Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ"

Transcript

1 Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1

2 Αριθµητικό Σύστηµα! Ορίζει τον τρόπο αναπαράστασης ενός αριθµού µε διακεκριµένα σύµβολα! Ένας αριθµός αναπαρίσταται διαφορετικά σε κάθε σύστηµα, π.χ. (2Α) 16, (52) 8! Περιορισµένος αριθµός συµβόλων σε κάθε σύστηµα! Επανάληψη συµβόλων! Δύο κατηγορίες αριθµητικών συστηµάτων! Θεσιακά! Μη θεσιακά

3 Θεσιακό Αριθµητικό Σύστηµα Η θέση ενός συµβόλου σ έναν αριθµό καθορίζει την τιµή που αντιπροσωπεύει Ο αριθµός ± (S k-1 S 2 S 1 S 0,S -1 S -2 S l ) b έχει την τιµή n = ± (S k-1 x b k S 2 x b 2 + S 1 x b 1 + S 0 x b 0 ) + (S -1 x b -1 +S -2 x b S -l x b -l ) S: το σύνολο των συµβόλων b: η βάση που ισούται µε το συνολικό αριθµό των συµβόλων S k και S l : τα σύµβολα για το ακέραιο και το κλασµατικό µέρος του αριθµού αντίστοιχα Ο εκθέτης του b µπορεί να είναι από 0 έως k-1 και από -1 έως -l

4 Ακέραιοι Ολόκληροι αριθµοί χωρίς κλασµατικό µέρος Αναπαρίστανται ως ± (S k-1 S 2 S 1 S 0 ) b Η τιµή υπολογίζεται ως Ν = ± (S k-1 x b k S 2 x b 2 + S 1 x b 1 + S 0 x b 0 ) Όπου S k είναι ένα ψηφίο, b είναι η βάση και k το πλήθος των ψηφίων, π.χ. Αν η βάση είναι το 10, τότε η τιµή είναι υπολογίζεται ως εξής: Ν = ± (S k-1 x 10 k S 2 x S 1 x b 1 + S 0 x 10 0 )

5 Μέγιστη Τιµή ενός ακεραίου στο Δεκαδικό Σύστηµα! Η µέγιστη τιµή N ενός ακεραίου που µπορεί να αναπαρασταθεί µε k ψηφία είναι! Ν max = 10 k 1! π.χ. αν k = 5 => Ν max = =

6 Πραγµατικοί Αριθµοί Αριθµοί µε κλασµατικό µέρος Αναπαρίστανται ως ± (S k-1 S 2 S 1 S 0,S -1 S -2 S l ) b Η υποδιαστολή ξεχωρίζει το κλασµατικό µέρος από το ακέραιο Η τιµή τους υπολογίζεται ως εξής: Ν = ± (S k-1 x b k S 2 x b 2 + S 1 x b 1 + S 0 x b 0 ) +(S -1 x b -1 +S -2 x b S -l x b -l ) Όπου S k είναι ένα ψηφίο, b είναι η βάση και k το πλήθος των ψηφίων στο ακέραιο µέρος και l το πλήθος των ψηφίων στο κλασµατικό µέρος.

7 Συστήµατα Αρίθµησης Τα συνηθέστερα αριθµητικά συστήµατα είναι το δεκαδικό και αυτά που αποτελούν δυνάµεις του δύο:! Δεκαδικό σύστηµα Βάση το 10, Σύµβολα: 0,1,2,3,4,5,6,7,8,9)! Δυαδικό σύστηµα Βάση το 2, Σύµβολα: 0,1! Οκταδικό σύστηµα Βάση το 8, Σύµβολα: 0,1,2,3,4,5,6,7! Δεκαεξαδικό σύστηµα Βάση: το 16, Σύµβολα: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 7

8 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος είναι το 10 αναπτύχθηκε τον 8 ο αιώνα από Άραβες µαθηµατικούς, πρώτη χρήση από αρχαίους Αιγύπτιους, βελτίωση από Βαβυλώνιους Δυαδικό: Η βάση του συστήµατος είναι το 2 Ακολουθεί περιγραφή αυτών των συστηµάτων πριν παρουσιάσουµε πως αναπαρίστανται µέσα σε ένα υπολογιστή 8

9 Δεκαδικό Σύστηµα b = 10 S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Στο δεκαδικό σύστηµα ένας αριθµός γράφεται ως! ± (S k-1 S 2 S 1 S 0, S -1 S -2 S l ) 10 Χάριν απλότητας παραλείπουµε τις παρενθέσεις, τη βάση και το πρόσηµο (αν ο αριθµός είναι θετικός). Π.χ. Γράφουµε 25,5 αντί για +(25,5) 10! οι υπολογιστές δεν αποθηκεύουν τα πρόσηµα, αλλά αποθηκεύουν διαφορετικά τους θετικούς και αρνητικούς αριθµούς θα δούµε αργότερα πως

10 Δεκαδικό Σύστηµα 10

11 Τιµές θέσης για έναν ακέραιο στο δεκαδικό σύστηµα! Εικόνα 2.1

12 Θέσεις και τιµές θέσης για έναν ακέραιο στο δεκαδικό σύστηµα Παράδειγµα 1! Θέσεις και Τιµές θέσης στο δεκαδικό σύστηµα για τον ακέραιο Θέση 10^2 10^1 10^0 Τιµή θέσης Αριθµός N = + 2 x x x 10 0 Τιµές ! Το ψηφίο 2 στη θέση 1 έχει τιµή 20. Το ίδιο ψηφίο στη θέση 2 έχει την τιµή 200. Το σύµβολο + συνήθως παραλείπεται

13 Θέσεις και τιµές θέσης για έναν ακέραιο στο δεκαδικό σύστηµα Παράδειγµα 2! Θέσεις και Τιµές θέσεων στο δεκαδικό σύστηµα για τον ακέραιο Θέσεις 10^3 10^2 10^1 10^0 Τιµές θέσης Αριθµός N = - 7 x x x x 10 0 Τιµές

14 Θέσεις και τιµές θέσης για έναν πραγµατικό στο δεκαδικό σύστηµα Παράδειγµα! Θέσεις και Τιµές θέσεων στο δεκαδικό σύστηµα για τον πραγµατικό αριθµό +24, Θέσεις 10^1 10^0 10^-1 10^-2 Τιµές θέσης Αριθµός N = - 2 x x x 0,1 + 3 x 0,01 Τιµές ,1 0,03 24,13

15 Το δυαδικό σύστηµα Βάση το 2. Χρησιµοποιούνται µόνο δύο σύµβολα: S = {0, 1} Τα σύµβολα αυτού του θεσιακού αριθµητικού συστήµατος συχνά αναφέρονται ως δυαδικά ψηφία ή bit (από τον όρο binary digit) Τα δεδοµένα και τα προγράµµατα αποθηκεύονται στον υπολογιστή µε µορφή δυαδικών σχηµάτων, δηλ. συµβολοσειρών από bit! O υπολογιστής αποτελείται από ηλεκτρονικούς διακόπτες που µπορούν να βρίσκονται µόνο σε µία από δύο καταστάσεις, on ή off

16 Δυαδικό 16

17 Μετατροπή Αριθµών από το Δυαδικό σύστηµα στο Δεκαδικό! Για τη µετατροπή ενός αριθµού από το δυαδικό σύστηµα στο δεκαδικό, πολλαπλασιάζουµε κάθε δυαδικό ψηφίο του αριθµού µε το βάρος του και το αποτέλεσµα θα είναι είτε 0 είτε η τιµή του βάρους. Κατόπιν προσθέτουµε τα αποτελέσµατα 17

18 Μετατροπή Δυαδικού σε Δεκαδικό - Άσκηση! Μετατρέψτε τον δυαδικό αριθµό στο δεκαδικό σύστηµα 18

19 Μετατροπή Δυαδικού σε Δεκαδικό - Άσκηση! Μετατρέψτε τον δυαδικό αριθµό στο δεκαδικό σύστηµα! Λύση! Γράφουµε τα µπιτ και τα βάρη τους. Πολλαπλασιάζουµε κάθε µπιτ µε το αντίστοιχο βάρος και σηµειώνουµε το αποτέλεσµα. προσθέτουµε τα αποτελέσµατα για να πάρουµε τον δεκαδικό αριθµό. Δυαδικός Βάρη Δεκαδικός 19 19

20 Μετατροπή Αριθµών από το Δεκαδικό στο Δυαδικό σύστηµα! Για να µετατρέψουµε έναν δεκαδικό αριθµό σε δυαδικό, πρέπει να χρησιµοποιήσουµε συνεχείς διαιρέσεις.! Ο αρχικός αριθµός του παραδείγµατος, ο 45, διαιρείται µε το 2. Το υπόλοιπο (1) αποτελεί το πρώτο δυαδικό ψηφίο,! Το δεύτερο ψηφίο προσδιορίζεται από τη διαίρεση του πηλίκου (22) µε το 2. Το υπόλοιπο (0) αποτελεί το δεύτερο δυαδικό ψηφίο! Το πηλίκο διαιρείται µε το 2 για να βρεθεί η επόµενη θέση. Η διαδικασία συνεχίζεται µέχρι το πηλίκο να γίνει 0. 20

21 Μετατροπή Δεκαδικού σε Δυαδικό - Άσκηση! Μετατρέψτε τον δεκαδικό αριθµό 35 στο δυαδικό σύστηµα 21

22 Μετατροπή Δεκαδικού σε Δυαδικό - Άσκηση! Μετατρέψτε τον δεκαδικό αριθµό 35 στο δυαδικό σύστηµα! Λύση! Γράφουµε τον αριθµό στη δεξιά γωνία. Διαιρούµε συνεχώς τον αριθµό µε το 2 και σηµειώνουµε το πηλίκο και το υπόλοιπο. Τα πηλίκα προχωρούν προς τα αριστερά, ενώ το υπόλοιπο σηµειώνεται κάτω από την αντίστοιχη πράξη. Σταµατάµε όταν το πηλίκο γίνει (Δεκαδικός) Δυαδικός

23 Αναπαράσταση Ακεραίων Δεν υπάρχει υπολογιστής που να µπορεί να αποθηκεύσει όλους τους ακέραιους σε αυτό το διάστηµα τιµών -> θα χρειαζόταν άπειρο πλήθος µπιτ, δηλ. άπειρη αποθηκευτική ικανότητα. Για την αποδοτικότερη χρήση της µνήµης των υπολογιστών έχουν αναπτυχθεί δύο µεγάλες κατηγορίες αναπαράστασης ακεραίων: προσηµασµένοι και µη προσηµασµένοι ακέραιοι. 23

24 Μη Προσηµασµένοι Ακέραιοι! Ένας µη προσηµασµένος ακέραιος είναι ένας ακέραιος χωρίς πρόσηµο που µπορεί να πάρει τιµές από το 0 µέχρι το θετικό άπειρο! Επειδή δεν υπάρχει υπολογιστής που να µπορεί να αναπαραστήσει όλους τους ακέραιους σε αυτό το διάστηµα τιµών, ορίζεται µια σταθερά που ονοµάζεται µέγιστος µη προσηµασµένος ακέραιος και έτσι ένας µη προσηµασµένος ακέραιος µπορεί να πάρει τιµές από το 0 µέχρι αυτή τη σταθερά! Ο µέγιστος µη προσηµασµένος ακέραιος εξαρτάται από τον αριθµό Ν των µπιτ που χρησιµοποιεί ο υπολογιστής για την αναπαράσταση ενός µη προσηµασµένου ακέραιου! Διάστηµα τιµών: 0 (2 N 1) το Ν αντιπροσωπεύει τον αριθµό των µπιτ που χρησιµοποιούνται 24

25 Μη Προσηµασµένοι Ακέραιοι Αριθµός µπιτ Διάστηµα τιµών ! Η αποθήκευση µη προσηµασµένων ακέραιων είναι µια απλή διαδικασία:! Ο αριθµός µετατρέπεται στο δυαδικό σύστηµα.! Αν το πλήθος των µπιτ είναι µικρότερο από Ν, τότε προστίθενται µηδενικά στα αριστερά του δυαδικού αριθµού ώστε να υπάρχουν συνολικά Ν µπιτ. 25

26 Aποθήκευση Μη Προσηµασµένων Ακεραίων! Η αποθήκευση µη προσηµασµένων ακέραιων είναι µια απλή διαδικασία:! Ο αριθµός µετατρέπεται στο δυαδικό σύστηµα.! Αν το πλήθος των µπιτ είναι µικρότερο από Ν, τότε προστίθενται µηδενικά στα αριστερά του δυαδικού αριθµού ώστε να υπάρχουν συνολικά Ν µπιτ. 26

27 Μη Προσηµασµένοι Ακέραιοι! Αποθηκεύστε τον αριθµό 7 σε µια θέση µνήµης 8 µπιτ 27

28 Μη Προσηµασµένοι Ακέραιοι! Αποθηκεύστε τον αριθµό 7 σε µια θέση µνήµης 8 µπιτ! Λύση! Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό σύστηµα! 111! Προσθέτουµε πέντε µηδενικά ώστε να έχουµε ένα σύνολο από Ν (8) µπιτ! ! Ο αριθµός κατόπιν αποθηκεύεται στη θέση µνήµης. 28

29 Μη Προσηµασµένοι Ακέραιοι! Αποθηκεύστε τον αριθµό 258 σε µια θέση µνήµης 16 µπιτ 29

30 Μη Προσηµασµένοι Ακέραιοι! Αποθηκεύστε τον αριθµό 258 σε µια θέση µνήµης 16 µπιτ! Λύση! Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό σύστηµα! ! Προσθέτουµε επτά µηδενικά ώστε να έχουµε ένα σύνολο από Ν (16) µπιτ! ! Ο αριθµός αποθηκεύεται στη θέση µνήµης 30

31 Μη Προσηµασµένοι Ακέραιοι Αποθήκευση µη προσηµασµένων ακεραίων σε δύο διαφορετικούς υπολογιστές µε δέσµευση 8 και 16 µπιτ αντίστοιχα Δεκαδικός Δέσµευση 8 µπιτ Δέσµευση 16 µπιτ Υπερχείλιση Υπερχείλιση Υπερχείλιση Υπερχείλιση Αν ο ακέραιος προς αποθήκευση είναι µεγαλύτερος από το µέγιστο µη προσηµασµένο τότε έχουµε µια κατάσταση που ονοµάζεται υπερχείλιση 31

32 Μη Προσηµασµένοι Ακέραιοι! Ερµηνεύστε τον αριθµό στο δεκαδικό σύστηµα, έχοντας ως δεδοµένο ότι ο αριθµός έχει αποθηκευτεί ως µη προσηµασµένος ακέραιος 32

33 Μη Προσηµασµένοι Ακέραιοι! Ερµηνεύστε τον αριθµό στο δεκαδικό σύστηµα, έχοντας ως δεδοµένο ότι ο αριθµός έχει αποθηκευτεί ως µη προσηµασµένος ακέραιος! Λύση! Εφαρµόζοντας τη διαδικασία µετατροπής από δυαδικό σε δεκαδικό που παρουσιάστηκε προηγουµένως, βρίσκουµε ότι ο αριθµός στο δεκαδικό σύστηµα είναι! 43 33

34 Πλεονεκτήµατα και Εφαρµογές µη Προσηµασµένων Ακεραίων Βελτιώνουν την αποδοτικότητα του αποθηκευτικού χώρου Χρησιµοποιούνται σε εφαρµογές που δεν χρειάζονται αρνητικούς αριθµούς, π.χ.! Καταµέτρηση! Διευθυνσιοδότηση 34

35 Προσηµασµένοι Ακέραιοι σε Μορφή Πρόσηµου και Μεγέθους! Η αποθήκευση ενός ακεραίου σε µορφή πρόσηµου και µεγέθους (sign and magnitude) απαιτεί ένα µπιτ για την αναπαράσταση του πρόσηµου (0 για θετικό αριθµό, 1 για αρνητικό αριθµό)! Σε µια δέσµευση 8 µπιτ, µόνο τα 7 από αυτά µπορούν να χρησιµοποιηθούν για την αναπαράσταση της απόλυτης τιµής του αριθµού (δηλαδή του αριθµού χωρίς το πρόσηµο).! Έτσι, η µέγιστη θετική τιµή είναι το µισό της µη προσηµασµένης τιµής.! Διάστηµα τιµών: (2 N-1 1) + (2 N-1 1) 35

36 Προσηµασµένοι Ακέραιοι σε Μορφή Πρόσηµου και Μεγέθους! Στην αναπαράσταση πρόσηµου και µεγέθους, το τελευταίο αριστερά µπιτ καθορίζει το πρόσηµο του αριθµού. Αν είναι 0, ο αριθµός είναι θετικός Αν είναι 1, ο αριθµός είναι αρνητικός! Υπάρχουν δύο µηδενικά: ένα θετικό και ένα αρνητικό. Η µορφή τους σε µια δέσµευση 8 µπιτ είναι η εξής: +0 -> > Πλήθος µπιτ Διάστηµα τιµών

37 Αποθήκευση Προσηµασµένων Ακεραίων σε Μορφή Πρόσηµου και Μεγέθους! Είναι απλή διαδικασία:! Ο αριθµός µετατρέπεται στο δυαδικό σύστηµα, το πρόσηµο αγνοείται.! Αν το πλήθος των µπιτ είναι µικρότερο από Ν 1, προστίθενται µηδενικά στα αριστερά του αριθµού ώστε να υπάρχει ένα σύνολο από Ν 1 µπιτ.! Αν ο αριθµός είναι θετικός, προστίθεται στα αριστερά ένα µηδενικό (ώστε να έχουµε σύνολο Ν µπιτ).! Αν ο αριθµός είναι αρνητικός, προστίθεται στα αριστερά η µονάδα (ώστε και πάλι το σύνολο να είναι Ν µπιτ). 37

38 Προσηµασµένοι Ακέραιοι σε Μορφή Πρόσηµου και Μεγέθους! Αποθηκεύστε τον αριθµό +7 σε µια θέση µνήµης 8 µπιτ µε την αναπαράσταση πρόσηµου και µεγέθους.! Λύση! Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό ισοδύναµό του! 111! Προσθέτουµε τέσσερα 0 ώστε να έχουµε σύνολο Ν 1 (7) µπιτ! ! Επειδή ο αριθµός είναι θετικός, προσθέτουµε ένα επιπλέον 0, το οποίο εδώ φαίνεται µε έντονη γραφή. Το αποτέλεσµα είναι

39 Προσηµασµένοι Ακέραιοι σε Μορφή Πρόσηµου και Μεγέθους! Αποθηκεύστε τον αριθµό -258 σε µια θέση µνήµης 16 µπιτ µε την αναπαράσταση πρόσηµου και µεγέθους! Λύση! Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό σύστηµα! ! Προσθέτουµε έξι 0 ώστε να έχουµε σύνολο Ν-1 (15) µπιτ! ! Επειδή ο αριθµός είναι αρνητικός, προσθέτουµε ένα 1, το οποίο φαίνεται µε έντονη γραφή. Το αποτέλεσµα είναι

40 Προσηµασµένοι Ακέραιοι σε Μορφή Πρόσηµου και Μεγέθους Δεκαδικός Δέσµευση 8 µπιτ Δέσµευση 16 µπιτ Υπερχείλιση Υπερχείλιση Αποθήκευση ακεραίων πρόσηµου και µεγέθους σε δύο διαφορετικούς υπολογιστές 40

41 Ερµηνεία δυαδικής αναπαράστασης πρόσηµου και µεγέθους στο δεκαδικό σύστηµα! Η διαδικασία είναι απλή.! Αγνοούµε το πρώτο (το τελευταίο αριστερά) µπιτ.! Μετατρέπουµε τα Ν-1 µπιτ από το δυαδικό στο δεκαδικό µε τον τρόπο που δείξαµε στην αρχή του κεφαλαίου.! Προσθέτουµε ένα σύµβολο + ή στον αριθµό, ανάλογα µε το τελευταίο αριστερά µπιτ. 41

42 Ερµηνεία δυαδικής αναπαράστασης πρόσηµου και µεγέθους στο δεκαδικό σύστηµα - Άσκηση! Ερµηνεύστε τον αριθµό στο δεκαδικό σύστηµα, έχοντας ως δεδοµένο ότι ο αριθµός έχει αποθηκευτεί ως ακέραιος πρόσηµου και µεγέθους 42

43 Ερµηνεία δυαδικής αναπαράστασης πρόσηµου και µεγέθους στο δεκαδικό σύστηµα - Άσκηση! Ερµηνεύστε τον αριθµό στο δεκαδικό σύστηµα, έχοντας ως δεδοµένο ότι ο αριθµός έχει αποθηκευτεί ως ακέραιος πρόσηµου και µεγέθους! Λύση! Αν αγνοήσουµε το τελευταίο αριστερά µπιτ, το υπόλοιπο είναι ! Αυτός ο αριθµός αντιστοιχεί µε στον αριθµό 59 του δεκαδικού συστήµατος.! Το αριστερό µπιτ είναι το 1, άρα ο αριθµός είναι ο

44 Εφαρµογές Αναπαράστασης Προσηµασµένων Ακεραίων σε Μορφή Πρόσηµου και Μεγέθους! Δεν χρησιµοποιείται σήµερα για την αποθήκευση προσηµασµένων αριθµών σε υπολογιστή γιατί! Δυσχεραίνονται οι πράξεις! Υπάρχουν δύο µηδέν! Έχει ένα πλεονέκτηµα: εύκολη µετατροπή από το δεκαδικό στο δυαδικό, και το αντίστροφο. Έτσι η αναπαράσταση είναι βολική για εφαρµογές στις οποίες δεν είναι απαραίτητες οι πράξεις µε αριθµούς, π.χ.! Η µετατροπή αναλογικών σηµάτων σε ψηφιακά: " αφού ληφθεί δείγµα του αναλογικού σήµατος, του αντιστοιχίζεται ένας θετικός ή αρνητικός αριθµός ο οποίος µετατρέπεται στο δυαδικό σύστηµα και στέλνεται µέσω των καναλιών επικοινωνίας 44

45 Προσηµασµένοι Ακέραιοι σε Μορφή Πρόσηµου και Μεγέθους Συµπεράσµατα! Η αναπαράσταση ενός αριθµού στο δυαδικό σύστηµα αποτελεί ζήτηµα σύµβασης! Στην αναπαράσταση προσήµου και µεγέθους η σύµβαση είναι ότι! Το τελευταίο αριστερά µπιτ αναπαριστά το πρόσηµο και δεν αποτελεί τµήµα της τιµής 45

46 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Ένα! Χρησιµοποιούν διαφορετική σύµβαση! Για την αναπαράσταση ενός θετικού αριθµού χρησιµοποιείται η σύµβαση των µη προσηµασµένων ακεραίων! Για την αναπαράσταση ενός αρνητικού αριθµού χρησιµοποιείται το συµπλήρωµα του θετικού αριθµού. " Π.χ. Το +7 αναπαρίσταται όπως και ένας µη προσηµασµένος ακέραιος, ενώ το 7 αναπαρίσταται ως το συµπλήρωµα του +7.! Το συµπλήρωµα είναι ο αριθµός που προκύπτει αν όλα τα 0 µετατραπούν σε 1 και όλα τα 1 µετατραπούν σε 0! Το τελευταίο αριστερά µπιτ καθορίζει το πρόσηµο του αριθµού. " Αν είναι 0, ο αριθµός είναι θετικός. " Αν είναι 1, ο αριθµός είναι αρνητικός! Διάστηµα τιµών των ακέραιων συµπληρώµατος ως προς ένα σε έναν υπολογιστή: (2 N-1 1) + (2 N-1 1) " Το Ν αντιπροσωπεύει το πλήθος των µπιτ που έχουν δεσµευτεί για την αναπαράσταση των ακέραιων αυτού του είδους 46

47 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Ένα! Στην αναπαράσταση συµπληρώµατος ως προς ένα υπάρχουν δύο µηδενικά: ένα θετικό και ένα αρνητικό. Σε µια δέσµευση 8 µπιτ αυτό έχει ως εξής: +0 -> > Πλήθος µπιτ Διάστηµα τιµών

48 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Ένα! Η αποθήκευση ακεραίων συµπληρώµατος ως προς ένα απαιτεί την ακόλουθη διαδικασία:! Ο αριθµός µετατρέπεται στο δυαδικό σύστηµα, το πρόσηµο αγνοείται.! Προστίθενται µηδενικά στα αριστερά του αριθµού ώστε να υπάρχει ένα σύνολο από Ν µπιτ! Αν ο αριθµός είναι θετικός, δε χρειάζεται άλλη ενέργεια! Αν ο αριθµός είναι αρνητικός, κάθε µπιτ αντικαθίσταται από το συµπλήρωµά του (τα 0 γίνονται 1 και τα 1 γίνονται 0) 48

49 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Ένα! Αποθηκεύστε τον αριθµό +7 σε µια θέση µνήµης 8 µπιτ µε την αναπαράσταση συµπληρώµατος ως προς ένα! Λύση! Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό ισοδύναµό του! 111! Προσθέτουµε πέντε 0 ώστε να έχουµε σύνολο Ν (8) µπιτ! ! Ο αριθµός είναι θετικός, οπότε δε χρειάζεται καµία άλλη ενέργεια 49

50 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Ένα! Αποθηκεύστε τον αριθµό 258 σε µια θέση µνήµης 16 µπιτ µε την αναπαράσταση συµπληρώµατος ως προς ένα! Λύση! Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό σύστηµα ( ).! Προσθέτουµε επτά 0 ώστε να έχουµε σύνολο Ν (16) µπιτ ( ).! Ο αριθµός είναι αρνητικός, οπότε αντικαθιστούµε κάθε µπιτ µε το συµπλήρωµά του. Το αποτέλεσµα είναι

51 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Ένα Δεκαδικός Δέσµευση 8 µπιτ Δέσµευση 16 µπιτ Υπερχείλιση Υπερχείλιση Αποθήκευση ακεραίων συµπληρώµατος ως προς ένα σε 51 δύο διαφορετικούς υπολογιστές

52 Ερµηνεία δυαδικής αναπαράστασης συµπληρώµατος ως προς ένα στο δεκαδικό σύστηµα! Τα βήµατα για την ερµηνεία µιας δυαδικής αναπαράστασης συµπληρώµατος ως προς ένα στο δεκαδικό σύστηµα είναι τα ακόλουθα:! Αν το τελευταίο αριστερά µπιτ είναι 0 (θετικός αριθµός), " Μετατρέπουµε ολόκληρο τον αριθµό από το δυαδικό στο δεκαδικό σύστηµα. " Τοποθετούµε θετικό πρόσηµο (+) µπροστά από τον αριθµό.! Αν το τελευταίο αριστερά µπιτ είναι 1 (αρνητικός αριθµός), " Αντικαθιστούµε τον αριθµό µε το συµπλήρωµά του (αλλάζουµε όλα τα 0 σε 1, και το αντίστροφο). " Μετατρέπουµε ολόκληρο τον αριθµό από το δυαδικό στο δεκαδικό σύστηµα. " Τοποθετούµε µπροστά από τον αριθµό αρνητικό πρόσηµο ( ). 52

53 Ερµηνεία δυαδικής αναπαράστασης συµπληρώµατος ως προς ένα στο δεκαδικό σύστηµα! Ερµηνεύστε τον αριθµό στο δεκαδικό σύστηµα, έχοντας ως δεδοµένο ότι ο αριθµός έχει αποθηκευτεί ως ακέραιος συµπληρώµατος ως προς ένα 53

54 Ερµηνεία δυαδικής αναπαράστασης συµπληρώµατος ως προς ένα στο δεκαδικό σύστηµα! Ερµηνεύστε τον αριθµό στο δεκαδικό σύστηµα, έχοντας ως δεδοµένο ότι ο αριθµός έχει αποθηκευτεί ως ακέραιος συµπληρώµατος ως προς ένα! Λύση! Το τελευταίο αριστερά µπιτ είναι το 1, άρα ο αριθµός είναι αρνητικός.! Πρώτα βρίσκουµε το συµπλήρωµά του.! Το αποτέλεσµα είναι , το οποίο στο δεκαδικό είναι ο αριθµός 9.! Εποµένως ο αρχικός αριθµός είναι το 9. 54

55 Εφαρµογές Προσηµασµένων Ακεραίων σε Μορφή Συµπληρώµατος ως προς Ένα Δεν χρησιµοποιείται για αποθήκευση αριθµών στον Η/Υ (δύσκολες πράξεις, δυο απεικονίσεις του 0). Αλλά! Αποτελεί βάση για την επόµενη απεικόνιση (συµπλήρωµα ως προς δυο)! Έχει χαρακτηριστικά που την καθιστούν ενδιαφέρουσα για εφαρµογές Επικοινωνίας Δεδοµένων, π.χ. ανίχνευση και διόρθωση σφαλµάτων 55

56 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Δύο! Η αναπαράσταση συµπληρώµατος ως προς ένα έχει δύο µηδέν (+0 και 0), γεγονός που µπορεί να προκαλέσει σύγχυση σε υπολογισµούς! Επίσης, στο επόµενο κεφάλαιο θα δούµε ότι αν προσθέσουµε έναν αριθµό µε το συµπλήρωµά του (π.χ. +4 και 4) σε αυτή την αναπαράσταση, παίρνουµε ως αποτέλεσµα αρνητικό µηδέν ( 0) αντί για θετικό (+0)! Η αναπαράσταση συµπληρώµατος ως προς δύο λύνει όλα αυτά τα προβλήµατα 56

57 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Δύο! Το συµπλήρωµα ως προς δύο αποτελεί σήµερα τον πιο συνηθισµένο, τον πιο σηµαντικό, και τον πιο ευρέως χρησιµοποιούµενο τρόπο αναπαράστασης ακεραίων! Διάστηµα τιµών: (2 N-1 ) + (2 N-1 1) Πλήθος µπιτ Διάστηµα τιµών

58 Αποθήκευση Προσηµασµένων Ακεραίων σε Μορφή Συµπληρώµατος ως προς Δύο! Απαιτεί τα ακόλουθα βήµατα:! Ο αριθµός µετατρέπεται στο δυαδικό σύστηµα, το πρόσηµο αγνοείται.! Αν το πλήθος των µπιτ είναι µικρότερο από Ν, προστίθενται µηδενικά στα αριστερά του αριθµού ώστε να υπάρχει ένα σύνολο από Ν µπιτ.! Αν το πρόσηµο είναι θετικό, δε χρειάζεται καµία άλλη ενέργεια.! Αν το πρόσηµο είναι αρνητικό, µένουν ως έχουν όλα τα δεξιότερα 0 και το πρώτο 1. Τα υπόλοιπα µπιτ αντικαθίστανται από το συµπλήρωµά τους.! Στην αναπαράσταση συµπληρώµατος ως προς δύο, το τελευταίο αριστερά µπιτ καθορίζει το πρόσηµο του αριθµού. Αν είναι 0, ο αριθµός είναι θετικός. Αν είναι 1, ο αριθµός είναι αρνητικός. 58

59 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Δύο! Αποθηκεύστε τον αριθµό +7 σε µια θέση µνήµης 8 µπιτ µε την αναπαράσταση συµπληρώµατος ως προς δύο! Λύση! Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό σύστηµα (111).! Προσθέτουµε πέντε 0 ώστε να έχουµε σύνολο Ν (8) µπιτ ( ).! Ο αριθµός είναι θετικός, οπότε δε χρειάζεται καµία άλλη ενέργεια 59

60 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Δύο! Αποθηκεύστε τον αριθµό 40 σε µια θέση µνήµης 16 µπιτ µε την αναπαράσταση συµπληρώµατος ως προς δύο! Λύση! Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό σύστηµα (101000).! Προσθέτουµε δέκα 0 ώστε να έχουµε σύνολο Ν (16) µπιτ ( ).! Ο αριθµός είναι αρνητικός, οπότε αφήνουµε τα δεξιότερα 0 µέχρι το πρώτο 1 (και το 1) ως έχουν, και αντικαθιστούµε τα υπόλοιπα µπιτ µε το συµπλήρωµά τους.! Το αποτέλεσµα είναι

61 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Δύο Δεκαδικός Δέσµευση 8 µπιτ Δέσµευση 16 µπιτ Υπερχείλιση Υπερχείλιση Παράδειγµα αναπαράστασης συµπληρώµατος ως προς δύο σε δύο υπολογιστές 61

62 Ερµηνεία Δυαδικής Αναπαράστασης Προσηµασµένων Ακεραίων σε Μορφή Συµπληρώµατος ως προς Δύο στο δεκαδικό σύστηµα! Ακολουθούνται τα εξής βήµατα:! Αν το τελευταίο αριστερά µπιτ είναι 0 (θετικός αριθµός) " Μετατρέπουµε ολόκληρο τον αριθµό από το δυαδικό στο δεκαδικό σύστηµα. " Τοποθετούµε θετικό πρόσηµο (+) µπροστά από τον αριθµό! Αν το τελευταίο αριστερά µπιτ είναι 1 (αρνητικός αριθµός) " Αφήνουµε τα δεξιότερα µπιτ µέχρι το πρώτο 1 (µαζί µε αυτό) ως έχουν. Αντικαθιστούµε τα υπόλοιπα µπιτ µε το συµπλήρωµά τους. " Μετατρέπουµε ολόκληρο τον αριθµό από το δυαδικό στο δεκαδικό σύστηµα. " Τοποθετούµε µπροστά από τον αριθµό αρνητικό πρόσηµο ( ). 62

63 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Δύο! Ερµηνεύστε τον αριθµό στο δεκαδικό σύστηµα, έχοντας ως δεδοµένο ότι ο αριθµός έχει αποθηκευτεί ως ακέραιος συµπληρώµατος ως προς δύο 63

64 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Δύο! Ερµηνεύστε τον αριθµό στο δεκαδικό σύστηµα, έχοντας ως δεδοµένο ότι ο αριθµός έχει αποθηκευτεί ως ακέραιος συµπληρώµατος ως προς δύο! Λύση! Το τελευταίο αριστερά µπιτ είναι το 1, άρα ο αριθµός είναι αρνητικός.! Αφήνουµε τα δεξιότερα µπιτ (10) ως έχουν, και βρίσκουµε το συµπλήρωµα των υπολοίπων.! Το αποτέλεσµα είναι ! Μετατρέπουµε τον αριθµό στο δεκαδικό σύστηµα! Το αποτέλεσµα είναι το 10. Εποµένως ο αρχικός αριθµός είναι το 10 64

65 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Δύο! Εφαρµογές! Η αναπαράσταση συµπληρώµατος ως προς δύο αποτελεί τον τυπικό τρόπο αναπαράστασης για την αποθήκευση ακέραιων στους σύγχρονους υπολογιστές! Στο επόµενο µάθηµα θα καταλάβετε γιατί, όταν δείτε πόσο απλές είναι οι πράξεις µε αυτή τη µέθοδο 65

66 ΑΣΚΉΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 66

67 1 η Άσκηση! Ερµηνεύστε τον αριθµό στο δεκαδικό σύστηµα, έχοντας ως δεδοµένο ότι ο αριθµός έχει αποθηκευτεί! ως µη προσηµασµένος ακέραιος! ως ακέραιος προσήµου και µεγέθους! ως ακέραιος συµπληρώµατος ως προς ένα! ως ακέραιος συµπληρώµατος ως προς δύο 67

68 1 η Άσκηση - Λύση! Ερµηνεύστε τον αριθµό στο δεκαδικό σύστηµα, έχοντας ως δεδοµένο ότι ο αριθµός έχει αποθηκευτεί! ως µη προσηµασµένος ακέραιος -> 246! ως ακέραιος προσήµου και µεγέθους -> -118! ως ακέραιος συµπληρώµατος ως προς ένα -> -9! ως ακέραιος συµπληρώµατος ως προς δύο ->

69 2 η Άσκηση! Αποθηκεύστε τον αριθµό +8 σε µια θέση µνήµης µήκους 8 bit σε µορφή! Μη προσηµασµένου ακεραίου! Προσήµου και µεγέθους! Συµπληρώµατος ως προς 1! Συµπληρώµατος ως προς 2 69

70 Άσκηση 2 - Λύση! Αποθηκεύστε τον αριθµό +8 σε µια θέση µνήµης µήκους 8 bit σε µορφή! Μη προσηµασµένου ακεραίου ! Προσήµου και µεγέθους ! Συµπληρώµατος ως προς ! Συµπληρώµατος ως προς

71 3 η Άσκηση! Αποθηκεύστε τον αριθµό -8 σε µια θέση µνήµης µήκους 8 bit σε µορφή! Προσήµου και µεγέθους! Συµπληρώµατος ως προς 1! Συµπληρώµατος ως προς 2! Θυµηθείτε ότι το +8 έχει αποθηκευθεί σε µιά θέση µνήµης 8 bit ως εξής: " Σε µορφή Προσήµου και µεγέθους " Σε µορφή Συµπληρώµατος ως προς " Σε µορφή Συµπληρώµατος ως προς

72 3 η Άσκηση - Λύση! Αποθηκεύστε τον αριθµό -8 σε µια θέση µνήµης µήκους 8 bit σε µορφή! Προσήµου και µεγέθους ! Συµπληρώµατος ως προς ! Συµπληρώµατος ως προς ! Θυµηθείτε ότι το +8 έχει αποθηκευθεί σε µιά θέση µνήµης 8 bit ως εξής: " Σε µορφή Προσήµου και µεγέθους " Σε µορφή Συµπληρώµατος ως προς " Σε µορφή Συµπληρώµατος ως προς

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος

Διαβάστε περισσότερα

3.1 εκαδικό και υαδικό

3.1 εκαδικό και υαδικό Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και εδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 3.1 εκαδικό και υαδικό εκαδικό σύστηµα 2 1 εκαδικό και υαδικό υαδικό Σύστηµα 3 3.2 Μετατροπή Για τη µετατροπή

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών Εισαγωγή στην επιστήμη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών 1 Αριθμητικό Σύστημα Ορίζει τον τρόπο αναπαράστασης ενός αριθμού με διακεκριμένα σύμβολα Ένας αριθμός αναπαρίσταται διαφορετικά

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης & Τεχνολογίας ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο 2 Αριθµητικά Συστήµατα και Αριθµητική Υπολογιστών Γιώργος Γιαγλής Περίληψη Κεφαλαίου

Διαβάστε περισσότερα

µπιτ Λύση: Κάθε οµάδα των τεσσάρων µπιτ µεταφράζεται σε ένα δεκαεξαδικό ψηφίο 1100 C 1110 E Άρα το δεκαεξαδικό ισοδύναµο είναι CE2

µπιτ Λύση: Κάθε οµάδα των τεσσάρων µπιτ µεταφράζεται σε ένα δεκαεξαδικό ψηφίο 1100 C 1110 E Άρα το δεκαεξαδικό ισοδύναµο είναι CE2 ! Βρείτε το δεκαεξαδικό ισοδύναµο του σχήµατος µπιτ 110011100010 Λύση: Κάθε οµάδα των τεσσάρων µπιτ µεταφράζεται σε ένα δεκαεξαδικό ψηφίο 1100 C 1110 E 0010 2 Άρα το δεκαεξαδικό ισοδύναµο είναι CE2 2 !

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα 1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr Εισαγωγή στην

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Σ ή. : υαδικά. Ε ό. ή Ενότητα

Σ ή. : υαδικά. Ε ό. ή Ενότητα 1η Θεµατική Θ ή Ενότητα Ε ό : υαδικά δ ά Συστήµατα Σ ή Μονάδα Ελέγχου Ψηφιακοί Υπολογιστές Αριθµητική Μονάδα Κρυφή Μνήµη Μονάδα Μνήµης ιαχείριση Μονάδων Ι/Ο ίσκοι Οθόνες ικτυακές Μονάδες Πληκτρολόγιο,

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Συστήματα αρίθμησης Δυαδικό αριθμητικό

Διαβάστε περισσότερα

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης: Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ

Εισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ Εισαγωγή στην επιστήµη των υπολογιστών Πράξεις µε µπιτ 1 Πράξεις µε µπιτ 2 Αριθµητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασµός, Διαίρεση Ο πολλαπλασιασµός και η διαίρεση στο επίπεδο του

Διαβάστε περισσότερα

Αριθµητική υπολογιστών

Αριθµητική υπολογιστών Αριθµητική υπολογιστών Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #03 1 εκαδικό σύστηµα αρίθµησης Βάση το 10. 10 ψηφία: 0 1 2 3 4 5 6 7 8 9 1 δεκαδικό ψηφίο εκφράζει 1 από 10 πιθανές επιλογές

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1

Διαβάστε περισσότερα

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε

Διαβάστε περισσότερα

Λύσεις Ασκήσεων ΣΕΙΡΑ 1 η. Πρόσημο και μέγεθος

Λύσεις Ασκήσεων ΣΕΙΡΑ 1 η. Πρόσημο και μέγεθος ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΕΞΑΜΗΝΟ: 1 ο /2015-16 ΤΜΗΜΑ: ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ Καθηγητής: Θ. Τσιλιγκιρίδης Άσκηση 1η Περιεχόμενα μνήμης Λύσεις

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση

Διαβάστε περισσότερα

Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή

Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή Κεφάλαιο. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Περιεχόμενα. Αριθμητικά συστήματα. Μετατροπή αριθμών από ένα σύστημα σε άλλο.3 Πράξεις στο δυαδικό σύστημα.4 Πράξεις στο δεκαεξαδικό σύστημα.5

Διαβάστε περισσότερα

Ψηφιακοί Υπολογιστές

Ψηφιακοί Υπολογιστές 1 η Θεµατική Ενότητα : υαδικά Συστήµατα Ψηφιακοί Υπολογιστές Παλαιότερα οι υπολογιστές χρησιµοποιούνταν για αριθµητικούς υπολογισµούς Ψηφίο (digit) Ψηφιακοί Υπολογιστές Σήµατα (signals) : διακριτά στοιχεία

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

Ψηφιακά Κυκλώματα Ι. Μάθημα 1: Δυαδικά συστήματα - Κώδικες. Λευτέρης Καπετανάκης

Ψηφιακά Κυκλώματα Ι. Μάθημα 1: Δυαδικά συστήματα - Κώδικες. Λευτέρης Καπετανάκης ΤΛ2002 Ψηφιακά Κυκλώματα Ι Μάθημα 1: Δυαδικά συστήματα - Κώδικες Λευτέρης Καπετανάκης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Άνοιξη 2011 ΤΛ-2002: L1 Slide 1 Ψηφιακά Συστήματα ΤΛ-2002:

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6

ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Bits & Bytes Bit: η μικρότερη μονάδα πληροφορίας μία από δύο πιθανές καταστάσεις (ναι / όχι, αληθές / ψευδές, n / ff) κωδικοποίηση σε 0 ή 1 δυαδικό σύστημα

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ Εισαγωγή στην Πληροφορική 1 Περιεχόµενα - Κωδικοποιήσεις - Αριθµητικά Συστήµατα 2 Ηλεκτρονικός Υπολογιστής Είπαµε ότι είναι, µία Ηλεκτρονική Μηχανή, που δουλεύει κάτω από τον έλεγχο εντολών αποθηκευµένων

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήµη των Υπολογιστών Εξάµηνο 4ο-ΣΗΜΜΥ

Εισαγωγή στην Επιστήµη των Υπολογιστών Εξάµηνο 4ο-ΣΗΜΜΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr Εισαγωγή στην

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Περιεχόμενα Μαθήματος Συστήματα αρίθμησης Πύλες Διάγραμμα ροής-ψευδοκώδικας Python Συστήματα Αρίθμησης Δεκαδικό σύστημα Οι άνθρωποι χρησιμοποιούν το περίφημο «θεσιακό,

Διαβάστε περισσότερα

Αναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Αναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Αναπαράσταση Δεδομένων ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Αναπαράσταση δεδομένων Κατάλληλη συμβολική αναπαράσταση δεδομένων, για απλοποίηση βασικών πράξεων, όπως πρόσθεση Πόσο εύκολο είναι

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις

Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυαδικό Σύστημα Αρίθμησης Περιεχόμενα 1 Δυαδικό

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις

Διαβάστε περισσότερα

Περιεχόµενα. οµή Η/Υ: Αναπαράσταση εδοµένων. υαδικό σύστηµα. Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα

Περιεχόµενα. οµή Η/Υ: Αναπαράσταση εδοµένων. υαδικό σύστηµα. Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα οµή Η/Υ: Αναπαράσταση εδοµένων Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα Περιεχόµενα Κωδικοποίηση δεδοµένων Κώδικας ASCII Άλλοι κώδικες Παραδείγµατα Συστήµατα Αρίθµησης Τα συνηθέστερα

Διαβάστε περισσότερα

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης: Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται

Διαβάστε περισσότερα

2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. 2.1 Αριθμητικά συστήματα

2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. 2.1 Αριθμητικά συστήματα 2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ 2.1 Αριθμητικά συστήματα Κάθε πραγματικός αριθμός χ μπορεί να παρασταθεί σε ένα αριθμητικό σύστημα με βάση β>1 με μια δυναμοσειρά της μορφής, -οο * = ± Σ ψ β " (2 1) η - ν

Διαβάστε περισσότερα

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Κεφάλαιο 3 Αριθµητική για υπολογιστές Ασκήσεις Η αρίθµηση των ασκήσεων είναι από την 4 η έκδοση του «Οργάνωση και Σχεδίαση

Διαβάστε περισσότερα

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Αριθµοί Διαφόρων Βάσεων Δυαδικά Συστήµατα 2 Υπολογιστική Ακρίβεια Ο αριθµός των δυαδικών ψηφίων αναπαράστασης αριθµών καθορίζει την ακρίβεια των αριθµών σε

Διαβάστε περισσότερα

ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 22/1/ :11 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας

ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 22/1/ :11 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ ΔΙΑΡΚΕΙΑ: 1 περιόδους 22/1/2010 10:11 καθ. Τεχνολογίας 22/1/2010 10:12 Παραδείγματα Τι ονομάζουμε αριθμητικό σύστημα? Το σύνολο από ψηφία (αριθμοί & χαρακτήρες). Που χρησιμεύουν

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

Μάθημα 2: Παράσταση της Πληροφορίας

Μάθημα 2: Παράσταση της Πληροφορίας Μάθημα 2: Παράσταση της Πληροφορίας 2.1 Παράσταση δεδομένων Κάθε υπολογιστική μηχανή αποτελείται από ηλεκτρονικά κυκλώματα που η λειτουργία τους βασίζεται στην αρχή ανοιχτό-κλειστό. Η συμπεριφορά τους

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΚΩ ΙΚΕΣ

ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΚΩ ΙΚΕΣ 1 ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΚΩ ΙΚΕΣ 2 Σκοπός Μέθοδοι παράστασης και ερµηνείας των ψηφιακών δεδοµένων στα υπολογιστικά συστήµατα ιάφορα αριθµητικά συστήµατα που χρησιµοποιούνται στους υπολογιστές και επεξήγηση

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Γιώργος Δημητρίου. Μάθημα 7 και 8: Αναπαραστάσεις. Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής

Εισαγωγή στους Η/Υ. Γιώργος Δημητρίου. Μάθημα 7 και 8: Αναπαραστάσεις. Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής Γιώργος Δημητρίου Μάθημα 7 και 8: Αναπαραστάσεις Αναπαράσταση Πληροφορίας Η/Υ Αριθμητικά δεδομένα Σταθερής υποδιαστολής Κινητής υποδιαστολής Μη αριθμητικά δεδομένα Χαρακτήρες Ειδικοί κώδικες Εντολές Γλώσσα

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ακαδημαϊκό Έτος 2010-2011 Επιμέλεια Ξενοφών Βασιλάκος Περιεχόμενα Φροντιστηρίου 1. Κωδικοποίηση και Δυαδική Αναπαράσταση 2. Κωδικοποίηση ASCII Κωδικοποίηση Unicode Εισαγωγή

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

Αρχιτεκτονικές Υπολογιστών

Αρχιτεκτονικές Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΥΠΟΛΟΓΙΣΤΩΝ Μάθηµα: Αρχιτεκτονικές Υπολογιστών Αναπαράσταση εδοµένων ιδάσκων: Αναπλ. Καθ. Κ. Λαµπρινουδάκης clam@unipi.gr Αρχιτεκτονικές Υπολογιστών Aναπλ. Καθ. Κ. Λαµπρινουδάκης 1 εδοµένα

Διαβάστε περισσότερα

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ Τετάρτη 5-12/11/2014 ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ ΕΚΠΑΙΔΕΥΤΗΣ: ΤΡΟΧΙΔΗΣ ΠΑΝΑΓΙΩΤΗΣ 1. Παράσταση και οργάνωση δεδομένων

Διαβάστε περισσότερα

Κεφάλαιο 2 Κωδικοποίηση & Αποκωδικοποίηση

Κεφάλαιο 2 Κωδικοποίηση & Αποκωδικοποίηση Κεφάλαιο 2 Κωδικοποίηση & Αποκωδικοποίηση Αριθµών & Χαρακτήρων Αποκωδικοποίηση Κωδικοποίηση Συστήµατα Αρίθµησης το υαδικό Μετατροπή από το ένα σύστηµα στο άλλο Η πρόσθεση & η αφαίρεση στο υαδικό H αφαίρεση

Διαβάστε περισσότερα

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Λογική Σχεδίαση Ψηφιακών Συστημάτων Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδικοί Αριθμοί Η γενική αναπαράσταση ενός οποιουδήποτε

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Αριθμητικά Συστήματα. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Αριθμητικά Συστήματα. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Αριθμητικά Συστήματα Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Αριθμητικά Συστήματα Δεκαδικό Σύστημα: Βάση το 10, ψηφία 10 και συντελεστές

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 9: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ψηφιακή Αριθμητική Σκοποί ενότητας 2 Περιεχόμενα ενότητας

Διαβάστε περισσότερα

Αριθμητικά Συστήματα Κώδικες

Αριθμητικά Συστήματα Κώδικες Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και

Διαβάστε περισσότερα

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 9ο Aντώνης Σπυρόπουλος Σφάλματα στρογγυλοποίησης

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Η ανάγκη του ανθρώπου για μετρήσεις οδήγησε αρχικά στην επινόηση των αριθμών Κατόπιν, στην επινόηση συμβόλων για τη παράσταση τους Τέλος, στη δημιουργία των αριθμητικών συστημάτων:

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών

Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό

Διαβάστε περισσότερα

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Εκθετική Παράσταση (Exponential Notation) Οι επόµενες είναι ισοδύναµες παραστάσεις του 1,234 123,400.0

Διαβάστε περισσότερα

Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή

Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Οργάνωση και διαχείριση της Πληροφορίας στον Υπολογιστή Δεδομένα και Εντολές πληροφορία δεδομένα εντολές αριθμητικά δδ δεδομένα κείμενο εικόνα Επιλογή Αναπαράστασης

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 3: Δυαδικά Συστήματα Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών. Data. Κείμενο. Βίντεο. Αριθμοί Εικόνες. Ήχοι

Αρχιτεκτονική Υπολογιστών. Data. Κείμενο. Βίντεο. Αριθμοί Εικόνες. Ήχοι Data Κείμενο Βίντεο Αριθμοί Εικόνες Ήχοι 1 Τα δεδομένα στους ηλεκτρονικούς υπολογιστές αναπαρίστανται σαν αριθμοί Οι αριθμοί αποθηκεύονται σε bits (δυαδικό σύστημα). Θέματα: Πως αναπαριστώνται οι αρνητικοί

Διαβάστε περισσότερα

1ο. Η αριθµητική του υπολογιστή

1ο. Η αριθµητική του υπολογιστή 1ο. Η αριθµητική του υπολογιστή 1.1 Τί είναι Αριθµητική Ανάλυση Υπάρχουν πολλά προβλήµατα στη µαθηµατική επιστήµη για τα οποία δεν υπάρχουν αναλυτικές εκφράσεις λύσεων. Στις περιπτώσεις αυτές έχουν αναπτυχθεί

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (2/2) 1.1 Τα bits και ο τρόπος που αποθηκεύονται 1.2 Κύρια µνήµη 1.3 Αποθηκευτικά µέσα 1.4 Αναπαράσταση πληροφοριών ως σχηµάτων bits

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf) ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf) Για να λύνετε εύκολα ασκήσεις στα συστήματα αρίθμησης θα πρέπει να απομνημονεύσετε τα πρώτα 17 βάρη του δυαδικού συστήματος από 2 0 μέχρι 2

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων 1 Εισαγωγή Ο Υπολογιστής είναι μια μηχανή επεξεργασίας δεδομένων Πριν ασχοληθούμε με την επεξεργασία τους

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Κωδικοποίηση & Αποκωδικοποίηση

Διαβάστε περισσότερα

Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης

Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης Τι θα μάθουμε σήμερα: Να αναφέρουμε τον τρόπο αναπαράστασης των δεδομένων (δυαδικό σύστημα) Να αναγνωρίζουμε πώς γράμματα και σύμβολα από

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχιτεκτονική-Ι Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης.

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Κεφάλαιο 5 -ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αφαίρεση δυαδικών Περίληψη

Διαβάστε περισσότερα

4.1 Θεωρητική εισαγωγή

4.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΉ. Μάθημα 7

ΠΛΗΡΟΦΟΡΙΚΉ. Μάθημα 7 ΠΛΗΡΟΦΟΡΙΚΉ Μάθημα 7 Μηχανισμός Οπτικών Δίσκων CD ROM (compact disk read only memory) Μεγάλη αποθηκευτική ικανότητα (650ΜΒ ή 700ΜΒ) Γρήγορη προσπέλαση στα δεδομένα Χαμηλή τιμή (CD) Μέσο μεταφοράς και διανομής

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Εισαγωγή στην Πληροφορική Αριθμητικά Συστήματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς Βασικές Έννοιες Ένα Αριθμητικό Σύστημα αποτελείται από ένα

Διαβάστε περισσότερα

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΟΙ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ (ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ) Γ Τσιατούχας Παράρτηµα Β ιάρθρωση 1 Το σύστημα κινητής υποδιαστολής 2 Αναπαράσταση πραγματικών δυαδικών αριθμών 3 Το πρότυπο

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 2: Αναπαράσταση Δεδομένων Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 3 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 3 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ.   url: Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΡΓΑΣΙΑ 1: Ονοματεπώνυμο: Εξάμηνο: Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Α.Μ: Έτος: 1. Το δεκαδικό σύστημα Είναι φανερό ότι οι χιλιάδες, εκατοντάδες, δεκάδες, μονάδες και τα δεκαδικά ψηφία είναι δυνάμεις

Διαβάστε περισσότερα

Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ. Εφ. Πληροφορικής Κεφ. 2 Καραμαούνας Πολύκαρπος 1

Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ. Εφ. Πληροφορικής Κεφ. 2 Καραμαούνας Πολύκαρπος 1 Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ Καραμαούνας Πολύκαρπος 1 2.1Η έννοια της πληροφορίας Δεδομένα Πληροφορία Καραμαούνας Πολύκαρπος 2 2.2 ΗΥ Το βασικό εργαλείο επεξεργασίας και

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 5 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 5 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ.   url: στους Ηλεκτρονικούς Υπολογιστές 5 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 2

ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 2 ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Ο κύκλος της πληροφορίας Η σηµασία της πληροφορίας Ο υπολογιστής (επεξεργασία-αποθήκευση) 2 Παράσταση δεδοµένων Αριθµητικά συστήµατα εκαδικό σύστηµα 3 υαδικό

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης. Μετατροπές αριθμών από Δυαδικό σε Δεκαδικό και αντίστροφα

Δυαδικό Σύστημα Αρίθμησης. Μετατροπές αριθμών από Δυαδικό σε Δεκαδικό και αντίστροφα Δυαδικό Σύστημα Αρίθμησης. Μετατροπές αριθμών από Δυαδικό σε Δεκαδικό και αντίστροφα Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Πληροφορική Δημιουργός: ΚΩΝΣΤΑΝΤΙΝΑ ΚΟΝΤΟΣΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 Τμήμα θεωρίας: Α.Μ. 8, 9 Κάθε Πέμπτη, 11πμ-2μμ, ΑΜΦ23. Διδάσκων: Ντίνος Φερεντίνος Γραφείο 118 email: kpf3@cornell.edu Μάθημα: Θεωρία + προαιρετικό

Διαβάστε περισσότερα

ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΑ ΣΥΣΤΗΜΑΤΑ. Δρ. Κουζαπάς Δημήτριος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής. Αναπαράσταση Δεδομένων

ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΑ ΣΥΣΤΗΜΑΤΑ. Δρ. Κουζαπάς Δημήτριος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής. Αναπαράσταση Δεδομένων ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΑ ΣΥΣΤΗΜΑΤΑ Δρ. Κουζαπάς Δημήτριος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Αναπαράσταση Δεδομένων Υπολογιστικά συστήματα: Στρώματα 1 Επικοινωνία Εφαρμογές

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ιδάσκων: Καθηγητής Ν. Φακωτάκης Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

Εισαγωγή. Πληροφορική

Εισαγωγή. Πληροφορική Πληροφορική Διδάσκων:Μ.Χατζόπουλος, Παραδόσεις:Τρίτη 4-6, Τετάρτη 1-3; (Αμφιθέατρο Α15) Πληροφορίες στην ιστοσελίδα του μαθήματος http://www.di.uoa.gr/~organosi/ Η δομή του μαθήματος Εισαγωγή στην Επιστήμη

Διαβάστε περισσότερα

Αριθμητική Υπολογιστών (Κεφάλαιο 3)

Αριθμητική Υπολογιστών (Κεφάλαιο 3) ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι Διάλεξη 9 Αριθμητική Υπολογιστών (Κεφάλαιο 3) Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Αριθμητική για υπολογιστές

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα