι αρικμοί είναι ετερόςθμοι ΣΟΣΕ δεν υπάρχει υπερχείλιςθ ΔΙΑΦΟΡΕΣΙΚΑ ΑΝ το MSB του ενόσ προςκετζου είναι το ίδιο με το MSB του αποτελζςματοσ ΣΟΣΕ δεν υπάρχει υπερχείλιςθ ΔΙΑΦΟΡΕΣΙΚΑ υπάρχει υπερχείλιςθ 40

41

42 Kανόνασ υπερχείλιςησ για τη πρόςθεςη ΑΝ οι αρικμοί είναι ετερόςθμοι ΣΟΣΕ δεν υπάρχει υπερχείλιςθ ΔΙΑΦΟΡΕΣΙΚΑ ΑΝ το MSB του ενόσ προςκετζου είναι το ίδιο με το MSB του αποτελζςματοσ ΣΟΣΕ δεν υπάρχει υπερχείλιςθ ΔΙΑΦΟΡΕΣΙΚΑ υπάρχει υπερχείλιςθ 42

43 Κανόνασ αφαίρεςησ ςτο Σ2 Β0 : Αντιςτρζφουμε τα ψθφία του αφαιρετζου Β1 : Προςκζτουμε (πρόςκεςθ ςτο ΣΤ2) τον αρικμό που κα προκφψει από το βιμα 1 ςτον μειωτζο με αρχικό κρατοφμενο 1 αντί 0. 43

44 Παραδείγματα 1 αρχικό κρατοφμενο Αντιςτροφι NO overflow 44

45 1 αρχικό κρατοφμενο NO overflow 1 αρχικό κρατοφμενο NO overflow 1 αρχικό κρατοφμενο **overflow** 45

46 Ερωτιςεισ - ςυηιτθςθ

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

Μετατροπεσ Παραςταςεων

Μετατροπεσ Παραςταςεων Δρ. Χρήζηος Ηλιούδης Μεηαηποπή 346 10 ζε δςαδικο 346 10 1) 346/2 = 173 με ςπόλοιπο 0 2) 173/2 = 86 με ςπόλοιπο 1 3) 86/2 = 43 με ςπόλοιπο 0 4) 43/2 = 21 με ςπόλοιπο 1 5) 21/2 = 10 με ςπόλοιπο 1 6) 10/2

Διαβάστε περισσότερα

Θεςιακά ςυςτιματα αρίκμθςθσ

Θεςιακά ςυςτιματα αρίκμθςθσ Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ. Τμήμα Πληρουορικής και Τεχμολογίας Υπολογιστώμ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ. Τμήμα Πληρουορικής και Τεχμολογίας Υπολογιστώμ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ Αριθμητικά Συςτήματα Ζνασ αριθμόσ m-ψηφίων και βάςησ b, γράφεται ωσ μια ακολουθία m-ψηφίων. x = xm-1xm-2 x1x0 Όπου τα ψηφία xi ανήκουν ςτο διάςτημα 0 xi b-1 Ζτςι, η τιμή

Διαβάστε περισσότερα

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα,

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα, Ενδεικτική Οργάνωςη Ενοτήτων Α Σάξη Α/ Μαθηματικό περιεχόμενο Δείκτεσ Επιτυχίασ Ώρεσ Α Διδ. 1 ΕΝΟΣΗΣΑ 1 Αλ1.1 υγκρίνουν και ταξινομοφν αντικείμενα ςφμφωνα με κάποιο χαρακτθριςτικό/κριτιριο/ιδιότθτά Ομαδοποίθςθ,

Διαβάστε περισσότερα

Ακολουκιακά Λογικά Κυκλώματα

Ακολουκιακά Λογικά Κυκλώματα Ακολουκιακά Λογικά Κυκλώματα Τα ψθφιακά λογικά κυκλϊματα που μελετιςαμε μζχρι τϊρα ιταν ςυνδυαςτικά κυκλϊματα. Στα ςυνδυαςτικά κυκλϊματα οι ζξοδοι ςε κάκε χρονικι ςτιγμι εξαρτϊνται αποκλειςτικά και μόνο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) 19 Μαρτίου 2011 10:00-11:15 3 point/μονάδες 1) Στθν πιο κάτω εικόνα πρζπει να υπάρχει αρικμόσ ςε κάκε κουκκίδα ϊςτε το άκροιςμα των αρικμϊν ςτα άκρα κάκε ευκφγραμμου τμιματοσ

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9 Γράφοι Δομζσ Δεδομζνων Διάλεξθ 9 Περιεχόμενα Γράφοι Γενικζσ ζννοιεσ, οριςμόσ, κτλ Παραδείγματα Γράφων Αποκικευςθ Γράφων Βαςικοί Οριςμοί Γράφοι και Δζντρα Διάςχιςθ Γράφων Περιοδεφων Πωλθτισ Γράφοι Οριςμόσ:

Διαβάστε περισσότερα

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10 Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό Διάλεξθ 10 Γενικό Σχιμα Μετατροπζασ Αναλογικοφ ςε Ψθφιακό Ψθφιακό Τθλεπικοινωνιακό Κανάλι Μετατροπζασ Ψθφιακοφ ςε Αναλογικό Τα αναλογικά ςιματα μετατρζπονται ςε

Διαβάστε περισσότερα

Αςκιςεισ και παιχνίδια με ευρϊ

Αςκιςεισ και παιχνίδια με ευρϊ 1 ο Ειδικό Δ.Σ. Ρειραιά 2013 χολικό Βοικθμα Μζροσ Α Αςκιςεισ και παιχνίδια με ευρϊ Γεράςιμοσ Σπίνοσ Πλγα Σουρίδθ Αντί για πρόλογο Οι αςκιςεισ που κα ακολουκιςουν, αναφζρονται ςτθν εκμάκθςθ των χρθμάτων

Διαβάστε περισσότερα

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ Αντώνης Μαϊργιώτης Να γραφεί αλγόριθμοσ με τη βοήθεια διαγράμματοσ ροήσ, που να υπολογίζει το εμβαδό Ε ενόσ τετραγώνου με μήκοσ Α. ΑΡΧΗ ΔΙΑΒΑΣΕ

Διαβάστε περισσότερα

Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών. (v )

Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών. (v ) Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών (v.1. 0.7) 1 Περίλθψθ Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ Εκτφπωςθσ

Διαβάστε περισσότερα

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα:

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 ο Σετ Ασκήσεων Δομές Δεδομένων - Πίνακες Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8

Διαβάστε περισσότερα

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων) 1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ

Διαβάστε περισσότερα

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while )

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) 3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) Στα πιο πολλά προγράμματα απαιτείται κάποια ι κάποιεσ εντολζσ να εκτελοφνται πολλζσ φορζσ για όςο ιςχφει κάποια ςυνκικθ. Ο αρικμόσ των επαναλιψεων μπορεί να είναι

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι

Διαβάστε περισσότερα

Πωσ δθμιουργώ φακζλουσ;

Πωσ δθμιουργώ φακζλουσ; Πωσ δθμιουργώ φακζλουσ; Για να μπορζςετε να δθμιουργιςετε φακζλουσ ςτο χαρτοφυλάκιό ςασ ςτο Mahara κα πρζπει να μπείτε ςτο ςφςτθμα αφοφ πατιςετε πάνω ςτο ςφνδεςμο Mahara profiles από οποιοδιποτε ςελίδα

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Δρ. Θεοδώρου Παύλοσ theodorou@uoc.gr Περιεχόμενα Τι είναι οι Βάςεισ Δεδομζνων (DataBases) Τι είναι Σφςτθμα Διαχείριςθσ Βάςεων Δεδομζνων (DBMS) Οι Στόχοι

Διαβάστε περισσότερα

3 Πλεοναςμόσ Πληροφορίασ

3 Πλεοναςμόσ Πληροφορίασ 3 Πλεοναςμόσ Πληροφορίασ Τα λάκθ ςτα δεδομζνα ςυμβαίνουν ενδεχομζνωσ όταν εκείνα μεταφζρονται από τθ μια μονάδα ςτθν άλλθ, από ζνα ςφςτθμα ςε ζνα άλλο, ι όταν αυτά αποκθκεφονται ςε μια μονάδα μνιμθσ. Για

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Γραπτι Εξζταςθ ςτο μάκθμα Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Όνομα: Επϊνυμο: Τμιμα: Ημερομθνία: 20/02/11 Θζμα 1 ο Α. Να χαρακτθρίςετε κακεμιά από τισ παρακάτω προτάςεισ ωσ Σωςτι (Σ) ι Λάκοσ

Διαβάστε περισσότερα

Ειςαγωγή ςτην πληροφορική

Ειςαγωγή ςτην πληροφορική Ειςαγωγή ςτην πληροφορική Δρ. Θεοδώρου Παύλοσ theodorou@uoc.gr Δομή ηλεκτρονικού υπολογιςτή - Υλικό Μια γενικι διάκριςθ ςυςτατικϊν που ςυνκζτουν ζναν Η/Υ (πόροι *resources]) Μονάδα ειςόδου (Input unit)

Διαβάστε περισσότερα

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας 1 ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας Μόνιμα Φορτία Ίδιον Βάροσ (για Οπλιςμζνο Σκυρόδεμα): g=25 KN/m 3 Σε οδικζσ γζφυρεσ πρζπει

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας. Ηλεκτρονικά ΙΙ

ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας. Ηλεκτρονικά ΙΙ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας Ηλεκτρονικά ΙΙ Πέμπτη 3/3/2011 Διδάζκων: Γιώργος Χαηζηιωάννοσ Τηλέθωνο: 99653828 Ε-mail: georghios.h@cytanet.com.cy Ώρες

Διαβάστε περισσότερα

MySchool Πρακτικζσ οδθγίεσ χριςθσ

MySchool Πρακτικζσ οδθγίεσ χριςθσ MySchool Πρακτικζσ οδθγίεσ χριςθσ 1) Δθμιουργία τμθμάτων (ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ, Διαχείριςθ, Διαχείριςθ τμθμάτων) Το πρώτο που πρζπει να κάνουμε ςτο MySchool είναι να δθμιουργιςουμε τα τμιματα που υπάρχουν ςτο

Διαβάστε περισσότερα

Δζντρα. Δομζσ Δεδομζνων

Δζντρα. Δομζσ Δεδομζνων Δζντρα Δομζσ Δεδομζνων Περιεχόμενα Δζντρα Γενικζσ ζννοιεσ Κόμβοσ ενόσ δζντρου Δυαδικά δζντρα αναηιτθςθσ Αναηιτθςθ Κόμβου Ειςαγωγι ι δθμιουργία κόμβου Δζντρα Γενικζσ ζννοιεσ Οι προθγοφμενεσ δομζσ που εξετάςτθκαν

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Support

Εγχειρίδιο Χρήςησ Support Εγχειρίδιο Χρήςησ Support Περιεχόμενα 1) Αρχικι Σελίδα...2 2) Φόρμα Σφνδεςθσ...2 3) Μετά τθ ςφνδεςθ...2 4) Λίςτα Υποκζςεων...3 5) Δθμιουργία Νζασ Υπόκεςθσ...4 6) Σελίδα Υπόκεςθσ...7 7) Αλλαγι Κωδικοφ...9

Διαβάστε περισσότερα

Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ

Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ Διαδίκτυο: μια πόρτα ςτον κόςμο Πϊσ μπορεί κανείσ ςε λίγα λεπτά να μάκει ποιεσ ταινίεσ παίηονται ςτουσ κινθματογράφουσ, να ςτείλει

Διαβάστε περισσότερα

Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά;

Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά; ; Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά; 30/1/ 2 Η φυςικι τθσ ςθμαςία είναι ότι προςδιορίηει τθ ςτροφικι κίνθςθ ενόσ ςτερεοφ ωσ

Διαβάστε περισσότερα

ΟΔΗΓΙΕ ΔΗΜΙΟΤΡΓΙΑ ΚΑΙ ΡΤΘΜΙΗ ΔΩΡΕΑΝ ΗΛΕΚΣΡΟΝΙΚΟΤ ΣΑΧΤΔΡΟΜΕΙΟΤ ΣΟ GOOGLE (G-MAIL)

ΟΔΗΓΙΕ ΔΗΜΙΟΤΡΓΙΑ ΚΑΙ ΡΤΘΜΙΗ ΔΩΡΕΑΝ ΗΛΕΚΣΡΟΝΙΚΟΤ ΣΑΧΤΔΡΟΜΕΙΟΤ ΣΟ GOOGLE (G-MAIL) ΟΔΗΓΙΕ ΔΗΜΙΟΤΡΓΙΑ ΚΑΙ ΡΤΘΜΙΗ ΔΩΡΕΑΝ ΗΛΕΚΣΡΟΝΙΚΟΤ ΣΑΧΤΔΡΟΜΕΙΟΤ ΣΟ GOOGLE (G-MAIL) Ανοίγουμε το πρόγραμμα περιιγθςθσ ιςτοςελίδων (εδϊ Internet Explorer). Αν θ αρχικι ςελίδα του προγράμματοσ δεν είναι θ ςελίδα

Διαβάστε περισσότερα

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO Το Micro Worlds Pro είναι ζνα ολοκλθρωμζνο περιβάλλον προγραμματιςμοφ. Χρθςιμοποιεί τθ γλϊςςα προγραμματιςμοφ Logo (εξελλθνιςμζνθ) Το Micro Worlds Pro περιλαμβάνει

Διαβάστε περισσότερα

Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά

Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά Τα νύλιμα! ΧΟΡΗΓΟΣ Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά τα ξφλινα! 1. Γιατί τα λζμε ξφλινα πνευςτά; Πνευςτά ονομάηονται τα όργανα ςτα οποία ο ιχοσ παράγεται μζςα ςε ζνα ςωλινα απ όπου περνάει ο

Διαβάστε περισσότερα

Από κεωρια εχουμε μακει ότι ενασ υπολογιςτθσ ςε ζνα δικτυο προςδιοριηεται από μια Ip διευκυνςθ που ζχει τθ γενικι μορφι X.Y.Z.W

Από κεωρια εχουμε μακει ότι ενασ υπολογιςτθσ ςε ζνα δικτυο προςδιοριηεται από μια Ip διευκυνςθ που ζχει τθ γενικι μορφι X.Y.Z.W Ασ αναλυςουμε μερικεσ εννοιεσ που προκαλουν ςυγχυςθ ςε μερικουσ από εμασ ι δεν είναι τοςο ςαφεισ. Για λογουσ ευκολιασ ςτθν αναλυςθ των εννοιων κανουμε τθν παραδοχθ ότι ενα Δικτυο μπορει να φιλοξενθςει

Διαβάστε περισσότερα

NH 2 R COOH. Σο R είναι το τμιμα του αμινοξζοσ που διαφζρει από αμινοξφ ςε αμινοξφ. 1 Πρωτεΐνες

NH 2 R COOH. Σο R είναι το τμιμα του αμινοξζοσ που διαφζρει από αμινοξφ ςε αμινοξφ. 1 Πρωτεΐνες 1 Πρωτεΐνες Πρωτεΐνεσ : Οι πρωτεΐνεσ είναι ουςίεσ «πρώτθσ» γραμμισ για τουσ οργανιςμοφσ (άρα και για τον άνκρωπο). Σα κφτταρα και οι ιςτοί αποτελοφνται κατά κφριο λόγο από πρωτεΐνεσ. Ο ςθμαντικότεροσ όμωσ

Διαβάστε περισσότερα

ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ:

ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ: ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ: 2008030075 ΕΙΑΓΩΓΗ Το Heartstone είναι ζνα ψθφιακό παιχνίδι καρτϊν που διεξάγιεται πάνω ςτο Battle.net, ζναν διακομιςτι τθσ εταιρίασ

Διαβάστε περισσότερα

1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιςτικι είναι ο κλάδοσ των μακθματικϊν που αςχολείται με τθ ςυλλογι, τθν οργάνωςθ, τθν παρουςίαςθ και τθν ανάλυςθ αρικμθτικϊν

Διαβάστε περισσότερα

Τεχνικι Παρουςιάςεων με PowerPoint

Τεχνικι Παρουςιάςεων με PowerPoint Τεχνικι Παρουςιάςεων με PowerPoint Δρ. Παφλοσ Θεοδϊρου Ανϊτατθ Εκκλθςιαςτικι Ακαδθμία Ηρακλείου Κριτθσ Περιεχόμενα Ειςαγωγι Γιατί πρζπει να γίνει παρουςίαςθ τθσ εργαςίασ μου Βαςικι προετοιμαςία Δομι παρουςίαςθσ

Διαβάστε περισσότερα

Slide 1. Εισαγωγή στη ψυχρομετρία

Slide 1. Εισαγωγή στη ψυχρομετρία Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν

Διαβάστε περισσότερα

Οδθγίεσ εγκατάςταςθσ και ρυκμίςεισ του ηυγοφ DIGI SM100

Οδθγίεσ εγκατάςταςθσ και ρυκμίςεισ του ηυγοφ DIGI SM100 Οδθγίεσ εγκατάςταςθσ και ρυκμίςεισ του ηυγοφ DIGI SM100 ΠΕΡΙΕΧΟΜΕΝΑ Γενικά Είςοδοσ ςτο πρόγραμμα Ρυιμίςεισ ζυγοφ Αλλαγι IP διεφκυνςθσ ηυγοφ Ρυκμίςεισ επικοινωνίασ Αποκικευςθ Ρυιμίςεισ εφαρμογθσ DIGICOM

Διαβάστε περισσότερα

Ενδεικτικζσ Λφςεισ Θεμάτων

Ενδεικτικζσ Λφςεισ Θεμάτων c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.

Διαβάστε περισσότερα

25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ. Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και

25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ. Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και 25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και Γ) Τα ψυκτικά φορτία από είςοδο εξωτερικοφ αζρα. 26. Ποιζσ είναι οι

Διαβάστε περισσότερα

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 5 η : Η Μζθοδοσ Simplex Παρουςίαςη τησ μεθόδου Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ

Διαβάστε περισσότερα

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 11: Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ

Διαβάστε περισσότερα

Οδηγόσ εγκατάςταςησ και ενεργοποίηςησ

Οδηγόσ εγκατάςταςησ και ενεργοποίηςησ Οδηγόσ εγκατάςταςησ και ενεργοποίηςησ Ευχαριςτοφμε που επιλζξατε το memoq 4.5, το πρωτοκλαςάτο περιβάλλον μετάφραςθσ για ελεφκερουσ επαγγελματίεσ μεταφραςτζσ, μεταφραςτικά γραφεία και επιχειριςεισ. Αυτό

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

ΕΝΔΕΙΚΣΙΚΑ ΘΕΜΑΣΑ ΜΑΘΗΜΑΣΙΚΩΝ ΕΞΕΣΑΕΙ ΤΠΟΣΡΟΦΙΩΝ 2014 [2 Ο ΦΤΛΛΑΔΙΟ]

ΕΝΔΕΙΚΣΙΚΑ ΘΕΜΑΣΑ ΜΑΘΗΜΑΣΙΚΩΝ ΕΞΕΣΑΕΙ ΤΠΟΣΡΟΦΙΩΝ 2014 [2 Ο ΦΤΛΛΑΔΙΟ] ΕΝΔΕΙΚΣΙΚΑ ΘΕΜΑΣΑ ΜΑΘΗΜΑΣΙΚΩΝ ΕΞΕΣΑΕΙ ΤΠΟΣΡΟΦΙΩΝ 2014 [2 Ο ΦΤΛΛΑΔΙΟ] ΘΕΜΑ 9ο Α. Να ςυγκρίνετε τουσ αρικμοφσ: i) και ii) και iii) 123,012 και 123,02 iv) 5 2 και 10 Β. Σο άκροιςμα των δφο διαδοχικϊν ακζραιων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1 ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1 Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών Συντονισμός

Διαβάστε περισσότερα

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ Οδηγός Χρήσης Εφαρμογής Ελέγχου Προσφορών Αφοφ πιςτοποιθκεί ο λογαριαςμόσ που δθμιουργιςατε ςτο πρόγραμμα ωσ Πάροχοσ Προςφορϊν, κα λάβετε ζνα e-mail με

Διαβάστε περισσότερα

Εγχειρίδιο Χριςθσ: Εφαρμογι Αιτιςεων για τα Εκπαιδευτικά Προγράμματα του Προςωπικοφ των Επιχειριςεων Τροφίμων

Εγχειρίδιο Χριςθσ: Εφαρμογι Αιτιςεων για τα Εκπαιδευτικά Προγράμματα του Προςωπικοφ των Επιχειριςεων Τροφίμων Εγχειρίδιο Χριςθσ: Εφαρμογι Αιτιςεων για τα Εκπαιδευτικά Προγράμματα του Προςωπικοφ των Επιχειριςεων ΕΚΔΟΣΗ 1.0 Περιεχόμενα Εφαρμογι Αιτιςεων για τα Εκπαιδευτικά Προγράμματα του Προςωπικοφ των Επιχειριςεων...

Διαβάστε περισσότερα

Σύ ντομος Οδηγο ς χρη σης wikidot για τα projects

Σύ ντομος Οδηγο ς χρη σης wikidot για τα projects Σύ ντομος Οδηγο ς χρη σης wikidot για τα projects Ειςαγωγή κοπόσ αυτοφ του κειμζνου είναι να δϊςει ςφντομεσ οδθγίεσ για τθν επεξεργαςία των ςελίδων του wiki τθσ ερευνθτικισ εργαςίασ. Πλιρθσ οδθγόσ για

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ:

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: 1. Ομάδα Ανκρωπιςτικών Σπουδών 2. Ομάδα Οικονομικών, Πολιτικών, Κοινωνικών & Παιδαγωγικών Σπουδών 3. Ομάδα Θετικών

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ Φιλιοποφλου Ειρινθ Βάςθ Δεδομζνων Βάζη δεδομένων είναι μια οπγανωμένη ζςλλογή πληποθοπιών οι οποίερ πποζδιοπίζοςν ένα ζςγκεκπιμένο θέμα.χπηζιμεύοςν ζηην Σςλλογή

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 11: Αντικειμενοςτραφήσ και αντικείμενοςχεςιακζσ βάςεισ Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

(Α3 1 ) Σασ δίνεται το παρακάτω αλγορικμικό τμιμα

(Α3 1 ) Σασ δίνεται το παρακάτω αλγορικμικό τμιμα Μάθημα: Ανάπτυξη Εφαρμογών ςε Προγραμματιςτικό Περιβάλλον Τάξη Γ Λυκείου, Πληροφορική Οικονομικών Καθηγητής : Σιαφάκασ Γιώργοσ Ημερομηνία : 28/12/2015 Διάρκεια: 3 ώρεσ ΘΕΜΑ Α /40 (Α1) Να γράψετε ςτο τετράδιό

Διαβάστε περισσότερα

Εγχειρίδιο: Honeybee Small

Εγχειρίδιο: Honeybee Small ΚΟΚΚΙΝΟΣ ΔΗΜΗΤΡΗΣ Τηλ/Fax: 20 993677 Άγιος Δημήτριος, Αττικής 73 42 Ν. Ζέρβα 29 e-mail: Kokkinos@kokkinostoys.gr www.kokkinostoys.gr Εγχειρίδιο: Honeybee Small HEYBEE SMALL CRANE MACHINE DIP SW 2 3 4 5

Διαβάστε περισσότερα

ΟΔΗΓΙΕ ΓΙΑ ΣΗΝ ΕΙΑΓΩΓΗ ΕΚΔΡΟΜΩΝ & ΝΕΩΝ - ΑΝΑΚΟΙΝΩΕΩΝ ΣΗΝ ΙΣΟΕΛΙΔΑ ΣΗ Δ.Δ.Ε. ΘΕΠΡΩΣΙΑ

ΟΔΗΓΙΕ ΓΙΑ ΣΗΝ ΕΙΑΓΩΓΗ ΕΚΔΡΟΜΩΝ & ΝΕΩΝ - ΑΝΑΚΟΙΝΩΕΩΝ ΣΗΝ ΙΣΟΕΛΙΔΑ ΣΗ Δ.Δ.Ε. ΘΕΠΡΩΣΙΑ ΟΔΗΓΙΕ ΓΙΑ ΣΗΝ ΕΙΑΓΩΓΗ ΕΚΔΡΟΜΩΝ & ΝΕΩΝ - ΑΝΑΚΟΙΝΩΕΩΝ ΣΗΝ ΙΣΟΕΛΙΔΑ ΣΗ Δ.Δ.Ε. ΘΕΠΡΩΣΙΑ ΕΙΑΓΩΓΗ Ο νζοσ δικτυακόσ τόποσ τθσ Δ.Δ.Ε. Θεςπρωτίασ παρζχει πλζον τθ δυνατότθτα τθσ καταχϊρθςθσ νζων, ειδιςεων και

Διαβάστε περισσότερα

Ειςαγωγι ςτθν Αςαφι Λογικι

Ειςαγωγι ςτθν Αςαφι Λογικι Ειςαγωγι ςτθν Αςαφι Λογικι Matlab fuzzy logic toolbox Ειςαγωγικά Η αςαφισ λογικι μπορεί να κεωρθκεί ωσ μια επζκταςθ τθσ μακθματικισ λογικισ, όπου οι λογικζσ προτάςεισ δεν ζχουν απόλυτεσ τιμζσ αλικειασ

Διαβάστε περισσότερα

Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)».

Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εφδοξοσ+ Διαθζτοντασ βιβλία μζςω του «Εφδοξοσ+» Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εμφανίηεται θ λίςτα με όλα ςασ τα βιβλία. Από εδϊ μπορείτε: -

Διαβάστε περισσότερα

ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΣΗ ΒΙΟΛΟΓΙΑ ΚΑΣΕΤΘΤΝΗ 2013

ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΣΗ ΒΙΟΛΟΓΙΑ ΚΑΣΕΤΘΤΝΗ 2013 ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΣΗ ΒΙΟΛΟΓΙΑ ΚΑΣΕΤΘΤΝΗ 2013 ΘΕΜΑ Α Α1. γ Α2. β Α3. α Α4. δ Α5. α ΘΕΜΑ Β Β1. ελ. 123-124 «Η γονιδιακι κεραπεία εφαρμόςτθκε και ειςάγονται πάλι ς αυτόν.» Β2. ελ. 133 «Διαγονιδιακά ονομάηονται

Διαβάστε περισσότερα

ελ. 11/235, Περιεχόμενα Φακζλου "Σεχνικι Προςφορά"

ελ. 11/235, Περιεχόμενα Φακζλου Σεχνικι Προςφορά υντάκτθσ : Ευάγγελοσ Κρζτςιμοσ χόλιο: ΠΑΡΑΣΗΡΗΗ 1 ελ. 11/235, Περιεχόμενα Φακζλου "Σεχνικι Προςφορά" Για τθν αποφυγι μεγάλου όγκου προςφοράσ και για τθ διευκόλυνςθ του ζργου τθσ επιτροπισ προτείνεται τα

Διαβάστε περισσότερα

Κάνουμε κλικ ςτθν επιλογι του οριηόντιου μενοφ «Get Skype»για να κατεβάςουμε ςτον υπολογιςτι μασ το πρόγραμμα του Skype.

Κάνουμε κλικ ςτθν επιλογι του οριηόντιου μενοφ «Get Skype»για να κατεβάςουμε ςτον υπολογιςτι μασ το πρόγραμμα του Skype. ΟΔΗΓΙΕ ΔΗΜΙΟΤΡΓΙΑ ΛΟΓΑΡΙΑΜΟΤ ΣΟ SKYPE Ανοίγουμε το πρόγραμμα περιιγθςθσ ιςτοςελίδων (εδϊ Internet Explorer). Κάνουμε κλικ ςτθ γραμμι διεφκυνςθσ του προγράμματοσ και πλθκτρολογοφμε: www.skype.com Κάνουμε

Διαβάστε περισσότερα

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 9: Διαδικαςία φνκεςθσ Φϊτιοσ

Διαβάστε περισσότερα

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ Λεπτζσ Αξονικζσ γραμμζσ χρθςιμοποιοφνται για να δθλϊςουν τθν φπαρξθ ςυμμετρίασ του αντικειμζνου. Υπενκυμίηουμε ότι οι άξονεσ ςυμμετρίασ χρθςιμοποιοφνται μόνον όταν το ίδιο το εξάρτθμα είναι πραγματικά

Διαβάστε περισσότερα

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων).

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_ (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). Βαςικοί παράμετροι @EDT@_ @CHK@_ @CXD@_ @CXDC@_ @CMB@_ @CHKLB@_ Παράμετροσ που

Διαβάστε περισσότερα

1 ο Διαγώνιςμα για το Α.Ε.Π.Π.

1 ο Διαγώνιςμα για το Α.Ε.Π.Π. 1 ο Διαγώνιςμα για το Α.Ε.Π.Π. Θ Ε Μ Α Α Α 1. Ν α γ ρ ά ψ ε τ ε ς τ ο τ ε τ ρ ά δ ι ό ς α σ τ ο ν α ρ ι κ μ ό κ α κ ε μ ι ά σ α π ό τ ι σ π α ρ α κ ά τ ω π ρ ο τ ά ς ε ι σ 1-8 κ α ι δ ί π λ α τ θ λ ζ ξ

Διαβάστε περισσότερα

τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014

τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014 τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014 Ειςαγωγι Στο παρόν κείμενο παρουςιάηονται και αναλφονται τα ςτατιςτικά ςτοιχεία του ιςτοτόπου τθσ ΚΕΠΑ-ΑΝΕΜ,

Διαβάστε περισσότερα

Επιμζλεια. Δρ. Ιωάννησ. Δετοράκησ

Επιμζλεια. Δρ. Ιωάννησ. Δετοράκησ HIV / AIDS Επιμζλεια. Δρ. Ιωάννησ. Δετοράκησ 2011 Σελίδα 0 από 12 HIV / AIDS Το AIDS είναι ζνα ςεξουαλικό μεταδοτικό νόςθμα και δεν αποτελεί πλζον μια κανατθφόρα αςκζνεια, αλλά μία χρόνια νόςο, για τθν

Διαβάστε περισσότερα

Ρομποτική. Η υγεία ςασ το αξίηει

Ρομποτική. Η υγεία ςασ το αξίηει Ρομποτική Μάκετε γριγορά και εφκολα ό τι χρειάηεται να ξζρετε για τισ λαπαροςκοπικζσ μεκόδουσ αντιμετϊπιςθσ γυναικολογικϊν πακιςεων Ενθμερωκείτε ςωςτά και υπεφκυνα Η υγεία ςασ το αξίηει Μζκοδοσ και πλεονεκτιματα

Διαβάστε περισσότερα

Ηλιακι Θζρμανςθ οικίασ

Ηλιακι Θζρμανςθ οικίασ Ηλιακι Θζρμανςθ οικίασ Δυνατότθτα κάλυψθσ κερμαντικϊν αναγκϊν ζωσ και 100% (εξαρτάται από τθν τοποκεςία, τθν ςυλλεκτικι επιφάνεια και τθν μάηα νεροφ αποκθκεφςεωσ) βελτιςτοποιθμζνο ςφςτθμα με εγγυθμζνθ

Διαβάστε περισσότερα

Ενεργειακά Τηάκια. Πουκεβίλ 2, Ιωάννινα Τθλ. 26510.23822 www.energeiaka-ktiria.gr www.facebook.com/energeiaka.ktiria

Ενεργειακά Τηάκια. Πουκεβίλ 2, Ιωάννινα Τθλ. 26510.23822 www.energeiaka-ktiria.gr www.facebook.com/energeiaka.ktiria Ενεργειακά Τηάκια Πουκεβίλ 2, Ιωάννινα Τθλ. 26510.23822 www.facebook.com/energeiaka.ktiria Σελ. 2 Η ΕΣΑΙΡΕΙΑ Η εταιρεία Ενεργειακά Κτίρια δραςτθριοποιείται ςτθν παροχι ολοκλθρωμζνων υπθρεςιϊν και ςτθν

Διαβάστε περισσότερα

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox 03 05 ΙΛΤΔΑ ΠΛΗΡΟΦΟΡΙΚΗ Α.Ε. αρμά Ιηαμπζλλα Βαρλάμθσ Νίκοσ Ειςαγωγι... 1 Σι είναι το Databox...... 1 Πότε ανανεϊνεται...... 1 Μπορεί να εφαρμοςτεί

Διαβάστε περισσότερα

(3Μονάδεσ) Δεδομζνα //Α// Για i από 1 μζχρι 10 k (100+i)mod 101 B[k] A[i] Τζλοσ_επανάλθψθσ Αποτελζςματα //Β,k//

(3Μονάδεσ) Δεδομζνα //Α// Για i από 1 μζχρι 10 k (100+i)mod 101 B[k] A[i] Τζλοσ_επανάλθψθσ Αποτελζςματα //Β,k// Μάθημα: Ανάπτυξη Εφαρμογών ςε Προγραμματιςτικό Περιβάλλον Τάξη Γ Λυκείου, Πληροφορική Οικονομικών Καθηγητής : Σιαφάκασ Γιώργοσ Ημερομηνία : 21/2/2016 Διάρκεια: 3 ώρεσ ΘΕΜΑ Α /40 (Α1)Να απαντήςετε αν είναι

Διαβάστε περισσότερα

eorder Eγχειρίδιο Χρήσης

eorder Eγχειρίδιο Χρήσης Eγχειρίδιο Χρήσης Περιεχόμενα Σχετικά.. 3 Ειςαγωγι ςτο ςφςτθμα. 4 Λιψθ Παραγγελιάσ.. 5 Διαχείριςθ τραπεηιϊν. 9 Μετακίνθςθ Τραπεηιοφ... 10 Λογαριαςμόσ Τραπεηιοφ 11 Παραγγελίεσ χωρίσ τραπζηι. 12 Σθμειϊματα

Διαβάστε περισσότερα

Αςφυξία και πνιγμονθ

Αςφυξία και πνιγμονθ ΠΡΟΛΗΨΗ ΑΤΥΧΗΜΑΤΩΝ Ηλικιακθ ωριμότητα 0-3 ετϊν: τα περιςςότερα παιδιά κάτω των τριϊν ετϊν δεν μποροφν να αντιλθφκοφν τθν επικινδυνότθτα μιασ πράξθσ ι να κυμθκοφν μια ςυμβουλι για πρόλθψθ ατυχιματοσ. Γι

Διαβάστε περισσότερα

Άπειρεσ κροφςεισ. Τθ χρονικι ςτιγμι. t, ο δακτφλιοσ ςυγκροφεται με τον τοίχο με ταχφτθτα (κζντρου μάηασ) μζτρου

Άπειρεσ κροφςεισ. Τθ χρονικι ςτιγμι. t, ο δακτφλιοσ ςυγκροφεται με τον τοίχο με ταχφτθτα (κζντρου μάηασ) μζτρου Άπειρεσ κροφςεισ Δακτφλιοσ ακτίνασ κυλάει ςε οριηόντιο δάπεδο προσ ζνα κατακόρυφο τοίχο όπωσ φαίνεται ςτο ςχιμα. Ο ςυντελεςτισ τριβισ ίςκθςθσ του δακτυλίου με το δάπεδο είναι, ενϊ ο τοίχοσ είναι λείοσ.

Διαβάστε περισσότερα

Αριθμητική Υπολογιστών (Κεφάλαιο 3)

Αριθμητική Υπολογιστών (Κεφάλαιο 3) ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι Διάλεξη 9 Αριθμητική Υπολογιστών (Κεφάλαιο 3) Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Αριθμητική για υπολογιστές

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Φυσική Α Λυκείου Νίκοσ Αναςταςάκθσ Γενικό Λφκειο Βάμου 2008-2010

Φυσική Α Λυκείου Νίκοσ Αναςταςάκθσ Γενικό Λφκειο Βάμου 2008-2010 Φυσική Α Λυκείου Νίκοσ Αναςταςάκθσ Γενικό Λφκειο Βάμου 2008-2010 Περιεχόμενα Μεγζκθ Κίνθςθσ: ελίδεσ 1-4 Μετατόπιςθ, Σαχφτθτα, Μζςθ Σαχφτθτα Ευκφγραμμεσ Κινιςεισ: ελίδεσ 5-20 Ευκφγραμμθ Ομαλι Ευκ. Ομαλά

Διαβάστε περισσότερα

4o Τοσρνοσά Basket Σηελετών Επιτειρήζεων 2013-2014 Δήλωζη Σσμμεηοτής

4o Τοσρνοσά Basket Σηελετών Επιτειρήζεων 2013-2014 Δήλωζη Σσμμεηοτής 4o Τοσρνοσά Basket Σηελετών Επιτειρήζεων 2013-2014 Δήλωζη Σσμμεηοτής 4o Τουρνουά Basket Στελεχϊν Επιχειριςεων 2013-2014 Σελ. 1 / 7 Σηοιτεία Αθληηών Ομάδας: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

Διαβάστε περισσότερα

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1]

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1] Το e-class του Πανελλινιου Σχολικοφ Δίκτυου [ΠΣΔ/sch.gr] είναι μια πολφ αξιόλογθ και δοκιμαςμζνθ πλατφόρμα για αςφγχρονο e-learning. Ανικει ςτθν κατθγορία του ελεφκερου λογιςμικοφ. Αρχίηουμε από τθ διεφκυνςθ

Διαβάστε περισσότερα

Ειςαγωγή ςτισ Συναρτήςεισ τησ PHP

Ειςαγωγή ςτισ Συναρτήςεισ τησ PHP Ειςαγωγή ςτισ Συναρτήςεισ τησ PHP Οι ςυναρτιςεισ (functions) τθσ PHP, δθλ. αυτζσ που υπάρχουν ενςωματωμζνεσ μζςα ςτθν PHP αλλά και αυτζσ που δθμιουργοφμε μόνοι μασ, διευκολφνουν πολφ το γράψιμο του κϊδικα

Διαβάστε περισσότερα

Seventron Limited. Οδηγίες χρήσης EnglishOnlineTests.com

Seventron Limited. Οδηγίες χρήσης EnglishOnlineTests.com Seventron Limited Οδηγίες χρήσης EnglishOnlineTests.com EnglishOnlineTests.com Seventron.com March 2013 Περιεχόμενα Πίνακασ ελζγχου/control Panel... 2 Προςκικθ μακθτι... 3 Ανάκεςθ μακθτι ςε ενότθτα...

Διαβάστε περισσότερα

Νζεσ Τάςεισ ςτην εκπαιδευτική διαδικαςία: Gamification

Νζεσ Τάςεισ ςτην εκπαιδευτική διαδικαςία: Gamification Νζεσ Τάςεισ ςτην εκπαιδευτική διαδικαςία: Gamification Δρ. Παναγιϊτθσ Ζαχαριάσ Οικονομικό Πανεπιςτιμιο Ακθνϊν - 15/5/2014 Ημερίδα με κζμα: «Οικονομία τθσ Γνϊςθσ: Αξιοποίθςθ τθσ καινοτομίασ ςτθ Β Βάκμια

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΔΙΑΓΩΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΓΩΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Όνομα. Ημερομηνία. Ζήτημα Α : Να βάλετε ςε κφκλο τθ ςωςτι απάντθςθ 1. Κυτταρικόσ κφκλοσ είναι το χρονικό διάςτθμα που μεςολαβεί: α. μεταξφ δφο μιτωτικϊν

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ «Πρόςθεςη και αφαίρεςη κλαςματικϊν αριθμϊν» Ειςηγητήσ: Χαράλαμποσ Λεμονίδησ

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ «Πρόςθεςη και αφαίρεςη κλαςματικϊν αριθμϊν» Ειςηγητήσ: Χαράλαμποσ Λεμονίδησ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ «Πρόςθεςη και αφαίρεςη κλαςματικϊν αριθμϊν» Ειςηγητήσ: Χαράλαμποσ Λεμονίδησ Ομάδα Εργαςίασ: Κελεςίδησ Ευάγγελοσ, δάςκαλοσ ΠΕ70 Μανάφη Ιωάννα, δαςκάλα ΠΕ70 Θεςςαλονίκη, επτζμβριοσ

Διαβάστε περισσότερα

ΑΠΑΝΣΗΕΙ ΒΙΟΛΟΓΙΑ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΣΕΣΑΡΣΗ 20 ΜΑΪΟΤ 2015

ΑΠΑΝΣΗΕΙ ΒΙΟΛΟΓΙΑ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΣΕΣΑΡΣΗ 20 ΜΑΪΟΤ 2015 ΑΠΑΝΣΗΕΙ ΒΙΟΛΟΓΙΑ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΘΕΜΑ Α ΣΕΣΑΡΣΗ 20 ΜΑΪΟΤ 2015 Α1. - γ. ςφφιλθ Α2. - α. ερυκρόσ μυελόσ των οςτών Α3. - β. εντομοκτόνο Α4. - β. καταναλωτζσ 1θσ τάξθσ Α5. - δ. μία οικογζνεια ΘΕΜΑ Β Β1. 1.

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

3 ο ΜΑΘΗΜΑ ΑΡΙΘΜΗΣΙΚΑ ΠΕΡΙΓΡΑΦΙΚΑ ΜΕΣΡΑ Ι ΣΑ ΜΕΣΡΑ ΚΕΝΣΡΙΚΗ ΣΑΗ

3 ο ΜΑΘΗΜΑ ΑΡΙΘΜΗΣΙΚΑ ΠΕΡΙΓΡΑΦΙΚΑ ΜΕΣΡΑ Ι ΣΑ ΜΕΣΡΑ ΚΕΝΣΡΙΚΗ ΣΑΗ 3 ο ΜΑΘΗΜΑ ΑΡΙΘΜΗΣΙΚΑ ΠΕΡΙΓΡΑΦΙΚΑ ΜΕΣΡΑ Ι ΣΑ ΜΕΣΡΑ ΚΕΝΣΡΙΚΗ ΣΑΗ Πολλζσ φορζσ μασ είναι ιδιαίτερα χριςιμο να περιγράφουμε ζνα ςφνολο αρικμθτικϊν δεδομζνων από ζναν μοναδικό αρικμό. Σζτοιου είδουσ αρικμοί

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Ιούνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1. Περιφζρεια... 3 1.1 Διαχειριςτήσ Αιτήςεων Περιφζρειασ... 3 1.1.1. Είςοδοσ... 3 1.1.2. Αρχική

Διαβάστε περισσότερα

Μθχανικι Μάκθςθ Μάκθμα 1 Βαςικζσ ζννοιεσ

Μθχανικι Μάκθςθ Μάκθμα 1 Βαςικζσ ζννοιεσ Μθχανικι Μάκθςθ Μάκθμα 1 Βαςικζσ ζννοιεσ Κϊςτασ Διαμαντάρασ Σμιμα Πλθροφορικισ ΣΕΙ Θεςςαλονίκθσ 1 τοιχεία επικοινωνίασ Κϊςτασ Διαμαντάρασ Σθλ. 2310 013592 Email: kdiamant@it.teithe.gr http://www.it.teithe.gr/~kdiamant/

Διαβάστε περισσότερα

ΘΕΜΑ Α /25 (A1)Χαρακτηρίςτε τισ παρακάτω προτάςεισ ωσ (Σ)ωςτζσ ή (Λ)άθοσ

ΘΕΜΑ Α /25 (A1)Χαρακτηρίςτε τισ παρακάτω προτάςεισ ωσ (Σ)ωςτζσ ή (Λ)άθοσ Μάθημα: ΔΙΚΣΤΑ Τάξη Γ Λυκείου, ΕΠΑΛ Καθηγητήσ : ιαφάκασ Γιϊργοσ Ημερομηνία : 21/02/2016 Διάρκεια: 3 ϊρεσ ΘΕΜΑ Α /25 (A1)Χαρακτηρίςτε τισ παρακάτω προτάςεισ ωσ (Σ)ωςτζσ ή (Λ)άθοσ 1. Σο πρωτόκολλο RARP μετατρζπει

Διαβάστε περισσότερα

Εφαρμογή. «Βελτιώνω την πόλη μου» Αιτήματα Ρολιτών. Εγχειρίδιο χρήςησ για τον πολίτη

Εφαρμογή. «Βελτιώνω την πόλη μου» Αιτήματα Ρολιτών. Εγχειρίδιο χρήςησ για τον πολίτη Εφαρμογή «Βελτιώνω την πόλη μου» Αιτήματα Ρολιτών Εγχειρίδιο χρήςησ για τον πολίτη 1 Περιεχόμενα 1. Δθμιουργία λογαριαςμοφ... 3 2. Ειςαγωγι ςτο ςφςτθμα... 5 3. Υπενκφμιςθ κωδικοφ πρόςβαςθσ και Ονόματοσ

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Επιμελητήρια)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Επιμελητήρια) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Επιμελητήρια) Πάτρα, 2013 Περιεχόμενα: Ειςαγωγή... 3 1. Επιμελητήριο... 3 1.1 Διαχειριςτήσ Αιτήςεων Επιμελητηρίου... 3 1.1.1. Είςοδοσ... 3 1.1.2. Αρχική

Διαβάστε περισσότερα