Η ψηφιακή λογική περιθώρια ϑορύβου

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η ψηφιακή λογική περιθώρια ϑορύβου"

Transcript

1 Η ψηφιακή λογική περιθώρια ϑορύβου Γιώργος ηµητρακόπουλος Τµήµα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο υτικής Μακεδονίας Φθινόπωρο 2010 Γιώργος ηµητρακόπουλος, Η ψηφιακή λογική περιθώρια ϑορύβου 1/13

2 Ψηφιακά και αναλογικά ηλεκτρονικά Οι περισσότερες (αλλά όχι όλες) από τις ποσότητες που παρατηρούµε είναι αναλογικές Αλλά ο πιο απλός τρόπος για να αναπαραστήσουµε την πληροφορία, να την επεξεργαστούµε, να την αποθηκεύσουµε και να τη µεταδόσουµε παραµένει ψηφιακός Πάντα η µετατροπή µεταξύ αναλογικών και ψηφιακών σηµάτων ϑα είναι απαραίτητη Γιώργος ηµητρακόπουλος, Η ψηφιακή λογική περιθώρια ϑορύβου 2/13

3 Γιατί χρειαζόµαστε τη ψηφιακή λογική Ευκολία επεξεργασίας της πληροφορίας Αξιόπιστη µετάδοση Ευκολία διασύνδεσης διαφορετικών κυκλωµάτων Γιώργος ηµητρακόπουλος, Η ψηφιακή λογική περιθώρια ϑορύβου 3/13

4 Θόρυβος Η παρουσία του ϑορύβου εξαφανίζει τη δυνατότητα που έχουµε να ξεχωρίζουµε µικρές διαφορές στις τιµές του σήµατος πχ µεταξύ 3.1 και 3.2 V Γιώργος ηµητρακόπουλος, Η ψηφιακή λογική περιθώρια ϑορύβου 4/13

5 Ψηφιακή ( υαδική) αναπαράσταση Για µεγαλύτερη ασφάλεια περιορίζοµαστε σε δύο διακριτές τιµές V H το λογικό-1 V L το λογικό-0 Γιατί είναι αυτό χρήσιµο; Η δυαδική κωδικοποίηση επιτρέπει την ευκολότερη αποκωδικοποίηση του σήµατος από τον παραλήπτη ακόµη και παρουσία ϑορύβου Γιώργος ηµητρακόπουλος, Η ψηφιακή λογική περιθώρια ϑορύβου 5/13

6 Επικοινωνία µεταξύ δύο ψηφιακών συστηµάτων Θέλουµε ψηφιακά συστήµατα από διαφορετικούς κατασκευαστές να επικοινωνούν µεταξύ τους Υιοθέτηση κοινού τρόπου µετάδοσης και λήψης πληροφορίας Κοινή αναπαράσταση λογικου-1 και 0 Γιώργος ηµητρακόπουλος, Η ψηφιακή λογική περιθώρια ϑορύβου 6/13

7 Αναπαράσταση ψηφιακών τιµών µε τάσεις Συνολικό εύρος τάσεων από 0 V έως 5 V Ενναλακτικά ϑα µπορούσαµε να έχουµε από -5V έως +5V Καθορίζεται από την τάση τροφοδοσίας (µπαταρία) Χωρίζουµε το εύρος των τάσεων στη µέση Λογικό - 0 : V Λογικό - 1 : V Γιώργος ηµητρακόπουλος, Η ψηφιακή λογική περιθώρια ϑορύβου 7/13

8 Αποφυγή παρεξηγήσεων Η απαγορευµένη περιοχή Τα 2.5V αυθαίρετα µεταφράζονται ως λογικό-1 ή 0 Απατείται να ορίσουµε µια απαγορευµένη περιοχή τάσεων Οταν το σήµα εισέλθει στην απαγορευµένη περιοχή η µετάδοση ϑεωρείται λανθασµένη Σε περίπτωση λάθους ένας πρωτόκολλο υψηλότερου επιπέδου λύνει τις διαφορές Γιώργος ηµητρακόπουλος, Η ψηφιακή λογική περιθώρια ϑορύβου 8/13

9 Τάσεις αναφοράς µε απαγορευµένη περιοχή Ο αποστολέας στέλνει V XMIT Λογικό-1: V H < V XMIT < V DD Λογικό-0: V L > V XMIT > GND Ο παραλήπτης λαµβάνει V RCV Λογικό-1: V H < V RCV < V DD Λογικό-0: V L > V RCV > GND Στον παραλήπτη οι τιµές V DD και GND δεν είναι δεσµευτικές και εξαιτίας του ϑορύβου το V RCV µπορεί να πάρει τιµές µεγαλύτερες του V DD και µικρότερες του GND. Γιώργος ηµητρακόπουλος, Η ψηφιακή λογική περιθώρια ϑορύβου 9/13

10 Ανοχή στο ϑόρυβο Πρέπει να ορίσουµε µε σαφήνεια το ποσό του ϑορύβου που µπορούµε να ανεχθούµε αποφεύγοντας τα λάθη κατά τη µετάδοση Για να εισάγουµε περιθώρια ϑορύβου πρέπει να περιορίσουµε περαιτέρω τις τιµές που επειτρέπεται να µεταδόσουµε Ο αποστολέας στέλνει V XMIT Λογικό-1: V OH < V XMIT < V DD Λογικό-0: V OL > V XMIT > GND Ο παραλήπτης λαµβάνει V RCV Λογικό-1: V IH < V RCV < V DD Λογικό-0: V IL > V RCV > GND Ο αποστολέας κινείται σε µια στενή περιοχή δίνοντας περισσότερο εύρος στον παραλήπτη Γιώργος ηµητρακόπουλος, Η ψηφιακή λογική περιθώρια ϑορύβου 10/13

11 Περιθώρια ϑορύβου Περιθώριο θορύβου για λογικό-1: Ο αποστολέας στέλνει τουλάχιστον V OH. Επιτρέπουµε σε αυτό να αλλοιωθεί µέχρι και V IH. Πέρα από αυτή την τιµή η µετάδοση ϑεωρείται ανεπιτυχής. Περιθώριο θορύβου Η απόσταση από την ελάχιστη (µέγιστη) τάση που στέλνουµε µέχρι την ελάχιστη (µέγιστη) τάση που λαµβάνουµε NM 1 = V OH V IH NM 0 = V IL V OL Θόρυβος µεγαλύτερος από NM προκαλεί λανθασµένη µετάδοση. Εξω τις προδιαγραφές του συστήµατος µας Γιώργος ηµητρακόπουλος, Η ψηφιακή λογική περιθώρια ϑορύβου 11/13

12 Επικοινωνία εντός περιθωρίων Μια επιτυχηµένη µετάδοση πάρολες τις αλλοιώσεις. Οι τιµές του λογικού-1 και λογικού-0 παρέµειναν εντός ορίων Γιώργος ηµητρακόπουλος, Η ψηφιακή λογική περιθώρια ϑορύβου 12/13

13 Αναγέννηση σήµατος Ενα ψηφιακό κύκλωµα αναγνωρίζει στην είσοδο του κακές ψηφιακές τιµές: Κοντά στο V IH για λογικό-1 Κοντά στο V IL για λογικό-0 Στην έξοδο του ϕροντίζει να αποκαταστήσεις τις τιµές αυτές δίνοντας: Τάσεις µεγαλύτερες του V OH για λογικό-1 Τάσεις µικρότερες του V OL για λογικό-0 Επίσης αφαιρεί ϑόρυβο αναγεννώντας τα σήµατα στην έξοδο τους Γιώργος ηµητρακόπουλος, Η ψηφιακή λογική περιθώρια ϑορύβου 13/13

14 Lab 1: Logic with Switches (U.Crete, CS-120) :27 ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2010 Τμ. Επ. Υπολογιστών Πανεπιστήμιο Κρήτης Εργαστήριο 1: Λογική με Διακόπτες 27 Σεπτεμβρίου έως 1 Οκτωβρίου 2010 (βδομάδα 2) [Βιβλία: προαιρετικά μπορείτε να διαβάσετε: Wakerly: (σελ. 1-10) ή Mano (4η έκδοση): 1-1 (σελ. 1-3) και 1-9 (σελ )] 1.1 Λογικές Πράξεις και Πίνακας Αληθείας Το εργαστήριο αυτό αποτελεί συνέχεια και εμβάθυνση του εργ. 0, και ιδιαίτερα του πώς κυκλώματα διακοπτών υλοποιούν τις λογικές πράξεις ΟΧΙ ( 0.6), ΚΑΙ ( 0.7), Ή ( 0.8). Αν δεν προλάβατε να κάνετε τα αντίστοιχα πειράματα την προηγούμενη βδομάδα, ή να τα καταλάβετε σε βάθος, ξεκινήστε σήμερα με εκείνα, ή μελετήστε πρώτα εκείνες τις σημειώσεις γιά να τις καταλάβετε σε βάθος --αποτελούν τη βάση γιά όλο το μάθημα. Ο πίνακας που ακολουθεί αποτελεί μιά περίληψη των παραπάνω παραγράφων Γιά πληρότητα, προσθέσαμε και το κύκλωμα της 0.5 με το όνομα "ταυτότητα" (identity), αν και συνήθως δεν θεωρούμε ενδιαφέρουσα αυτήν την τόσο απλή λογική πράξη. Στον πίνακα αυτόν χρησιμοποιούμε τον όρο "OFF" όταν μεν πρόκειται γιά διακόπτες γιά να σημαίνει "ελεύθερος" (όχι πατημένος), όταν δε πρόκειται γιά LED γιά να σημαίνει "σβηστή" αντίστροφα, ο όρος "ON" γιά μεν τους διακόπτες σημαίνει "πατημένος" γιά δε τις LED σημαίνει "αναμένη". Ο πίνακας αυτός δίνει αναλυτικά τη συμπεριφορά των κυκλωμάτων και των αντίστοιχων "Λογικών Συναρτήσεων" (πράξεων) γιά τις διάφορες περιπτώσεις εισόδων τους, δηλαδή κατάστασης των διακοπτών τέτοιους πίνακες τους λέμε Πίνακες Αληθείας (truth tables). Γιά το κύκλωμα της ταυτότητας, ο πίνακας αληθείας μας λέει ότι η έξοδός του (φωτοβολία της LED) βρίσκεται πάντα σε ευθεία αντιστοιχία με την είσοδό του (κατάσταση του διακόπτη A): OFF γιά OFF και ON γιά ON. Γιά τη λογική πράξη OXI (ΝΟΤ), ο πίνακας μας δείχνει ότι η έξοδός της είναι πάντα το αντίστροφο (ανάποδο) της εισόδου της A, εξ' ου και το όνομα του κυκλώματος αυτού που συχνά λέγεται "αντιστροφέας" (inverter). Γιά την λογική πράξη ΚΑΙ (AND), η έξοδός της είναι συνάρτηση των δύο εισόδων της, A και B: είναι ON μόνον στον έναν από τους 4 συνδυασμούς τιμών των A και B, όταν A και B είναι ON αυτό προκύπτει όταν οι διακόπτες είναι συνδεδεμένοι "εν σειρά". Τέλος, η λογική συνάρτηση Ή (OR) είναι ON όταν A είναι ON ή B είναι ON (ή και οι δύο είναι ON) αυτό προκύπτει όταν οι διακόπτες είναι συνδεδεμένοι "εν παραλλήλω". Οι λογικές πράξεις AND και OR είναι ανάλογες με πλήθος παρόμοιων εννοιών της καθημερινής μας ζωής, π.χ.: Page 1 of 10

15 Lab 1: Logic with Switches (U.Crete, CS-120) :27 Γιά να τρέξει νερό από τη βρύση πρέπει να ανοίξουμε τη βρύση και να είναι ανοικτός και ο γενικός διακόπτης νερού του διαμερίσματος. Θα υπάρχει υπερκατανάλωση νερού αν έχουμε διαρροή στο καζανάκι ή αν στάζει η βρύση του μπάνιου ή της κουζίνας (ή και περισσότερα από ένα από αυτά ταυτόχρονα). Γιά να μπώ στο αυτοκίνητό μου που βρίσκεται στο γκαράζ πρέπει να ανοίξω την πόρτα του γκαράζ και την πόρτα του αυτοκινήτου. Μπορώ να μπώ στο εξοχικό μου σπίτι από την κύρια πόρτα ή από την πίσω πόρτα του κήπου. Από τους περισσότερους κοινούς λογαριασμούς τράπεζας μπορεί να κάνει ανάληψη ο δικαιούχος A ή ο δικαιούχος B. Υπάρχουν όμως και λογαριασμοί, π.χ. εταιρειών, όπου γιά να γίνει ανάληψη πρέπει να υπογράψουν π.χ. και ο διευθυντής και ο ταμίας. 1.2 Κυκλώματα γιά Σύνθετες Λογικές Πράξεις Οι παραπάνω βασικές συνδεσμολογίες διακοπτών μπορούν να συνδυαστούν μεταξύ τους σε οσοδήποτε σύνθετους συνδυασμούς στο σχήμα δεξιά φαίνονται μερικά παραδείγματα (στα σημεία E, F, G, H, υποτίθεται ότι συνδέονται LED's μεσω αντιστάσεων). Στο πρώτο κύκλωμα, γιά να περάσει ρεύμα προς το E, πρέπει "όχι A πατημένος", επειδή η σύνδεση έγινε στον πάνω δεξιά ακροδέκτη (T0) του A, ΚΑΙ (σύνδεση εν σειρά) "B πατημένος", επειδή το E συνδέεται στον κάτω δεξιά ακροδέκτη (T1) του B. Στο δεύτερο κύκλωμα, θα περνάει ρεύμα προς το F όποτε "A πατημένος" (σύνδεση κάτω δεξιά (T1) του A), Ή (σύνδεση εν παραλλήλω) "όχι B πατημένος" (σύνδεση πάνω δεξιά (T0) του B). Στο τρίτο κύκλωμα, γιά να περάσει ρεύμα προς το G πρέπει να υπάρχει δρόμος μέσω του αριστερού ζεύγους διακοπτών ΚΑΙ μέσω του δεξιού ζεύγους από το αριστερό ζεύγος μπορεί να περάσει ρεύμα όποτε "A πατημένος" Ή "B πατημένος" ομοίως από το δεξί όποτε "C πατημένος" Ή "D πατημένος". Τέλος, στο κύκλωμα που τροφοδοτεί το H, ρεύμα μπορεί να περάσει από το επάνω ζευγάρι διακοπτών Ή από το κάτω γιά να περάσει από επάνω πρέπει "A πατημένος" ΚΑΙ "B πατημένος", αντίστοιχα δε από κάτω. Πειράματα 1.3: Λογική με Διακόπτες Προετοιμασία πριν φτάσετε στο Εργαστήριο: Σε αυτό και σε όλα τα υπόλοιπα εργαστήρια από 'δώ και μπρος, πριν φτάσετε στο εργαστηριακό σας τμήμα, θα έχετε διαβάσει λεπτομερώς και προσεκτικά ολόκληρη την εκφώνηση της άσκησης, και θα έχετε ετοιμάσει γραπτά, καθαρά, και λεπτομερώς τα πλήρη σχεδιαγράμματα όλων των κυκλωμάτων που σας ζητούνται στην εκφώνηση, καθώς και όλες τις απαντήσεις στα ερωτήματα που σας θέτει η εκφώνηση. Την γραπτή αυτή προεργασία θα την εξετάζει ο βοηθός σας στην αρχή του εργαστηρίου, και θα του την παραδίδετε στο τέλος, από αυτήν δε θα προκύπτει ένα σεβαστό ποσοστό του βαθμού του εργαστηρίου σας. Ένα άλλο σεβαστό ποσοστό θα αντανακλά την από μέρους σας κατανόηση της θεωρίας του μαθήματος που σχετίζεται με το εργαστήριο, όπως αυτή φαίνεται από τις απαντήσεις σας στις σχετικές ερωτήσεις του βοηθού. Σε αυτό εδώ το πείραμα, πριν φτάσετε στο εργαστήριο: i. Σχεδιάστε τα παρακάτω κυκλώματα που σας ζητώνται. Οι διακόπτες A, B, C είναι όπως αυτοί που είδαμε στην 0.5, και το κάθε κύκλωμα οδηγεί μιά LED μέσω μιάς αντίστασης όπως στην 0.4. ii. Φτιάξτε τον πίνακα αληθείας του κάθε κυκλώματος, όπως είδαμε παραπάνω στην 1.1. Αφού τα κυκλώματα αυτά έχουν 3 εισόδους (A, B, C), οι πίνακες αληθείας τους θα έχουν 8 γραμμές: μία τετράδα γιά A=OFF και μία τετράδα γιά A=ON σε κάθε τετράδα, θα υπάρχει ένα ζευγάρι γιά B=OFF και ένα γιά B=ON και σε κάθε ζευγάρι, θα υπάρχει μία γραμμή γιά C=OFF και μία γιά C=ON. iii. Διατυπώστε γραπτώς τη συνθήκη γιά την άρνηση της κάθε εξόδου, δηλαδή γιά το πότε η φωτοδίοδος θα είναι σβηστή ή το πότε (1) η μπανιέρα δεν γεμίζει, ή (2) δεν μπορώ να Page 2 of 10

16 Lab 1: Logic with Switches (U.Crete, CS-120) :27 μπώ στο σπίτι, ή (3) δεν μπορώ να φύγω με το αυτοκίνητο, ή (4) δεν θα πάω το αυτοκίνητο στο συνεργείο. Διατυπώστε τη συνθήκη με λόγια, χρησιμοποιώντας την καθημερινή μας λογική, και δείτε ότι εφαρμόζεται πάλι η αρχή του δυϊσμού των παραγράφων 0.7 και 0.8 διασταυρώστε την ορθότητα της συνθήκης με τον πίνακα αληθείας. Στο εργαστήριο, κατασκευάστε τα κυκλώματα, ελέγξτε τα, και δείξτε τα στο βοηθό. Γιά να ελεγχθεί πλήρως το κάθε κύκλωμα πρέπει να τού εφαρμόσετε καθέναν από τους 8 συνδυασμούς εισόδων που έχει ο πίνακας αληθείας, και να διαπιστώσετε ότι η LED κάνει το σωστό γιά καθέναν καθώς τα ελέγχετε, διασταυρώστε την ορθότητα της συνθήκης γιά την άρνηση της κάθε εξόδου. 1. Η LED να ανάβει όταν θα γεμίσει η μπανιέρα, δηλαδή όταν: Έχω κλείσει την τάπα (διακόπτης A πατημένος), ΚΑΙ ανοίγω τη βρύση του κρύου (διακόπτης B πατημένος) Ή ανοίγω αυτήν του ζεστού (διακόπτης C πατημένος). 2. Η LED να ανάβει όταν μπορώ να μπώ στο σπίτι, δηλαδή όταν: έχω το κλειδί της κεντρικής πόρτας (A πατημένος), Ή έχω το κλειδί της μπαλκονόπορτας (B πατημένος) ΚΑΙ το πατζούρι της μπαλκονόπορτας είναι ανοικτό (C πατημένος). 3. Η LED να ανάβει όταν μπορώ να φύγω με το αυτοκίνητο, δηλαδή όταν: έχω το κλειδί του γκαράζ (A πατημένος), ΚΑΙ έχω το κλειδί του αυτοκινήτου (B πατημένος), ΚΑΙ ΔΕΝ υπάρχει βλάβη στη μηχανή. Όποτε υπάρχει βλάβη στη μηχανή, θα πατιέται ο διακόπτης C. 4. Η LED να ανάβει όταν πρέπει να πάω το αυτοκίνητο στο συνεργείο, δηλαδή όταν: υπάρχει βλάβη στη μηχανή (A πατημένος), Ή πέρασαν 12 μήνες από το προηγούμενο service (B πατημένος) ΚΑΙ ΔΕΝ έχω μείνει "πανί-με-πανί". Όποτε έχω μείνει "πανί-με-πανί", θα πατιέται ο διακόπτης C. Πείραμα 1.4: Διακόπτες "Aller-Retour" - Αποκλειστικό Ή, Έλεγχος Ισότητας Παρατηρήστε ότι σε όλα τα παραπάνω κυκλώματα υπάρχουν ορισμένες καταστάσεις μερικών από τις εισόδους οι οποίες κάνουν την έξοδο "αναίσθητη" στις (ανεξάρτητη από τις) άλλες εισόδους. Γιά παράδειγμα, στο κύκλωμα ΚΑΙ, όταν ο ένας διακόπτης είναι ελεύθερος, η LED παραμένει σβηστή ό,τι και να κάνει ο άλλος διακόπτης στο κύκλωμα Ή, όταν ένας διακόπτης είναι πατημένος, η LED ανάβει ό,τι και να κάνει ο άλλος διακόπτης. Σκεφτείτε τώρα τις κρεββατοκάμαρες των σπιτιών, όπου οι διακόπτες γιά τα φώτα είναι συνήθως τύπου "aller-retour", δηλαδή σε όποια κατάσταση και να έχει μείνει ο ένας διακόπτης (π.χ. της πόρτας), ο άλλος διακόπτης (π.χ. του κρεββατιού) μπορεί πάντα να αλλάξει την κατάσταση του φωτός (να το ανάψει ή να το σβήσει). Αυτό γίνεται με ένα από τα δύο κυκλώματα που φαίνονται δεξιά. Το πρώτο κύκλωμα υλοποιεί τη λογική πράξη "αποκλειστικό Ή" (exclusive OR - XOR), διότι η LED ανάβει όταν είναι πατημένος αποκλειστικά ο ένας από τους δύο διακόπτες και όχι και οι δύο μαζί. Παρατηρήστε το κύκλωμα (όπου τα δύο χιαστί σύρματα διασταυρώνονται χωρίς να κάνουν επαφή μεταξύ τους): ρεύμα μπορεί να περάσει προς την LED είτε όταν ο A είναι πατημένος και ο B δεν είναι (σύρμα από κάτω αριστερά προς πάνω δεξιά), είτε όταν ο A δεν είναι πατημένος και ο B είναι (σύρμα από πάνω αριστερά προς κάτω δεξιά). Επομένως, η LED ανάβει όταν ((A)ΚΑΙ(ΟΧΙ(B))) Ή ((ΟΧΙ(A))ΚΑΙ(B)), δηλαδή είναι πατημένος (μόνο ο A) ή (μόνο ο B). Page 3 of 10

17 Lab 1: Logic with Switches (U.Crete, CS-120) :27 Το δεύτερο κύκλωμα υλοποιεί τη λογική πράξη ελέγχου ισότητας (equality check), διότι η LED ανάβει μόνον όταν οι δύο διακόπτες είναι στην ίδια (ίση) κατάσταση --και οι δύο πατημένοι ή και οι δύο ελεύθεροι. Ρεύμα μπορεί να περάσει προς την LED είτε από το επάνω σύρμα (και οι δύο διακόπτες ελευθεροι) είτε από το κάτω σύρμα (και οι δύο διακόπτες πατημένοι), επομένως η LED ανάβει όταν ((ΟΧΙ(A))ΚΑΙ(ΟΧΙ(B))) Ή ((A)ΚΑΙ(B)), δηλαδή όταν A και B είναι (και οι δύο OFF) ή (και οι δύο ON). Πριν φτάσετε στο εργαστήριο, γράψτε τον πίνακα αληθείας των εξόδων των δύο κυκλωμάτων. Παρατηρήστε ότι, ανεξαρτήτως της κατάστασης του ενός διακόπτη, ο άλλος μπορεί πάντα, ανοιγοκλείνοντας, να αναβοσβήσει το φώς. Στο εργαστήριο, φτιάξτε τα δύο κυκλώματα, δείξτε τα στο βοηθό σας, και επαληθεύστε πειραματικά τις παραπάνω ιδιότητες. Περιττή και Άρτια Ισοτιμία (Odd and Even Parity): η γενίκευση της συνάρτησης αποκλειστικού-ή σε περισσότερες εισόδους είναι η περιττή ισοτιμία (odd parity), η δε γενίκευση της συνάρτησης ελέγχου ισότητας είναι η άρτια ισοτιμία (even parity). Όταν έχουμε πολλές εισόδους --πολλούς διακόπτες-- μετράμε το πλήθος τους που είναι πατημένοι (ON) σε δεδομένη στιγμή. Εάν το πλήθος αυτό είναι αριθμός περιττός (μονός - μη ακέραιο πολλαπλάσιο του 2), τότε λέμε ότι έχουμε περιττή ισοτιμία, και η αντίστοιχη συνάρτηση είναι ON (αναμένη), αλλοιώς η συνάρτηση αυτή είναι OFF (σβηστή). Αντίστροφα, όταν το πλήθος των εισόδων που είναι ON είναι αριθμός άρτιος (ζυγός - ακέραιο πολλαπλάσιο του 2), η συνάρτηση άρτιας ισοτιμίας είναι ON, αλλοιώς είναι OFF. Επομένως, οι συναρτήσεις περιττής και άρτιας ισοτιμίας είναι πάντα η μία το αντίστροφο (το λογικό ΟΧΙ) της άλλης (άρα αρκεί να ξέρουμε τη μία τους γιά να βρίσκουμε άμεσα και την άλλη). Εάν ένας από τους διακόπτες αλλάξει κατάσταση, το πλήθος των εισόδων που είναι ON αλλάζει κατά ένα (+1 ή -1): αν ο διακόπτης που άλλαξε ήταν σβηστός (OFF) και άναψε (ON), το πλήθος αυξήθηκε κατά 1, ενώ αν ήταν αναμένος και έσβησε τότε το πλήθος μειώθηκε κατά 1. Ο,τιδήποτε από τα δύο και να συμβαίνει, η ισοτιμία αλλάζει από άρτια σε περιττή ή από περιττή σε άρτια! Βλέπουμε λοιπόν ότι διατηρείται η βασική ιδιότητα με την οποία ξεκινήσαμε: σε οιαδήποτε κατάσταση και να βρίσκονται οι διακόπτες, αρκεί οιοσδήποτε ένας από αυτούς να αλλάξει κατάσταση γιά να αλλάξει τιμή η έξοδος (από σβηστή να ανάψει ή από αναμένη να σβήσει). Η ιδιότητα αυτή αποτελεί τη βάση γιά την κύρια εφαρμογή των συναρτήσεων ισοτιμίας: Οι συναρτήσεις ισοτιμίας χρησιμοποιούνται σαν η απλούστερη μορφή κώδικα ανίχνευσης σφαλμάτων (error detection codes): αφού μεταδώσουμε μέσα από ένα τηλεπικοινωνιακό δίκτυο κάμποσες πληροφορίες (κάμποσα σύρματα, καθένα "αναμένο" ή "σβηστό"), μεταδίδουμε στο τέλος ακόμα μία επιπλέον πληροφορία που είναι π.χ. η άρτια ισοτιμία όλων των προηγουμένων. Συνήθως, οι πληροφορίες που μεταδίδουμε φτάνουν στην άλλη ακρή όλες σωστές σε σπάνιες περιπτώσεις, λόγω θορύβου, μία από τις πληροφορίες μπορεί να φτάσει λάθος (ON αντί OFF, ή OFF αντί ON) σε πολύ σπανιότερες περιπτώσεις μπορεί δύο η περισσότερες πληροφορίες να φτάσουν λάθος (π.χ. αν η πιθανότητα ενός λάθους είναι μία στις χίλιες, και αν τα λάθη είναι ανεξάρτητα μεταξύ τους, τότε η πιθανότητα δύο λαθών είναι περίπου μία στο εκατομμύριο (περίπου το τετράγωνο της πιθανότητας ενός λάθους)). Εάν συμβεί ένα λάθος στη μετάδοση, τότε θα αλλάξει η ισοτιμία των πληροφοριών που στείλαμε, ακριβώς λόγω της παραπάνω ιδιότητας: οιεσδήποτε και αν είναι οι πληροφορίες, η αλλαγή μίας οιασδήποτε από αυτές αλλάζει την ισοτιμία. Αν όμως αλλάξει η ισοτιμία, θα το καταλάβουμε, διότι η επιπλέον πληροφορία ισοτιμίας που στείλαμε δεν θα συμπίπτει πλέον με την ισοτιμία που βλέπει ο παραλήπτης! Έτσι επιτυγχάνεται ο στόχος της ανίχνευσης σφαλμάτων στις περιπτώσεις που συμβαίνει μόνο ένα σφάλμα, που είναι και οι πιό συχνές. Άπαξ και διαπιστωθεί η ύπαρξη σφάλματος, η διόρθωση του μπορεί να γίνει π.χ. με μία αίτηση αναμετάδωσης ("ξαναπές το --δεν άκουσα καλά"). Ο κύριος περιορισμός των συναρτήσεων ισοτιμίας στην ανίχνευση σφαλμάτων είναι ότι αυτές ανιχνεύουν μόνο 1, 3, 5, κλπ. σφάλματα, ενώ τους διαφεύγουν 2, 4, 6, κλπ. σφάλματα. Εάν τα σφάλματα είναι Page 4 of 10

18 Lab 1: Logic with Switches (U.Crete, CS-120) :27 ανεξάρτητα μεταξύ τους, και εάν η πιθανότητα ενός σφάλματος είναι πολύ μικρή, τότε 2 ή περισσότερα "μαζεμένα" σφάλματα είναι πολύ σπάνια. Εάν όμως τα σφάλματα είναι συχνά ή δεν είναι ανεξάρτητα μεταξύ τους, τότε χρειαζόμαστε άλλους, πιό πολύπλοκους κώδικες γιά την ανίχνευσή τους τέτοια περίπτωση "ομοβροντίας (εκρηκτικών) σφαλμάτων" (burst errors) έχουμε π.χ. όταν ένα κινητό τηλέφωνο, κινούμενο, περνάει γιά λίγο πίσω από μία "σκιά" της κεραίας του σταθμού βάσης αρκετά όμως είπαμε γιά τώρα --γιά περισσότερες πληροφορίες θα πρέπει να πάρετε κάποιο μάθημα τηλεπικοινωνιών και κωδικοποίησης Τα Bits και η Κωδικοποίηση Μηνυμάτων Κυκλώματα σαν αυτά που συζητάμε --ψηφιακά, όπως θα τα πούμε παράκατω-- χρησιμοποιούνται γιά την αποθήκευση, επεξεργασία, και αποστολή κωδικοποιημένων μηνυμάτων και πληροφοριών. Στο σχήμα φαίνεται ένα απλό σύστημα μετάδοσης πληροφοριών από έναν πομπό (transmitter) σε έναν δέκτη (receiver) έχει δύο σύρματα, καθένα από τα οποία μπορεί να διαρρέεται ή όχι από ρεύμα. Πληροφορία, εδώ, είναι το αν υπάρχει ή δεν υπάρχει ρεύμα στο κάθε σύρμα, πράγμα που ο πομπός το ρυθμίζει με τη θέση του κάθε διακόπτη, και ο δέκτης το καταλαβαίνει από το αν ανάβει ή όχι η κάθε LED. Κάθε σύρμα μεταδίδει μιά ποσότητα πληροφορίας ικανή να επιλέξει ένα από δύο πράγματα, καταστάσεις, ή μηνύματα. Γιά το λόγο αυτό, την ποσότητα αυτή πληροφορίας την ονομάζουμε δυαδικό ψηφίο (binary digit) ή δυφίο (bit) --όνομα που αποτελεί τον πιό γνωστό όρο της Επιστήμης Υπολογιστών! Το σύστημα του σχήματος μεταδίδει δύο bits πληροφορίας από τον πομπό στο δέκτη, το bit A και το bit B. Κάθε bit μεταδιδόμενης πληροφορίας μπορεί να έχει δύο μόνο διαφορετικές τιμές από ηλεκτρική άποψη αυτές είναι απουσία ή παρουσία ρεύματος γιά τα μέχρι στιγμής κυκλώματά μας, ή χαμηλή ή ψηλή ηλεκτρική τάση γιά τα συνηθισμένα chips τύπου CMOS των σημερινών μικροηλεκτρονικών συστημάτων. Η ερμηνεία όμως που δίδεται στις δύο αυτές διαφορετικές τιμές είναι θέμα σύμβασης (συμφωνίας) ανάμεσα στον πομπό και το δέκτη, και είναι εντελώς αυθαίρετη, καθώς και ανεξάρτητη από τις δύο ηλεκτρικές τιμές του bit πολές φορές μάλιστα, η ερμηνεία αυτή είναι σκόπιμα κρυφή και μη αυτονόητη ώστε να αποφευχθούν υποκλοπές του μηνύματος, όπως π.χ. όταν χρησιμοποιούνται κώδικες κρυπτογραφίας. Προφανώς, γιά να υπάρξει επιτυχής επικοινωνία, πρέπει ο πομπός και ο δέκτης να έχουν προσυμφωνήσει στην ίδια ερμηνεία των ηλεκτρικών τιμών πέραν των συμμετεχόντων στην επικοινωνία, όμως, δεν είναι ανάγκη κανείς άλλος να ξέρει ή να έχει συμφωνήσει με αυτή την ερμηνεία. Ο επόμενος πίνακας δίνει, σε δύο ζευγάρια στηλών, μερικά δημοφιλή ζευγάρια ερμηνείας των δύο τιμών ενός bit τα δύο πρώτα ζευγάρια είναι οι συνηθισμένες ηλεκτρικές αναπαραστασεις που είπαμε παραπάνω, και τα υπόλοιπα είναι μερικές δημοφιλείς ερμηνείες τους. ρεύμα ψηλή τάση πατημένος ON αναμένος πάνω όχι ρεύμα χαμηλή τάση ελεύθερος OFF σβηστός κάτω ναι αληθές 1 ενεργός θετικός αρνητικός όχι ψευδές 0 αδρανής αρνητικός θετικός Απ' όλα αυτά τα ζευγάρια, το πιό σύντομο στη γραφή είναι το "1, 0", γι' αυτό πολύ συχνά υιοθετούμε αυτά τα σύμβολα γιά τις δύο δυνατές τιμές ενος bit πληροφορίας. Ένα άλλο σχόλιο αρμόζει στα δύο τελευταία ζευγάρια: μερικές φορές μπορεί το ON ή το 1 να το ερμηνεύουμε σαν "θετικός", και μερικές σαν "αρνητικός", και αντίστροφα γιά το OFF ή το 0. Όταν βλέπουμε την έννοια "θετικός" σαν συναφή με τις έννοιες "ενεργός" ή "αληθής", έρχεται φυσικό να τις συμβολίσουμε όλες αυτές με την ίδια τιμή του bit (την τιμή "1"). Από την άλλη, όπως θα δούμε στο εργαστήριο 6, όταν παριστάνουμε προσημασμένους ακεραίους αριθμούς με τον "κώδικα συμπληρώματος-ως-προς-2", τότε το "αριστερό" bit της αναπαράστασης είναι 1 γιά τους αρνητικούς αριθμούς και 0 γιά τους μεγαλύτερους ή ίσους του μηδενός. Αυτές οι δύο, αντίθετες μεταξύ τους ερμηνείες της τιμής ενός bit δείχνουν καθαρά το πόσο σχετική και αυθαίρετη είναι η ερμηνεία αυτή, και πόσο αυτή είναι θέμα απλής σύμβασης μεταξύ αυτών που χρησιμοποιούν το bit. Page 5 of 10

19 Lab 1: Logic with Switches (U.Crete, CS-120) :27 Με ένα μόνο bit, πολύ μικρή ποσότητα πληροφορίας μπορούμε να μεταφέρουμε --μπορούμε να επιλέξουμε ανάμεσα σε ίσα-ίσα δύο μόνο προκαθορισμένα μηνύματα γιά περισσότερες επιλογές (περισσότερη πληροφορία) χρειαζόμαστε και περισσότερα bits. Στο σύστημα του σχήματος στην αρχή της παραγράφου, ο πομπός μετέδιδε στο δέκτη δύο (2) bits πληροφορίας ας δούμε τώρα πώς μπορούμε να τα εκμεταλλευτούμε αυτά. Ο πρώτος τρόπος εκμετάλλευσης πολλαπλών bits πληροφορίας είναι το κάθε bit να έχει τη δική του, χωριστή ερμηνεία ας δούμε δύο παραδείγματα. Σαν πρώτο παράδειγμα, ας πούμε ότι ο πομπός του παραπάνω σχήματος βρίσκεται σε ένα δωμάτιο ξενοδοχείου, ο δέκτης βρίσκεται στην κουζίνα του ξενοδοχείου, το bit A σημαίνει "πεινάω - παρακαλώ φέρτε μου το πιάτο της ημέρας", και το bit B σημαίνει "διψάω - παρακαλώ φέρτε μου το ποτό της ημέρας". Τότε, οι 4 δυνατοί συνδυασμοί καταστάσεων των δύο διακοπτών A και B μεταφέρουν ένα από τα εξής τέσσερα δυνατά μηνύματα στην κουζίνα: A=0, B=0: είμαι μιά χαρά - δεν θέλω τίποτα A=0, B=1: παρακαλώ πολύ φέρτε μου ένα ποτό της ημέρας (χωρίς φαγητό) A=1, B=0: παρακαλώ πολύ φέρτε μου ένα πιάτο της ημέρας (χωρίς ποτό) A=1, B=1: παρακαλώ πολύ φέρτε μου ένα πιάτο και ένα ποτό της ημέρας. Σαν δεύτερο παράδειγμα, ας πούμε ότι η επικοινωνία αυτή τη φορά είναι οπτική αντί ηλεκτρική όπως πρίν: πομπός είναι τα πίσω φώτα φρένων και όπισθεν ενός αυτοκινήτου, και δέκτης είναι ο οδηγός του από πίσω αυτοκινήτου που βλέπει τα φώτα. Ας ονομάσουμε bit A την κατάσταση των φρένων (1=πατημένα, 0=ελεύθερα), και bit B την κατάσταση του λεβιέ ταχυτήτων (1=όπισθεν, 0=άλλη θέση). Τότε, οι 4 δυνατοί συνδυασμοί καταστάσεων των δύο bits πληροφορίας που μεταφέρουν τα κόκκινα και άσπρα πίσω φώτα δίνουν στον πίσω οδηγό ένα από τα εξής τέσσερα δυνατά μηνύματα: A=0, B=0: προχωρώ μπροστά, κανονικά A=0, B=1: κάνω όπισθεν A=1, B=0: προχωρώ μπροστά αλλά φρενάρω A=1, B=1: φρενάρω και προτίθεμαι να κάνω όπισθεν Ο δεύτερος τρόπος εκμετάλλευσης πολλαπλών bits πληροφορίας είναι η κάθε ερμηνεία να αντιστοιχεί σε όλα τα bits μαζί, σαν ομάδα ας δούμε το ανάλογο των δύο προηγουμένων παραδειγμάτων σε αυτό το στυλ. Στην περίπτωση του ξενοδοχείου, μπορεί τα δύο bits να χρησιμοποιούνται γιά την παραγγελία ενός φαγητού από ένα μικρό μενού ελλείψει περισσοτέρων bits, δεν υπάρχει δυνατότητα μεγαλύτερου μενού ή συνδυασμού πολλαπλών παραγγελιών (φαγητό, σαλάτα, ποτό, κλπ): A=0, B=0: είμαι μιά χαρά - δεν θέλω τίποτα A=0, B=1: παρακαλώ πολύ φέρτε μου ένα σάντουιτς A=1, B=0: παρακαλώ πολύ φέρτε μου μία μακαρονάδα A=1, B=1: παρακαλώ πολύ φέρτε μου μία πριζόλα. Όπως βλέπουμε εδώ, δεν υπάρχει ερμηνεία γιά το καθένα bit χωριστά από το άλλο: δεν μπορεί να ερμηνευτεί το bit A σαν μακαρονάδα και το bit B σαν σάντουιτς, διότι η πριζόλα δεν αποτελεί συνδυασμό... σάντουιτς με μακαρονάδα. Στο δεύτερο παράδειγμα, ας πούμε ότι τώρα το bit A είναι το πίσω αριστερό πορτοκαλί φώς (φλας) του αυτοκινήτου, και το bit B είναι το πίσω δεξί φλας. Σε αυτή την περίπτωση, η πληροφορία προς τον πίσω οδηγό είναι η παρακάτω (εδώ, "0" σημαίνει σβηστό φώς, και "1" σημαίνει ότι το φώς αναβοσβήνει). Όπως και στο τελευταίο παράδειγμα, το bit A δεν μπορεί να ερμηνευτεί πάντα σαν "στρίβω αριστερά" και το bit B σαν "στρίβω δεξιά", δίοτι ο συνδυασμός A=1, B=1 δεν σημαίνει "στρίβω αριστερά και δεξιά". A=0, B=0: προχωρώ ίσια A=0, B=1: θα στρίψω δεξιά A=1, B=0: θα στρίψω αριστερά A=1, B=1: πρόσεχε - προσπαθώ να βρώ πού θα παρκάρω. Τέλος, ας κάνουμε κι ένα πιό σύνθετο παράδειγμα: το ξενοδοχείο αποφασίζει να αναβαθμίσει τις υπηρεσίες εστιατορίου του και εγκαθιστά σε κάθε δωμάτιο 5 διακόπτες και 5 σύρματα προς την κουζίνα, μεταδίδοντας έτσι 5 bits πληροφορίας, A, B, C, D, και E. Τα 3 πρώτα bits, A, Page 6 of 10

20 Lab 1: Logic with Switches (U.Crete, CS-120) :27 B, C χρησιμοποιούνται γιά την παραγγελία φαγητού, και τα 2 υπόλοιπα γιά την παραγγελία ποτού. Οι 8 συνδυασμοί τιμών των bits ABC αποφασίζεται να σημαίνουν: (000) δεν θέλω φαγητό, (001) σάντουιτς, (010) μακαρονάδα, (011) γεμιστά, (100) μουσακά, (101) ψάρι, (110) μπιφτέκια, (111) πριζόλα. Οι 4 συνδυασμοί τιμών των bits DE αποφασίζεται να σημαίνουν: (00) δεν θέλω ποτό, (01) μπύρα, (10) κρασί, (11) ούζο. Έτσι, όταν η κουζίνα βλέπει ABCDE = στέλνει ένα σκέτο ουζάκι, ενώ όταν βλέπει στέλνει ένα ψάρι με κρασί. Συνολικά, υπάρχουν 32 (=8x4) δυνατά μυνύματα: 1 μήνυμα ότι ο πελάτης δεν θέλει τίποτα (00000), 7 μηνύματα φαγητού χωρίς ποτό, 3 μηνύματα ποτού χωρίς φαγητό, και 21 (=7x3) συνδυασμοί κάποιου φαγητού με κάποιο ποτό. Πείραμα 1.6: Αποκωδικοποιητής 2-σε-4 Ο μάγειρας του προηγουμένου ξενοδοχείου δεν μπορούσε ποτέ να θυμηθεί ποιός από τους κώδικες 01, 10, και 11 αντιστοιχούσε στη μακαρονάδα, ποιός στην πριζόλα, και ποιός στο σάντουιτς (γιά να περιοριστούμε απλώς στα προ της αναβάθμισης). Γιά να τον βοηθήστε, φτιάξτε το κύκλωμα που φαίνεται δεξιά. Το κύκλωμα αυτό έχει δύο εισόδους, τα bits A και B το bit A ελέγχει το διακόπτη A. Το bit B ελέγχει τους δύο δεξιούς διακόπτες που φαίνονται στο σχήμα: αυτοί πρέπει πάντα να αναβοσβήνουν και οι δύο μαζί. Παρ' ότι υπάρχουν και διπλοί διακόπτες (DPDT - double pole double throw), εμείς στο εργαστήριο δεν έχουμε τέτοιους, γι' αυτό θα χρησιμοποιήσετε δύο απλούς SPDT βαλμένους δίπλα-δίπλα όπως φαίνεται στη φωτογραφία ώστε να πατιόνται κι οι δύο μαζί μ' ένα δάκτυλο. Το κύκλωμα αυτό λέγεται αποκωδικοποιητής (decoder) και έχει τη βασική ιδιότητα ότι πάντα είναι αναμένη μία και μόνο μία από τις εξόδους του --εκείνη που αντιστοιχεί στο συνδυασμό τιμών που υπάρχουν στις εισόδους του την παρούσα στιγμή. Ο συγκεκριμένος αποκωδικοποιητής εδώ είναι μεγέθους 2-σε-4, δηλαδή αποκωδικοποιεί 2 εισόδους στους 4 συνδυασμούς τους, άρα έχει 4 εξόδους το κύκλωμα εδώ έχει σαν εξόδους 4 LED's. Το κύκλωμα λειτουργεί ως εξής (βάσει της τοπολογίας "δυαδικού δέντρου αποφάσεων" (binary decision tree), όπως θα μάθετε σε άλλα μαθήματα): ο διακόπτης A "παραλαμβάνει" ρεύμα από την τροφοδοσία μέσω του πόλου του, και το διοχετεύει σε ακριβώς ένα από τα δύο μισά του κυκλώματος --το πάνω ή το κάτω-- ανάλογα με την παρούσα τιμή της εισόδου A. Στη φωτογραφία, όταν A=0 (ελεύθερος) το ρεύμα οδηγείται μέσω του T0 και του κίτρινου σύρματος στον επάνω διακόπτη B, ενώ όταν A=1 (πατημένος) το ρεύμα οδηγείται μέσω του Τ1 και του πράσινου σύρματος στον κάτω διακόπτη Β. Στη συνέχεια, οι διακόπτες B οδηγούν το ρεύμα σε ένα από τα δύο μισά του υπολοίπου κυκλώματος, ανάλογα με την παρούσα τιμή της εισόδου B αφού ρεύμα υπάρχει σε ακριβώς ένα από τα δύο πρώτα μισά A, ο αντίστοιχος διακόπτης B το οδηγεί σε ακριβώς ένα από τα δύο μισά αυτού του μισού, δηλαδή σε ακριβώς ένα από τα τέσσερα σκέλη του κυκλώματος που αποτελούν και τις 4 τελικές εξόδους του. Η συνέπεια είναι ότι ανάβει η μία και μόνη LED που αντιστοιχεί στο συνδυασμό τιμών A και B, όπως δείχνουν τα σύμβολα 00, 01, 10, 11 στο σχήμα. Εάν πάνω από κάθε LED βάλουμε ένα ημιδιαφανές πλαστικό με γραμμένο επάνω το αντίστοιχο μήνυμα, όπως στο σχήμα δεξιά, θα έχουμε προσφέρει την επιθυμητή βοήθεια στο μάγειρα του ξενοδοχείου. Πριν φτάσετε στο εργαστήριο, φτιάξτε τον πίνακα αληθείας γιά καθεμιά από τις 4 εξόδους του κυκλώματος. Επίσης, γιά την κάθε έξοδο παρατηρήστε το κύκλωμα που την τροφοδοτεί (δύο διακόπτες εν σειρά) και εκφράστε την με μιάν "εξίσωση" (π.χ. (A)ΚΑΙ(ΟΧΙ(B))), βάσει των όσων είπαμε στην 1.2. Στο εργαστήριο, φτιάξτε και ελέγξτε το κύκλωμα, και δείξτε το στον βοηθό σας. Page 7 of 10

21 Lab 1: Logic with Switches (U.Crete, CS-120) : Πλήθος Συνδυασμών (Μηνυμάτων) των n bits Σε πόσους διαφορετικούς συνδυασμούς τιμών μπορεί να βρεθεί μιά ομάδα από n το πλήθος bits; Με άλλα λόγια, πόσα διαφορετικά μηνύματα μπορούμε να κωδικοποιήσουμε αν έχουμε στη διάθεσή μας n bits; Ή, έχοντας μιά ομάδα n bits, ανάμεσα σε πόσα πολλά διαφορετικά πράγματα μπορούμε να επιλέξουμε (υποδείξουμε) ένα; Ξέρουμε ήδη ότι ένα bit έχει δύο δυνατές τιμές. Επίσης ξέρουμε ότι δύο bits μπορούν να βρίσκονται σε έναν από 4 διαφορετικούς συνδυασμούς τιμών: γιά την κάθε μιά από τις 2 τιμές του πρώτου υπάρχουν 2 διαφορετικοί συνδυασμοί με τις 2 διαφορετικές τιμές του δεύτερου. Γενικότερα, κάθε φορά που προσθέτουμε άλλο ένα bit στην ομάδα, διπλασιάζεται το πλήθος των συνδυασμών: γιά την τιμή 0 του νέου bit έχουμε τους συνδυασμούς - κώδικες - μηνύματα που είχαμε και πριν βάσει των υπολοίπων bits, και γιά την τιμή 1 του νέου bit έχουμε άλλους τόσους νέους συνδυασμούς, πάλι βάσει των υπολοίπων bits. Έτσι προκύπτει ότι τα n bits μπορούν να βρίσκονται σε 2 n διαφορετικούς συνδυασμούς τιμών, ή με n bits μπορούμε να διαλέξουμε ένα ανάμεσα σε 2 n πράγματα, ή να κωδικοποιήσουμε ένα ρεπερτόριο 2 n διαφορετικών επιτρεπτών μηνυμάτων. Γι' αυτό, οι δυνάμεις του 2 παίζουν κεφαλαιώδη ρόλο στους υπολογιστές, και θα τις βρίσκουμε μπροστά μας συνεχώς: 1 bit μπορεί να επιλέξει ένα ανάμεσα σε 2 1 = 2 διαφορετικά πράγματα/συνδυασμούς/ μηνύματα, 2 bits μπορούν να επιλέξουν ένα ανάμεσα σε 2 2 = 4 διαφορετικά πράγματα/ συνδυασμούς, 3 bits μπορούν να επιλέξουν ένα ανάμεσα σε 2 3 = 8 διαφορετικά πράγματα/ συνδυασμούς, 4 bits επιλέγουν ανάμεσα σε 2 4 = 16 διαφορετικά πράγματα/συνδυασμούς/μηνύματα, 5 bits επιλέγουν ανάμεσα σε 2 5 = 32 διαφορετικά πράγματα/συνδυασμούς/μηνύματα, 6 bits επιλέγουν ανάμεσα σε 2 6 = 64 διαφορετικά πράγματα/συνδυασμούς/μηνύματα, 7 bits επιλέγουν ανάμεσα σε 2 7 = 128 διαφορετικά πράγματα/συνδυασμούς/μηνύματα, 8 bits επιλέγουν ανάμεσα σε 2 8 = 256 διαφορετικά πράγματα/συνδυασμούς/μηνύματα, 9 bits επιλέγουν ανάμεσα σε 2 9 = 512 διαφορετικά πράγματα/συνδυασμούς/μηνύματα, 10 bits επιλέγουν ανάμεσα σε 2 10 = 1024 = 1 K (Kilo) διαφορετικά πράγματα, 11 bits επιλέγουν ανάμεσα σε 2 11 = 2048 = 2 K διαφορετικά πράγματα, 12 bits επιλέγουν ανάμεσα σε 2 12 = 4096 = 4 K διαφορετικά πράγματα, 13 bits επιλέγουν ανάμεσα σε 2 13 = 8192 = 8 K διαφορετικά πράγματα, 14 bits επιλέγουν ανάμεσα σε 2 14 = 16,384 = 16 K διαφορετικά πράγματα, 15 bits επιλέγουν ανάμεσα σε 2 15 = 32,768 = 32 K διαφορετικά πράγματα, 16 bits επιλέγουν ανάμεσα σε 2 16 = 65,536 = 64 K διαφορετικά πράγματα, bits επιλέγουν ανάμεσα σε 2 20 = 1,048,576 = 1 M (Mega) διαφορετικά πράγματα, bits επιλέγουν ανάμεσα σε 2 30 = 1,073,741,824 = 1 G (Giga) διαφορετικά πράγματα, bits επιλέγουν ανάμεσα σε 2 40 = 1,099,511,627,776 = 1 T (Tera) διαφορετικά πράγματα, κ.ο.κ. Τα bits πληροφορίας, εκτός από το να τα μεταδίδουμε ή επεξεργαζόμαστε, τα αποθηκεύουμε επίσης, σε μνήμες (memories), γιά τις οποίες θα μιλήσουμε αργότερα. Όταν μιλάμε γιά τις μνήμες και τη χωρητικότητά τους, δεν πρέπει να συγχέουμε το πόσα bits χωράνε με το πόσους συνδυασμούς μπορεί να παραστήσει ένα πλήθος από bits. Γιά παράδειγμα, έστω ότι το πληροφοριακό σύστημα ενός Πανεπιστημίου κωδικοποιεί τον αριθμό μητρώου του κάθε φοιτητή με 24 bits. Αυτό σημαίνει ότι στο πληροφοριακό αυτό σύστημα δεν μπορούν να χωρέσουν πάνω από περίπου 16 εκατομμύρια (16 Μ) φοιτητές (παρελθόντων και παρόντων ετών) (16,777,216 φοιτητές, γιά την ακρίβεια). Αν τώρα ένας υπολογιστής στη γραμματεία αυτού του Πανεπιστημίου έχει μιά (μάλλον μικρή) μνήμη 16 Mbits, αυτό σημαίνει ότι στη μνήμη αυτή χωράνε να αποθηκευτούν μέχρι περίπου 16 εκατομμύρια διαφορετικά bits (16,777,216 bits γιά την ακρίβεια). Τα bits αυτά, αν τα βλέπαμε σαν μία μόνο ομάδα, μπορούν να βρεθούν σε ένα πλήθος συνδυασμών τόσο τεράστιο που ούτε καν να το φανταστούμε μπορούμε (κάπου γύρω στο 1.6-εκατομμυριάκις εκατομμύριο...). Όμως, τα bits αυτά δεν τα κοιτάμε ποτέ σαν μία μόνο ομάδα, αλλά σαν πολλές γιά παράδειγμα, αν σε αυτά Page 8 of 10

22 Lab 1: Logic with Switches (U.Crete, CS-120) :27 αποθηκεύσουμε αριθμούς μητρώου φοιτητών, "κολλητά" τον έναν με τον άλλον, τότε θα χωρέσουν γύρω στις 700 χιλιάδες τέτοιοι αριθμοί μητρώου (γιά την ακρίβεια, / 24 = αριθμοί μητρώου). Ένα σκέτο bit μπορεί να μεταφέρει πολύ μικρή ποσότητα πληροφορίας, γι' αυτό συχνά τα bits τα χρησιμοποιούμε κατά ομάδες, όπως είπαμε παραπάνω. Μεταξύ των διαφόρων δυνατών μεγεθών ομάδων, η πιό συνηθισμένη, σε όλους ανεξαίρετα τους σημερινούς υπολογιστές, είναι τα οκτώ (8) bits που ονομάζονται ένα Byte. Έτσι, η κωδικοποίηση του κάθε αριθμού μητρώου στο προηγούμενο παράδειγμα ήταν σε 3 Bytes (= 3x8 = 24 bits). Σαν σύντμηση, το "b" μικρό συμβολίζει το bit, και το "B" κεφαλαίο συμβολίζει το Byte. Ας θεωρήσουμε τώρα έναν υπολογιστή που έχει μνήμη 256 MBytes αυτό σημαίνει 256x8 = 2048 Mbits = 2 Gbits. Από τις μνήμες σαν αυτήν, θέλουμε να ζητάμε να διαβάσουμε ορισμένα κομάτια τους που μας ενδιαφέρουν κατ' επιλογή συνήθως, το κομάτι που μας ενδιαφέρουν είναι ένα Byte, και όχι μεμονωμένα bits διότι αυτά θεωρούνται πολύ μικρά. Κάθε φορά που θέλουμε να διαβάσουμε λοιπόν από τη μνήμη μας των 2 Gb = 256 MB, πρέπει να της διευκρινίσουμε ποιό από τα 256 εκατομμύρια Bytes που αυτή περιέχει εμείς θέλουμε να διαβάσουμε. Πόσα bits χρειαζόμαστε γιά να επιλέξουμε ένα ανάμεσα σε 256 Μ πράγματα; Σύμφωνα με τα παραπάνω, χρειαζόμαστε 28 bits. Τα 28 αυτά bits που πρέπει να δώσουμε στη μνήμη τα λέμε διεύθυνση του Byte της το οποίο επιθυμούμε να επιλέξουμε: κάθε Byte της μνήμης έχει τη δική του διεύθυνση, σαν να είναι ένα σπιτάκι σε έναν πολύ μακρύ δρόμο. Στις μονάδες της Φυσικής, ο πολλαπλασιαστής "k" (μικρό) σημαίνει 1000 π.χ. 1 kg = 1000 g, 1 km = 1000 m, 1 khz = 1000 Hz. Όταν μιλάμε γιά bits ή γιά Bytes, ο πολλαπλασιαστής "Κ" (κεφαλαίο) σημαίνει 1024, όπως τον ορίσαμε παραπάνω π.χ. 1 Kb = 1024 bits, 1 KB = 1024 Bytes. Εκεί που τα πράγματα είναι διφορούμενα, είναι με τους πολλαπλασιαστές "M" και "G" (κεφαλαία): αυτοί, άλλοτε σημαίνουν 1,000,000 και 1,000,000,000 αντίστοιχα, μπροστά από τις παραδοσιακές φυσικές μονάδες, και άλλοτε σημαίνουν 1,048,576 και 1,073,741,824 αντίστοιχα, μπροστά από τα bits και τα Bytes που αφορούν χωρητικότητα μνημών. Έτσι, 1 MHz = 10 6 Hz ενώ 1 Mb = 2 20 bits, και 1 GHz = 10 9 Hz ενώ 1 GB = 2 30 Bytes. (Τα πράγματα χειροτερεύουν όταν μιλάμε γιά ταχύτητες δικτύων υπολογιστών: συνήθως, 1 Mb/s = 10 6 bits/second και 1 Gb/s = 10 9 b/s, επειδή οι ταχύτητες αυτές πηγάζουν από ρολόγια του 1 MHz ή 1 GHz!...). 1.8 Αναλογικά και Ψηφιακά Ηλεκτρονικά Συστήματα Μία εταιρεία εμπορίας κατεψυγμένων ειδών θέλει να παρακολουθεί εξ' αποστάσεως τη θερμοκρασία του ψυγείου της, προκειμένου να εντοπίζει γρήγορα τυχόν βλάβες. Το ηλεκτρονικό θερμόμετρο που υπάρχει μέσα στο ψυγείο έχει περιοχή λειτουργίας από -25 C έως +25 C, και ακρίβεια ±0.1 C επομένως, οι μετρήσεις του που έχει νόημα να μεταφέρονται είναι C, C, C,..., C, C. Η μέτρηση θα μεταφέρεται από το ψυγείο ως το γραφείο του φύλακα μέσω ηλεκτρικών καλωδίων. Υπάρχουν δύο (τουλάχιστο) τρόποι μετάδοσης αυτής της μέτρησης: Η αναλογική (analog) μετάδοση λειτουργεί περίπου ως εξής: χρησιμοποιούμε ένα ηλεκτρικό σύρμα (συν την αναγκαία γείωση γιά να κλείνει κύκλωμα), και πάνω σε αυτό βάζουμε μιάν ηλεκτρική τάση ίση με τη θερμοκρασία επί έναν συντελεστή αναλογίας π.χ. 0.1 V/ C επειδή η τάση που μεταδίδουμε είναι ανάλογη προς την θερμοκρασία, η μετάδοση λέγεται "αναλογική". Π.χ. αν η μέτρηση του θερμομέτρου είναι C τότε στο σύρμα θα βάλουμε μιά τάση Volt. Αφού το θερμόμετρο έχει περιοχή λειτουργίας από -25 C έως +25 C, τα ηλεκτρονικά κυκλώματα που οδηγούν το σύρμα θα πρέπει να μπορούν να ρυθμίζουν την τάση του από -2.5 V έως V. Προκειμένου να μην υπάρχει απώλεια ακρίβειας στη μετάδοση της μέτρησης, θα πρέπει το συνολικό σφάλμα των ηλεκτρονικών μετάδοσης να μην υπερβαίνει τα ±0.01 Volt (δηλ. ±10 mv). Παραδείγματος χάριν, έστω ότι η μέτρηση είναι C, και θα έπρεπε να μεταδώσουμε V, αλλά ο πομπός έχει σφάλμα +3 mv κι έτσι στην πραγματικότητα μεταδίδει V σε αυτό προστίθεται ηλεκτρικός θόρυβος +8 mv από παρεμβολές κατά μήκος του σύρματος μετάδοσης, κι έτσι στον δέκτη φτάνει τάση V ο δέκτης έχει σφάλμα +2 mv, κι έτσι νομίζει ότι βλέπει V ξέροντας ότι οι μετρήσεις είναι ακέραια πολλαπλάσια του 0.2 C, ο δέκτης ερμηνεύει την τάση που (νομίζει ότι) βλέπει σαν C αντί του σωστού C. Το λάθος συνέβη επειδή το συνολικό σφάλμα του συστήματος μετάδοσης είναι = 13 mv που ξεπερνά την επιτρεπτή ανοχή του ±0.01 V Page 9 of 10

23 Lab 1: Logic with Switches (U.Crete, CS-120) :27 που αντιστοιχεί στην ανοχή της μέτρησης θερμοκρασίας των ±0.1 C. Η ψηφιακή (digital) μετάδοση λειτουργεί περίπου ως εξής: χρησιμοποιούμε οκτώ ηλεκτρικά σύρματα (συν την αναγκαία γείωση γιά να κλείνει κύκλωμα), και πάνω σε αυτά τα σύρματα βάζουμε 8 bits πληροφορίας που αποτελούν την κωδικοποίηση της θερμοκρασίας σύμφωνα με έναν κώδικα που εμείς αποφασίσαμε επειδή ο κώδικας αποτελείται από "ψηφία" (digits), η μετάδοση λέγεται "ψηφιακή". Υπάρχουν 251 διαφορετικές δυνατές μετρήσεις θερμοκρασίας από το -25 C έως το +25 C ανά 0.2 C (50 C / 0.2 C = 250), επομένως ξέρουμε ότι 8 bits αρκούν γιά την κωδικοποίηση ενός τέτοιου ρεπερτορίου μηνυμάτων, αφού 8 bits έχουν 256 διαφορετικούς συνδυασμούς. Γιά τη μετάδοση του καθενός bit πληροφορίας, ας χρησιμοποιήσουμε μιάν ηλεκτρική τάση 0.0 V γιά την τιμή OFF και +5.0 V γιά την τιμή ON η περιοχή αυτή τάσεων είναι η συνηθισμένη στα κυκλώματα του εργαστηρίου μας, και το εύρος της είναι 5 Volt, όσο δηλαδή και το εύρος λειτουργίας των αναλογικών ηλεκτρονικών στο προηγούμενο παράδειγμα (από -2.5 V έως V). Προκειμένου να μην υπάρξει λάθος στη μετάδοση, τώρα, πρέπει το συνολικό σφάλμα των ηλεκτρονικών μετάδοσης να μην υπερβαίνει τα ±2.50 Volt (δηλ. ±2500 mv). Παραδείγματος χάριν, έστω ότι το bit που θέλουμε να μεταδώσουμε είναι OFF, άρα πρέπει να μεταδώσουμε 0.0 V, αλλά ο πομπός έχει σφάλμα +400 mv κι έτσι στην πραγματικότητα μεταδίδει +0.4 V σε αυτό προστίθεται ηλεκτρικός θόρυβος mv από παρεμβολές κατά μήκος του σύρματος μετάδοσης, κι έτσι στον δέκτη φτάνει τάση +1.9 V ο δέκτης έχει σφάλμα +200 mv, κι έτσι νομίζει ότι βλέπει +2.1 V. Ξέροντας όμως ότι οι αναμενόμενες τιμές του bit είναι είτε 0.0 V είτε 5.0 V, και δεδομένου ότι τα +2.1 V που (νομίζει ότι) βλέπει είναι πιό κοντά στο 0 απ' ό,τι στο 5, ερμηνεύει σωστά το bit που λαμβάνει σαν OFF και όχι σαν ON. Βλέπουμε ότι σε αυτό το παράδειγμα το ψηφιακό σύστημα στέλνει οκτώ (8) ηλεκτρικές τάσεις σαν πληροφορία, αντί της μίας (1) μόνο ηλεκτρικής τάσης που στέλνει το αναλογικό, αλλά το ψηφιακό σύστημα ανέχεται διακόσιες πενήντα (250) φορές περισσότερο θόρυβο και έλλειψη ακρίβειας στις τάσεις των ηλεκτρονικών κυκλωμάτων λειτουργίας του απ' όσο το αναλογικό (±2500 mv αντί ±10 mv). Η τεράστια εξάπλωση των ψηφιακών ηλεκτρονικών συστημάτων, σήμερα, οφείλεται στα εξής πλεονεκτήματά τους: Ανοχή στο θόρυβο: όπως εξηγήσαμε με το παραπάνω παράδειγμα, τα ψηφιακά συστήματα μπορούν να ανεχθούν τόσο πολύ θόρυβο και ανακρίβειες στη λειτουργία τους ώστε μπορούν να καταστούν σχεδόν "αλάνθαστα", σε αντίθεση με τα αναλογικά όπου όλο και κάποιος θόρυβος τελικά παρεισφρύει. Χαμηλό κόστος των ψηφιακών ηλεκτρονικών κυκλωμάτων σε σύγκριση με αναλογικά που θα έκαναν αντίστοιχη επεξεργασία σήματος: αναλογικά ηλεκτρονικά κυκλώματα με χαμηλό θόρυβο και υψηλή γραμμικότητα (χαμηλή παραμόρφωση) είναι πολύ δυσκολότερο να κατασκευαστούν απ' ό,τι ψηφιακά κυκλώματα που κάνουν την αντίστοιχη επεξεργασία μέσω αριθμητικών πράξεων πάνω σε κατάλληλα κωδικοποιημένες πληροφορίες. Αναπαράσταση εγγενώς διακριτών πληροφοριών: πέραν των εγγενώς αναλογικών πληροφοριών (π.χ. ήχος και εικόνα), υπάρχουν και εγγενώς διακριτές πληροφορίες όπως π.χ. το κείμενο. Θα ήταν εξαιρετικά δύσκολο και αφύσικο να παριστάνουμε κάθε γράμμα της αλφαβήτου μέσω μιάς διαφορετικής ηλεκτρικής τάσης, η δε λογική επεξεργασία του κειμένου ή των πληροφοριών που αυτό παριστά θα ήταν αδύνατη με αναλογικό τρόπο. Transistors και Διακόπτες: Τα ψηφιακά συστήματα κατασκευάζονται σήμερα σε μορφή μικροηλεκτρονικών chips (IC - integrated circuit - ολοκληρωμένο κύκλωμα) που περιέχουν το καθένα χιλιάδες ή εκατομμύρια transistors. Τα transistors αυτά, όταν λειτουργούν ψηφιακά, συμπεριφέρονται σαν διακόπτες, που άλλοτε κάνουν επαφή (ανάβουν) και άλλοτε την διακόπτουν (σβήνουν). Φυσικά, δεν υπάρχει κανένα μαγικό χέρι που να αναβοσβήνει αυτούς τους διακόπτες --αυτοί ανοιγοκλείνουν υπο την επίδραση (ψηφιακών) ηλεκτρικών τάσεων. Γιά το λόγο αυτό, ξεκινήσαμε τη μελέτη των ψηφιακών συστημάτων μελετώντας απλούς, καθημερινούς διακόπτες. Up to the Home Page of CS-120 copyright University of Crete, Greece. last updated: 23 Sep. 2010, by M. Katevenis. Page 10 of 10

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

Εργαστήριο 1: Λογική με Διακόπτες, Πολυπλέκτες, Μνήμη ROM

Εργαστήριο 1: Λογική με Διακόπτες, Πολυπλέκτες, Μνήμη ROM ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2012 Τμ. Επ. Υπολογιστών Πανεπιστήμιο Κρήτης Εργαστήριο 1: Λογική με Διακόπτες, Πολυπλέκτες, Μνήμη ROM 3 έως 5 Οκτωβρίου 2012 (βδομάδα 2) [Βιβλία: προαιρετικά μπορείτε

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

1.1 Θεωρητική εισαγωγή

1.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΛΟΓΙΚΕΣ ΠΥΛΕΣ NOT, AND, NAND Σκοπός: Να εξοικειωθούν οι φοιτητές µε τα ολοκληρωµένα κυκλώµατα της σειράς 7400 για τη σχεδίαση και υλοποίηση απλών λογικών συναρτήσεων.

Διαβάστε περισσότερα

Πολύμετρο Βασικές Μετρήσεις

Πολύμετρο Βασικές Μετρήσεις Πολύμετρο Βασικές Μετρήσεις 1. Σκοπός Σκοπός της εισαγωγικής άσκησης είναι η εξοικείωση του σπουδαστή με τη χρήση του πολύμετρου για τη μέτρηση βασικών μεγεθών ηλεκτρικού κυκλώματος, όπως μέτρηση της έντασης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο Βασίλης Γαργανουράκης Φυσική ήγ Γυμνασίου Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις αλληλεπιδράσεις των στατικών (ακίνητων) ηλεκτρικών φορτίων. Σε αυτό το κεφάλαιο

Διαβάστε περισσότερα

Εκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς

Εκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 24-5 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης ; Ποιες κατηγορίες

Διαβάστε περισσότερα

ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ - Λύσεις ασκήσεων στην ενότητα

ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ - Λύσεις ασκήσεων στην ενότητα ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ - Λύσεις ασκήσεων στην ενότητα 1. Να αναφέρετε τρεις τεχνολογικούς τομείς στους οποίους χρησιμοποιούνται οι τελεστικοί ενισχυτές. Τρεις τεχνολογικοί τομείς που οι τελεστικοί ενισχυτές

Διαβάστε περισσότερα

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης ΟΜΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ Ένας υπολογιστής αποτελείται από την Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ), τη µνήµη, τις µονάδες εισόδου/εξόδου και το σύστηµα διασύνδεσης

Διαβάστε περισσότερα

6.1 Θεωρητική εισαγωγή

6.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

Εργαστήριο 9: Τρικατάστατοι Οδηγητές, Λεωφόροι, Μνήμες SRAM

Εργαστήριο 9: Τρικατάστατοι Οδηγητές, Λεωφόροι, Μνήμες SRAM ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2011 Τμ. Επ. Υπολογιστών Πανεπιστήμιο Κρήτης Εργαστήριο 9: Τρικατάστατοι Οδηγητές, Λεωφόροι, Μνήμες SRAM 6-9 Δεκεμβρίου 2011 Διαλέξεις εβδομάδας 9: Δε. 28/11 - κανονική

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 10 Μετάδοση και Αποδιαμόρφωση Ραδιοφωνικών Σημάτων Λευκωσία, 2010 Εργαστήριο 10

Διαβάστε περισσότερα

Model: ED-CS5000. Ηλεκτρονικός πίνακας ελέγχου για συρόμενες και ανοιγόμενες μονόφυλλες πόρτες.

Model: ED-CS5000. Ηλεκτρονικός πίνακας ελέγχου για συρόμενες και ανοιγόμενες μονόφυλλες πόρτες. Model: ED-CS5000 Ηλεκτρονικός πίνακας ελέγχου για συρόμενες και ανοιγόμενες μονόφυλλες πόρτες. Ο πίνακας είναι συμβατός με χειριστήρια σταθερού (11 32bit) η κυλιόμενου κωδικού στην συχνότητα των 433,92Mhz

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR Σκοπός: Να επαληθευτούν πειραµατικά οι πίνακες αληθείας των λογικών πυλών OR, NOR, XOR. Να δειχτεί ότι η πύλη NOR είναι οικουµενική.

Διαβάστε περισσότερα

Παράρτημα. Πραγματοποίηση μέτρησης τάσης, ρεύματος, ωμικής αντίστασης με χρήση του εργαστηριακού εξοπλισμού Άσκηση εξοικείωσης

Παράρτημα. Πραγματοποίηση μέτρησης τάσης, ρεύματος, ωμικής αντίστασης με χρήση του εργαστηριακού εξοπλισμού Άσκηση εξοικείωσης Παράρτημα Πραγματοποίηση μέτρησης τάσης, ρεύματος, ωμικής αντίστασης με χρήση του εργαστηριακού εξοπλισμού Άσκηση εξοικείωσης Σκοπός του παραρτήματος είναι η εξοικείωση των φοιτητών με τη χρήση και τη

Διαβάστε περισσότερα

ΠΛΑΙΣΙΟ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΦΟΡΑΣ ΣΕΝΑΡΙΟΥ με χρήση Τ.Π.Ε. ΤΙΤΛΟΣ: «Απλά ηλεκτρικά κυκλώματα συνεχούς ρεύματος» 5 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΠΛΑΙΣΙΟ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΦΟΡΑΣ ΣΕΝΑΡΙΟΥ με χρήση Τ.Π.Ε. ΤΙΤΛΟΣ: «Απλά ηλεκτρικά κυκλώματα συνεχούς ρεύματος» 5 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Διδασκαλία, Σύνδεσης αντιστατών παράλληλα, με Εργαστήριο Κατασκευής Κυκλωμάτων Συνεχούς Ρεύματος, Physics Education Technology (PhET), University of 1 ΠΛΑΙΣΙΟ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΦΟΡΑΣ ΣΕΝΑΡΙΟΥ με χρήση

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

Μνήμες RAM. Διάλεξη 12

Μνήμες RAM. Διάλεξη 12 Μνήμες RAM Διάλεξη 12 Δομή της διάλεξης Εισαγωγή Κύτταρα Στατικής Μνήμης Κύτταρα Δυναμικής Μνήμης Αισθητήριοι Ενισχυτές Αποκωδικοποιητές Διευθύνσεων Ασκήσεις 2 Μνήμες RAM Εισαγωγή 3 Μνήμες RAM RAM: μνήμη

Διαβάστε περισσότερα

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά 5η Δραστηριότητα Λύσε το γρίφο Η Θεωρία της Πληροφορίας Περίληψη Πόση πληροφορία περιέχεται σε ένα βιβλίο των 1000 σελίδων; Υπάρχει περισσότερη πληροφορία σε έναν τηλεφωνικό κατάλογο των 1000 σελίδων ή

Διαβάστε περισσότερα

Σειριακό Τερματικό Serial Terminal (Dumb Terminal)

Σειριακό Τερματικό Serial Terminal (Dumb Terminal) Σειριακό Τερματικό Serial Terminal (Dumb Terminal) Ένα σειριακό τερματικό είναι ο απλούστερος τρόπος για να συνδέσουμε πολλαπλές μονάδες εξόδου (οθόνες) και εισόδου (πληκτρολόγια) σε ένα μηχάνημα UNIX

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΑΠΛΟ ΗΛΕΚΤΡΙΚΟ ΚΥΚΛΩΜΑ ΕΝΟΤΗΤΑ: ΔΥΝΑΜΙΚΟΣ ΗΛΕΚΤΡΙΣΜΟΣ ΔΙΑΡΚΕΙΑ: 80 ΤΑΞΗ: Ε

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΑΠΛΟ ΗΛΕΚΤΡΙΚΟ ΚΥΚΛΩΜΑ ΕΝΟΤΗΤΑ: ΔΥΝΑΜΙΚΟΣ ΗΛΕΚΤΡΙΣΜΟΣ ΔΙΑΡΚΕΙΑ: 80 ΤΑΞΗ: Ε ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΕΝΟΤΗΤΑ: ΔΥΝΑΜΙΚΟΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΘΗΜΑ: ΑΠΛΟ ΗΛΕΚΤΡΙΚΟ ΚΥΚΛΩΜΑ ΔΙΑΡΚΕΙΑ: 80 ΤΑΞΗ: Ε ΚΕΝΤΡΙΚΗ ΕΡΩΤΗΣΗ: Τι είναι το απλό ηλεκτρικό κύκλωµα; ΓΕΝΙΚΟΙ ΣΤΟΧΟΙ: Οι µαθητές να: είναι σε θέση να

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. α. Πριν εμφανιστεί η τεχνολογία ISDN οι υπηρεσίες φωνής, εικόνας και δεδομένων απαιτούσαν διαφορετικά δίκτυα.

ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. α. Πριν εμφανιστεί η τεχνολογία ISDN οι υπηρεσίες φωνής, εικόνας και δεδομένων απαιτούσαν διαφορετικά δίκτυα. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ Α ΚΥΡΙΑΚΗ 04/05/2014- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΕΚΦΩΝΗΣΕΙΣ Α1. Να χαρακτηρίσετε

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

ΡΑΔΙΟΡΟΛΟΙ-ΞΥΠΝΗΤΗΡΙ AR280P

ΡΑΔΙΟΡΟΛΟΙ-ΞΥΠΝΗΤΗΡΙ AR280P ΡΑΔΙΟΡΟΛΟΙ-ΞΥΠΝΗΤΗΡΙ AR280P 1. Χρήση Το AR280P λειτουργεί ως Ράδιο/ρολόι. Έχει λειτουργία FM ραδιόφωνου, λειτουργία προβολής της ώρας με προβολέα και περιλαμβάνει μία λάμπα. Εμφανίζει επίσης τη θερμοκρασία

Διαβάστε περισσότερα

Εγχειρίδιο χρήσης. Ασύρματα ακουστικά 2.4G

Εγχειρίδιο χρήσης. Ασύρματα ακουστικά 2.4G Εγχειρίδιο χρήσης Ασύρματα ακουστικά 2.4G Κατάλληλα για PC,MP3 και άλλες συσκευές ήχου. Χαρακτηριστικά. Ψηφιακή τεχνολογία 2.4GHz δύο κατευθύνσεων 2. Εμβέλεια μεγαλύτερη των 0 μέτρων χωρίς εμπόδια. 3.

Διαβάστε περισσότερα

Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE

Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE ΤΕΙ ΧΑΛΚΙΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Α/Α ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ : ΑΣΚΗΣΗ 3 η Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE Σκοπός Η κατανόηση της λειτουργίας και

Διαβάστε περισσότερα

Κατασκευάστε ένα απλό antenna tuner (Μέρος Α )

Κατασκευάστε ένα απλό antenna tuner (Μέρος Α ) Κατασκευάστε ένα απλό antenna tuner (Μέρος Α ) Του Νίκου Παναγιωτίδη (SV6 DBK) φυσικού και ραδιοερασιτέχνη. Ο σκοπός του άρθρου αυτού είναι να κατευθύνει τον αναγνώστη ραδιοερασιτέχνη να κατασκευάσει το

Διαβάστε περισσότερα

Ε Δημοτικού 13 Μαΐου 2012 Ονοματεπώνυμο: Δημοτικό Σχολείο:.

Ε Δημοτικού 13 Μαΐου 2012 Ονοματεπώνυμο: Δημοτικό Σχολείο:. Ε Δημοτικού 13 Μαΐου 2012 Ονοματεπώνυμο: Δημοτικό Σχολείο:. Συντομογραφίες: β.μαθ.ε βιβλίο Μαθητή Ε τάξης τ.εργ.ε τετράδιο Εργασιών Ε τάξης Παρατήρησε τα παρακάτω σκίτσα στα οποία εικονίζονται «επικίνδυνες

Διαβάστε περισσότερα

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1 Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1.1 Ηλεκτρικά και Ηλεκτρονικά Συστήµατα Μετρήσεων Στο παρελθόν χρησιµοποιήθηκαν µέθοδοι µετρήσεων που στηριζόταν στις αρχές της µηχανικής, της οπτικής ή της θερµοδυναµικής.

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 ΚΕΦΑΛΑΙΟ 2ο ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Σκοπός Στο δεύτερο κεφάλαιο θα εισαχθεί η έννοια του ηλεκτρικού ρεύματος και της ηλεκτρικής τάσης,θα μελετηθεί ένα ηλεκτρικό κύκλωμα και θα εισαχθεί η έννοια της αντίστασης.

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

Ψηφιακές Επικοινωνίες

Ψηφιακές Επικοινωνίες Τεχνική Εκπαίδευση Ψηφιακές Επικοινωνίες Παναγιώτης Γεώργιζας BEng Cybernetics with Automotive Electronics MSc Embedded Systems Engineering Θέματα που θα αναλυθούν Στόχοι του σεμιναρίου Λίγη Θεωρία για

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Μάθηµα 4ο.. Λιούπης

Ψηφιακά Ηλεκτρονικά. Μάθηµα 4ο.. Λιούπης Ψηφιακά Ηλεκτρονικά Μάθηµα 4ο. Λιούπης Λογική συζευγµένου εκποµπού Emitter-coupled logic (ECL) Χρησιµοποιούνται BJT transistor, µόνο στην ενεργή περιοχή Εµφανίζονται µικρές αλλαγές δυναµικού µεταξύ των

Διαβάστε περισσότερα

Μάθημα 4.10: Οπτικά Αποθηκευτικά Μέσα

Μάθημα 4.10: Οπτικά Αποθηκευτικά Μέσα Κεφάλαιο 4 ο Ο Προσωπικός Υπολογιστής Μάθημα 4.10: Οπτικά Αποθηκευτικά Μέσα Όταν ολοκληρώσεις το κεφάλαιο θα μπορείς: Να εξηγείς τις αρχές λειτουργίας των οπτικών αποθηκευτικών μέσων. Να περιγράφεις τον

Διαβάστε περισσότερα

ΣΤΑΤΙΚΕΣ ΚΑΙ ΔΥΝΑΜΙΚΕΣ ΜΝΗΜΕΣ ΤΥΧΑΙΑΣ ΠΡΟΣΠΕΛΑΣΗΣ (Static and Dynamic RAMs). ΔΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ

ΣΤΑΤΙΚΕΣ ΚΑΙ ΔΥΝΑΜΙΚΕΣ ΜΝΗΜΕΣ ΤΥΧΑΙΑΣ ΠΡΟΣΠΕΛΑΣΗΣ (Static and Dynamic RAMs). ΔΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΣΤΑΤΙΚΕΣ ΚΑΙ ΔΥΝΑΜΙΚΕΣ ΜΝΗΜΕΣ ΤΥΧΑΙΑΣ ΠΡΟΣΠΕΛΑΣΗΣ (Static and Dynamic RAMs). ΔΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΗΜΙΑΓΩΓΙΚΩΝ ΜΝΗΜΩΝ. ΒΑΣΙΚΗ ΛΕΙΤΟΥΡΓΙΑ RAM CMOS. ΤΥΠΟΙ ΚΥΤΤΑΡΩΝ ΑΡΧΕΣ

Διαβάστε περισσότερα

Φύλλο Εργασίας 10 Το Ηλεκτρικό βραχυ-κύκλωμα Κίνδυνοι και "Ασφάλεια"

Φύλλο Εργασίας 10 Το Ηλεκτρικό βραχυ-κύκλωμα Κίνδυνοι και Ασφάλεια Φύλλο Εργασίας 10 Το Ηλεκτρικό βραχυ-κύκλωμα Κίνδυνοι και "Ασφάλεια" α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι Στις εικόνες φαίνονται πολλές ηλεκτρικές πηγές που τροφοδοτούν με ηλεκτρικό ρεύμα διάφορα κυκλώματα

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Δορυφορική ψηφιακή τηλεόραση

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Δορυφορική ψηφιακή τηλεόραση ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 4 Δορυφορική ψηφιακή τηλεόραση Δορυφορική τηλεόραση: Η εκπομπή και λήψη του τηλεοπτικού σήματος από επίγειους σταθμούς μεταξύ

Διαβάστε περισσότερα

Εργαστήριο 2: Ηλεκτρονόμοι, Πολυπλέκτες, Ανάδραση

Εργαστήριο 2: Ηλεκτρονόμοι, Πολυπλέκτες, Ανάδραση ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2011 Τμ. Επ. Υπολογιστών Πανεπιστήμιο Κρήτης Εργαστήριο 2: Ηλεκτρονόμοι, Πολυπλέκτες, Ανάδραση 18-21 Οκτωβρίου 2011 (βδομάδα 3) 2.1 Συνδέσεις με την Πλακέτα Εισόδων/Εξόδων

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ. Κεφάλαιο 17

ΕΝ ΕΙΚΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ. Κεφάλαιο 17 ΕΝ ΕΙΚΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ 1 ο Παράδειγµα (διάρκεια: 15 λεπτά) Κεφάλαιο 17 Α. ΣΤΟΙΧΕΙΑ ΤΟΥ ΜΑΘΗΤΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ:... ΤΑΞΗ:... ΤΜΗΜΑ:... ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... Β.

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

Εισαγωγικές έννοιες πληροφορικής

Εισαγωγικές έννοιες πληροφορικής ΚΕΦΑΛΑΙΟ 1 : Εισαγωγικές έννοιες Πληροφορικής εδοµένα & Πληροφορία ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές έννοιες πληροφορικής Χρήση Η/ Υ και γραφικά περιβάλλοντα επικοινωνίας Περιεχόµενα 1. εδοµένα και Πληροφορίες. O

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα

4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα ΚΕΦΑΛΑΙΟ 4 ΤΕΧΝΟΛΟΓΙΕΣ ΥΛΟΠΟΙΗΣΗΣ 4.1 Εισαγωγή Για την υλοποίηση των λογικών πυλών χρησιμοποιήθηκαν αρχικά ηλεκτρονικές λυχνίες κενού και στη συνέχεια κρυσταλλοδίοδοι και διπολικά τρανζίστορ. Τα ολοκληρωμένα

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ γ ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ 1

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ γ ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ γ ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΝΑ ΑΠΑΝΤΗΘΟΥΝ ΤΑ ΕΞΙ ( 6 ) ΑΠΟ ΤΑ ΕΝΝΕΑ ( 9 ) ΘΕΜΑΤΑ ΠΟΥ ΑΚΟΛΟΥΘΟΥΝ, ΣΤΗΝ ΚΟΛΛΑ ΑΝΑΦΟΡΑΣ. ΘΕΜΑ 1 (α) Όταν θέλετε να ανάψετε το φως στο

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία Ηλεκτρονικών

Διαβάστε περισσότερα

1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ:

1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ι η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΣΤΟΙΧΕΙΩΔΕΣ ΤΗΛΕΦΩΝΙΚΟ ΣΥΣΤΗΜΑ Εισαγωγή. Η διεξαγωγή της παρούσας εργαστηριακής άσκησης προϋποθέτει την μελέτη τουλάχιστον των πρώτων παραγράφων του

Διαβάστε περισσότερα

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Βασικές αρχές Σχεδίαση Latches και flip-flops Γιώργος Δημητρακόπουλος Δημοκρίτειο Πανεπιστήμιο Θράκης Φθινόπωρο 2013 Ψηφιακά ολοκληρωμένα κυκλώματα 1 Ακολουθιακή

Διαβάστε περισσότερα

Στόχοι. Υπολογιστικά συστήματα: Στρώματα. Βασικές έννοιες [7]

Στόχοι. Υπολογιστικά συστήματα: Στρώματα. Βασικές έννοιες [7] Στόχοι ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 Να εξηγήσουμε τι είναι τα δίκτυα υπολογιστών, ποιες είναι οι βασικές κατηγορίες τους και ποιες οι πιο συνηθισμένες τοπολογίες τους. Να περιγράψουμε

Διαβάστε περισσότερα

Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal

Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal Θ2 Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal 1. Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί, με αφορμή τον προσδιορισμό του παράγοντα μετατροπής της

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8 Tutorial by TeSLa Συνδεσμολογία κυκλώματος Διαδικασία Προγραμματισμού

ΑΣΚΗΣΗ 8 Tutorial by TeSLa Συνδεσμολογία κυκλώματος Διαδικασία Προγραμματισμού Α.Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΑΣΚΗΣΗ 8 Tutorial by TeSLa Συνδεσμολογία κυκλώματος Διαδικασία Προγραμματισμού Θεσσαλονίκη, Ιανουάριος 2007 Η Άσκηση 8 του εργαστηρίου

Διαβάστε περισσότερα

UTH 200 GR Οδηγίες Χρήσης

UTH 200 GR Οδηγίες Χρήσης ΘΕΡΜΟΣΤΑΤΗΣ UTH 200 GR Οδηγίες Χρήσης Ο θερμοστάτης UTH 200 προορίζεται για έλεγχο της ενδοδαπέδιας υπέρυθρης θέρμανσης HEAT PLUS. Ο σωστός έλεγχος και προγραμματισμός του θερμοστάτη, σε συνδυασμό με την

Διαβάστε περισσότερα

Ενότητα 3. Στρώµα Ζεύξης: Αρχές Λειτουργίας & Το Υπόδειγµα του Ethernet

Ενότητα 3. Στρώµα Ζεύξης: Αρχές Λειτουργίας & Το Υπόδειγµα του Ethernet Ενότητα 3 Στρώµα Ζεύξης: Αρχές Λειτουργίας & Το Υπόδειγµα του Ethernet Εισαγωγή στις βασικές έννοιες του στρώµατος Ζεύξης (Data Link Layer) στα δίκτυα ΗΥ Γενικές Αρχές Λειτουργίας ηµιουργία Πλαισίων Έλεγχος

Διαβάστε περισσότερα

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό Υπολογιστικά συστήματα: Στρώματα 1 ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Αναπαράσταση δεδομένων 2 Τύποι δεδομένων Τα δεδομένα

Διαβάστε περισσότερα

Αναπαράσταση Μη Αριθμητικών Δεδομένων

Αναπαράσταση Μη Αριθμητικών Δεδομένων Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2014-15 Αναπαράσταση Μη Αριθμητικών Δεδομένων (κείμενο, ήχος και εικόνα στον υπολογιστή) http://di.ionio.gr/~mistral/tp/csintro/

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

6.1 Επεκτείνοντας το δίκτυο 6.2 Επιλεγόμενες τηλεφωνικές γραμμές modems Πλεονεκτήματα Μειονεκτήματα Βασική χρήση

6.1 Επεκτείνοντας το δίκτυο 6.2 Επιλεγόμενες τηλεφωνικές γραμμές modems Πλεονεκτήματα Μειονεκτήματα Βασική χρήση 6.1 Επεκτείνοντας το δίκτυο Τοπικά δίκτυα (LAN): επικοινωνία με περιορισμένη απόσταση κάλυψης (μικρή εμβέλεια) Δίκτυα Ευρείας Περιοχής (WAN): επικοινωνία σε ευρύτερη γεωγραφική κάλυψη. Από την άποψη του

Διαβάστε περισσότερα

Οπτικές Ίνες και Λέιζερ

Οπτικές Ίνες και Λέιζερ Οπτικές Ίνες και Λέιζερ Ασκήσεις Εργαστηρίου Α. ΣΚΕ ΑΣΜΟΣ ΑΠΟ ΣΩΜΑΤΊ ΙΑ ΚΑΙ ΦΥΣΑΛΙ ΕΣ... 2 ΣΚΕ ΑΣΜΟΣ ΑΠΌ ΣΩΜΑΤΙ ΙΑ... 2 ΣΚΕ ΑΣΜΟΣ ΑΠΌ ΦΥΣΑΛΙ ΕΣ... 2 Β. ΙΑΘΛΑΣΗ ΛΕΙΖΕΡ... 3 Γ. ΟΛΙΚΗ ΑΝΑΚΛΑΣΗ ΛΕΙΖΕΡ... 4

Διαβάστε περισσότερα

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing).

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Κεφάλαιο 4 Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Οι ενδείξεις (τάσεις εξόδου) των θερμοζευγών τύπου Κ είναι δύσκολο να

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Μαρ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 4 -i: Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώµατα Περίληψη Συναρτήσεις και συναρτησιακές (λειτουργικές)

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΣ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΣ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΣ ΡΟΜΠΟΤΙΚΗ Η Ρομποτική είναι ο κλάδος της επιστήμης που κατασκευάζει και μελετά μηχανές που μπορούν να αντικαταστήσουν τον άνθρωπο στην εκτέλεση μιας εργασίας. Tι είναι το ΡΟΜΠΟΤ

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014 ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: ΠΡΑΚΤΙΚΗ Κλάδος: ΗΛΕΚΤΡΟΛΟΓΙΑ Μάθημα: ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Τάξη: A Τμήμα:

Διαβάστε περισσότερα

5. ΗΛΕΚΤΡΟΝΙΚΑ ΕΞΑΡΤΗΜΑΤΑ Ι (ΑΝΤΙΣΤΑΤΕΣ )

5. ΗΛΕΚΤΡΟΝΙΚΑ ΕΞΑΡΤΗΜΑΤΑ Ι (ΑΝΤΙΣΤΑΤΕΣ ) 5. ΗΛΕΚΤΡΟΝΙΚΑ ΕΞΑΡΤΗΜΑΤΑ Ι (ΑΝΤΙΣΤΑΤΕΣ ) Μεταβλητοί αντιστάτες Η τιμή της αντίστασης των μεταβλητών αντιστατών σε αντίθεση με αυτή των σταθερών, δε διατηρείται σταθερή αλλά μεταβάλλεται, είτε μηχανικά

Διαβάστε περισσότερα

IUSES Toolkit Εισαγωγή Το «κουτί πειραµάτων» είναι ένα εκπαιδευτικό πακέτο για τη διεξαγωγή πειραµάτων σχετικά µε την εξοικονόµηση ενέργειας, την ενεργειακή αποδοτικότητα και τις ανανεώσιµες πηγές ενέργειας.

Διαβάστε περισσότερα

UTH 150 A UTH 150 B GR Οδηγίες Χρήσης

UTH 150 A UTH 150 B GR Οδηγίες Χρήσης ΘΕΡΜΟΣΤΑΤΕΣ UTH 150 A UTH 150 B GR Οδηγίες Χρήσης Ο θερμοστάτης UTH 150 προορίζεται για έλεγχο της ενδοδαπέδιας υπέρυθρης θέρμανσης HEAT PLUS. Ο σωστός έλεγχος και προγραμματισμός του θερμοστάτη, σε συνδυασμό

Διαβάστε περισσότερα

Ανιχνευτής Διαρροής Αερίων Καυσίμων (V-GDN Φυσικού Αερίου), (V-GDL LPG).

Ανιχνευτής Διαρροής Αερίων Καυσίμων (V-GDN Φυσικού Αερίου), (V-GDL LPG). V-GDN & V-GDL Εγχειρίδιο χρήσης (01VGDN) & (01VGDL) Ανιχνευτής Διαρροής Αερίων Καυσίμων (V-GDN Φυσικού Αερίου), (V-GDL LPG). Σελ. 2,3 Οδηγίες ασφαλείας - Τοποθέτηση Εγκατάσταση Σελ. 4,5 Εφαρμογές Σύνδεση

Διαβάστε περισσότερα

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μάθημα 8. 1 Στέργιος Παλαμάς

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μάθημα 8. 1 Στέργιος Παλαμάς ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Τμήμα Λογιστικής Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Μάθημα 8 Κεντρική Μονάδα Επεξεργασίας και Μνήμη 1 Αρχιτεκτονική του Ηλεκτρονικού Υπολογιστή Μονάδες Εισόδου Κεντρική

Διαβάστε περισσότερα

Λίγα για το Πριν, το Τώρα και το Μετά.

Λίγα για το Πριν, το Τώρα και το Μετά. 1 Λίγα για το Πριν, το Τώρα και το Μετά. Ψάχνοντας από το εσωτερικό κάποιων εφημερίδων μέχρι σε πιο εξειδικευμένα περιοδικά και βιβλία σίγουρα θα έχουμε διαβάσει ή θα έχουμε τέλος πάντων πληροφορηθεί,

Διαβάστε περισσότερα

Γ. Τσιατούχας. Βασικές Αρχές Κυκλωµάτων

Γ. Τσιατούχας. Βασικές Αρχές Κυκλωµάτων ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ & ΚΑΝΟΝΙΣΜΟΣ ΕΡΓΑΣΤΗΡΙΟΥ Γ. Τσιατούχας Αντικείμενο Μαθήματος Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Μοντέλο κυκλώματος Αναπαράσταση σήματος Δίκτυα αντιστάσεων Νόμοι

Διαβάστε περισσότερα

Οδηγίες συναρμολόγησης

Οδηγίες συναρμολόγησης Οδηγίες συναρμολόγησης εντοιχιζόμενου ραδιοφώνου 0315.. 1 Χειρισμός Εικόνα 1: Στοιχείο χειρισμού Ο έλεγχος των λειτουργιών του εντοιχιζόμενου ραδιοφώνου πραγματοποιείται μέσω των πλήκτρων του στοιχείου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

Οργάνωση καθημερινών ημερίδων

Οργάνωση καθημερινών ημερίδων Οργάνωση καθημερινών ημερίδων 1) Αγώνες ζευγών 1α) Διαθέσιμες κινήσεις: Φιλοσοφία, μηχανισμοί και τα χαρακτηριστικά τους. Οι κινήσεις είναι ένα από τα βασικότερα εργαλεία που έχει ένας διαιτητής στη διάθεσή

Διαβάστε περισσότερα

Αρχιτεκτονική Eckert-von Neumann. Πως λειτουργεί η ΚΜΕ; Κεντρική μονάδα επεξεργασίας [3] ΕΠΛ 031: ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Αρχιτεκτονική Eckert-von Neumann. Πως λειτουργεί η ΚΜΕ; Κεντρική μονάδα επεξεργασίας [3] ΕΠΛ 031: ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Αρχιτεκτονική Eckert-von Neumann εισόδου μεταφορά δεδομένων από έξω προς τον Η/Υ εξόδου μεταφορά δεδομένων από τον Η/Υ προς τα έξω ΕΠΛ 031: ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Κύκλος Μηχανής κεντρικός έλεγχος/πράξεις

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ. ΕΡΓΑΣΙΑ ΠΑΝΩ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΝΧΤ ΚΑΙ ΤΑ ΠΡΩΤΟΚΟΛΛΑ ΕΠΙΚΟΙΝΩΝΙΑΣ BLUETOOTH, I2C και serial communication

ΡΟΜΠΟΤΙΚΗ. ΕΡΓΑΣΙΑ ΠΑΝΩ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΝΧΤ ΚΑΙ ΤΑ ΠΡΩΤΟΚΟΛΛΑ ΕΠΙΚΟΙΝΩΝΙΑΣ BLUETOOTH, I2C και serial communication ΡΟΜΠΟΤΙΚΗ ΕΡΓΑΣΙΑ ΠΑΝΩ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΝΧΤ ΚΑΙ ΤΑ ΠΡΩΤΟΚΟΛΛΑ ΕΠΙΚΟΙΝΩΝΙΑΣ BLUETOOTH, I2C και serial communication ΜΠΑΝΤΗΣ ΑΝΤΩΝΙΟΣ 533 ΤΣΙΚΤΣΙΡΗΣ ΔΗΜΗΤΡΙΟΣ 551 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΤΟΥ ΡΟΜΠΟΤ LEGO NXT Το ρομπότ

Διαβάστε περισσότερα

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 1 Συμπίεση

Διαβάστε περισσότερα

Η ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ COACH 5 ΣΤΗΝ ΔΙΔΑΣΚΑΛΙΑ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΟΜΕΑ ΤΩΝ Τ.Ε.Ε.

Η ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ COACH 5 ΣΤΗΝ ΔΙΔΑΣΚΑΛΙΑ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΟΜΕΑ ΤΩΝ Τ.Ε.Ε. 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 485 Η ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ COACH 5 ΣΤΗΝ ΔΙΔΑΣΚΑΛΙΑ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΟΜΕΑ ΤΩΝ Τ.Ε.Ε. Μπουλταδάκης Στέλιος Εκπαιδευτικός

Διαβάστε περισσότερα

Τ.Ε.Ι Λαμίας Σ.Τ.ΕΦ. Τμήμα Ηλεκτρονικής Εργασία Κεραίες

Τ.Ε.Ι Λαμίας Σ.Τ.ΕΦ. Τμήμα Ηλεκτρονικής Εργασία Κεραίες Τ.Ε.Ι Λαμίας Σ.Τ.ΕΦ. Τμήμα Ηλεκτρονικής Εργασία Κεραίες Μπαρμπάκος Δημήτριος Δεκέμβριος 2012 Περιεχόμενα 1. Εισαγωγή 2. Κεραίες 2.1. Κεραία Yagi-Uda 2.2. Δίπολο 2.3. Μονόπολο 2.4. Λογαριθμική κεραία 3.

Διαβάστε περισσότερα

Μάθημα 4.1 Βασικές μονάδες προσωπικού υπολογιστή

Μάθημα 4.1 Βασικές μονάδες προσωπικού υπολογιστή Μάθημα 4.1 Βασικές μονάδες προσωπικού υπολογιστή - Εισαγωγή - Αρχιτεκτονική προσωπικού υπολογιστή - Βασικά τμήματα ενός προσωπικού υπολογιστή - Η κεντρική μονάδα Όταν ολοκληρώσεις το μάθημα αυτό θα μπορείς:

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

VICTRIX 24 ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΗΣ

VICTRIX 24 ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΗΣ VICTRIX 24 ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΗΣ Σας ευχαριστούμε που επιλέξατε έναν λέβητα της IMMERGAS. Ένα προϊόν ποιότητας που θα σας προσφέρει άνεση και ασφάλεια για μεγάλο χρονικό διάστημα. Να είστε σίγουροι

Διαβάστε περισσότερα

Ενεργειακά Δίκτυα & Βιομηχανικές Εφαρμογές. Όργανο Ελέγχου και Δοκιμών Φωτοβολταϊκών Συστημάτων

Ενεργειακά Δίκτυα & Βιομηχανικές Εφαρμογές. Όργανο Ελέγχου και Δοκιμών Φωτοβολταϊκών Συστημάτων Όργανο Ελέγχου και Δοκιμών Φωτοβολταϊκών Συστημάτων ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΣΥΝΟΠΤΙΚΟΣ ΟΔΗΓΟΣ, ΓΙΑ ΠΕΡΙΣΣΟΤΕΡΕΣ ΛΕΠΤΟΜΕΡΕΙΕΣ ΔΕΙΤΕ ΤΙΣ ΟΔΗΓΙΕΣ ΣΤΑ ΑΓΓΛΙΚΑ V1.1/04/12 1. Οθόνη LCD με φωτισμό. 2. Σύνδεση αισθητηρίου

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ

ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ Όπως είναι ήδη γνωστό, ένα σύστημα επικοινωνίας περιλαμβάνει τον πομπό, το δέκτη και το κανάλι επικοινωνίας. Στην ενότητα αυτή, θα εξετάσουμε τη δομή και τα χαρακτηριστικά

Διαβάστε περισσότερα

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative

Διαβάστε περισσότερα

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια (παράγραφοι ά φ 3.1 31& 3.6) 36) Φυσική Γ Γυμνασίου Εισαγωγή Τα σπουδαιότερα χαρακτηριστικά της ηλεκτρικής ενέργειας είναι η εύκολη μεταφορά της σε μεγάλες αποστάσεις και

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 ΚΕΦΑΛΑΙΟ 3ο ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ Σκοπός Στο τρίτο κεφάλαιο θα εισαχθεί η έννοια της ηλεκτρικής ενέργειας. 3ο κεφάλαιο ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ 1 2 3.1 Θερμικά αποτελέσματα του ηλεκτρικού ρεύματος Λέξεις κλειδιά:

Διαβάστε περισσότερα

PBI-192. Οδηγίες Χρήσης. Paradox to KNX-BUS Interface

PBI-192. Οδηγίες Χρήσης. Paradox to KNX-BUS Interface PBI-192 Paradox to KNX-BUS Interface Οδηγίες Χρήσης GDS Intelligence in Buildings Ελ. Βενιζέλου 116 Νέα Ερυθραία, 14671 Τηλ: +30 2108071288 Email: info@gds.com.gr Web: gds.com.gr Περιεχόμενα 1 Περιγραφή

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΜΕΣΟΛΟΓΓΙ ΗΛΕΚΤΡΟΝΙΚΟ ΕΜΠΟΡΙΟ ΕΡΓΑΣΤΗΡΙΟ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2014-2015. Διαδικασία Κατάρτησης Επιχειρηματικού Σχεδίου

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΜΕΣΟΛΟΓΓΙ ΗΛΕΚΤΡΟΝΙΚΟ ΕΜΠΟΡΙΟ ΕΡΓΑΣΤΗΡΙΟ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2014-2015. Διαδικασία Κατάρτησης Επιχειρηματικού Σχεδίου ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΜΕΣΟΛΟΓΓΙ ΗΛΕΚΤΡΟΝΙΚΟ ΕΜΠΟΡΙΟ ΕΡΓΑΣΤΗΡΙΟ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2014-2015 ΕΡΓΑΣΤΗΡΙΑΚO ΜΕΡΟΣ B Eπιχειρηματικό Σχέδιο και Σχεδίαση 1 ης Σελίδας Σκοπός: σκοπός του Β εργαστηριακού

Διαβάστε περισσότερα