ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη"

Transcript

1 ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κυκλική κίνηση µίας σηµειακής µάζας και ιδιαίτερα την εξάρτηση της κεντροµόλου δύναµης από τη µάζα, την ακτίνα της τροχιάς και τη γωνιακή ταχύτητα. Θεωρητικό υπόβαθρο Κυκλική κίνηση Κεντροµόλος δύναµη Νόµοι του Newton. Αδρανειακά και µη-αδρανειακά συστήµατα αναφοράς Για την κατανόηση και σωστή τέλεση του πειράµατος θα πρέπει υποχρεωτικά να γνωρίζετε πριν κάνετε το πείραµα τη θεωρία που παρουσιάζεται στις ακόλουθες ενότητες του βιβλίου Γενική Φυσική Serway: 5.4, 5.5, 6.1, 6.2, 6.3 Συνοπτική Θεωρία Όταν ένα σώµα Σ, µάζας m, εκτελεί οµαλή κυκλική κίνηση ακτίνας r γύρω από ένα σηµείο Ο (r=oσ), η γωνιακή ταχύτητα περιστροφής ω του σώµατος διατηρείται σταθερή. Η γραµµική ταχύτητα u έχει σταθερό µέτρο (u = ω r), ενώ το διάνυσµά της αλλάζει συνεχώς, παραµένοντας εφαπτοµενικό της κυκλικής τροχιάς στο σηµείο όπου βρίσκεται το σώµα. Συνεπώς το σώµα επιταχύνεται, η δύναµη που ασκείται πάνω του λέγεται κεντροµόλος δύναµη F κ, και κάθε στιγµή είναι κάθετη στην ταχύτητα µε φορά από το σώµα προς το κέντρο της κυκλικής τροχιάς. Το µέτρο της κεντροµόλου δύναµης είναι : F " = m # r 2 = m$ 2 r (1) Όπως όµως είναι γνωστό, όταν βρισκόµαστε σε σύστηµα αναφοράς το οποίο περιστρέφεται (π.χ. στο κέντρο του κύκλου γύρω από τον οποίο περιστρέφεται το κινητό) τότε το σύστηµα! µας δεν είναι αδρανειακό. Σε αυτό το σύστηµα αναφοράς για να εξηγήσουµε το γεγονός ότι το κινητό διατηρεί σταθερή απόσταση r από το κέντρο και ότι ασκείται µια τάση στο νήµα το οποίο ενώνει το κινητό µε το κέντρο περιστροφής εισάγουµε την έννοια της φυγόκεντρου δύναµης (F φ ). Η φυγόκεντρος αυτή δύναµη έχει µέτρο ίσο µε την κεντροµόλο δύναµη, αλλά η φορά της είναι αντίθετη. IV-1

2 Πειραµατική διάταξη Σκοπός του πειράµατος είναι να επαληθευτεί η σχέση (1). Για να γίνει αυτό θα πρέπει να µετρήσουµε πειραµατικά συγχρόνως τόσο το αριστερό όσο και το δεξιό µέλος της εξίσωσης (1). Θα πρέπει για παράδειγµα να δείξουµε ότι διατηρώντας σταθερά τα m και ω, το µέτρο της δύναµης αλλάζει γραµµικά µε την ακτίνα r και ότι ο συντελεστής αναλογίας είναι ίσος µε mω 2. Η πειραµατική διάταξη που θα χρησιµοποιήσουµε, ονοµάζεται φυγοκεντρική συσκευή και παρουσιάζεται σχηµατικά στο Σχήµα 1. Μία φωτογραφία της βρίσκεται στο Σχήµα 2. Με αυτή µπορούµε να ελέγχουµε την γωνιακή ταχύτητα περιστροφής ενός κατακόρυφου άξονα µέσω ενός ηλεκτρικού κινητήρα µε τροφοδοτικό µεταβλητής τάσης. Μία οριζόντια ράβδος βρίσκεται προσδεµένη στο µέσο της πάνω στο κατακόρυφο περιστρεφόµενο άξονα. Στη µία άκρη της οριζόντιας ράβδου υπάρχει ένα στήριγµα Μ πάνω στο οποίο τοποθετούµε διάφορα σώµατα (Σ) τα οποία µπορούν να ολισθαίνουν στο στήριγµα χωρίς (η µε αρκετά µικρή) τριβή. Η θέση του Μ πάνω στην ράβδο µπορεί να µεταβάλλεται. Στο άλλο άκρο της ράβδου βρίσκεται ένα αντίβαρο (Α). Η θέση του Α είναι επίσης µεταβλητή και κατά τη διάρκεια του πειράµατος πρέπει να διατηρείται ίση µε την απόσταση του Μ από το µέσο (Ο) της οριζόντιας περιστρεφόµενης ράβδου για λόγους ισορροπίας. Στο µέσο της ράβδου Ο, υπάρχει ένα µικρό κατακόρυφο κάτοπτρο. Στο πάνω µέρος το κάτοπτρου υπάρχει ένα µικρό άγκιστρο που µας επιτρέπει να το συνδέουµε µε το σώµα Σ µε ένα νήµα (κόκκινη γραµµή ΟΣ=r στο Σχήµα 1). Το κάτοπτρο είναι πακτωµένο στη θέση του µε ένα οριζόντιο µεταλλικό έλασµα, το οποίο είναι κάθετο στη διεύθυνση ΟΣ (δείτε Σχήµα 3). Αυτό επιτρέπει στο κάτοπτρο να αποκλίνει από την κατακόρυφο, σχηµατίζοντας µικρή γωνία θ µε αυτήν, όταν ασκείται πάνω του µια οριζόντια δύναµη, από το Ο προς το Σ. Σχήµα 1. Στο σηµείο Μ της οριζόντιας ράβδου τοποθετείται το σώµα Σ, το οποίο συνδέεται µε ένα νήµα µε το άγκιστρο στο πάνω µέρος του κάτοπτρου το οποίο βρίσκεται κατακόρυφα στη θέση Ο. Καθώς η ράβδος περιστρέφεται η φυγόκεντρος δύναµη ασκείται στο κάτοπτρο µε φορά από το Ο προς το Σ µε αποτέλεσµα αυτό να αποκλίνει από την κατακόρυφο. IV-2

3 Σχήµα 2. Σχηµατική αναπαράσταση της πειραµατικής διάταξης. Ο µηχανισµός του κάτοπτρου φαίνεται πιο αναλυτικά στα Σχήµατα 3 και 4. Όταν η συσκευή περιστρέφεται και το άγκιστρο στο πάνω µέρος του κάτοπτρου είναι συνδεδεµένο µε ένα νήµα µε το σώµα Σ, το κάτοπτρο αποµακρύνεται από την κατακόρυφο λόγω του ότι ασκείται πάνω του µια φυγόκεντρος δύναµη. Η µικρή γωνία θ η οποία σχηµατίζει µε την κατακόρυφο µετριέται µε τη βοήθεια µίας οριζόντιας δέσµης laser η οποία ανακλάται από το κάτοπτρο και πέφτει πάνω σε έναν κατακόρυφο χάρακα (στα δεξιά του Σχήµατος 2). Η χρήση αυτή της δέσµης laser µας επιτρέπει να µετρήσουµε πειραµατικά τη φυγόκεντρο (και κατά συνέπεια την κεντροµόλο) δύναµη καθώς η φυγοκεντρική συσκευή περιστρέφει ένα σώµα το οποίο βρίσκεται στη θέση Μ, η οποία απέχει γνωστή απόσταση r από το Ο. Η βασική ιδέα της µέτρησης παρουσιάζεται γραφικά στο Σχήµα 3. Από το Σχήµα 3 παρατηρούµε ότι όταν δεν ασκείται καµία δύναµη πάνω στο κάτοπτρο αυτό είναι κατακόρυφο και βρίσκεται στη θέση 1. Τότε η δέσµη λέιζερ η οποία είναι οριζόντια, προσπίπτει πάνω στο κάτοπτρο, ανακλάται και επιστρέφει ακριβώς στο ίδιο οριζόντιο επίπεδο και σηµειώνοντας ένα σηµείο Α πάνω σε έναν κατακόρυφο χάρακα. Αν ασκηθεί µία δύναµη στο κάτοπτρο το έλασµα (που λειτουργεί ως ελατήριο) στο οποίο αυτό είναι συνδεδεµένο θα του επιτρέψει να λυγίσει σχηµατίζοντας γωνία θ µε την κατακόρυφο. Τότε η δέσµη του λέιζερ θα ανακλαστεί και θα σηµειώσει το σηµείο Β πάνω στο κατακόρυφο χάρακα. Από τη γεωµετρία του σχήµατος είναι προφανές ότι IV-3

4 η γωνία φ η οποία σχηµατίζει η ανακλώµενη δέσµη λέιζερ µε την οριζόντια προσπίπτουσα στο κάτοπρο δέσµη είναι διπλάσια από τη γωνία θ. Σχήµα 3. Στο σηµείο Μ της οριζόντιας ράβδου τοποθετείται το σώµα Σ (Σχήµα 1), το οποίο συνδέεται µε ένα νήµα µε το άγκιστρο στο πάνω µέρος του κάτοπτρου το οποίο αρχικά βρίσκεται κατακόρυφα στη θέση 1. Καθώς η ράβδος περιστρέφεται ασκείται στο κάτοπτρο η φυγόκεντρος δύναµη µε φορά από το Ο προς το Σ µε αποτέλεσµα αυτό να αποκλίνει από την κατακόρυφο κατά µία µικρή γωνία θ και ισορροπεί στη θέση 2. Όταν η δύναµη επαναφοράς του ελάσµατος στο οποίο είναι πακτωµένο το κάτοπτρο γίνει ίση και αντίθετη µε τη φυγόκεντρο το κάτοπτρο ισορροπεί και η ανάκλαση του laser πέφτει στο σηµείο Β του χάρακα. Επίσης καθώς τόσο η γωνία θ όσο και η γωνία φ είναι πολύ µικρές θα ισχύει ότι:!! και tan (" ) # " $ %& tan " ( ) # $ % &' '% # " $ x d # " $ x ( " (& # 2) % y D # ) % y * ) (2) (3) Από τα παραπάνω φαίνεται ότι η απόκλιση y της δέσµης λέιζερ από την οριζόντια είναι ανάλογη της αποµάκρυνσης x του σηµείου στο οποίο η δέσµη ανακλάται από το κάτοπτρο (Ο) από την αρχική κατακόρυφη θέση ισορροπίας του (Ε). Μια όµως που το κάτοπτρο είναι συνδεδεµένο στη θέση του µε ένα έλασµα η αποµάκρυνση αυτή x από τη θέση ισορροπίας, θα είναι σύµφωνα µε το νόµο του Hooke ανάλογη µε τη Σχήµα 4. Ο µηχανισµός στήριξης του κάτοπτρου και το άγκιστρο στο οποίο τοποθετείται το νήµα. δύναµη που ασκείται πάνω του (F = - k x, όπου k η σταθερά του ελατηρίου) δηλαδή: F ~ x (4) IV-4

5 Από τις σχέσεις 2, 3 και 4 βλέπουµε λοιπόν ότι η δύναµη η οποία ασκείται πάνω στο κάτοπτρο της φυγοκεντρικής συσκευής είναι ανάλογη της απόκλισης y την οποία µετρούµε µε τη δέσµη λέιζερ πάνω στον κατακόρυφο χάρακα. Εποµένως έχουµε τη δυνατότητα να υπολογίσουµε τη laser στο κάτοπτρο όταν αυτό περιστρέφεται. Για να το πετύχουµε βέβαια αυτό θα πρέπει πρώτα να βαθµονοµήσουµε τη σχέση: F ~ y (5) να βρούµε δηλαδή ποια είναι η δύναµη που ασκείταί πάνω στο κάτοπτρο όταν µετρούµε την κάθε τυχαία µετατόπιση y της δέσµης laser στον κατακόρυφο χάρακα. Πειραµατική Διαδικασία Αʹ Μέρος. Βαθµονόµηση της σχέσης δύναµης απόκλισης laser (F ~ y) Έχουµε αποδείξει στα προηγούµενα ότι η σχέση ανάµεσα στα F και y είναι µία γραµµική σχέση αναλογίας. Για να τη βαθµονοµήσουµε θα χρησιµοποιήσουµε τη διάταξη του Σχήµατος 5, ώστε ασκώντας γνωστές δυνάµεις F i πάνω στο κάτοπτρο, να µετρήσουµε της αντίστοιχες αποκλίσεις y i της δέσµης laser στον κατακόρυφο χάρακα. Τα βήµατα τα οποία ακολουθούµε είναι τα ακόλουθα 1. Διατηρώντας τη φυγοκεντρική συσκευή ακίνητη στέλνουµε τη δέσµη laser πάνω στο κάτοπτρο. Σηµειώστε το σηµείο Υ 0, στο οποίο η δέσµη laser τέµνει τον κατακόρυφο χάρακα. 2. Επιλέξτε τουλάχιστον 5 σώµατα µάζας (m i ) των οποίων τη µάζα µετρήστε µε τη ψηφιακή ζυγαριά. 3. Ενώνουµε µε ένα νήµα το άγκιστρο πάνω στο κάτοπτρο µε ένα σώµα γνωστής µάζας (m i ) το οποία κρέµεται κατακόρυφα από την τροχαλία (δείτε το Σχήµα 5). Βεβαιωθείτε ότι η τροχαλία είναι στο ίδιο ύψος µε το κάτοπτρο. 4. Η δύναµη η οποία ασκείται στο κάτοπτρο είναι F i = m i g, όπου g η επιτάχυνση της βαρύτητας. 5. Σηµειώστε την ένδειξη Υ i του κατακόρυφου χάρακα στο σηµείο που πέφτει η δέσµη laser. Η απόκλιση από την προηγούµενη θέση χωρίς µάζα είναι y i = Υ i - Υ 0, και αντιστοιχεί στην παραπάνω µάζα m i. 6. Χρησιµοποιώντας τις διαφορετικές µάζες, κατασκευάζουµε έναν πίνακα τιµών της ακόλουθης µορφής, όπου ΔF i το σφάλµα στην κάθε δύναµη F i, ενώ Δm και Δy το σταθερό σφάλµα στα m i και y i αντίστοιχα. Πίνακας 1 Μάζα: m (gr) ± Δm Δύναµη: F = m g (N) Σφάλµα ΔF (N) Απόκλιση y (cm) ± Δy m 1 F 1 ΔF 1 y 1 m 2 F 2 ΔF 2 y IV-5

6 7. Χρησιµοποιώντας τα δεδοµένα του παραπάνω πίνακα κάνουµε τη γραφική παράσταση της F ως συνάρτηση του y. 8. Στη συνέχεια προσαρµόζουµε µια ευθεία ελαχίστων τετραγώνων της µορφής F = α y + β (6) όπου τα α ± Δα και β ± Δβ υπολογίζονται µε βάση τους τύπους των ελαχίστων τερτραγώνων (ή το πρόγραµµα Excel που σας έχει δοθεί). Ο παραπάνω τύπος (6) θα χρησιµοποιηθεί στα επόµενα µέρη του πειράµατος για να υπολογίζουµε την δύναµη F που αντιστοιχεί σε µία τιµή y της απόκλισης του laser την οποία µετράµε. Αντίστοιχα για δεδοµένες τιµές y ± Δy και µε βάση τις παραµέτρους της ευθείας (6) (α ± Δα και β ± Δβ ) υπολογίζουµε το σφάλµα στη δύναµη ΔF εφαρµόζοντας τις σχέσεις µετάδοσης σφάλµατος. Σχήµα 5. Σχηµατική αναπαράσταση της διάταξης για τη βαθµονόµηση της σχέσης δύναµης - απόκλισης laser στον κατακόρυφο χάρακα (Εξίσωση 6). IV-6

7 Βʹ Μέρος. Εξάρτηση της κεντροµόλου δύναµης F από την ακτίνα περιστροφής r Σε αυτό το µέρος του πειράµατος θα δείξουµε ότι η στην οµαλή κυκλική κίνηση διατηρώντας σταθερά τα m και ω, η κεντροµόλος δύναµη είναι ανάλογη της ακτίνας r της κυκλικής τροχιάς. 1. Χωρίς να τοποθετήσετε κανένα σώµα πάνω στη φυγοκεντρική συσκευή ανοίγουµε το τροφοδοτικό. 2. Σηµειώνουµε την ένδειξη Υ 0 του κατακόρυφου χάρακα στο σηµείο που πέφτει η δέσµη laser. 3. Υπολογίζουµε την περίοδο περιστροφής Τ ± ΔΤ µετρώντας το χρόνο που απαιτείται για 10 περιστροφές. Επίσης υπολογίζουµε την κυκλική συχνότητα ω ± Δω που αντιστοιχεί σε αυτή την περίοδο. 4. Επιλέγουµε ένα από τα τρία σώµατα τα οποία µπορούν να τοποθετηθούν στη θέση Μ της φυγοκεντρικής συσκευής, µετράµε τη µάζα του m ± Δm, και το τοποθετούµε στη συσκευή. 5. Συνδέουµε το σώµα µε το άγκιστρο του κάτοπτρου χρησιµοποιώντας ένα µη εκτατό νήµα, και µετράµε την απόσταση r 1, ανάµεσα στο κάτοπτρο και το κέντρο µάζας του σώµατος 6. Ξεκινάµε πάλι τη φυγοκεντρική συσκευή και διατηρώντας την ίδια γωνιακή ταχύτητα ω σηµειώνουµε την ένδειξη Υ 1 του κατακόρυφου χάρακα στο σηµείο που πέφτει η δέσµη laser.. Η απόκλιση από την προηγούµενη θέση χωρίς µάζα είναι y 1 = Υ 1 - Υ Στη συνέχεια σταµατάµε τη συσκευή, µετακινούµε τη µάζα σε µία νέα θέση r 2, και µετράµε τη νέα απόκλιση y Επαναλάβετε τη διαδικασία για τουλάχιστον 5 διαφορετικές απόστασεις r, χρησιµοποιώντας την ίδια µάζα και γωνιακή ταχύτητα. Κατασκευάστε ένα πίνακα τιµών της µορφής που ακολουθεί. Στον πίνακα αυτό η δύναµη F i και το σφάλµα σε αυτή ΔF i υπολογίζονται µε βάση την εξίσωση βαθµονόµησης (Εξίσωση 6) χρησιµοποιώντας την αντίστοιχη τιµή y i και το σφάλµα της Δy. Πίνακας 2 Ακτίνα: r ± Δr (cm) Απόκλιση y ± Δy (cm) Δύναµη: F (N) Σφάλµα ΔF (N) r 1 y 1 F 1 ΔF Χρησιµοποιώντας τα δεδοµένα του παραπάνω πίνακα κάνουµε τη γραφική παράσταση της F συνάρτησει του r. 10. Στη συνέχεια προσαρµόζουµε µια ευθεία ελαχίστων τετραγώνων και υπολογίζουµε την κλίση (α), τη διατοµή (β) και τα σφάλµατά τους. 11. Συµφωνούν οι τιµές τους που υπολογίσατε µε τις αντίστοιχες θεωρητικά αναµενόµενες για την συγκεκριµένη µάζα m, και γωνιακή ταχύτητα ω που χρησιµοποιήσατε; IV-7

8 Γʹ Μέρος. Εξάρτηση της κεντροµόλου δύναµης F από την περιστρεφόµενη µάζα m Στο τµήµα αυτό του πειράµατος θα δείξουµε ότι στην οµαλή κυκλική κίνηση διατηρώντας σταθερά τα r και ω, η κεντροµόλος δύναµη είναι ανάλογη της περιστεφόµενης µάζας m. 1. Επιλέγουµε µία από τις τρεις διαθέσιµες µάζες. 2. Τοποθετούµε τη µάζα σε µία θέση της φυγοκεντρικής συσκευής η οποία απέχει απόσταση r ± Δr, από το κάτοπτρο και τη συνδέουµε µε το άγκιστρο του κάτοπτρου χρησιµοποιώντας ένα µη εκτατό νήµα. 3. Ξεκινάµε και πάλι τη φυγοκεντρική συσκευή διατηρώντας την ίδια κυκλική συχνότητα ω ± Δω που είχαµε στο προηγούµενο µέρος (Β). Για επιβεβαίωση υπολογίζουµε εκ νέου την κυκλική συχνότητα µετρώντας το χρόνο που απαιτείται για την πραγµατοποίηση 10 περιστροφών. 4. Καταγράφουµε την ένδειξη Υ 1 του κατακόρυφου χάρακα στο σηµείο που πέφτει η δέσµη laser. Η απόκλιση από την αρχική θέση χωρίς µάζα είναι y 1 = Υ 1 - Υ Στη συνέχεια σταµατάµε τη συσκευή και τοποθετούµε στην ίδια θέση το δεύτερο σώµα µάζας m 2. Χωρίς να αλλάξουµε τη γωνιακή ταχύτητα ξεκινάµε πάλι τη συσκρυή και µετράµε τη νέα απόκλιση y 2. Επαναλαµβάνουµε την ίδια διαδικασία και για το τρίτο σώµα. 6. Κατασκευάζουµε ένα πίνακα τιµών της µορφής που ακολουθεί. Στον πίνακα αυτό η δύναµη F i και το σφάλµα της ΔF i υπολογίζονται µε βάση την εξίσωση βαθµονόµησης (Εξίσωση 6) χρησιµοποιώντας την αντίστοιχη τιµή y i και το σφάλµα της Πίνακας 3 Μάζα: m ± Δm (gr) Απόκλιση y ± Δy (cm) Δύναµη: F (N) Σφάλµα ΔF (N) r 1 y 1 F 1 ΔF 1 r 2 y 2 F 2 ΔF Χρησιµοποιώντας τα δεδοµένα του παραπάνω πίνακα κάνουµε τη γραφική παράσταση της δύναµης F συναρτήσει του m. 8. Στη συνέχεια προσαρµόζουµε µια ευθεία ελαχίστων τετραγώνων και υπολογίζουµε την κλίση (α), τη διατοµή (β), και τα σφάλµατά τους. 9. Συµφωνούν οι τιµές των α και β που υπολογίσατε µε τις θεωρητικά αναµενόµενες για την συγκεκριµένη ακτίνα r, και γωνιακή ταχύτητα ω που χρησιµοποιήσατε; IV-8

9 Δʹ Μέρος. Εξάρτηση της κεντροµόλου δύναµης F από τη γωνιακή ταχύτητα ω Στο µέρος αυτό του πειράµατος θα δείξουµε ότι στην οµαλή κυκλική κίνηση διατηρώντας σταθερά τα r και m, η κεντροµόλος δύναµη είναι ανάλογη του τετραγώνου της γωνιακής ταχύτητας ω µε την οποία περιστρέφεται το σώµα. ω (rad/sec) 1. Μετράµε τη µάζα των τριών σωµάτων τα οποία µπορούν να τοποθετηθούν στη θέση Μ της φυγοκεντρικής συσκευής 2. Επιλέγουµε µία θέση r ± Δr, τοποθετούµε την πρώτη µάζα, m 1, στη συσκευή και τη συνδέουµε µε το άγκιστρο του κάτοπτρου χρησιµοποιώντας ένα µη εκτατό νήµα. 3. Ξεκινάµε και πάλι τη φυγοκεντρική συσκευή και υπολογίζουµε την περίοδο περιστροφής Τ 1 ± ΔΤ 1 καθώς και την κυκλική συχνότητα ω 1 ± Δω 1 που αντιστοιχεί σε αυτή. 4. Καταγράφουµε την ένδειξη Υ 1 του κατακόρυφου χάρακα στο σηµείο που πέφτει η δέσµη laser. Η απόκλιση από την αρχική θέση χωρίς µάζα είναι y 1 = Υ 1 - Υ Στη συνέχεια διατηρώντας την ίδια µάζα m και την ίδια ακτίνα r, αλλάζουµε την ταχύτητα περιστροφής µετράµε τη νέα γωνιακή ταχύτητα (ω 2 ) και τη νέα απόκλιση y Επιλέγοντας τουλάχιστον 8 διαφορετικές γωνιακές ταχύτητες κατασκευάζουµε ένα πίνακα τιµών της µορφής που ακολουθεί. Στον πίνακα αυτό η δύναµη F i και το σφάλµα σε αυτή ΔF i υπολογίζονται µε βάση την εξίσωση βαθµονόµησης (Εξίσωση 6) χρησιµοποιώντας την αντίστοιχη τιµή y i και το σφάλµα της. Δω (rad/sec) log (ω) Πίνακας 4 Δ(log(ω)) Απόκλιση y ± Δy (cm) Δύναµη: F (N) Σφάλµα ΔF (N) log(f) Δ(log(F)) ω y 1 F 1 ΔF 1 log(f 1 )... ω y 2 F 2 ΔF 2 log(f 2 ) Χρησιµοποιώντας τα δεδοµένα του παραπάνω πίνακα κάνουµε µία γραφική παράσταση της log(f) ως συνάρτηση του log(ω). Μα αυτό τον τρόπο γραµµικοποιούµε τη σχέση (1) ως προς ω. 8. Στη συνέχεια προσαρµόζουµε µια ευθεία ελαχίστων τετραγώνων και υπολογίζουµε την κλίση (α), τη διατοµή (β), και τα σφάλµατά τους. 9. Συµφωνούν οι τιµές των α και β που υπολογίσατε µε τις θεωρητικά αναµενόµενες για την συγκεκριµένη ακτίνα r, και µάζα m που χρησιµοποιήσατε; IV-9

10 Ερωτήσεις 1) Ποιες νοµίζετε ότι είναι οι µεγαλύτερες πηγές συστηµατικών σφαλµάτων στο πείραµα; 2) Πώς νοµίζετε ότι επηρεάζουν τα αποτελέσµατά σας; (Για παράδειγµα σας οδηγούν να υπερεκτιµήσετε το συντελεστή αναλογίας ανάµεσα στο F και r, ή σας οδηγούν σε µη µηδενική τιµή του F για µηδενικό r.) 3) Αποδείξτε ότι σύµφωνα µε τη γεωµετρία του Σχήµατος 2, φ=2θ. 4) Ποιος τύπος µας δίνει το πιθανό σφάλµα στην δύναµη F της σχέσης (6) ως συνάρτηση των α, β, y και των σφαλµάτων τους; 5) Ποιο είναι το σφάλµα στη µέτρηση της απόκλισης y i Βιβλιογραφία Serway R. A., Physics for Scientists and Engineers 3rd edition, Τοµος 1 Μηχανική (µετάφραση Λ. Ρεσβάνη). Centrifugal force of an orbiting body - Measuring with the centrifugal force apparatus (LD Didactic P ) Centrifugal force apparatus (Leybold Didactic ) IV-10

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου να: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς

ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε το φυσικό εκκρεµές και θα µετρήσουµε την επιτάχυνση της βαρύτητας. Θα εξετάσουµε λοιπόν πειραµατικά τα εξής: Την ταλάντωση

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ V Ροπή Αδράνειας Στερεού Σώµατος

ΠΕΙΡΑΜΑ V Ροπή Αδράνειας Στερεού Σώµατος ΠΕΙΡΑΜΑ V Ροπή Αδράνειας Στερεού Σώµατος Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την περιστροφική κίνηση που εκτελεί ένα υλικό σηµείο ή ένα στερεό σώµα, σταθερού µεγέθους και σχήµατος, υπό την

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ V Ταχύτητα και Επιτάχυνση

ΠΕΙΡΑΜΑ V Ταχύτητα και Επιτάχυνση ΠΕΙΡΑΜΑ V Ταχύτητα και Επιτάχυνση Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κίνηση ενός σώµατος και θα διερευνήσουµε τους δυο πρώτους νόµους του Newton. Επιπλέον θα µετρήσουµε την επιτάχυνση

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ II-α Aπλό εκκρεµές

ΠΕΙΡΑΜΑ II-α Aπλό εκκρεµές ΠΕΙΡΑΜΑ II-α Aπλό εκκρεµές Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε το απλό ή µαθηµατικό εκκρεµές και θα µετρήσουµε την επιτάχυνση της βαρύτητας. Θα εξετάσουµε λοιπόν πειραµατικά τα εξής: Την

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ III Μελέτη Ελευθερης Πτώσης

ΠΕΙΡΑΜΑ III Μελέτη Ελευθερης Πτώσης ΠΕΙΡΑΜΑ III Μελέτη Ελευθερης Πτώσης Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κίνηση ενός σώµατος καθώς πέφτει ελεύθερα υπό την επίδραση του βάρους του. Πιο συγκεκριµένα θα επαληθεύσουµε τις

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα - &. ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου] ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα). Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος

ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την περιστροφική κίνηση που εκτελεί ένα υλικό σηµείο ή ένα στερεό σώµα, σταθερού µεγέθους και σχήµατος, µε την

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 206-207 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/03/207 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑΠΕΝΤΕ (15) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος

ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος - &. ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την περιστροφική κίνηση που εκτελεί ένα υλικό σηµείο ή ένα στερεό σώµα, σταθερού µεγέθους και σχήµατος,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Ερωτήσεις 1. Στην ομαλή κυκλική κίνηση, α. Το μέτρο της ταχύτητας διατηρείται σταθερό. β. Η ταχύτητα διατηρείται σταθερή. γ. Το διάνυσμα της ταχύτητας υ έχει την

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 007 Α ΛΥΚΕΙΟΥ Θέµα ο ΦΥΣΙΚΗ Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε ένα σώµα

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

A3. Στο στιγμιότυπο αρμονικού μηχανικού κύματος του Σχήματος 1, παριστάνονται οι ταχύτητες ταλάντωσης δύο σημείων του.

A3. Στο στιγμιότυπο αρμονικού μηχανικού κύματος του Σχήματος 1, παριστάνονται οι ταχύτητες ταλάντωσης δύο σημείων του. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Στις ερωτήσεις Α1-Α4 να γράψετε στο

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Επαναληπτικά Θέµατα ΟΕΦΕ 007 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ZHTHMA Στις ερωτήσεις έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ Ι-α Aπλό εκκρεµές

ΠΕΙΡΑΜΑ Ι-α Aπλό εκκρεµές - &. ΠΕΙΡΑΜΑ Ι-α Aπλό εκκρεµές Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε το απλό ή µαθηµατικό εκκρεµές και θα µετρήσουµε την επιτάχυνση της βαρύτητας. Θα εξετάσουµε λοιπόν πειραµατικά τα εξής:

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό

Διαβάστε περισσότερα

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης Γενικές εξετάσεις 0 Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό

Διαβάστε περισσότερα

µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης.

µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης. 1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ () ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης. Το φύλλο εργασίας στηρίζεται στο αντίστοιχο του Παιδαγωγικού Ινστιτούτου που

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 8. Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων

ΠΕΙΡΑΜΑ 8. Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων ΠΕΙΡΑΜΑ 8 Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων Σκοπός του πειράµατος Σκοπός του πειράµατος είναι η µελέτη της ροπής αδρανείας διαφόρων στερεών σωµάτων και των στροφικών ταλαντώσεων που εκτελούν γύρω

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες ΕΡΓΑΣΙΑ 3 η Παράδοση 9--9 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση 1 A) Δυο τραίνα ταξιδεύουν στην ίδια σιδηροτροχιά το ένα πίσω από το άλλο. Το πρώτο τραίνο κινείται με ταχύτητα 1 m s. Το δεύτερο

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου 1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου

Διαβάστε περισσότερα

ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ

ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ ΜΕΛΕΤΗ ΣΤΑΣΙΜΩΝ ΚΥΜΑΤΩΝ ΣΕ ΣΩΛΗΝΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΤΑΧΥΤΗΤΑΣ ΤΟΥ ΗΧΟΥ ΣΤΟΝ ΑΕΡΑ ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Ασκήσεις στη Κυκλική Κίνηση

Ασκήσεις στη Κυκλική Κίνηση 1 Ασκήσεις στη Κυκλική Κίνηση 1.Δυο τροχοί ακτινών R 1=40cm και R 2=10cm συνδέονται με ιμάντα και περιστρέφονται ο πρώτος με συχνότητα f 1=4Hz, ο δε δεύτερος με συχνότητα f 2. Να βρεθεί ο αριθμός των στροφών

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

Περι-Φυσικής. Θέµα Α. 1ο Επαναληπτικό ιαγώνισµα Καµπυλόγραµµες Κινήσεις - Κρούσεις. Ονοµατεπώνυµο: Βαθµολογία %

Περι-Φυσικής. Θέµα Α. 1ο Επαναληπτικό ιαγώνισµα Καµπυλόγραµµες Κινήσεις - Κρούσεις. Ονοµατεπώνυµο: Βαθµολογία % 1ο Επαναληπτικό ιαγώνισµα Καµπυλόγραµµες Κινήσεις - Κρούσεις Ηµεροµηνία : Γενάρης 2014 Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α ιάρκεια : 3 ώρες Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστή απάντηση [4 5 = 20 µονάδες]

Διαβάστε περισσότερα

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Προσοχή : Να διαβάσετε τις οδηγίες στην τελευταία σελίδα! Θέµα 1ο

Προσοχή : Να διαβάσετε τις οδηγίες στην τελευταία σελίδα! Θέµα 1ο ιαγώνισµα - υναµική στο Επίπεδο ΙΙ Ηµεροµηνία : Φλεβάρης 2014 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Προσοχή : Να διαβάσετε τις οδηγίες στην τελευταία σελίδα! Θέµα 1ο Στις ερωτήσεις 1.1 1.4 επιλέξτε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ IX Θερµιδοµετρία και Θερµοστοιχεία

ΠΕΙΡΑΜΑ IX Θερµιδοµετρία και Θερµοστοιχεία ΠΕΙΡΑΜΑ IX Θερµιδοµετρία και Θερµοστοιχεία Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε τισ βασικές αρχές της θερµιδοµετρίας προκειµένου να µετρήσουµε τα εξής: Ειδική θερµότητα θερµιδοµέτρου.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ. Ροπή Αδράνειας

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ. Ροπή Αδράνειας ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ 1 ΠΟΜ 114 (Ε) MHXANIKH Ροπή Αδράνειας Πηγή Πληροφοριών: Leybold Physics Leaflets ΟΝΟΜΑ

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 1: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου)

Εργαστηριακή άσκηση 1: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Εργαστηριακή άσκηση 1: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) ΣΤΟΧΟΙ Με τη βοήθεια των γραφικών

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΝΟΜΑ ΤΜΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση 1 A' ΛΥΚΕΙΥ ΖΗΤΗΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση 1. Το µέτρο της µετατόπισης

Διαβάστε περισσότερα

1ο ιαγώνισµα - Οριζόντια Βολή - Κυκλική Κίνηση. Θέµα 1ο

1ο ιαγώνισµα - Οριζόντια Βολή - Κυκλική Κίνηση. Θέµα 1ο 1ο ιαγώνισµα - Οριζόντια Βολή - Κυκλική Κίνηση Ηµεροµηνία : Νοέµβρης 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα 1ο Οµάδα Α Στις ερωτήσεις 1.1 1.4 επιλέξτε την σωστή απάντηση [4 5 = 20 µονάδες]

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

Κυκλική Κίνηση - Οριζόντια βολή

Κυκλική Κίνηση - Οριζόντια βολή Μάθημα/Τάξη: Κεφάλαιο: Φυσική Προσανατολισμού Β Λυκείου Κυκλική Κίνηση - Οριζόντια βολή Ονοματεπώνυμο Μαθητή: Ημερομηνία: 24-10-2016 Επιδιωκόμενος Στόχος: 85/100 Θέμα 1 ο Στις ερωτήσεις Α.1 Α.4 επιλέξτε

Διαβάστε περισσότερα

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s] ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό

Διαβάστε περισσότερα

F r. www.ylikonet.gr 1

F r. www.ylikonet.gr 1 3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

Ταλαντώσεις σώματος αλλά και συστήματος.

Ταλαντώσεις σώματος αλλά και συστήματος. σώματος αλλά και συστήματος. Μια καλοκαιρινή περιπλάνηση. Τα δυο σώµατα Α και Β µε ίσες µάζες g, ηρεµούν όπως στο σχήµα, ό- που το ελατήριο έχει σταθερά 00Ν/, ενώ το Α βρίσκεται σε ύψος h0,45 από το έδαφος.

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1 4 η Εργασία 1) ύο δυνάµεις F 1 και F 2 ασκούνται σε σώµα µάζας 5kg. Εάν F 1 =20N και F 2 =15N βρείτε την επιτάχυνση του σώµατος στα σχήµατα (α) και (β). [ 2 µονάδες] F 2 F 2 90 o 60 o (α) F 1 (β) F 1 2)

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ VII Περιοδική Κίνηση

ΠΕΙΡΑΜΑ VII Περιοδική Κίνηση ΠΕΙΡΑΜΑ VII Περιοδική Κίνηση Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε τον απλό αρµονικό ταλαντωτή και τη συµπεριφορά του στην περίπτωση παρουσίας δυνάµεων απόσβεσης. Πιο συγκεκριµένα θα εξετάσουµε:

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009-2015 Σελίδα 1 από 13 Μηχανική Στερεού Σώματος 1. Στο πιο κάτω σχήμα φαίνονται δύο όμοιες πλατφόρμες οι οποίες μπορούν να περιστρέφονται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ VIII Θερµιδοµετρία και Θερµοστοιχεία

ΠΕΙΡΑΜΑ VIII Θερµιδοµετρία και Θερµοστοιχεία ΠΕΙΡΑΜΑ VIII Θερµιδοµετρία και Θερµοστοιχεία Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε τις βασικές αρχές της θερµιδοµετρίας προκειµένου να µετρήσουµε τα εξής: Ειδική θερµότητα θερµιδοµέτρου.

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ

Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Ποια η σημασία των παρακάτω μεγεθών; Αναφερόμαστε στην κυκλική κίνηση. Α. Επιτρόχια επιτάχυνση: Β. Κεντρομόλος επιτάχυνση: Γ. Συχνότητα: Δ. Περίοδος: 2. Ένας τροχός περιστρέφεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

περιφέρειας των δίσκων, Μονάδες 6 Δ2) το μέτρο της γωνιακής ταχύτητας του δίσκου (1), Μονάδες 5

περιφέρειας των δίσκων, Μονάδες 6 Δ2) το μέτρο της γωνιακής ταχύτητας του δίσκου (1), Μονάδες 5 15958 Στο σχήμα φαίνονται δύο δίσκοι με ακτίνες R1= 0,2 m και R2 = 0,4 m αντίστοιχα, οι οποίοι συνδέονται μεταξύ τους με μη ελαστικό λουρί. Οι δίσκοι περιστρέφονται γύρω από σταθερούς άξονες που διέρχονται

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ VI Περιοδική Κίνηση

ΠΕΙΡΑΜΑ VI Περιοδική Κίνηση ΠΕΙΡΑΜΑ VI Περιοδική Κίνηση Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε τον απλό αρµονικό ταλαντωτή και τη συµπεριφορά του στην περίπτωση παρουσίας δυνάµεων απόσβεσης. Πιο συγκεκριµένα θα εξετάσουµε:

Διαβάστε περισσότερα

2) Βάρος και κυκλική κίνηση. Β) Κυκλική κίνηση

2) Βάρος και κυκλική κίνηση. Β) Κυκλική κίνηση Β) Κυκλική κίνηση 1) Υπολογισμοί στην ομαλή κυκλική κίνηση. Μια μικρή σφαίρα, μάζας 2kg, εκτελεί ομαλή κυκλική κίνηση, σε κύκλο κέντρου Ο και ακτίνας 0,5m, όπως στο σχήμα. Τη χρονική στιγμή t=0 η σφαίρα

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο 10-11-013 ΘΕΜΑ 1 ο Α) Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Κυριακή 20-3-2011 2 ΘΕΜΑ 1ο Να γράψετε στο

Διαβάστε περισσότερα

υναµική στο επίπεδο.

υναµική στο επίπεδο. στο επίπεδο. 1.3.1. Η τάση του νήµατος, πού και γιατί; Έστω ότι σε ένα λείο οριζόντιο επίπεδο ηρεµούν δύο σώµατα Α και Β µε µάζες Μ=3kg και m=2kg αντίστοιχα, τα οποία συνδέονται µε ένα νήµα. Σε µια στιγµή

Διαβάστε περισσότερα

Θέµα 1ο. κινητό εκτελεί ταυτόχρονα δύο ή περισσότερες κινήσεις :

Θέµα 1ο. κινητό εκτελεί ταυτόχρονα δύο ή περισσότερες κινήσεις : 1ο ιαγώνισµα - Οριζόντια Βολή - Κυκλική Κίνηση Ηµεροµηνία : Νοέµβρης 2012 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα 1ο Στις ερωτήσεις 1.1 1.4 επιλέξτε την σωστη απάντηση (4 5 = 20 µονάδες ) 1.1.

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ÈÅÌÅËÉÏ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ÈÅÌÅËÉÏ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3 1. Θέλουµε να µετακινήσουµε ένα κιβώτιο κατά µήκος ενός λείου κεκλιµένου επιπέδου γωνίας κλίσης 20 ο µε την οριζόντια διεύθυνση. Δίνουµε στο κιβώτιο µια αρχική ταχύτητα 5.0m/s και

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3 1. Θέλουµε να µετακινήσουµε ένα κιβώτιο κατά µήκος ενός λείου κεκλιµένου επιπέδου γωνίας κλίσης 20 ο µε την οριζόντια διεύθυνση. Δίνουµε στο κιβώτιο µια αρχική ταχύτητα 5.0m/s και

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΥΣΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 11 η Ευρωπαϊκή Ολυµπιάδα Επιστηµών EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συµµετέχουν: (1) (2) (3) Σέρρες 08/12/2012

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2011

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2011 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 0 ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που

Διαβάστε περισσότερα

υ r 1 F r 60 F r A 1

υ r 1 F r 60 F r A  1 2.2. Ασκήσεις Έργου-Ενέργειας. 4.2.1. Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ. Ένα σώµα µάζας m=2kg ηρεµεί σε οριζόντιο επίπεδο. Σε µια στιγµή δέχεται την επίδραση οριζόντιας δύνα- µης, το µέτρο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 0 ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία τη συµπληρώνει σωστά. Α. Σε

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO Ε.Κ.Φ.Ε. Νέας Σμύρνης

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO Ε.Κ.Φ.Ε. Νέας Σμύρνης ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 14-15 Ε.Κ.Φ.Ε. Νέας Σμύρνης Εξέταση στη Φυσική ΛΥΚΕΙΟ: Τριμελής ομάδα μαθητών: 1.. 3. Αναπληρωματικός: Θέματα: Ηλ. Μαυροματίδης Β Σειρά Θεμάτων (Φυσική) Μέτρηση της

Διαβάστε περισσότερα

Παράδειγµα διατήρησης στροφορµής

Παράδειγµα διατήρησης στροφορµής Παράδειγµα διατήρησης στροφορµής ΦΥΣ 3 - Διαλ.6 Κολόνα πέφτει σε γίγαντα. Δίνονται η µάζα του γίγαντα Μ, της κολόνας m, το µήκος της κολόνας l, η ταχύτητα της κολόνας v. H κίνηση γίνεται σε λεία επιφάνεια.

Διαβάστε περισσότερα

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1 1. Νήμα τυλίγεται σε λεπτό αυλάκι κατά μήκος της περιφέρειας κυλίνδρου, που έχει μάζα 2 kg και ακτίνα 0,2 m. Ο κύλινδρος συγκρατείται αρχικά στη θέση που φαίνεται στο σχήμα, με το νήμα να εξέχει τεντωμένο

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο.

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο. ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 16118 Δύο σφαιρίδια Σ 1 και Σ 2 βρίσκονται σε λείο οριζόντιο τραπέζι (κάτοψη του οποίου φαίνεται στο

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα