ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ"

Transcript

1 9/10/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 3o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Emal: Ιστοσελίδα Μαθήματος: users.auth.gr/gasl kastora.tekoz.gr/elearn 1 Διαγράμματα Συνεχών Μεταβλητών Για να παραστήσουμε γραφικά μια συνεχή μεταβλητή κάνουμε ιστόγραμμα συχνοτήτων και πολύγωνο συχνοτήτων είτε των και f είτε των αθροιστικών N και F. Τα ιστογράμματα είναι χρήσιμα γιατί μας βοηθούν να έχουμε μία πρώτη εικόνα για την κατανομή της μεταβλητής. 1

2 9/10/009 Τρόπος Κατασκευής Ιστογράμματος και Πολυγώνου συχνοτήτων Για να κάνουμε το ιστόγραμμα συχνοτήτων του Ύψους των μαθητών ακολουθούμε τα παρακάτω βήματα: Στον οριζόντιο άξονα ενός συστήματος ορθογωνίων αξόνων βάζουμε τα κέντρα των κλάσεων ή τις κλάσεις και στον κάθετο άξονα τις συχνότητες ή f ανάλογα με το ιστόγραμμα που θέλουμε να κάνουμε. Στη συνέχεια κατασκευάζουμε ορθογώνια με ίσο πλάτος και ύψος ίσο με την συχνότητα ή f. Αν επιπλέον θέλουμε να κάνουμε το πολύγωνο συχνοτήτων τότε ενώνουμε τα μέσα των άνω βάσεων των ορθογωνίων. 3 Τρόπος Κατασκευής Ιστογράμματος και Πολύγωνου Αθροιστικών Συχνοτήτων. Για να κατασκευάσουμε το ιστόγραμμα και το πολύγωνο Αθροιστικών συχνοτήτων ακολουθούμε όλη την παραπάνω διαδικασία με την διάφορα ότι στην κατασκευή του πολύγωνου ενώνουμε τα δεξιά άκρα των ορθογωνίων και όχι τα μέσα όπως προηγουμένως. 4

3 9/10/009 Ιστόγραμμα Συχνοτήτων Μεταβλητής Ύψος Μαθητών Συχνότητες (0-156) [156-16) [16-168) [ ) [ ) [ ) [186-19] Κλάσεις 5 Ιστόγραμμα & Πολύγωνο Συχνοτήτων Μεταβλητής Ύψος Μαθητών (0-156) [156-16) [16-168) [ ) [ ) [ ) [186-19] [19-00] 6 3

4 9/10/009 Ιστόγραμμα Αθροιστικών Σχετικών % Συχνοτήτων (0-156) [156-16) [16-168) [ ) [ ) [ ) [186-19] Ιστόγραμμα & Πολύγωνο Αθροιστικών Σχετικών % Συχνοτήτων Ζ Η Ε Γ Β Α (0-156) [156-16) [16-168) [ ) [ ) [ ) [186-19] 8 4

5 9/10/009 Άσκηση: Οι χρόνοι (σε λεπτά) που χρειάστηκαν 55 σπουδαστές για να λύσουν μία άσκηση δίνονται στον παρακάτω πίνακα: 3,4 13, 6,7 1,4 1,3 3,8 3,9,9 13,8 3,9,7 4,4 3,6 1,4,4 3,6 3,1 7,5 6,9 7,8 1,7 3,9 3,3 9,7,0 4,4 3,3 8,7 3,9 11,6 5,6 9,0 3,4 1,4 3,5,8 10,4 11,9 1,3,9,8 1,5 4,1 5,9 3,1 8,7,8 3,8 13,0 3,0 6,4 3, 5,9 7,0 8, α) Να ομαδοποιήσετε τα δεδομένα σε κατάλληλο αριθμό κλάσεων β) Να κατασκευάσετε τον πίνακα συχνοτήτων γ) Να κατασκευάσετε το πολύγωνο σχετικών συχνοτήτων και αθροιστικών σχετικών συχνοτήτων. 9 Αριθμητικά περιγραφικά μέτρα στατιστικών δεδομένων Η βαθμολογία δύο τμημάτων μαθητών στο μάθημα της Στατιστικής δίνεται στους παρακάτω πίνακες: Τμήμα Α Τμήμα Β

6 9/10/009 Πίνακες Συχνοτήτων Βαθμο Τμήμα Α Τμήμα Β x ί Συχνότητες Συχνότητες Σύνολο Αν θέλουμε να συγκρίνουμε τα δύο τμήματα δεν μπορούμε να βγάλουμε κάποιο συμπέρασμα από τους πίνακες συχνοτήτων. 11 Διαγράμματα Συχνοτήτων ιάγραμμα Συχνοτήτων Βαθμολογίας για το τμήμα Α ιάγραμμα Συχνοτήτων Βαθμολογίας για το τμήμα Β Παρατηρούμε ότι η βαθμολογία είναι συγκεντρωμένη γύρω από το 16 και ότι το τμήμα Β παρουσιάζει διαφορετική διασπορά σε αντίθεση με το τμήμα Α. 1 6

7 9/10/009 Ο πίνακας συχνότητας καθώς επίσης και τα γραφήματα αποτελούν μορφές συνοπτικής παρουσίασης των δεδομένων για να μελετήσουμε την κατανομή τους. Στη συνέχεια έ θ υπολογίσουμε θα λ ί ποσοτικά ά μεγέθη έθ που περιγράφουν με περιληπτικό τρόπο τα βασικά χαρακτηριστικά των δεδομένων και λέγονται αριθμητικά περιγραφικά μέτρα. Κάθε τέτοιο αριθμητικό μέτρο υπολογίζεται από το δείγμα και αποτελεί εκτίμηση της παραμέτρου ( αριθμητικό μέτρο που υπολογίζεται από τον πληθυσμό ) 13 Θα δούμε τους παρακάτω τύπους αριθμητικών περιγραφικών μέτρων: τα μέτρα θέσης ή μέτρα κεντρικής τάσης που προσδιορίζουν χαρακτηριστικές θέσεις των δεδομένων ¾ τα μέτρα μεταβλητότητας που δίνουν περιληπτικά τη διασκόρπιση και μεταβλητότητα των δεδομένων ¾ τα μέτρα ασυμμετρίας που ελέγχουν κατά πόσο είναι συμμετρική ή ασύμμετρη η κατανομή των δεδομένων. ¾ 14 7

8 9/10/009 Μέτρα θέσης ή κεντρικής τάσης Τα κυριότερα μέτρα θέσης είναι τα παρακάτω: 1) Δειγματική μέση τιμή ή αριθμητικός μέσος ) Δειγματική διάμεσος 3) Δειγματική επικρατούσα τιμή 4) Εκατοστιαία σημεία ή p-ποσοστιαία σημεία 15 1) Δειγματική μέση τιμή (aerage) Έστω x1, x,, xn οι τιμές των παρατηρήσεων του δείγματος για μια μεταβλητή Χ που μελετάμε. Η δειγματική μέση τιμή συμβολίζεται με x και ορίζεται ως x = x1 + x +L + x = x =1 16 8

9 9/10/009 Αν τα δεδομένα είναι ταξινομημένα σε πίνακα συχνοτήτων τότε x 1 + x + + L + x + L + k 1 k k = 1 x ή = 1 k = x x = x 1f1 + x f + L + x k f k = x f k = 1 17 Παράδειγμα: ίνεται η βαθμολογία 10 σπουδαστών στο μάθημα της Στατιστικής. Ποια είναι η μέση επίδοση των σπουδαστών. Βαθμοί: 5, 6, 6, 8, 4, 1, 9, 3, 10, x= =

10 9/10/009 ) Δειγματική διάμεσος (medan) Αν οι τιμές του δείγματος έχουν διαταχθεί σε αύξουσα σειρά η διάμεσος δ ορίζεται ως η μεσαία παρατήρηση αν το πλήθος των τιμών είναι περιττός αριθμός, ή ως το ημιάθροισμα των δύο μεσαίων τιμών αν το πλήθος είναι άρτιος αριθμός. Χ +1, δ= 1 Χ + Χ +, αν περιττός αν άρτιος 19 Ιδιότητες της Διαμέσου. α) Αν το πλήθος των δεδομένων είναι μεγάλο και αν οι τιμές δεν επαναλαμβάνονται τακτικά, τότε περίπου οι μισές τιμές είναι μικρότερες της διαμέσου και οι άλλες μισές μεγαλύτερες της διαμέσου. β) Η διάμεσος δεν επηρεάζεται από τις ακραίες τιμές. μ ς 0 10

11 9/10/009 Παράδειγμα: Έστω οι τιμές μίας μεταβλητής είναι: 1, 19, 16, 0, 17,, 13, 19. Ποια είναι η διάμεσος; ιατάσουμε σε αύξουσα σειρά 1, 13, 16, 17, 19, 19, 0, Η διάμεσος είναι δ = (17+19)/ = 18 1 Παράδειγμα: Έστω οι τιμές μίας μεταβλητής είναι: 4, 7, 8, 0, 5, 3, 8, 3, 9. Ποια είναι η διάμεσος; ιατάσουμε σε αύξουσα σειρά 3, 3, 4, 5, 7, 8, 8, 9, 0 Η διάμεσος είναι δ = 7 11

12 9/10/009 Για συνεχή ποσοτικά δεδομένα που είναι ομαδοποιημένα σε πίνακα συχνοτήτων για να βρούμε την διάμεσο χρησιμοποιούμε τη σχέση: δ = a + N 1 c a N 1 : κατώτερο όριο της κλάσης που περιέχει τη διάμεσο, : συχνότητα της κλάσης που περιέχει τη διάμεσο, : αθροιστική συχνότητα της προηγούμενης της κλάσης που περιέχει τη διάμεσο, c : πλάτος κλάσης. 3 Παράδειγμα: ίνεται ο πίνακας συχνοτήτων για το χρόνο που χρειάστηκαν 35 ποντίκια για να τρέξουν ένα λαβύρινθο. Να βρεθεί η διάμεσος. Χρόνος Συχνότητα Αθρ. Συχνότητα [368,380) 1 1 [380,39) 3 4 [39,404) 8 1 [404,416) 416) 1 4 [416,48) 8 3 [48,440)

13 9/10/009 Λύση: Η διάμεσος ανήκει στην κλάση [404,416). Άρα α = 404 = 1 N-1 = 1 c = 1 Έτσι αντικαθιστώντας βρίσκουμε δ = 409,5 5 3) Δειγματική επικρατούσα τιμή Αν x1, x,, xn οι τιμές του δείγματος τότε η επικρατούσα τιμή είναι η τιμή της μεταβλητής με τη μεγαλύτερη συχνότητα. Αν όλες οι τιμές έχουν την ίδια συχνότητα δεν ορίζεται επικρατούσα τιμή. Αν δύο ή περισσότερες τιμές έχουν την ίδια συχνότητα τότε υπάρχουν περισσότερες από μία επικρατούσες τιμές. 6 13

14 9/10/009 Παράδειγμα. Αν οι τιμές της μεταβλητής είναι: 1, 19, 16, 0, 17,, 13, 19 τότε η επικρατούσα τιμή είναι η 19. Παράδειγμα. Αν οι τιμές της μεταβλητής είναι: 4, 7, 8, 0, 5, 3, 8, 3, 9 τότε υπάρχουν δύο επικρατούσες τιμές, η 3 και η 8. Σημείωση. Αν μία μεταβλητή έχει δύο (ή περισσότερες) επικρατούσες τιμές ονομάζεται δίκορφη (η πολύκορφη, αντίστοιχα). 7 Παρατηρήσεις: 1) Η επικρατούσα τιμή σε δεδομένα που είναι ομαδοποιημένα σε πίνακα συχνοτήτων είναι η κεντρική τιμή της κλάσης που έχει τη μεγαλύτερη συχνότητα. ) Η επικρατούσα τιμή ορίζεται και για ποιοτικά δεδομένα. 8 14

15 9/10/009 4) Εκατοστιαία σημεία ή p-ποσοστιαία σημεία (percentles) Μία παρατήρηση είναι το p-εκατοστιαίο σημείο (p ποσοστιαίο σημείο) αν ποσοστό (p-ποσοστιαίο παρατηρήσεων το πολύ p% είναι μικρότερες απ αυτήν την παρατήρηση. Συμβολίζουμε με Pp. ¾ Το τριακοστό εκατοστημόριο P30 ορίζεται ως η τιμή της μεταβλητής κάτω από την οποία βρίσκεται το 30% των τιμών της μεταβλητής β ¾ Το πεντηκοστό εκατοστημόριο P50 ορίζεται ως η τιμή της μεταβλητής κάτω από την οποία βρίσκεται το 50% των τιμών της μεταβλητής, δηλαδή η διάμεσος 9 Τρόπος εύρεσης των Pp Μη ταξινομημένα δεδομένα: 1) ιατάσσουμε τις τιμές της μεταβλητής σε αύξουσα σειρά. Βρίσκουμε τη θέση των Pp χρησιμοποιώντας τον τύπο: θέση του Pp = p(+1)/100. Αν προκύπτει ρ ωςς θέση η του Pp δεκαδικόςς αριθμός της μορφής a,b τότε ) Pp = X(a) + 0, b (X(a+1) X(a) ) 30 15

16 9/10/009 Παράδειγμα: Υποθέτουμε ότι έχουμε τις ακόλουθες 14 παρατηρήσεις, κατ αύξουσα σειρά μεγέθους: 3,5,8,10,11,14,18,0,,5,31,48,67,9. Θέλουμε το τριακοστό ποσοστιαίο σημείο. Λύση: Θέση του P 30 : 30(14+1)/100 = 4,5 Άρα P 30 = Χ (4) + 0,5( Χ (5) - Χ (4) ) = ,5(11-10) = 10,5 31 Ταξινομημένα δεδομένα: P p = a + c p 100 N 1 a : κατώτερο όριο της κλάσης που περιέχει το p-ποσοστιαίο σημείο, : συχνότητα της κλάσης που περιέχει το p-ποσοστιαίο σημείο, 1 : αθροιστική συχνότητα της προηγούμενης ης της κλάσης που περιέχει το p-ποσοστιαίο σημείο, N c : πλάτος κλάσης. : μέγεθος του δείγματος 3 16

17 9/10/009 Σύγκριση Μέσης Τιμής, ιαμέσου & Επικρατούσης Τιμής. Μέση Τιμή Διάμεσος Επικρατούσα Τιμή Μεγάλη Εφαρμογή στη Καθόλου εφαρμογή σε Καθόλου εφαρμογή σε στατιστική ανάλυση περαιτέρω στατιστική περαιτέρω στατιστική ανάλυση ανάλυση Εύκολα Κατανοητή Εύκολα Κατανοητή Εύκολα Κατανοητή Επηρεάζεται από ακραίες τιμές εν υπολογίζεται σε ποιοτικά δεδομένα εν επηρεάζεται από ακραίες τιμές εν υπολογίζεται σε ποιοτικά δεδομένα εν επηρεάζεται από ακραίες τιμές Εφαρμόζεται σε ποιοτική μεταβλητή Μοναδική Μοναδική Δεν ορίζεται μονοσήμαντα 33 Ασκήσεις Άσκηση 1. Ο παρακάτω πίνακας δίνει τον αριθμό των επισκέψεων 40 μαθητών σε διάφορα μουσεία της χώρας κατά την διάρκεια ενός έτους. Επισκέψεις Συχνότητα [0,) 8 [,4) 1 [4,6) 10 [6,8) 6 [8,10) 4 Να υπολογιστούν: α) η μέση τιμή β) η διάμεσος γ) η επικρατούσα τιμή δ) το 40ο ποσοστιαίο σημείο 34 17

18 9/10/009 Άσκηση. Τα δεδομένα του παρακάτω πίνακα είναι οι τιμές μιας ραδιενεργού ουσίας που βρέθηκε στον οργανισμό 60 μικρών ζώων μετά την έκθεση τους σε μία ραδιενεργό πηγή, η οποία γενικώς θεωρείται επικίνδυνη Να υπολογιστούν α) η μέση τιμή β) η διάμεσος γ) η επικρατούσα τιμή και δ) το 30ο ποσοστιαίο σημείο. 35 Άσκηση 3. Η κατανομή των ημερήσιων αποδοχών των υπαλλήλων μιας επιχείρησης έχει ως εξής: Ημερήσιες αποδοχές σε ευρώ Άτομα [30,40) 4 [40,50) 6 [50,60) 8 [60,70) 1 [70,80) 9 [80,90) 7 [90,100) 4 Ζητούνται να βρεθούν: α) η μέση τιμή β) η διάμεσος γ) η επικρατούσα τιμή και δ) το 0ο ποσοστιαίο σημείο

19 9/10/009 ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ Γενικά, σε μία κατανομή συχνοτήτων, εκτός από τη γνώση των μέτρων θέσης ενδιαφέρει να γνωρίζουμε και πώς διασκορπίζονται οι τιμές της μεταβλητής γύρω από τη μέση τιμή ή και μεταξύ τους. Επομένως είναι απαραίτητη η χρησιμοποίηση στατιστικών μέτρων που μετρούν τον βαθμό της διασποράς των τιμών μιας μεταβλητής. Τα μέτρα αυτά ονομάζονται μέτρα διασποράς. 37 Τα κυριότερα μέτρα διασποράς είναι: 1) Εύρος δείγματος ) Δειγματική διακύμανση ή δειγματική διασπορά 3) Δειγματική τυπική απόκλιση 4) Ενδοτεταρτημοριακό εύρος 38 19

20 9/10/009 Εύρος δείγματος Εύρος δείγματος ονομάζεται η διαφορά ανάμεσα στη μεγαλύτερη και τη μικρότερη τιμή του. του Συμβολίζουμε με R και είναι R = Xmax - Xmn 39 Δειγματική διακύμανση ή διασπορά Η διακύμανση ή διασπορά μετρά τη μεταβλητότητα των παρατηρήσεων γύρω από τη μέση τιμή. Αν ορίσουμε την απόκλιση μιας παρατήρησης x από τη μέση τιμή x ως α φανερό φα ερό ό ο άθρο σμα όλων ό ω αυτών αυ ώ των ω x x, εείναι ότι το άθροισμα αποκλίσεων είναι ίσο με 0. Γι αυτό διαλέγουμε να αθροίσουμε όχι τις αποκλίσεις αλλά τα τετράγωνα των αποκλίσεων. Επίσης για να πάρουμε ένα μέτρο της μέσης απόκλισης θα πρέπει να διαιρέσουμε με το πλήθος ν των παρατηρήσεων. Για τεχνικούς λόγους, οι οποίοι δεν θα μας απασχολήσουν, διαιρούμε με ν 1 αντί για ν και η δειγματική διασπορά s δίνεται ως: (x - x ) ( x - x) + (x - x) +L+ (x - x) = = s 1-1 =

21 9/10/009 Σε περίπτωση που τα δεδομένα είναι ταξινομημένα τότε: x : κέντρα των κλάσεων : συχν. των κλάσεων s = k = 1 ( x - x ) Σημείωση: οι μονάδες στις οποίες εκφράζεται η διακύμανση δα είναι τα τετράγωνα των μονάδων των τιμών της μεταβλητής. Για αυτό ορίζουμε: Δειγματική τυπική απόκλιση Δειγματική τυπική απόκλιση s ονομάζεται η θετική τετραγωνική ρίζα της δειγματικής διασποράς s, δηλαδή: s = s Η τυπική απόκλιση μετριέται στην ίδια μονάδα μέτρησης με τα δεδομένα και εκφράζει την τυπική απόκλιση των δεδομένων από τη δειγματική μέση τιμή, δηλαδή μέχρι πόσο περιμένουμε μια τυπική τιμή της μεταβλητής να απέχει από τη μέση τιμή. 4 1

22 9/10/009 Παράδειγμα: Να βρεθεί η διακύμανση και η τυπική απόκλιση των τιμών: 100,105,115,10,15,135,140 Λύση: Η μέση τιμή είναι x x = = = x x x ( ) x x Σύνολο 1300 Οπότε θα έχουμε: s ( x x) 1300 = = = ,66 s = s = 14,7 44

23 9/10/009 Ενδοτεταρτημοριακό εύρος Το 5 ποσοστιαίο σημείο ( ο ορισμός του ποσοστιαίου σημείου υπάρχει σε προηγούμενη διαφάνεια) ονομάζεται πρώτο τεταρτημόριο και το συμβολίζουμε Q1, το 50 ποσοστιαίο σημείο ονομάζεται δεύτερο τεταρτημόριο και το συμβολίζουμε Q ενώ το 75 ποσοστιαίο σημείο ονομάζεται τρίτο τεταρτημόριο και το συμβολίζουμε Q3. Η διαφορά Q3 - Q1 λέγεται ενδοτεταρτημορικό εύρος και δίνει το εύρος που καλύπτουν τα μισά από τα δεδομένα που είναι ποιο κοντά στην κεντρική τιμή ( διάμεσο ). 45 Συντελεστής Μεταβλητότητας (coeffcent of araton) Οι παράμετροι Θέσης & ιασποράς δεν επαρκούν για να μας δώσουν πληροφορίες όταν θέλουμε να συγκρίνουμε ομάδες τιμών οι οποίες είτε εκφράζονται στην ίδια μονάδα μέτρησης είτε σε διαφορετικές μονάδες μέτρησης. Παράδειγμα. Θέλουμε να συγκρίνουμε τις κατανομές των μηνιαίων μισθών στην Αμερική & στην Ευρώπη, αν είναι γνωστό ότι x A = 1500$ με s A = 400$ ενώ x Ε = 1000 Ε με s Ε = 350Ε. Παράδειγμα. Σε δύο τμήματα μαθητών παρατηρήσαμε ότι ο βαθμός τους στο μάθημα της Στατιστικής είχε: x A = 15 με s A = 4 ενώ x B = 16 με s B = 4. Τα δύο τμήματα παρουσιάζουν την ίδια διακύμανση? 46 3

24 9/10/009 Για να αποφύγουμε τις παραπάνω δυσκολίες ορίζουμε ως συντελεστή μεταβολής τον καθαρό αριθμό (βαθμός s διασποράς) για τον οποίο ισχύει ότι: CV = 100 %. x Εκφράζεται επί τοις εκατό και παριστάνει ένα μέτρο σχετικής διασποράς. Εκφράζει δηλαδή τη μεταβλητότητα των δεδομένων απαλλαγμένη από την επίδραση της μέσης τιμής. Σημείωση: Όσο μικρότερος είναι ο συντελεστής μεταβλητότητας τόσο μεγαλύτερη ομοιογένεια υπάρχει στις τιμές της μεταβλητής. Αν CV 10% τότε το δείγμα μας ονομάζεται ομοιογενές. 47 Παράτυπα Σημεία ¾ ¾ Μία τιμή πολύ μεγάλη ή πολύ μικρή σε σχέση με τις μ ςμ β η ής Χ ονομάζεται μ ζ υπόλοιπεςς τιμές μίαςς μ μεταβλητής παράτυπο σημείο (outler). Ονομάζουμε z-score μίας τιμής x ενός συνόλου δεδομένων την απόσταση της τιμής αυτής από τη μέση τιμή, μετρούμενη σε μονάδες τυπικής απόκλισης, δηλαδή: z= x x s Θετικά z-scores έχουν οι τιμές δεξιά της μέσης τιμής, ενώ αρνητικά οι τιμές αριστερά της μέσης τιμής. Οι τιμές που έχουν z-scores μεγαλύτερα του 3 ή μικρότερα του -3 είναι πιθανά παράτυπα σημεία. 48 4

2) Περιγραφή ιακριτών Ποσοτικών εδοµένων

2) Περιγραφή ιακριτών Ποσοτικών εδοµένων ) Περιγραφή ιακριτών Ποσοτικών εδοµένων Για να περιγράψουµε διακριτά ποσοτικά δεδοµένα µε λίγες τιµές ( σε περίπτωση πολλών τιµών τα θεωρούµε ως συνεχή) κάνουµε: Πίνακας συχνοτήτων Ραβδόγραµµα, Κυκλικό

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 4o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες: Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Χειμερινό εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Μέτρα

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. .. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές

Διαβάστε περισσότερα

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. π.χ. Βαθμολογία διαγωνίσματος σε τμήματα: Α : 7, 11,16, 16,,. Β : 11, 13, 16, 16, 17, 17. Παρατήρηση : Για τέτοιους λόγους χρειάζεται και η εξέταση κάποιων μέτρων διασποράς

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Διοίκησης Επιχειρήσεων (Α.Ν.) Εισαγωγή στη Στατιστική ΜΕΡΟΣ ΙΙ-ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΑΠΟΚΛΙΣΗ ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ ΡΟΠΕΣ ΑΣΥΜΜΕΤΡΙΑ-ΚΥΡΤΩΣΗ II.1

Διαβάστε περισσότερα

Περιγραφική Στατιστική

Περιγραφική Στατιστική Περιγραφική Στατιστική Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Περιγραφική Στατιστική τεχνικές 3 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 3 / 0 / 0 6 εκδόσεις Καλό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ

ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ ΣΤΑΤΙΣΤΙΚΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ 2. Ο αριθμός των ανθρώπων που παρακολουθούν μια συγκεκριμένη τηλεοπτική εκπομπή είναι διακριτή

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής

Διαβάστε περισσότερα

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 6_Στατιστική στη Φυσική Αγωγή 03 _ Παράμετροι θέσης και διασποράς Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Παράμετροι θέσης όταν θέλουμε να εκφράσουμε μια μεταβλητή με έναν αριθμό π.χ.

Διαβάστε περισσότερα

Έτος : Διάλεξη 2 η Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική

Έτος : Διάλεξη 2 η Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Έτος 2017-2018: Διάλεξη 2 η Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Επανάληψη βασικών εννοιών Στατιστικής- Χρήση gretl/excel 1

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 205-206 ΔΙΔΑΣΚΟΝΤΕΣ ΔΗΜΗΤΡΗΣ ΚΑΛΛΙΒΩΚΑΣ, ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ ) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΑΣΚΗΣΗ Τα παρακάτω δεδομένα αναφέρονται στη

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 2o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που

Διαβάστε περισσότερα

i Σύνολα w = = = i v v i=

i Σύνολα w = = = i v v i= ΜΕΤΡΑ ΘΕΣΗΣ ΆΣΚΗΣΗ Η βαθμολογία στα 0 μαθήματα ενός μαθητή είναι: 3, 9, 6, 0, 5,,, 0, 0, 4. Να υπολογίσετε: α) Τη μέση τιμή. β) Τη διάμεσο. Απάντηση t t + t + t 0 = = = = 3 + 9 + 6 + 0 + 5 + + + 0 + 0

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος ΚΕΦΑΛΑΙΟ ο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των μαθηματικών ο οποίος ως έργο έχει την συγκέντρωση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 Ο

ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 Ο ΘΕΜΑ 1 Ο : Aς υποθέσουμε ότι x 1,x 2,,x k είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους ν, όπου k,ν μη μηδενικοί φυσικοί αριθμοί με k ν, ν i η απόλυτη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Copyright 2009 Cengage Learning 4.1 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Δείκτες Κεντρικής Θέσης [Αριθμητικός] Μέσος, Διάμεσος, Επικρατούσα

Διαβάστε περισσότερα

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr Στατιστική Ι Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr Παρασκευή, 30 Νοεμβρίου 2012 Στατιστική Ι Έννοιες - Κλειδιά Μεταβλητότητα Εύρος (range) Εκατοστημόρια

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ

ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ 2000-2001 ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ Το τµήµα αυτό της έρευνας αναφέρεται στην Γ τάξη όλων των Ενιαίων Λυκείων του

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

δεδομένων με συντελεστές στάθμισης (βαρύτητας) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ-1 ΠΑΡΑΣΚΕΥΗ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2017-2018 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 2ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 2ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α Ερώτηση θεωρίας Τι λέγεται ιστόγραμμα αθροιστικών απολύτων σχετικών συχνοτήτων; Ιστόγραμμα αθροιστικών απολύτων ή σχετικών συχνοτήτων είναι μια σειρά από

Διαβάστε περισσότερα

Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΑΡΤΗΣΕΙΣ ΓΝΗΣΙΩΣ ΑΥΞΟΥΣΑ ΣΥΝΑΡΤΗΣΗ ΓΝΗΣΙΩΣ ΦΘΙΝΟΥΣΑΣΥΝΑΡΤΗΣΗ ΤΟΠΙΚΟ ΜΕΓΙΣΤΟ ΤΟΠΙΚΟ ΕΛΑΧΙΣΤΟ

Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΑΡΤΗΣΕΙΣ ΓΝΗΣΙΩΣ ΑΥΞΟΥΣΑ ΣΥΝΑΡΤΗΣΗ ΓΝΗΣΙΩΣ ΦΘΙΝΟΥΣΑΣΥΝΑΡΤΗΣΗ ΤΟΠΙΚΟ ΜΕΓΙΣΤΟ ΤΟΠΙΚΟ ΕΛΑΧΙΣΤΟ 1 Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΑΡΤΗΣΕΙΣ ΓΝΗΣΙΩΣ ΑΥΞΟΥΣΑ ΣΥΝΑΡΤΗΣΗ ά ( ύ ) έ ί ύ σ ύ ό ά, ύ ό ά 1 1 1 ΓΝΗΣΙΩΣ ΦΘΙΝΟΥΣΑΣΥΝΑΡΤΗΣΗ ά ( ύ ) έ ί ύ σ ύ ό ά, ύ ό ά 1 1 1 ΤΟΠΙΚΟ ΜΕΓΙΣΤΟ ά ( ύ ) έ

Διαβάστε περισσότερα

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Δείκτες Κεντρικής Τάσης και Διασποράς. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Δείκτες Κεντρικής Τάσης και Διασποράς. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Δείκτες Κεντρικής Τάσης και Διασποράς Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που γεννιούνται κατά την σύγκριση

Διαβάστε περισσότερα

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ () Χρησιµοποιώντας τον παρακάτω πίνακα συχνοτήτων που δίνει την κατανοµή συχνοτήτων 0 οικογενειών ως προς τον αριθµό των παιδιών τους, να βρεθεί ο αριθµός

Διαβάστε περισσότερα

Κεφάλαιο 4 Δείκτες Κεντρικής Τάσης

Κεφάλαιο 4 Δείκτες Κεντρικής Τάσης Κεφάλαιο 4 Δείκτες Κεντρικής Τάσης 1 Οι Δείκτες Κεντρικής Τάσης Είναι αριθμητικές τιμές που δείχνουν το ΚΕΝΤΡΟ της κατανομής Η Δεσπόζουσα Τιμή (Δσπ) Η Διάμεσος (Δμ ή δ) Ο Μέσος Όρος (Μ.Ο) 2 Η Δεσπόζουσα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Εισαγωγή Στο Κεφάλαιο 8 υπολογίζονται και συγκρίνονται τα ποσοστά επιλογής του µαθήµατος στους ετήσιους πληθυσµούς, ανά φύλο και κατεύθυνση. Υπολογίζεται

Διαβάστε περισσότερα

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις 01 Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 31 σχολικού βιβλίου Α. Θεωρία (ορισμός), σελίδα 18-19 σχολικού βιβλίου Α3. Θεωρία, (ορισμός), σελίδα 96 σχολικού βιβλίου Α. α) Λάθος β) Σωστό γ) Λάθος δ) Σωστό ε)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

15, 11, 10, 10, 14, 16, 19, 18, 13, 17

15, 11, 10, 10, 14, 16, 19, 18, 13, 17 ΜΕΡΟΣ 1 0 Α Σ Κ Η Σ Ε Ι Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ 1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών στο µάθηµα της Στατιστικής στο τέλος του β τετραµήνου. Πήραµε τις ακόλουθες βαθµολογίες: 15,

Διαβάστε περισσότερα

Μάθηµα 14. Κεφάλαιο: Στατιστική

Μάθηµα 14. Κεφάλαιο: Στατιστική Μάθηµα 4 Κεφάλαιο: Στατιστική Θεµατικές Ενότητες:. Μέτρα θέσης. Εισαγωγή. Για πιο σύντοµη, αποδοτική και συγκρίσιµη θεώρηση της κατανοµής συχνοτήτων µιας µεταβλητής, έχουµε ορίσει και χρησιµοποιούµε κάποια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 207-208 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 227035468 ΣΤΑΤΙΣΤΙΚΗ

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

Κεφάλαιο 5 Δείκτες Διασποράς

Κεφάλαιο 5 Δείκτες Διασποράς Πανεπιστήµιο Κρήτης Σχολή Επιστηµών Αγωγής Παιδαγωγικό Τµήµα Δηµοτικής Εκπαίδευσης Β06 03. Στατιστική περιγραφική εφαρµοσµένη στην Ψυχοπαιδαγωγική Διδάσκων: Κωνσταντίνος Π. Χρήστου Κεφάλαιο 5 Δείκτες Διασποράς

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται

Διαβάστε περισσότερα

Mέτρα (παράμετροι) θέσεως

Mέτρα (παράμετροι) θέσεως Mέτρα (παράμετροι) θέσεως Είδη παραμέτρων Σκοπός μέτρων θέσεως Μέτρα θέσεως Αριθμητικός μέσος Επικρατούσα τιμή Διάμεσος Τεταρτημόρια Σύντομη περιγραφή Το πρώτο βήμα της ανάλυσης των δεδομένων, είναι η

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΕΜΠΤΗ, 24 ΑΠΡΙΛΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

i μιας μεταβλητής Χ είναι αρνητικός αριθμός ΕΡΩΤΗΣΕΙΣ Σ Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακoλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ www.frotstra-eap.gr e-mal: frotstra_eap@yahoo.gr Τηλ:10.93..50 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ () ΑΘΗΝΑ ΦΕΒΡΟΥΑΡΙΟΣ 013 1 www.frotstra-eap.gr e-mal: frotstra_eap@yahoo.gr

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

I2. Αριθμητικά περιγραφικά μέτρα

I2. Αριθμητικά περιγραφικά μέτρα I. Αριθμητικά περιγραφικά μέτρα Μέτρα θέσης ή κεντρικής τάσης (cetral tedecy) Χρήσιμα για την περιγραφή της θέσης της κατανομής από την οποία προέρχονται. Δημοφιλέστερα: Μέση τιμή, κορυφή και διάμεσος.

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 3 MAΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A1. Έστω η συνάρτηση

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

επ. Κωνσταντίνος Π. Χρήστου

επ. Κωνσταντίνος Π. Χρήστου 1 2 3 1 2 2 0 3 3 4 6 5 10 6 11 7 7 8 6 9 3 10 2 4 Εάν έχουµε οµαδοποιηµένη µεταβλητή τότε είναι το σηµείο τοµής των ευθυγράµµων τµηµάτων τα οποία ορίζονται από α) ΑΒ, όπου Α το άνω δεξί άκρο της κλάσης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΜΑΪΟΣ 2018 ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΠΑΛ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΜΑΪΟΣ 2018 ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΠΑΛ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΜΑΪΟΣ 018 ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΠΑΛ ΘΕΜΑ Α Α1.Έστω F()() x c x με h 0 έχουμε F()()()()()() x h F x c x h c x x h x c h h h άρα F()()()()()() x h F x x

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ

ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ Εισαγωγή Όπως αναφέρθηκε στο Κεφάλαιο 1 υπάρχουν 154 υποψήφιοι που έχουν συµµετάσχει στις εξετάσεις των ετών 01 και 02. Για αυτούς γίνεται στο Κεφάλαιο 6 ξεχωριστή συγκριτική

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1. Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Υπολογισμοί Παραμέτρων Πληθυσμού και Στατιστικών Δείγματος

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Υπολογισμοί Παραμέτρων Πληθυσμού και Στατιστικών Δείγματος ΟΔΕ 2116 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ ΣΕΛΙΔΑ: 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ

Διαβάστε περισσότερα

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε µε τη χρήση µιας εικοσαβάθµιας κλίµακας) παρουσιάζεται

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $) Χρονολογικά δεδομένα Ένα διάγραμμα που παριστάνει την εξέλιξη των τιμών μιας μεταβλητής στο χρόνο χρονόγραμμα (ή χρονοδιάγραμμα). Κύρια μέθοδος παρουσίασης χρονολογικών δεδομένων είναι η πολυγωνική γραμμή

Διαβάστε περισσότερα

P(A ) = 1 P(A). Μονάδες 7

P(A ) = 1 P(A). Μονάδες 7 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί)

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) Α. Ερωτήσεις πολλαπλών επιλογών.(11 βαθµοί) (1:3 βαθµοί, 2-9:8 βαθµοί) 1. ίνεται ο πίνακας: Χ

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Λογιστικής & Χρηματοοικονομικής Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου Περιεχόμενα-Ύλη του Μαθήματος Περιγραφική Στατιστική: Είδη δεδομένων, Μετασχηματισμοί,

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

Οµάδα (I): Οµάδα (II): Οµάδα (III):

Οµάδα (I): Οµάδα (II): Οµάδα (III): I Α) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό (Σ) ή Λάθος (Λ), δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση ίνονται τρείς οµάδες τιµών Οµάδα (I): 0

Διαβάστε περισσότερα