Introduction: Noncommutative Geometry Models for Particle Physics and Cosmology. Matilde Marcolli

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Introduction: Noncommutative Geometry Models for Particle Physics and Cosmology. Matilde Marcolli"

Transcript

1 Introduction: Noncommutative Geometry Models for Particle Physics and Cosmology Matilde Marcolli Ma148b: Winter 2016

2 Focus of the class: Geometrization of physics: general relativity, gauge theories, extra dimensions... Focus on: Standard Model of elementary particle physics, and its extensions (right handed neutrinos, supersymmetry, Pati-Salaam,...) Also focus on Matter coupled to gravity: curved backgrounds Gravity and cosmology: modified gravity models, cosmic topology, multifractal structures in cosmology, gravitational instantons Mathematical perspective: spectral and noncommutative geometry 1

3 What is a good geometric model of physics? Simplicity: difficult computations follow from simple principles Predictive power: recovers known physical properties and provides new insight on physics, from which new testable calculations Elegance: entia non sunt multiplicanda praeter necessitatem (Ockham s razor) 2

4 Two Standard Models: Standard Model of Elementary Particles Standard Cosmological Model For both theories looking for possible extensions: for particles right-handed-neutrino sector, supersymmetry, dark matter,...; for cosmology modified gravity, brane-cosmology, other dark matter and dark energy models, inflation scenarios,... Both theories depend on parameters that are not fixed by the theory Particle physics and cosmology interact (early universe models) What input from geometry on these models? 3

5 Basic Mathematical Toolkit Smooth Manifolds: M (with M = ) locally like R n : smooth atlas M = i U i, φ i : U i R n homeomorphisms, local coordinates x i = (x µ i ), on U i U j change of coordinates φ ij = φ j φ 1 i C -diffeomorphisms 4

6 Vector Bundles: E M vector bundle rank N over manifold of dim n projection π : E M M = i U i with φ i : U i R N π 1 (U i ) homeomorphisms with π φ i (x, v) = x transition functions: φ 1 j φ i : (U i U j ) R N (U i U j ) R N with φ 1 j φ i (x, v) = (x, φ ij (x)v) φ ij : U i U j GL N (C) satisfy cocyle property: φ ii (x) = id and φ ij (x)φ jk (x)φ ki (x) = id Sections: s Γ(U, E) open U M maps s : U E with π s(x) = x s(x) = φ i (x, s i (x)) and s i (x) = φ ij (x)s j (x) 5

7 6

8 Tensors and differential forms as sections of vector bundles Tangent bundle T M (tangent vectors), cotangent bundle T M (1-forms) Vector field: section V = (v µ ) Γ(M, T M) metric tensor g µν symmetric tensor section of T M T M (p, q)-tensors: T = (T i 1...i p j 1...j q ) section in Γ(M, T M p T M q ) 1-form: section α = (α µ ) Γ(M, T M) k-form ω Γ(M, k (T M)) 7

9 8

10 Connections Linear map : Γ(M, E) Γ(M, E T M) with Leibniz rule: (fs) = f (s) + s df for f C (M) and s Γ(M, E) local form: on U i R N section s i (x) = s α (x)e α (x) with e α (x) local frame with ω α βe α = e α s i = (ds α i + ωα βs β i )e α ω = (ω α β) is an N N-matrix of 1-forms: 1-form with values in End(E) in local coordinates x µ on U i : ω α β = ω α β µ dx µ V s contraction of s with vector field V 9

11 Curvature of a connection F Γ(M, End(E) Λ 2 (T M)) F (V, W )(s) = V W s W V s [V,W ] s F α β µν curvature 2-form: Ω = dω + ω ω F α β = dω α β + ω α γ ω γ β 10

12 Action Functionals Classical mechanics: equations of motion describe a path that is minimizing (or at least stationary) for the action functional... variational principle S(q(t)) = t1 t 0 Lagrangian L(q(t), q(t), t) δs = t1 t 0 ɛ L q + ɛ L q = t1 t 0 L(q(t), q(t), t) dt ɛ( L q d L dt q ) after integration by parts + boundary conditions ɛ(t 0 ) = ɛ(t 1 ) = 0 Euler Lagrange equations: δs = 0 L q d dt equations of motion L q = 0 11

13 Symmetries and conservation laws: Noether s theorem Example: Lagrangian invariant under translational symmetries in one direction q k p k = L q k L q k = 0 d L dt q k = 0 momentum conservation Important conceptual step in the geometrization of physics program: physical conserved quantity have geometric meaning (symmetries) 12

14 Action Functionals General Relativity: Einstein field equations are variational equation δs = 0 for Einstein Hilbert action 1 S(g µν ) = M 2κ R g d 4 x M = 4-dimensional Lorentzian manifold g µν = metric tensor signature (, +, +, +) g = det(g µν ) κ = 8πGc 4 G = gravitational constant, c = speed of light in vacuum R = Ricci scalar 13

15 Ricci scalar R: Riemannian curvature R ρ σµν R ρ σµν = µ Γ ρ νσ ν Γ ρ µσ + Γ ρ µλ Γλ νσ Γ ρ νλ Γλ µσ Levi-Civita connection (Christoffel symbols) Γ ρ νσ = 1 2 gρµ ( σ g µν + ν g µσ µ g νσ ) convention of summation over repeated indices for tensor calculus Ricci curvature tensor: contraction of Riemannian curvature R µν = R ρ µρν Ricci scalar: further contraction (trace) R = g µν R µν = R µ µ 14

16 Variation Variation of Riemannian curvature δr ρ σµν = µ δγ ρ νσ ν δγ ρ µσ + δγ ρ µλ Γλ νσ + Γ ρ µλ δγλ νσ δγ ρ νλ Γλ µσ Γ ρ νλ δγλ µσ δγ ρ µλ is a tensor (difference of connections) Rewrite variation δr ρ σµν as δr ρ σµν = µ (δγ ρ νσ) ν (δγ ρ µσ) with covariant derivative λ (δγ ρ νµ) = λ (δγ ρ νµ) + Γ ρ σλ δγσ νµ Γ σ νλ δγρ σµ after contracting indices: Ricci tensor δr µν = ρ (δγ ρ νµ) ν (δγ ρ ρµ) Ricci scalar variation δr = R µν δg µν +g µν δr µν δr = R µν δg µν + σ (g µν δγ σ νµ g µσ δγ ρ ρµ) 15

17 so get variation δr δg µν = R µν also have total derivative: g µ A µ = µ ( ga µ ) so M σ(g µν δγ σ νµ g µσ δγ ρ ρµ) g = 0 Variation of determinant g = det(g µν ): Jacobi formula d dt log det A(t) = Tr(A 1 (t) d dt A(t)) for invertible matrix A, so get δg = δ det(g µν ) = g g µν δg µν δ g = 1 2 g δg = 1 2 gg µν δg µν δg µν = g µσ (δg σλ )g λν for inverse matrix δ g δg µν = 1 2 g µν g 16

18 Variation equation for Einstein Hilbert action δs = (R µν 1 M 2 g µνr) δg µν g d 4 x stationary equation δs = 0 R µν 1 2 g µνr = 0 Einstein equation in vacuum Other variants: Gravity coupled to matter L M Lagrangian S = ( 1 M 2κ R + L M) g d 4 x energy momentum tensor T µν = 2κ g δ( gl M ) δg µν gives variational equations δs = 0: R µν 1 2 g µνr = 8πG c 4 T µν = matter 17

19 Action with cosmological constant: S = ( 1 M 2κ (R 2Λ) + L M) g d 4 x gives variational equation δs = 0: R µν 1 2 g µνr + Λg µν = 8πG c 4 T µν For more details see: Sean Carroll, Spacetime and Geometry, Addison Wesley, 2004 Note: Euclidean gravity when g µν Riemannian: signature (+, +, +, +) used in quantum gravity and quantum cosmology Not all geometries admit Wick rotations between Riemannian and Loretzian signature (there are, for example, topological obstructions) 18

20 Action Functionals Yang Mills: gauge theories SU(N) Hermitian vector bundle E Lie algebra su(n) generators T a = (T a α β) Tr(T a T b ) = 1 2 δab, [T a, T b ] = if abc T c structure constants f abc Connections: ω α β µ = A a µ T a α β gauge potentials A a µ Curvature: Fµν a = µ A a ν ν A a µ + gf abc A b µ A c ν covariant derivative µ = µ igt a A a µ [ µ, ν ] = igt a Fµν a 19

21 Yang Mills Lagrangian: L(A) = 1 2 Tr(F 2 ) = 1 4 F a µν F a µν Yang Mills action: S(A) = M L(A) g d 4 x Equations of motion: µ F a µν + gf abc A b µ F c µν = 0 or equivalently ( µ F µν ) a = 0 where F µν = T a F a µν case with N = 1: electromagnetism U(1) equations give Maxwell s equations in vacuum unlike Maxwell in general Yang-Mills equations are non-linear 20

22 Lagrangian formalism in perturbative QFT For simplicity consider example of scalar field theory in dim D L(φ) = 1 2 ( φ)2 m2 2 φ2 L int (φ) Lorentzian signature with ( φ) 2 = g µν µ φ ν φ; interaction part L int (φ) polynomial; action: S(φ) = L(φ) gd D x M Classical solutions: stationary points of action; quantum case: sum over all confiurations weights by the action: oscillatory integral around classical Z = e is(φ) D[φ] Observables: O(φ) function of the classical field; expectation value: O = Z 1 O(φ)e is(φ) D[φ] This -dim integral not well defined: replace by a formal series expansion (perturbative QFT) 21

23 Euclidean QFT: metric g µν Riemannian L(φ) = 1 2 ( φ)2 + m2 2 φ2 + L int (φ) action S(φ) = M L(φ) gd D x Z = e S(φ) D[φ] O = Z 1 O(φ)e S(φ) D[φ] free-field part and interaction part S(φ) = S 0 (φ) + S int (φ) interaction part as perturbation: free-field as Gaussian integral (quadratic form) integration of polynomials under Gaussians (repeated integration by parts): bookkeeping of terms, labelled by graphs (Feynman graphs) 22

24 Perturbative expansion: Feynman rules and Feynman diagrams S eff (φ) = S 0 (φ)+ Γ Γ(φ) = 1 N! i p i=0 U(Γ(p 1,..., p N )) = l = b 1 (Γ) loops Γ(φ) #Aut(Γ) (1PI graphs) ˆφ(p 1 ) ˆφ(p N )U(Γ(p 1,..., p N ))dp 1 dp N I Γ (k 1,..., k l, p 1,..., p N )d D k 1 d D k l Renormalization Problem: Integrals U(Γ(p 1,..., p N )) often divergent: Renormalizable theory: finitely many counterterms (expressed also as perturbative series) can be added to the Lagrangian to simultaneously remove all divergences from all Feynman integrals in the expansion 23

25 The problem with gravity: Gravity is not a renormalizable theory! Effective field theory, up to some energy scale below Planck scale (beyond, expect a different theory, like string theory) Observation: some forms of modified gravity (higher derivatives) are renormalizable (but unitarity can fail...) The model we will consider has some higher derivative terms in the gravity sector 24

26 Standard Model of Elementary Particles Forces: electromagnetic, weak, strong (gauge bosons: photon, W ±, Z, gluon) Fermions 3 generations: leptons (e,µ,τ and neutrinos) and quarks (up/down, charm/strange, top/bottom) Higgs boson 25

27 Parameters of the Standard Model Minimal Standard Model: 19 3 coupling constants 6 quark masses, 3 mixing angles, 1 complex phase 3 charged lepton masses 1 QCD vacuum angle 1 Higgs vacuum expectation value; 1 Higgs mass Extensions for neutrino mixing: 37 3 neutrino masses 3 lepton mixing angles, 1 complex phase 11 Majorana mass matrix parameters Constraints and relations? Values and constraints from experiments: but a priori theoretical reasons? Geometric space... Note: parameters run with energy scale (renormalization group flow) so relations at certain scales versus relations at all scales 26

28 Experimental values of masses 27

29 Constraints on mixing angles (CKM matrix) 28

30 Standard Model Langrangian L SM = 1 2 νgµ a ν gµ a g s f abc µ gνg a µg b ν c 1 4 g2 s f abc f ade gµg b νg c µg d ν e ν W µ + ν Wµ M 2 W µ + Wµ 1 2 νzµ 0 ν Zµ 0 1 M 2 Z 2c µz 0 2 µ 0 1 w 2 µa ν µ A ν igc w ( ν Zµ(W 0 µ + Wν W ν + Wµ ) Zν 0 (W µ + ν Wµ Wµ ν W µ + ) + Z 0 µ(w + ν ν W µ W ν ν W + µ )) igs w ( ν A µ (W + µ W ν W + ν W µ ) A ν (W µ + ν Wµ Wµ ν W µ + ) + A µ (W ν + ν Wµ Wν ν W µ + )) 1 2 g2 W µ + Wµ W ν + Wν g2 W µ + Wν W µ + Wν + g 2 c 2 w(zµw 0 µ + Zν 0 Wν ZµZ 0 µw 0 ν + Wν ) + g 2 s 2 w(a µ W µ + A ν Wν A µ A µ W ν + Wν ) + g 2 s w c w (A µ Zν 0 (W µ + Wν W ν + Wµ ) 2A µ ZµW 0 ν + Wν ) 1 2 µh µ H 2M 2 α h H 2 µ φ + µ φ 1 2 µφ 0 µ φ 0 ( ) β 2M 2 h + 2M g 2 g H (H2 + φ 0 φ 0 + 2φ + φ ) + 2M 4 α g 2 h gα h M ( H 3 + Hφ 0 φ 0 + 2Hφ + φ ) 1 8 g2 α h ( H 4 + (φ 0 ) 4 + 4(φ + φ ) 2 + 4(φ 0 ) 2 φ + φ + 4H 2 φ + φ + 2(φ 0 ) 2 H 2) gmw + µ W µ H 1 2 g M c 2 w Z 0 µz 0 µh 1 2 ig ( W + µ (φ 0 µ φ φ µ φ 0 ) W µ (φ 0 µ φ + φ + µ φ 0 ) ) g ( W + µ (H µ φ φ µ H) + W µ (H µ φ + φ + µ H) ) g 1 c w (Z 0 µ(h µ φ 0 φ 0 µ H) + M ( 1 c w Z 0 µ µ φ 0 + W + µ µ φ + W µ µ φ + ) ig s2 w cw MZ 0 µ(w + µ φ W µ φ + ) + igs w MA µ (W + µ φ W µ φ + ) ig 1 2c2 w 2c w Z 0 µ(φ + µ φ φ µ φ + ) + igs w A µ (φ + µ φ φ µ φ + ) 1 ( H 2 + (φ 0 ) 2 + 2φ + φ ) 4 g2 W µ + Wµ ( 1 8 g2 1 Z c µz µ H 2 + (φ 0 ) 2 + 2(2s 2 w 1) 2 φ + φ ) 1 w 2 g2 s 2 w cw Zµφ 0 0 (W µ + φ + W µ φ + ) 1 2 ig2 s 2 w cw Z 0 µh(w + µ φ W µ φ + ) g2 s w A µ φ 0 (W + µ φ + W µ φ + ) ig2 s w A µ H(W + µ φ W µ φ + ) g 2 s w cw (2c 2 w 1)Z 0 µa µ φ + φ g 2 s 2 wa µ A µ φ + φ ig s λ a ij ( qσ i γµ q σ j )ga µ ē λ (γ + m λ e )e λ ν λ (γ + m λ ν)ν λ ū λ j (γ + mλ u)u λ j d λ j (γ + mλ d )dλ j + igs w A µ ( (ē λ γ µ e λ ) (ūλ j γµ u λ j ) 1 3 ( d λ j γµ d λ j )) + ig 4c w Z 0 µ{( ν λ γ µ (1 + 29

31 γ 5 )ν λ )+(ē λ γ µ (4s 2 w 1 γ 5 )e λ )+( d λ j γµ ( 4 3 s2 w 1 γ 5 )d λ j )+(ūλ j γµ (1 8 3 s2 w+ γ 5 )u λ j )} + ig 2 W + 2 µ ig 2 W 2 µ ( ( ν λ γ µ (1 + γ 5 )U lep λκe κ ) + (ū λ j γµ (1 + γ 5 )C λκ d κ j )) + ( (ē κ U lep κλ γµ (1 + γ 5 )ν λ ) + ( d κ j C κλ γµ (1 + γ 5 )u λ j )) + ( ig 2M 2 φ+ ( m κ e( ν λ U lep λκ(1 γ 5 )e κ ) + m λ ν( ν λ U lep λκ(1 + γ 5 )e κ) + ig 2M 2 φ m λ e (ē λ U lep λκ (1 + γ5 )ν κ ) m κ ν(ē λ U lep λκ (1 γ5 )ν κ) g 2 m λ ν M H( νλ ν λ ) g 2 m λ e M H(ēλ e λ ) + ig 2 m λ ν M φ0 ( ν λ γ 5 ν λ ) ig ν λ M R λκ (1 γ 5)ˆν κ 1 4 ν λ M R λκ (1 γ 5)ˆν κ + m λ e M φ0 (ē λ γ 5 e λ ) ( ) ig 2M 2 φ+ ( m κ d (ūλ j C λκ(1 γ 5 )d κ j ) + mλ u(ū λ j C λκ(1 + γ 5 )d κ j + ) ig 2M 2 φ m λ d ( d λ j C λκ (1 + γ5 )u κ j ) mκ u( d λ j C λκ (1 γ5 )u κ j g m λ u 2 M H(ūλ j uλ j ) g m λ d 2 M H( d λ j dλ j ) + ig m λ u 2 M φ0 (ū λ j γ5 u λ j ) ig m λ d 2 M φ0 ( d λ j γ5 d λ j ) + Ḡ a 2 G a + g s f abc µ Ḡ a G b g c µ + X + ( 2 M 2 )X + + X ( 2 M 2 )X + X 0 ( 2 M 2 )X 0 + Ȳ 2 Y + igc c 2 w W µ + ( µ X 0 X w µ X + X 0 )+igs w W µ + ( µ Ȳ X µ X + Y ) + igc w Wµ ( µ X X 0 µ X 0 X + )+igs w Wµ ( µ X Y µ Ȳ X + ) + igc w Zµ( 0 µ X + X + µ X ( X )+igs w A µ ( µ X + X + ) µ X X ) 1 2 gm X + X + H + X X H + 1 X 0 X 0 H + c 2 w ( 1 2c 2 ( w 2c w igm X + X 0 φ + X X 0 φ ) + 1 2c w igm X 0 X φ + X 0 X + φ ) ( ( +igms w X 0 X φ + X 0 X + φ ) igm X + X + φ 0 X X φ 0).

32 Fundamental ideas of NCG models Derive the full Lagrangian from a simple geometric input by calculation Machine that inputs a (simple) geometry and produces a uniquely associated Lagrangian Very constrained: only certain theories can be obtained (only certain extensions of the minimal standard model) Simple action functional (spectral action) that reduces to SM + gravity in asymptotic expansion in energy scale Effective field theory: preferred energy scale (at unification energy) 30

33 The role of gravity: What if other forces were just gravity but seen from the perspective of a different geometry? This idea occurs in physics in different forms: holography AdS/CFT has field theory on boundary equivalent to gravity on bulk in NCG models action functional for gravity (spectral action) on an almost-commutative geometry gives gravity + SM on spacetime manifold... What is Noncommutative Geometry? 31

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Cosmological Space-Times

Cosmological Space-Times Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

SPONTANEOUS GENERATION OF GEOMETRY IN 4D SPONTANEOUS GENERATION OF GEOMETRY IN 4D Dani Puigdomènch Dual year Russia-Spain: Particle Physics, Nuclear Physics and Astroparticle Physics 10/11/11 Based on arxiv: 1004.3664 and wor on progress. by

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Dark matter from Dark Energy-Baryonic Matter Couplings

Dark matter from Dark Energy-Baryonic Matter Couplings Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

A Short Introduction to Tensors

A Short Introduction to Tensors May 2, 2007 Tensors: Scalars and Vectors Any physical quantity, e.g. the velocity of a particle, is determined by a set of numerical values - its components - which depend on the coordinate system. Studying

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 s Free graviton Hamiltonian Show that the free graviton action we discussed in class (before making it gauge- and Lorentzinvariant), S 0 = α d 4 x µ h ij µ h ij, () yields the correct free Hamiltonian

Διαβάστε περισσότερα

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY Walter Wyss Department of Physics University of Colorado Boulder, CO 80309 (Received 14 July 2005) My friend, Asim Barut, was always interested in classical

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia http://arxiv.org/pd/0705.464 The Standard Mode Antonio Pich IFIC, CSIC Univ. Vaencia Gauge Invariance: QED, QCD Eectroweak Uniication: SU() Symmetry Breaking: Higgs Mechanism Eectroweak Phenomenoogy Favour

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Non-Abelian Gauge Fields

Non-Abelian Gauge Fields Chapter 5 Non-Abelian Gauge Fields The simplest example starts with two Fermions Dirac particles) ψ 1, ψ 2, degenerate in mass, and hence satisfying in the absence of interactions γ 1 i + m)ψ 1 = 0, γ

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

Relativistic particle dynamics and deformed symmetry

Relativistic particle dynamics and deformed symmetry Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability A. Cisterna 1 M. Cruz 2 T. Delsate 3 J. Saavedra 4 1 Universidad Austral de Chile 2 Facultad de

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

3+1 Splitting of the Generalized Harmonic Equations

3+1 Splitting of the Generalized Harmonic Equations 3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Questions on Particle Physics

Questions on Particle Physics Questions on Particle Physics 1. The following strong interaction has been observed. K + p n + X The K is a strange meson of quark composition u s. The u quark has a charge of +2/3. The d quark has a charge

Διαβάστε περισσότερα

Geometry of the 2-sphere

Geometry of the 2-sphere Geometry of the 2-sphere October 28, 2 The metric The easiest way to find the metric of the 2-sphere (or the sphere in any dimension is to picture it as embedded in one higher dimension of Euclidean space,

Διαβάστε περισσότερα

1 Classical Mechanics

1 Classical Mechanics From Classical to Quantum Field Theory 1 D. E. Soper 2 University of Oregon Physics 665, Quantum Field Theory 13 October 2010 1 Classical Mechanics Let φ J (t), J = 1, 2, 3, be the position of a particle

Διαβάστε περισσότερα

1 Lorentz transformation of the Maxwell equations

1 Lorentz transformation of the Maxwell equations 1 Lorentz transformation of the Maxwell equations 1.1 The transformations of the fields Now that we have written the Maxwell equations in covariant form, we know exactly how they transform under Lorentz

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

From Fierz-Pauli to Einstein-Hilbert

From Fierz-Pauli to Einstein-Hilbert From Fierz-Pauli to Einstein-Hilbert Gravity as a special relativistic field theory Bert Janssen Universidad de Granada & CAFPE A pedagogical review References: R. Feynman et al, The Feynman Lectures on

Διαβάστε περισσότερα

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

LIGHT UNFLAVORED MESONS (S = C = B = 0)

LIGHT UNFLAVORED MESONS (S = C = B = 0) LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II 8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 200 Lecture 2 3: GENERAL ASPECTS OF QUANTUM ELECTRODYNAMICS 3.: RENORMALIZED LAGRANGIAN Consider the Lagrangian

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Particle Physics: Introduction to the Standard Model

Particle Physics: Introduction to the Standard Model Particle Physics: Introduction to the Standard Model Electroweak theory (I) Frédéric Machefert frederic@cern.ch Laboratoire de l accélérateur linéaire (CNRS) Cours de l École Normale Supérieure 4, rue

Διαβάστε περισσότερα

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR Dieter Van den Bleeken arxiv.org/submit/1828684 Supported by Bog azic i University Research Fund Grant nr 17B03P1 SCGP 10th March 2017

Διαβάστε περισσότερα

Cosmology with non-minimal derivative coupling

Cosmology with non-minimal derivative coupling Kazan Federal University, Kazan, Russia 8th Spontaneous Workshop on Cosmology Institut d Etude Scientifique de Cargèse, Corsica May 13, 2014 Plan Plan Scalar fields: minimal and nonminimal coupling to

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Sixth lecture September 21, 2006

Sixth lecture September 21, 2006 Sixth lecture September, 006 Web Page: http://www.colorado.edu/physics/phys7840 NOTE: Next lectures Tuesday, Sept. 6; noon Thursday, Sept. 8; noon Tuesday, Oct. 3; noon Thursday, Oct. 5; noon more????

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Equations of Motion in Nonlocal Modified Gravity

Equations of Motion in Nonlocal Modified Gravity Equations of Motion in Nonlocal Modified Gravity Jelena Grujić Teachers Training Faculty, University of Belgrade Kraljice Natalije 43, Belgrade, SERBIA Abstract We consider nonlocal modified gravity without

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Dirac Matrices and Lorentz Spinors

Dirac Matrices and Lorentz Spinors Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ k, which obey both commutation

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Monday 6 June, 2005 9 to 12 PAPER 60 GENERAL RELATIVITY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. The signature is ( + ),

Διαβάστε περισσότερα

Higher spin gauge theories and their CFT duals

Higher spin gauge theories and their CFT duals Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα