Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ"

Transcript

1 Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική μέτρηση, ανάλυση και ερμηνεία των αποτελεσμάτων των εξετάσεων που πραγματοποιήθηκαν για την πιστοποίηση επάρκειας της ελληνομάθειας κατά τις εξεταστικές περιόδους των ετών 2002, 2003 και 2004 και, σε συνδυασμό με τα συμπεράσματα που προήλθαν από την ανάλυση των εξεταστικών ερωτημάτων στις δεκτικές δεξιότητες (βαθμός ευκολίας/δυσκολίας) και παρουσιάζονται στο Α μέρος, να εξετάσει αν τα εξεταστικά θέματα ανταποκρίθηκαν στο σκοπό για τον οποίο δομήθηκαν και αν διαθέτουν εγκυρότητα, αξιοπιστία, αντικειμενικότητα και διακριτική ικανότητα. 1 Ε ΙΣΑΓΩΓΗ Η στατιστική επεξεργασία και ερμηνεία των αποτελεσμάτων αποτελεί το τελευταίο στάδιο της εξεταστικής διαδικασίας και θεωρείται απαραίτητη για να αξιολογηθεί η ποιότητα του συνόλου της, να εξεταστεί κατά πόσο τα εξεταστικά θέματα διαθέτουν την απαιτούμενη εγκυρότητα, αξιοπιστία, αντικειμενικότητα και διακριτική ικανότητα, και, με την επισήμανση μειονεκτημάτων ή παραλείψεων, να επιδιωχθεί η βελτίωση επόμενων εξεταστικών δοκιμασιών. Η δημιουργία των θεμάτων για τις εξεταστικές περιόδους των ετών Μαΐου 2002, 2003 και 2004 ακολούθησε τις φάσεις σχεδιασμού που προβλέπονται για την ανάπτυξη εξεταστικών δοκιμασιών με επικοινωνιακό προσανατολισμό (Αντωνοπούλου 2003). Δηλαδή συνοπτικά πραγματοποιήθηκαν: επιλογή των στοιχείων που κρίθηκαν ότι έπρεπε να εξεταστούν, με βάση το αναλυτικό εξεταστικό πρόγραμμα επιλογή των κατάλληλων κειμένων διαπίστωση του βαθμού δυσκολίας/ευκολίας των κειμένων του κάθε επιπέδου μέσω του λογισμικού Flesch επιλογή των τύπων των εξεταστικών ερωτημάτων υλοποίηση των εξεταστικών δοκιμασιών διόρθωση και η αξιολόγηση των εξεταστικών τετραδίων απλή στατιστική μέτρηση ποσοστά συμμετοχής/αποχής και επιτυχίας/αποτυχίας γενικά και ανά δεξιότητα και ερμηνεία των αποτελεσμάτων της. Η απλή στατιστική επεξεργασία που γίνεται στα αποτελέσματα της κάθε εξεταστικής περιόδου, αναφέρεται μόνο στους αριθμητικούς δείκτες (= βαθμοί) επιτυχίας ή αποτυχίας. Αυτοί οι δείκτες από μόνοι τους δεν έχουν τη δυνατότητα να παρουσιάσουν την εγκυρότητα και, κυρίως, την αξιοπιστία της δοκιμασίας Ορισμένες από τις μετρήσεις στα αποτελέσματα του 2002 δεν πραγματοποιήθηκαν, γιατί δεν ήταν δυνατή η πρόσβαση στα σχετικά αρχεία. 4

2 ως μέσου αξιολόγησης της γλωσσικής ικανότητας των εξεταζομένων. Απαιτούνται και άλλες μετρήσεις 1, προκειμένου: α. να περιγραφούν τα χαρακτηριστικά της κατανομής βαθμών, β. να δημιουργηθεί μια βάση για περαιτέρω στατιστικές αναλύσεις και γ. για να ερμηνευτούν τα αποτελέσματα της στατιστικής ανάλυσης με τρόπο που να είναι χρήσιμος (Bachman, 2004: 42) (με συνυπολογισμό και άλλων παραμέτρων) για την εκπαιδευτική διαδικασία (διδασκαλία-αξιολόγηση) και για την αρτιότερη ανάπτυξη εξεταστικών θεμάτων. Οι μεταβλητές που εξετάστηκαν στην παρούσα στατιστική μελέτη θεωρούνται ως οι πιο σημαντικές στην ανάλυση μιας δοκιμασίας. Εξετάστηκαν δηλαδή 2 : τα ποσοστά επιτυχίας/αποτυχίας γενικά τα ποσοστά επιτυχίας/αποτυχίας ανά επίπεδο και ανά δεξιότητα τα ποσοστά συμμετοχής αντρών/γυναικών και ομογενών/αλλογενών 3 ο αριθμός και τα ποσοστά των βαθμολογικών χαρακτηρισμών η συχνότητα των βαθμών ανά δεξιότητα και ανά επίπεδο Επίσης εξετάστηκαν: οι δείκτες της κεντρικής τάσης, δηλαδή ο μέσος όρος των μονάδων που συγκέντρωσαν οι υποψήφιοι ανά δεξιότητα/επίπεδο, ο επικρατέστερος βαθμός και η διάμεσος των βαθμών το εύρος/η διακύμανση των βαθμών (range) και η τυπική απόκλιση (standard deviation) Για την καλύτερη κατανόηση των αποτελεσμάτων της ανάλυσης, κατάλληλοι πίνακες και διαγράμματα συνοδεύουν κάθε κατηγορία που ερευνήθηκε. 1.2 Συνοπτική παρουσίαση στατιστικών δεικτών Στη δοκιμασιολογία 4 τα στοιχεία που αναλύονται και ερμηνεύονται αφορούν κυρίως την κατανομή των βαθμών. Η κατανομή ή διασπορά των βαθμών έχει τρία σημαντικά χαρακτηριστικά: τη θέση (δείκτες κεντρικής τάσης), το εύρος της διασποράς και το σχήμα (καμπύλη κατανομής) (Balnaves, Caputi, 2001: 132). Ένας τρόπος για να έχουμε άμεση εικόνα των αποτελεσμάτων μιας εξέτασης είναι να ταξινομήσουμε σε πίνακες το σύνολο των βαθμών (βλ. παράρτημα Π.1). Αυτή η ταξινόμηση μας δίνει τη δυνατότητα αφενός να δούμε αμέσως το σημείο στο οποίο συγκεντρώνονται οι περισσότεροι βαθμοί και αφετέρου να συνεχίσουμε την επεξεργασία των αποτελεσμάτων αναλύοντας δείκτες που μας βοηθούν να καταλήξουμε σε σαφή και ασφαλή συμπεράσματα τόσο για την επίδοση των υποψηφίων/μαθητών όσο και για την ποιότητα εξταστικών θεμάτων. Ένας πίνακας κατανομής βαθμών στη δεξιότητα της κατανόησης γραπτού λόγου σε όλα τα επίπεδα των εξετάσεων του 2002 (για την κατασκευή τους βλ. παράρτημα Π.1) είναι ο 7.2 που δίνεται στη συνέχεια. 1 Η μέτρηση είναι μια διαδικασία που ποσοτικοποιεί (= βαθμολογεί) τα χαρακτηριστικά και τις ικανότητες του ατόμου σύμφωνα με συγκεκριμένες διαδικασίες και κανόνες. Η ποσοτικοποίηση (quantification) μετρά το βαθμό της ικανότητας των εξεταζομένων σε συνάρτηση με τη δυσκολία ή την ευκολία του έργου που τους έχει ανατεθεί και εκφράζεται με αριθμητικούς ή μη δείκτες (αριθμοί, γράμματα κτλ.) ή χαρακτηρισμούς όπως καλά πολύ καλά κτλ., οι οποίοι όμως εξισώνονται με αριθμούς για να υπάρχει η δυνατότητα κατανόησης και ερμηνείας τους (Αντωνοπούλου, 2000). 2 Τα αποτελέσματα από την επεξεργασία αυτών των πληροφοριών, εκτός από την εικόνα που δίνουν για το κοινό που συμμετέχει στις εξετάσεις, είναι χρήσιμες για έρευνες που χρησιμοποιούνται για τον εντοπισμό και την ερμηνεία αδύνατων σημείων των υποψηφίων, π.χ. εντοπισμός και ανάλυση λαθών. 3 Τα ευρήματα αυτά είναι χρήσιμα για έρευνες που βασίζονται στην απόδοση των υποψηφίων, κυρίως στις παραγωγικές δεξιότητες, π.χ. εντοπισμός και ερμηνεία/ανάλυση λαθών κτλ. 4 Ο όρος χρησιμοποιείται από τον Τσοπάνογλου,

3 ΠΙΝΑΚΑΣ 7.2 ΣΥΧΝΟΤΗΤΑ ΒΑΘΜΩΝ ΑΝΑ ΕΠΙΠΕΔΟ. ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ Βαθμοί Συχνότητα Α Β Γ Δ Δείκτες κεντρικής τάσης (Measures of central tendency) Οι δείκτες κεντρικής τάσης ή μέτρα θέσης δείχνουν το σημείο (κεντρική τιμή) στο οποίο τείνουν να συγκεντρωθούν οι περισσότερες τιμές μιας ομάδας δεδομένων/παρατηρήσεων και θεωρείται το «κέντρο» της κατανομής των παρατηρήσεων (Παρασκευόπουλος, 1985: 86, Δαφέρμος, 2005: 93). Για αποτελέσματα που προέρχονται από εξεταστικές δοκιμασίες, είναι: «... το σημείο της βαθμολογικής κλίμακας προς το οποίο τείνουν, συγκεντρώνονται, οι περισσότεροι βαθμοί...» (Τσοπάνογλου, 2000: 127). Οι δείκτες της κεντρικής τάσης είναι τρεις: ο επικρατέστερος βαθμός 5 ή η επικρατούσα/δεσπόζουσα/συχνότερη τιμή (mode), η διάμεσος (median) και ο αριθμητικός μέσος ή ο μέσος όρος 6 (mean). Και οι τρεις δίνουν την εικόνα αφενός της επίδοσης των μαθητών/υποψηφίων και αφετέρου της ποιότητας (με συνυπολογισμό και άλλων παραμέτρων) των εξεταστικών θεμάτων. Για τον υπολογισμό τους δε χρειάζονται απαραίτητα γνώσεις στατιστικής ή χρήσης στατιστικών εργαλείων. Στο παράρτημα, όπως προαναφέρθηκε, περιγράφονται βήμα βήμα οι διαδικασίες που πρέπει να ακολουθηθούν για τον υπολογισμό αυτών των δεικτών (παράρτημα Π.2, Π.3, Π.4). 5 Εφόσον πρόκειται για αποτελέσματα εξετάσεων, χρησιμοποιείται περισσότερο αυτός ο όρος. 6 Αυτός ο όρος είναι πιο γνωστός στους εκπαιδευτικούς και αυτός χρησιμοποιείται στην παρούσα μελέτη 6

4 Ο επικρατέστερος βαθμός (mode) Ο επικρατέστερος βαθμός (επικρατέστερη/επικρατούσα/δεσπόζουσα/συχνότερη τιμή) (ΕΒ) (βλ. και παράρτημα Π.2), δίνει πληροφορίες για το σημείο στο οποίο συγκεντρώνεται ο μεγαλύτερος αριθμός μονάδων και είναι πολύ εύκολο να τον εντοπίσουμε σε έναν πίνακα κατανομής και συχνότητας βαθμών, χωρίς τη χρήση στατιστικού τύπου: είναι ο βαθμός που παρουσιάζει τη μεγαλύτερη συχνότητα. Για παράδειγμα, αν έχουμε μία βαθμολογική κλίμακα 0-10 και οι βαθμοί με τους οποίους έχουν αξιολογηθεί οι μαθητές είναι: 1, 2, 3, 5, 7, 7, 8, 8, 8, 9, 9, 10, είναι εύκολο, παρατηρώντας τους βαθμούς, να αντιληφθούμε ότι ο ΕΒ είναι το 8. Η κατανομή των βαθμών μπορεί να έχει περισσότερους από έναν επικρατέστερους βαθμούς, γεγονός που δείχνει ότι υπάρχει μεγάλη συγκέντρωση μονάδων σε περισσότερα σημεία, π.χ. στο παράδειγμα 1, 2, 3, 5, 7, 7, 7, 8, 8, 8, 9, 9, 10 έχουμε δύο ΕΒ, το 7 και το 8, γιατί και στις δύο περιπτώσεις έχουμε από τρεις μαθητές που αξιολογήθηκαν με 7 ή 8 Ένα άλλο παράδειγμα είναι και ο πίνακας 7.2, παραπάνω. Είναι πολύ εύκολο να βρούμε ότι ο ΕΒ για το Α επίπεδο είναι το 25, για το Β το 22, για το Γ το 21 και το 22 και για το Δ επίπεδο το 15. (βλ. και παράρτημα Π.2). Από τις τιμές αυτές μπορούμε να συμπεράνουμε ότι η επίδοση των μαθητών στη συγκεκριμένη δεξιότητα στα επίπεδα Α, Β και Γ ήταν υψηλή, ενώ ήταν αρκετά χαμηλότερη στο Δ επίπεδο (το γιατί ήταν χαμηλότερη θα βρεθεί με την ανάλυση των εξεταστικών ερωτημάτων). Ο ΕΒ δεν επηρεάζεται από ακραίες τιμές (πολύ χαμηλές ή πολύ υψηλές), όταν αυτές δεν έχουν μεγάλη συχνότητα), και συγκριτικά με τους άλλους δείκτες, χρησιμοποιεί για τον υπολογισμό του τις λιγότερες τιμές από το δείγμα που προέρχεται, γι αυτό θεωρείται και ως ο λιγότερο «δημοκρατικός δείκτης» (Δαφέρμος, 2005). Επίσης ο δείκτης αυτός δε θεωρείται «καλός» (δεν είναι όμως άχρηστος), γιατί η οποιαδήποτε «...μικρή μετατόπιση ενός μόνο βαθμού αλλάζει κατά μία μονάδα την επικρατούσα τιμή...» (Τσοπάνογλου, 2000), δηλαδή, αν στο παράδειγμα 1, 2, 3, 5, 7, 7, 7, 8, 8, 8, 9, 9, 10, προσθέσουμε ένα ακόμη 7 (1, 2, 3, 5, 7, 7, 7, 7, 8, 8, 8, 9, 9, 10), τότε ο ΕΒ αλλάζει και αντί για δύο επικρατέστερους βαθμούς, το 7 και το 8, έχουμε έναν, το 7. Ωστόσο, δίνει τη δυνατότητα στον εκπαιδευτικό να σχηματίσει άμεσα μια ιδέα για την επίδοση των μαθητών σε μια συγκεκριμένη δοκιμασία (βλ. παράρτημα), αλλά και στον ερευνητή να αναρωτηθεί για το δείκτη ευκολίας/δυσκολίας των εξεταστικών ερωτημάτων Διάμεσος (median) Η διάμεσος/διχοτόμος 7 (Δ) (median, mdn) είναι η τιμή που βρίσκεται στο μέσο της γενικής κατάταξης των παρατηρήσεων, δηλαδή πάνω και κάτω από αυτή την τιμή υπάρχει ο ίδιος αριθμός μονάδων/βαθμών (Bachman, 2004: 55). Θεωρείται ως πιο έγκυρο στατιστικό δεδομένο και πιο κοντά στα πραγματικά αποτελέσματα της βαθμολόγησης μιας δοκιμασίας, ιδιαίτερα όταν το σύνολο των αποτελεσμάτων περιέχει μικρό αριθμό χαμηλών ή υψηλών βαθμών, οι οποίοι στην αντίθετη περίπτωση επηρεάζουν το Μ.Ο. και αλλοιώνουν την πραγματική εικόνα της συνολικής βαθμολογίας (Nitko, 1983: 60, Alderson et al 1995: 94). Η διάμεσος υπολογίζεται με τη σχέση (Topping, 1972): (N/2) - n mdn = L + ε f 7 Τσοπάνογλου, 2000:

5 όπου: ε f L n Ν = το εύρος διακύμανσης, δηλαδή το βαθμολογικό διάστημα μέσα στο οποίο πρέπει να είναι η διάμεσος = η συχνότητα στο διάστημα αυτό = το κατώτατο όριο του διαστήματος = ο συνολικός αριθμός των βαθμών που είναι κάτω από το L = ο συνολικός αριθμός των παρατηρήσεων (=εξεταστικών τετραδίων) Στο παράρτημα (Π.3) δίνεται αναλυτικά και με παραδείγματα ο τρόπος με τον οποίο υπολογίζεται η διάμεσος Μέσος όρος Ο Μέσος Όρος (ΜΟ) (ή και μέση τιμή) είναι από τα πρώτα μεγέθη που βοηθούν να διαπιστωθεί η γενική εικόνα μιας εξεταστικής δοκιμασίας μετά τη βαθμολόγηση των γραπτών και, κατά τον Τσοπάνογλου (2000: 129), ο συνηθέστερος και ακριβέστερος δείκτης κεντρικής τάσης. Είναι η τιμή που δίνει μια άμεση εικόνα των επιδόσεων όλων των υποψηφίων. Υπερβολικά υψηλή τιμή του μέσου όρου δείχνει αφενός ότι οι επιδόσεις των μαθητών είναι υψηλές και αφετέρου ότι η δοκιμασία πιθανόν να είναι εύκολη, αν και ο τελικός χαρακτηρισμός μιας δοκιμασίας ως εύκολης, δύσκολης ή κανονικής απαιτεί το συνυπολογισμό και άλλων παραγόντων, μεταξύ των οποίων την ανάλυση των εξεταστικών ερωτημάτων. Θεωρείται «ο δημοκρατικότερος» δείκτης από τους τρεις της κεντρικής τάσης, γιατί κατά τον υπολογισμό του, λαμβάνει υπόψη του όλες ανεξαιρέτως τις τιμές ενός δείγματος (Δαφέρμος, 2005: 95). Ο ΜΟ υπολογίζεται με τη σχέση (βλ. και παράρτημα Π.5) (Heaton, 1983:122, Nitko, 1983:62): (fx) Μ = Ν όπου: Μ = Μέσος όρος x = βαθμός f = συχνότητα = σύμβολο αθροίσματος Ν = σύνολο μαθητών (παρατηρήσεων) Στο παράρτημα (Π.4 και Π.5) δίνονται παραδείγματα για τον υπολογισμό του ΜΟ. 8

6 1.2.2 Δείκτες διασποράς Οι δείκτες διασποράς δείχνουν τον τρόπο με τον οποίο κατανέμονται οι βαθμοί με τους οποίους αξιολογήθηκαν οι μαθητές. Οι συνηθέστεροι για αποτελέσματα εξετάσεων και αυτοί που παρουσιάζονται στη μελέτη είναι δύο: το εύρος (διακύμανση) των βαθμών και η τυπική απόκλιση. Σύμφωνα με τις Hatch- Lazaraton (1991: 164), όταν δεν υπάρχουν ακραίοι βαθμοί η διασπορά των βαθμών είναι συμμετρική, δηλαδή οι βαθμοί συγκεντρώνονται στο κέντρο της βαθμολογικής κλίμακας. Η αναπαράσταση της συμμετρικής κατανομής/διασποράς των βαθμών είναι η καμπύλη συμμετρικής/ομαλής κατανομής (βλ σχήματα Α και Γ). Οι διάφορες μορφές που μπορεί να έχει η καμπύλη κατανομής βαθμών (παρατηρήσεων) περιγράφονται παρακάτω στο Εύρος/Διακύμανση (range ή scatter) Είναι το μέγεθος που αναφέρεται στη διασπορά των βαθμών και μπορούμε να το υπολογίσουμε, αν αφαιρέσουμε το μικρότερο βαθμό που εμφανίζεται στη βαθμολογική κλίμακα από το μεγαλύτερο. Για παράδειγμα στον πίνακα 7.2 παραπάνω, ο δείκτης εύρους για το Α επίπεδο είναι (25 7 =) 18, για το Β (25 1 =) 24, για το Γ (25 6 =) 19 και για το Δ επίπεδο (25 4 = ) 21. Τυπικά, η μεγαλύτερη διασπορά βαθμών παρατηρείται στο Β επίπεδο. Το μειονέκτημα αυτού του μεγέθους είναι ότι δεν εμφανίζει τα κενά των βαθμών, όπως π.χ. στο Α επίπεδο οι βαθμοί 8 και 9 (βλ. και παράρτημα Π.6). Επομένως ο δείκτης αυτός είναι χρήσιμος για να έχουμε μια άμεση πρώτη εικόνα για το πώς περίπου κατανέμονται οι βαθμοί σε μια βαθμολογική κλίμακα Τυπική απόκλιση (Standard Deviation) Η τυπική απόκλιση (SD) είναι το μέγεθος που καθορίζει σαφέστερα αν τα εξεταστικά θέματα και οι ερωτήσεις τους καλύπτουν ποικιλία δυνατοτήτων των υποψηφίων ή περιορίζονται μόνο στους καλούς ή μόνο στους κακούς. Η τυπική απόκλιση λαμβάνει υπόψη το βαθμολογικό αποτέλεσμα του κάθε υποψηφίου. Είναι βασικός δείκτης αξιοπιστίας και όσο μεγαλύτερη τιμή έχει τόσο μεγαλύτερη αξιοπιστία και διακριτική ικανότητα διαθέτει η δοκιμασία και τόσο μεγαλύτερη ποικιλία επιδόσεων των υποψηφίων καλύπτει. Ίσως ο υπολογισμός της φαίνεται δύσκολος, στο παράρτημα όμως (βλ. Π.7) δίνεται με παραδείγματα η πορεία που πρέπει να ακολουθηθεί. Η σχέση με την οποία υπολογίζεται είναι: SD = [f (x-μ)²] Ν όπου: x = βαθμός f = συχνότητα βαθμού Μ = μέσος όρος των βαθμών N = συνολικός αριθμός υποψηφίων (= βαθμών) = σύμβολο αθροίσματος 9

7 Καμπύλη κατανομής βαθμών Η καμπύλη κατανομής βαθμών είναι το τρίτο χαρακτηριστικό της διασποράς τους, το σχήμα. Είναι δηλαδή η σχηματική παράσταση της διασποράς αλλά και της θέσης των βαθμών. Η καμπύλη της κατανομής παρουσιάζει διάφορες μορφές. Οι πιο συνηθισμένες μορφές της, ανάλογα με την κατανομή των βαθμών και με τους δείκτες της κεντρικής τάσης, είναι αυτές που εμφανίζουν τα σχήματα Α, Β, Γ, και Δ. Όταν οι δείκτες της κεντρικής τάσης, δηλαδή ο ΕΒ, η διάμεσος και ο ΜΟ, συγκεντρώνονται στο μέσο μιας (βαθμολογικής) κλίμακας και έχουν την ίδια τιμή ή πλησιάζουν πολύ, δίνουν σχηματικά την καμπύλη του σχήματος Α ή του σχήματος Β (Hatch, Lazaraton, 1991: 164), που αναφέρεται ως συμμετρική κατανομή που παρουσιάζεται σε δοκιμασία στην οποία τα θέματα παρουσιάζουν ισορροπία στο βαθμό δυσκολίας και ευκολίας, και οι τιμές της κεντρικής τάσης είναι ίδιες ή πολύ κοντά και συμπίπτουν με την κορυφή της καμπύλης. Οποιαδήποτε απόκλιση από την ομαλή/συμμετρική καμπύλη (normal curve) στην κατανομή των αποτελεσμάτων αριστερά ή δεξιά από την κορυφή της καμπύλης είναι θετικά ή αρνητικά ασύμμετρη (positively or negatively skewed). Αυτό συμβαίνει όταν οι δείκτες κεντρικής τάσης βρίσκονται σε διαφορετικά σημεία (Davies et al, 1999:180). Μεγάλη θετική ασύμμετρη κατανομή (positively skewed, ο ΜΟ υψηλότερος από τον ΕΒ και τη Δ) δείχνει ότι μία δοκιμασία είναι ιδιαίτερα δύσκολη, ενώ μεγάλη αρνητική ασύμμετρη κατανομή (negatively skewed distribution, ο ΜΟ χαμηλότερος από ΕΒ και Δ) ότι είναι πολύ εύκολη. Τα σχήματα Γ και Δ δίνονται ως δείγματα κατανομής βαθμών σε δύσκολες και εύκολες δοκιμασίες. Το Γ είναι η εικόνα της θετικής κατανομής των βαθμών (positively skewed distribution), που σημαίνει ότι υπάρχει μεγάλη συγκέντρωση στους χαμηλούς βαθμούς και συνεπώς ή οι επιδόσεις των μαθητών είναι χαμηλές και πιθανόν ο δείκτης δυσκολίας των εξεταστικών θεμάτων να είναι πολύ υψηλός. Το σχήμα Δ δείχνει το ακριβώς αντίθετο. Είναι η εικόνα της αρνητικής κατανομής των βαθμών (negatively skewed distribution), δηλαδή παρατηρείται μεγάλη συγκέντρωση στους υψηλούς βαθμούς, επομένως οι επιδόσεις των μαθητών είναι υψηλές και πιθανόν τα θέματα να έχουν υψηλό δείκτη ευκολίας. Σχήμα Α Καμπύλες συμμετρικής κατανομής Σχήμα Β 10

8 Σχήμα Γ ασύμμετρη θετική κατανομή βαθμών Σχήμα Δ ασύμμετρη αρνητική κατανομή βαθμών 11

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ παραρτημα_layout 1 17/9/2013 10:13 μμ Page 775 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Πρόλογος... 7 Εισαγωγή... 11 ΚΕΦΑΛΑΙΟ Α ΔΙΑΣΑΦΗΣΕΙΣ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΓΕΝΙΚΕΣ ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΕΙΣ ΚΑΙ ΑΛΛΑ ΣΥΝΑΦΗ ΘΕΜΑΤΑ 1.1. Εισαγωγή...

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Τα δεδομένα της στήλης Grade (Αρχείο Excel, Φύλλο Ask1) αναφέρονται στη βαθμολογία 63 φοιτητών που έλαβαν μέρος σε

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Περιγραφικοί παράµετροι ή περιγραφικά µέτρα Τα περιγραφικά µέτρα διακρίνονται σε: µέτρα θέσης των στατιστικών δεδο- µένων ή παράµετροι κεντρικής τάσης µέτρα διασποράς µέτρα ή συντελεστές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-07 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο ΣΥΜΠΕΡΑΣΜΑΤΑ. 4.1 Σύνολο νοµού Αργολίδας. 4.1.1 Γενικές παρατηρήσεις

ΚΕΦΑΛΑΙΟ 4 ο ΣΥΜΠΕΡΑΣΜΑΤΑ. 4.1 Σύνολο νοµού Αργολίδας. 4.1.1 Γενικές παρατηρήσεις ΚΕΦΑΛΑΙΟ ο ΣΥΜΠΕΡΑΣΜΑΤΑ. Σύνολο νοµού Αργολίδας.. Γενικές παρατηρήσεις Γίνεται φανερό από την ανάλυση, που προηγήθηκε, πως η επίδοση των υποψηφίων του νοµού Αργολίδας, αλλά και η κατανοµή της βαθµολογίας

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Αποτίμηση της συμβολής της Πράξης 54 στην εξ αποστάσεως στήριξη και επιμόρφωση των διδασκόντων την ελληνική ως ξένη/δεύτερη γλώσσα

Αποτίμηση της συμβολής της Πράξης 54 στην εξ αποστάσεως στήριξη και επιμόρφωση των διδασκόντων την ελληνική ως ξένη/δεύτερη γλώσσα Αποτίμηση της συμβολής της Πράξης 54 στην εξ αποστάσεως στήριξη και επιμόρφωση των διδασκόντων την ελληνική ως ξένη/δεύτερη γλώσσα Ρινέττα Κιγιτσιόγλου-Βλάχου Θεσσαλονίκη, 24 Οκτωβρίου 2014 2 Η Πράξη 54

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Πιστοποίηση επάρκειας της ελληνομάθειας. Οδηγίες για την ανάπτυξη εξεταστικών ερωτημάτων

Πιστοποίηση επάρκειας της ελληνομάθειας. Οδηγίες για την ανάπτυξη εξεταστικών ερωτημάτων Πιστοποίηση επάρκειας της ελληνομάθειας. Οδηγίες για την ανάπτυξη εξεταστικών ερωτημάτων Εισαγωγή Από το Μάιο του 2011 έγιναν ουσιαστικές και ριζικές αλλαγές στο πιστοποιητικό ελληνομάθειας, που αφορούν

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Στόχοι Ο κύριος στόχος του μαθήματος είναι να βοηθήσει τους φοιτητές να αναπτύξουν πρακτικές

Διαβάστε περισσότερα

ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ. Οδηγός για τους Γονείς

ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ. Οδηγός για τους Γονείς ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ Οδηγός για τους Γονείς Γνωρίζουμε πως ο Έλληνας γονιός θέλει να έχει στη διάθεσή του τις πληροφορίες που χρειάζεται ώστε να επιλέξει τις εξετάσεις που θα λάβει μέρος

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Αξιολόγηση Εκτελεστικών Λειτουργιών

Αξιολόγηση Εκτελεστικών Λειτουργιών Αξιολόγηση Εκτελεστικών Λειτουργιών Εισαγωγή: οκιμασίες Εκτελεστικών Λειτουργιών και η Συμβολή τους στην Επαγγελματική σας Επιλογή Η σημασία της αξιολόγησης των γνωστικών δεξιοτήτων Οι γνωστικές ικανότητες

Διαβάστε περισσότερα

Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Μέρος 1: Βασικές έννοιες Μια σύντομη εισαγωγή

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ Επιλογή κειμένων των καθηγητών: Μ. GRAWITZ Καθηγήτρια Κοινωνιολογίας

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

TEST OF INTERACTIVE ENGLISH (TIE)

TEST OF INTERACTIVE ENGLISH (TIE) TEST OF INTERACTIVE ENGLISH (TIE) Το πιστοποιητικό αγγλικής γλώσσας του Υπουργείου Παιδείας και Επιστημών της Ιρλανδίας Αναγνωρισμένο από το ΑΣΕΠ για τα επίπεδα Lower (Β2), Advanced (C1) και Proficiency

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΔΙΟΙΚΟΥΣΑ ΕΠΙΤΡΟΠΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΩΝ ΣΧΟΛΕΙΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΔΙΟΙΚΟΥΣΑ ΕΠΙΤΡΟΠΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΩΝ ΣΧΟΛΕΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Μαρούσι,15-05-2015 ΔΙΟΙΚΟΥΣΑ ΕΠΙΤΡΟΠΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΩΝ ΣΧΟΛΕΙΩΝ OΔΗΓΙΕΣ ΣΧΕΤΙΚΑ ΜΕ ΤΟΝ ΤΡΟΠΟ ΕΙΣΑΓΩΓΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΣΤΑ ΠΕΙΡΑΜΑΤΙΚΑ

Διαβάστε περισσότερα

Ερευνητικά Ερωτήματα

Ερευνητικά Ερωτήματα ΣΤΟΧΟΣ Στόχος της προτεινόμενης έρευνας ήταν η διερεύνηση ύπαρξης διαφορών στην εκπαίδευση των εργαζομένων μεταναστών σε θέματα υγιεινής και ασφάλειας της εργασίας σε σχέση με το πολιτισμικό τους υπόβαθρο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3 Ηλίας Αθανασιάδης Αναπληρωτής καθηγητής Π.Τ..Ε. Παν. Αιγαίου 1.8. Αθροιστική κα τα νο μή Σε ορισμένες κατανομές παρουσιάζει ενδιαφέρον να παρακολουθούμε πώς

Διαβάστε περισσότερα

Οδηγίες προς Υποψηφίους. Α. Γενικές Οδηγίες

Οδηγίες προς Υποψηφίους. Α. Γενικές Οδηγίες ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Λεωφόρος Εθνικής Αντιστάσεως 41, 142 34 Νέα Ιωνία www.eoppep.gr Εξετάσεις Πιστοποίησης Εκπαιδευτικής Επάρκειας Εκπαιδευτών Ενηλίκων της μη Τυπικής Εκπαίδευσης,

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ Υπό ΘΕΟΔΩΡΟΥ ΑΡΤΙΚΗ, ΑΝΑΣΤΑΣΙΟΥ ΣΟΥΓΙΑΝΝΗ ΚΑΙ ΓΕΩΡΓΙΟΥ ΑΡΤ1ΚΗ Ανωτάτη Βιομηχανική Σχολή Πειραιά 1. ΕΙΣΑΓΩΓΗ Τα συνήθη κριτήρια αξιολόγησης επενδύσεων βασίζονται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΝΘΡΩΠΙΝΗΣ ΚΙΝΗΣΗΣ ΚΑΙ ΠΟΙΟΤΗΤΑΣ ΖΩΗΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΝΘΡΩΠΙΝΗΣ ΚΙΝΗΣΗΣ ΚΑΙ ΠΟΙΟΤΗΤΑΣ ΖΩΗΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΝΘΡΩΠΙΝΗΣ ΚΙΝΗΣΗΣ ΚΑΙ ΠΟΙΟΤΗΤΑΣ ΖΩΗΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Οδηγός Εκπόνησης Διπλωματικής Εργασίας ΣΠΑΡΤΗ 2010-11 Περιεχόμενα 1.ΔΟΜΗ ΚΑΙ ΠΕΡΙΕΧΟΜΕΝΟ Της ΔΙΠΛΩΜΑΤΙΚΗΣ

Διαβάστε περισσότερα

ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(5543) Κορρέ Πελαγία(5480) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης

ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(5543) Κορρέ Πελαγία(5480) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(55) Κορρέ Πελαγία(580) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Εαρινό εξάμηνο 0 Ρέθυμνο, 5/6/0 ΠΕΡΙΕΧΟΜΕΝΑ:. Εισαγωγή.

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Κατασκευή ισοδύναμων ερωτημάτων για το αυτοματοποιημένο σύστημα πιστοποίησης εκπαιδευτικών στις βασικές δεξιότητες πληροφορικής

Κατασκευή ισοδύναμων ερωτημάτων για το αυτοματοποιημένο σύστημα πιστοποίησης εκπαιδευτικών στις βασικές δεξιότητες πληροφορικής Κατασκευή ισοδύναμων ερωτημάτων για το αυτοματοποιημένο σύστημα πιστοποίησης εκπαιδευτικών στις βασικές δεξιότητες πληροφορικής Χρήστος Χριστακούδης 1, Γεώργιος Ανδρουλάκης 2, Μπάμπης Ζαγούρας 1 christak@cti.gr,

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ο ΜΕΘΟ ΟΛΟΓΙΑ ΜΕΛΕΤΗΣ ΧΡΗΣΙΜΟΠΟΙΗΣΗΣ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ

ΚΕΦΑΛΑΙΟ 5 ο ΜΕΘΟ ΟΛΟΓΙΑ ΜΕΛΕΤΗΣ ΧΡΗΣΙΜΟΠΟΙΗΣΗΣ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ ΚΕΦΑΛΑΙΟ 5 ο ΜΕΘΟ ΟΛΟΓΙΑ ΜΕΛΕΤΗΣ ΧΡΗΣΙΜΟΠΟΙΗΣΗΣ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ ΕΙΣΑΓΩΓΗ Στην έρευνα χρησιµοποίησης υπηρεσιών υγείας χρησιµοποιούνται επιδηµιολογικές, κοινωνιολογικές, οικονοµετρικές, καθώς και καθαρά

Διαβάστε περισσότερα

1.1. Η Χρησιμότητα της Στατιστικής

1.1. Η Χρησιμότητα της Στατιστικής ε ν ό τ η τ α 1 1.1. Η Χρησιμότητα της Στατιστικής Οι εφαρμογές των μεθόδων της στατιστικής είναι ευρείες. Πριν την αναφορά μας για τη χρησιμότητα της στατιστικής, είναι σκόπιμο να παραθέσουμε τους παρακάτω

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΗΜ. Αθήνα, 17 Αυγούστου 2007 Α.Π.:οικ.16928/2007

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΗΜ. Αθήνα, 17 Αυγούστου 2007 Α.Π.:οικ.16928/2007 Ελληνική ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΗΜ. ΙΟΙΚΗΣΗΣ ΚΑΙ ΑΠΟΚΕΝΤΡΩΣΗΣ ΓΕΝΙΚΗ /ΝΣΗ ΙΟΙΚΗΤΙΚΗΣ ΥΠΟΣΤΗΡΙΞΗΣ /ΝΣΗ ΑΛΛΟ ΑΠΩΝ & ΜΕΤΑΝΑΣΤΕΥΣΗΣ Τµήµα Μεταναστευτικής Πολιτικής Τµήµα Κοινωνικής Ένταξης

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ ΚΛΙΝΙΚΑ ΣΗΜΑΝΤΙΚΟ ΕΥΡΗΜΑ VS ΣΤΑΤΙΣΤΙΚΑ ΣΗΜΑΝΤΙΚΟ ΕΥΡΗΜΑ Ι 1. Η στατιστική σημαντικότητα αντανακλά την επίδραση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

Ενδιάμεση Έκθεση: Ποσοτικά Ευρήματα Έρευνας απόψεων Σχολικών Συμβούλων για τα Γνωστικά Αντικείμενα του Δημοτικού

Ενδιάμεση Έκθεση: Ποσοτικά Ευρήματα Έρευνας απόψεων Σχολικών Συμβούλων για τα Γνωστικά Αντικείμενα του Δημοτικού Ενδιάμεση Έκθεση: Ποσοτικά Ευρήματα Έρευνας απόψεων Σχολικών Συμβούλων για τα Γνωστικά Αντικείμενα του Δημοτικού ΣΚΟΠΟΣ ΤΗΣ ΕΡΕΥΝΑΣ Η παρούσα έρευνα έχει σκοπό τη συλλογή εμπειρικών δεδομένων σχετικά με

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Σ Ε Μ Ι Ν Α Ρ Ι Ο ΤΙΤΛΟΣ ΕΡΓΑΣΙΑΣ: ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΧΡΗΣΤΟΥ ΚΩΝΣΤΑΝΙΝΟΣ. Υπεύθυνες Εκπόνησης Εργασίας ΟΝΟΜΑ: ΦΩΤΕΙΝΗ ΕΠΩΝΥΜΟ: ΛΙΟΣΗ Α.

Σ Ε Μ Ι Ν Α Ρ Ι Ο ΤΙΤΛΟΣ ΕΡΓΑΣΙΑΣ: ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΧΡΗΣΤΟΥ ΚΩΝΣΤΑΝΙΝΟΣ. Υπεύθυνες Εκπόνησης Εργασίας ΟΝΟΜΑ: ΦΩΤΕΙΝΗ ΕΠΩΝΥΜΟ: ΛΙΟΣΗ Α. Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Κ Ρ Η Τ Η Σ Π Α Ι Δ Α Γ Ω Γ Ι Κ Ο Τ Μ Η Μ Α Δ Η Μ Ο Τ Ι Κ Η Σ Ε Κ Π Α Ι Δ Ε Υ Σ Η Σ Σ Ε Μ Ι Ν Α Ρ Ι Ο ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ (Β06Σ03) ΤΙΤΛΟΣ

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ ΠΕΡΙΕΧOΜΕΝΑ Πρόλογος στη δεύτερη έκδοση Πρόλογος στην πρώτη έκδοση Εισαγωγή Τι είναι η μεθοδολογία έρευνας Οι μέθοδοι έρευνας ΜEΡOΣ A : ΓNΩΡΙΜΙΑ ΜΕ ΤΗΝ ΕΠΙΣΤΗΜOΝΙΚΗ ΕΡΓΑΣΙΑ ΚΕΦΑΛΑΙO 1: Γενικά για την επιστημονική

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους; ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2013 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

Πίνακας-1 Επίπεδο εκπαίδευσης πατέρα 2

Πίνακας-1 Επίπεδο εκπαίδευσης πατέρα 2 Περιγραφική Στατιστική Όπως, ήδη έχουμε αναφέρει, στόχος της Περιγραφικής Στατιστικής είναι, «η ανάπτυξη μεθόδων για τη συνοπτική και την αποτελεσματική παρουσίαση των δεδομένων» Για το σκοπό αυτό, έχουν

Διαβάστε περισσότερα

Ιωάννινα: 18 Μαΐου 2015 Αριθμ. Πρωτ: 274

Ιωάννινα: 18 Μαΐου 2015 Αριθμ. Πρωτ: 274 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ------ ΠΕΡ/KH Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΗΠΕΙΡΟΥ ΓΡΑΦΕΙΟ ΣΧΟΛ.ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΙΩΑΝΝΙΝΩΝ ----- Ταχ. Δ/νση: Λουκή

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ 22559 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου 1561 17 Αυγούστου 2007 ΑΠΟΦΑΣΕΙΣ Αριθμ. 85038/Γ2 Αναλυτικό Πρόγραμμα Σπουδών του Τομέα Οικονομικών και Διοικητικών Υπηρεσιών

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

Χρίστος Γιασεμής Π.Ι.Κ.-Κέντρο Εκπαιδευτικής Έρευνας και Αξιολόγησης Οκτώβριος 2012

Χρίστος Γιασεμής Π.Ι.Κ.-Κέντρο Εκπαιδευτικής Έρευνας και Αξιολόγησης Οκτώβριος 2012 Χρίστος Γιασεμής Π.Ι.Κ.-Κέντρο Εκπαιδευτικής Έρευνας και Αξιολόγησης Οκτώβριος 2012 «Assessment literacy» «Εγγράμματος στην αξιολόγηση» Εκπαιδευτικοί, εγγράμματοι στην αξιολόγηση. Με τον όρο «assessment

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 1 Τι είναι η Στατιστική;

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 1 Τι είναι η Στατιστική; ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ Αστική Μη Κερδοσκοπική Εταιρεία- ISO 9001 Σαπφούς 3, 81100 Μυτιλήνη (1ος Όροφος) 2251054739 (09:00-14:30) academy@aigaion.org civilacademy.ucoz.org «ΠΡΟΓΡΑΜΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ

ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΓΕΝΙΚΑ Βασικός στόχος είναι η ανατροφοδότηση της εκπαιδευτικής διαδικασίας και ο εντοπισμός των μαθησιακών ελλείψεων με σκοπό τη βελτίωση της παρεχόμενης σχολικής εκπαίδευσης. Ειδικότερα

Διαβάστε περισσότερα

Η Χρήση των Ψυχομετρικών Εργαλείων στην Ελλάδα (στο χώρο της εργασίας)

Η Χρήση των Ψυχομετρικών Εργαλείων στην Ελλάδα (στο χώρο της εργασίας) Η Χρήση των Ψυχομετρικών Εργαλείων στην Ελλάδα (στο χώρο της εργασίας) Εισηγητής: Ι.Σ. Παναγόπουλος, PhD in Industrial Psychology Διευθυντής Έρευνας & Ανάπτυξης της SHL Ελλάς 1 Στόχοι Εισαγωγή στα Ψυχομετρικά

Διαβάστε περισσότερα

ΜΜΚ 105: Πειραματική και Στατιστική Ανάλυση Δημιουργία Πινάκων και Γραφικών Παραστάσεων στην Excel 18/09/14

ΜΜΚ 105: Πειραματική και Στατιστική Ανάλυση Δημιουργία Πινάκων και Γραφικών Παραστάσεων στην Excel 18/09/14 ΜΜΚ 105: Πειραματική και Στατιστική Ανάλυση Δημιουργία Πινάκων και Γραφικών Παραστάσεων στην Excel 18/09/14 1. Δημιουργία Πίνακα 1.1 Εισαγωγή μετρήσεων και υπολογισμός πράξεων Έστω ότι χρειάζεται να υπολογιστεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις. Μια μηχανή εμφιάλωσης κρασιού γεμίζει φιάλες του μισού κιλού με ποσότητα κρασιού η οποία είναι κανονική τυχαία μεταβλητή

Διαβάστε περισσότερα

Σύστημα Μετα-αξιολόγησης του ΠΣΑ

Σύστημα Μετα-αξιολόγησης του ΠΣΑ ΙΧ Σύστημα Μετα-αξιολόγησης του ΠΣΑ Σκοποί του Συστήματος Μετα-Αξιολόγησης Η άποψη πως όλα τα άτομα, όλες οι σχολικές μονάδες και όλα τα συστήματα μπορούν και πρέπει συνεχώς να βελτιώνονται αποτελεί μια

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης.

Διαβάστε περισσότερα

International English for Speakers of Other Languages (IESOL) International Spoken English for Speakers of Other Languages (ISESOL)

International English for Speakers of Other Languages (IESOL) International Spoken English for Speakers of Other Languages (ISESOL) International English for Speakers of Other Languages (IESOL) International Spoken English for Speakers of Other Languages (ISESOL) Short Product Description Οι Εξετάσεις City & Guilds IESOL και ISESOL

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 Πρώτη Γραπτή Εργασία Γενικές οδηγίες για την εργασία Όλες οι ερωτήσεις

Διαβάστε περισσότερα

Διαγνωστικά δοκίμια ελληνομάθειας για Γυμνάσια & Λύκεια /Τεχνικές Σχολές

Διαγνωστικά δοκίμια ελληνομάθειας για Γυμνάσια & Λύκεια /Τεχνικές Σχολές Πρόγραμμα Εκμάθησης της Ελληνικής ως δεύτερης /ξένης γλώσσας στη Μέση Εκπαίδευση Διαγνωστικά δοκίμια ελληνομάθειας για Γυμνάσια & Λύκεια /Τεχνικές Σχολές Σεπτέμβριος 2011 {επιμ. παρουσίασης: Μαρία Παπαλεοντίου,

Διαβάστε περισσότερα

Πιστοποίηση Εκπαιδευτικών σε Γνώσεις και Δεξιότητες Πληροφορικής: Προκαταρκτική έρευνα

Πιστοποίηση Εκπαιδευτικών σε Γνώσεις και Δεξιότητες Πληροφορικής: Προκαταρκτική έρευνα Πιστοποίηση Εκπαιδευτικών σε Γνώσεις και Δεξιότητες Πληροφορικής: Προκαταρκτική έρευνα Χ. Χριστακούδης 1, Γ. Ανδρουλάκης 2, Χ. Ζαγούρας 1 1 Ερευνητικό και Ακαδημαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών,

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

Μισθολογικές διαφορές μεταξύ ανδρών και γυναικών στην Ελλάδα Ανισότητες: από την καταγραφή στην ανατροπή

Μισθολογικές διαφορές μεταξύ ανδρών και γυναικών στην Ελλάδα Ανισότητες: από την καταγραφή στην ανατροπή Μισθολογικές διαφορές μεταξύ ανδρών και γυναικών στην Ελλάδα Ανισότητες: από την καταγραφή στην ανατροπή Η μελέτη της Ευαγγελίας Παπαπέτρου για την απασχόληση - ανεργία και τις μισθολογικές διαφορές ανδρών

Διαβάστε περισσότερα

Πρακτική Εφαρμογή του Ευρωπαϊκού Συστήματος Πιστωτικών Μονάδων στην Επαγγελματική Εκπαίδευση και Κατάρτιση (ECVET)

Πρακτική Εφαρμογή του Ευρωπαϊκού Συστήματος Πιστωτικών Μονάδων στην Επαγγελματική Εκπαίδευση και Κατάρτιση (ECVET) Πρακτική Εφαρμογή του Ευρωπαϊκού Συστήματος Πιστωτικών Μονάδων στην Επαγγελματική Εκπαίδευση και Κατάρτιση (ECVET) Περιγραφή ενός συγκεκριμένου μαθήματος (course) με τη μορφή Μαθησιακών Αποτελεσμάτων Μέρος

Διαβάστε περισσότερα

Μεθοδολογία για την Πιστοποίηση της Εκπαιδευτικής Επάρκειας Εκπαιδευτών Ενηλίκων της Mη Τυπικής Εκπαίδευσης

Μεθοδολογία για την Πιστοποίηση της Εκπαιδευτικής Επάρκειας Εκπαιδευτών Ενηλίκων της Mη Τυπικής Εκπαίδευσης ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Λεωφόρος Εθνικής Αντιστάσεως 41, 142 34 Νέα Ιωνία Μεθοδολογία για την Πιστοποίηση της Εκπαιδευτικής Επάρκειας Εκπαιδευτών Ενηλίκων της Mη

Διαβάστε περισσότερα

22 Στατιστικές Μέθοδοι Ανάλυσης Πειραµατικών εδοµένων Συνεργασίας

22 Στατιστικές Μέθοδοι Ανάλυσης Πειραµατικών εδοµένων Συνεργασίας Στατιστικές Μέθοδοι Ανάλυσης Πειραµατικών εδοµένων Συνεργασίας Χρήστος Κατσάνος και Νικόλαος Αβούρης Πανεπιστήµιο Πατρών Σκοπός Το παρόν κεφάλαιο, συµπληρωµατικό του κυρίως υλικού του βιβλίου, περιλαµβάνει

Διαβάστε περισσότερα

Οι φορητοί υπολογιστές στην εκπαίδευση: Μελέτη περίπτωσης ως προς τις συνέπειες στη διδασκαλία και το μιντιακό γραμματισμό

Οι φορητοί υπολογιστές στην εκπαίδευση: Μελέτη περίπτωσης ως προς τις συνέπειες στη διδασκαλία και το μιντιακό γραμματισμό Παιδαγωγικά ρεύματα στο Αιγαίο Προσκήνιο 1 Οι φορητοί υπολογιστές στην εκπαίδευση: Μελέτη περίπτωσης ως προς τις συνέπειες στη διδασκαλία και το μιντιακό γραμματισμό Δημήτρης Σπανός 1 dimitris.spanos@gmail.com

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ 7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους

Διαβάστε περισσότερα

Έλεγχοι. Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού

Έλεγχοι. Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού Έλεγχοι Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού Το ρυθμό απελευθέρωσης του φαρμάκου από το σκεύασμα Έλεγχο ταυτότητας και καθαρότητας της πρώτης ύλης και των εκδόχων( βάση προδιαγραφών)

Διαβάστε περισσότερα

ηµιουργία ηλεκτρονικού Μητρώου Ιδιωτών Συνεργατών

ηµιουργία ηλεκτρονικού Μητρώου Ιδιωτών Συνεργατών ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Πειραιάς, 8 Σεπτεµβρίου 2011 ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΙΟΙΚΗΣΗΣ & ΟΡΓΑΝΩΣΗΣ ΙΕΥΘΥΝΣΗ ΙΟΙΚΗΤΙΚΗΣ ΥΠΟΣΤΗΡΙΞΗΣ Η Ελληνική Στατιστική Αρχή (ΕΛΣΤΑΤ) στα πλαίσια της βελτίωσης

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ Α Σχολικό βιβλίο σελ 6 Α Σχολικό βιβλίο σελ 9 Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ // - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Η βαθµολόγηση των γραπτών στα Μαθηµατικά

Η βαθµολόγηση των γραπτών στα Μαθηµατικά 1 Η βαθµολόγηση των γραπτών στα Μαθηµατικά Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Όπως γνωρίζουµε η αξιολόγηση των µαθητών είναι µέρος της διδακτικής διαδικασίας

Διαβάστε περισσότερα

Αξιολόγηση του Εκπαιδευτικού Έργου στην Πρωτοβάθμια Εκπαίδευση. Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα

Αξιολόγηση του Εκπαιδευτικού Έργου στην Πρωτοβάθμια Εκπαίδευση. Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ Αξιολόγηση του Εκπαιδευτικού Έργου στην Πρωτοβάθμια Εκπαίδευση Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα Σχέδια Εκθέσεων

Διαβάστε περισσότερα

ΠΙΣΤΟΠΟΙΗΜΕΝΟΣ ΤΕΧΝΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ ΚΑΙ ΜΗΧΑΝΩΝ ΨΗΦΙΟΠΟΙΗΣΗΣ «Certified Software And Digitalization Technician» SYLLABUS. Έκδοση 1.

ΠΙΣΤΟΠΟΙΗΜΕΝΟΣ ΤΕΧΝΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ ΚΑΙ ΜΗΧΑΝΩΝ ΨΗΦΙΟΠΟΙΗΣΗΣ «Certified Software And Digitalization Technician» SYLLABUS. Έκδοση 1. ΠΙΣΤΟΠΟΙΗΜΕΝΟΣ ΤΕΧΝΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ ΚΑΙ ΜΗΧΑΝΩΝ ΨΗΦΙΟΠΟΙΗΣΗΣ «Certified Software And Digitalization Technician» SYLLABUS Vellum Global Educational Services A.E. 2015 Έκδοση 1.0 Εξεταστέα Ύλη 2015 Vellum

Διαβάστε περισσότερα

ΤΕΣΤ ΕΞΑΣΚΗΣΗΣ ΣΦΑΙΡΙΚΗΣ ΣΥΛΛΟΓΙΣΤΙΚΗΣ

ΤΕΣΤ ΕΞΑΣΚΗΣΗΣ ΣΦΑΙΡΙΚΗΣ ΣΥΛΛΟΓΙΣΤΙΚΗΣ ΤΕΣΤ ΕΞΑΣΚΗΣΗΣ ΣΦΑΙΡΙΚΗΣ ΣΥΛΛΟΓΙΣΤΙΚΗΣ COPYRIGHT 2008 PROCTER & GAMBLE CINCINNATI, OH 45202 U.S.A. ΠΡΟΕΙΔΟΠΟΙΗΣΗ: Με την επιφύλαξη παντός νομίμου δικαιώματος. Απαγορεύεται η αναπαραγωγή του συνόλου ή μέρους

Διαβάστε περισσότερα