Inverse trigonometric functions & General Solution of Trigonometric Equations

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------"

Transcript

1 Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin θ = 8/17 then cos θ = 15/17 GE 15/17. c is rejected. b is the answer. OR Let sin = θ then sin θ = Cos θ = 1 sin θ = 1 = = 17 then G E =sin = = = = = 2. The value of Tan ( - ) = a) b) c) d) Ans: b. Solution: Let tan = θ then tan θ = Tan ( - tan ) = Tan ( - θ) = = =. 3. The domain of the function f(x) = is a) 1 x 2 b) -1 x 2 c) 2 x 4 d) 1 x 5 Ans: a. Solution : we know that sin is defined when - 1 x x 4 1 x

2 4. If cos ( 3 ) = tan ( ) then x = a) 0 b) 1 c) -1 d) 0,1, -1 Ans: d. Solution : 1) inspection method GE is satisfied by all values. Hence ans is d. or ii) cos = θ cos θ = x GE. cos3 θ = x 4 cos θ 3 cos θ = x 4x - 3x = x 4( x - x )= 0 x( x - 1) = 0 x = 0,1, If = + β and - β ) = then + = a) 1 + a b) a + b c) 1 + ab d) 1+ b Ans: c. Solution: α - β ) = 1 b α - β = cos 1 b ) = sin sin (α - β) = b Now sin α + cos β = sin α + 1 sin β 1 + sin α sin β = 1 + sin (α + β) sin (α - β) = 1 + a b If + then x satisfies a) 2x + 3x + 1 =0 b) 2x - 3x = 0 c) 2x + x - 1 =0 d) 2x + x + 1 =0 Ans: b Solution: ( x= 0 satisfies GE and b also. Hence ans b) Or sin + cos 1 sin sin + cos 1 - sin cos 1-2 sin = -2 θ (sin θ = x) 1 x = cos (-2 θ ) = cos 2 θ = 1 2 sin 2 θ 1 x = 1 2x x = 2x 2x - x = 0 x = 0 or x = x = 0 is the solution ( x = does not satisfies the equation )

3 7. If sec -1 x = cosec -1 y then sin -1 ( ) + sin-1 ( ) = a) Π b) π / 2 c) - π /2 d) - π Ans: b. Solution: Given sec -1 x = cosec -1 y cos ) = sin ) sin -1 ( ) + sin-1 ( ) = sin-1 ( ) + cos-1 ( ) =. 8. If tan ax tan bx = 0 ( a b) then the values of x form a series in a) AP b) G P c) H P d) AGP. Ans: a. Solution : tan ax = tan bx ax = n π + bx ax bx = n π x ( a b) = n π x =. put n = 1,2, x=, 9. If ( ) + ( ) = ( ) then x = etc. which are in AP. a) 0 b) c) d) π / 2. Ans: C Solution: w.k.t sin x )+ sin ( y ) = sin ( x1 + y 1 ) sin ( ) + sin ( ) = sin ( 1 )+ 1 ) ) = sin ( ( )/ 9 ) ) x =( )/ 9 Ans c 10. The value of = a) b) c) d). Ans: c Solution: GE = π + tan ( ) -. cot = π + tan ( ) - cot = π - tan ( ) - cot = π [tan ( ) + cot ] = π - = Ans c

4 11. Two angles of a triangle are and, then the third angle is a) b) c) d). Ans: b. Solution: A + B + C = Π where A = cot 2 = tan B= cot 3 = tan. A+ B = tan + tan = tan.. ] = tan 1 ] = C = π - ( A + B) = π - = a) :. : cos sin x cos cos 1 x 1 x sin cos x sin sin 1 x 1 x GE sin 1 x cos 1 x cos x sin x π 2. or Put x 0 then GE sin cos 0 cos sin sin 1 cos 1 π 2. sin If - = then the values of x are a) 0 or ½ b) 1 or 1/3 c) -1 or -1/3 d) -1,1/2 Ans: a Solution type 1: Inspection method: GE is satisfied by a) type 2: GE = cos x sin x = sin 1 x = sin x - sin x = sin 1 x sin 1 x = 2 sin x ( 1 x ) = sin 2 sin x ) = cos 2 sin x ) = 1 2 sin ( sin x) = 1 2x 1 x = 1 2x 2x x 2x x = 0 x ( 2x 1) = 0 x= 0, ½ ----

5 14. If + = then x = a) ± 3 b) 1 c) d) 0 Ans: b. Solution. Inspection method: ± 3 is not a solution since cos 3 is not defined. GE is satisfied by x = The value of + + = a) 0 b) cot 26 c) cot 1 d) cot 1 Ans: a. Solution: w.k.t cot a - cot b = cot cot 21 = cot. = cot 5 - cot 4 Similarly cot 13 = cot 4 - cot 3 And cot 8 = cot 3 - cot 5 GE = cot 5 - cot 4 + cot 4 - cot 3 + cot 3 - cot 5 = If +. = for 0< < then x = a) 1 b) 3) 0 d) Ans: a) Solution: clearly when x = 1 GE = ans: a) Or x = x = = x (2 x x ( 2 + x ) x = 0, 1. But x The value of 2 = a) b) c) d) Ans: b. searching method. put x = 1 then GE = 2tan 2-1] = 2 =. Put x = 1 in choices, Hence cot 1 = tan 1 = b Put x = -1 then GE = 2tan 2 - tan (π ) ] = = 2tan ] = - 2tan 2-1 ] = -2 ( ) = Hence answer must be either a or

6 Put x= -1 in a and b Then cot 1 = π = b tan 1 ) =. Hence answer is b If 2 =, then x is in a) [-1, 1 ] b) [-, 1] c) [- ] d) [ 0, 1]. Ans: c. Solution w.k. t. the range of RHS is [ 2 sin x sin x sin The solution set of the equation = 2 is a) { 1, 2} b) { -1, 2} c) {-1, 1, 0} d) {1, ½, 0} Ans: c) Solution : clearly is not defined. reject a) and b). consider d) = but =. = 2 hence reject d) Only possibility is ans c. or = 2 = x = x( ) = 2x x - = 0 x( 1 x ) = 0 x = 0, ±1 20. If in a triangle ABC, C is 90 0, then + a) b) c) Ans: c) d) = Solution: ABC is a right angled triangle. Put a= 3, b= 4 and c= 5. Then C= 90 Then tan + tan = tan + tan = tan + tan = = tan + tan = where m = 1. Ans: c.

7 21. The value of tan[ ) + )] = a) a b) c) b d) Ans: b). Solution Inspection method. Step1. Put a = 1, b= 0 Then GE = tan [tan 1)] = 1. When we put a=1, b= 0 in choices answer is either a or b Step2. a=0, b= 1 Then GE = tan [tan 1)+ tan 1) ] = tan [ ] = When we put a=0, b= 1 in choices Ans b) ( 1/a = 1/0 = ) If,,...a n is an AP with common difference d, then tan { } = a) b) c) Ans : b ) Solution: Given,,...a n are in AP - a 1 = a 3 a 2 =... a n - a n-1 = d d) Consider tan + tan tan = + tan tan = tan a - tan a + tan a - tan a tan a - tan a = tan a - tan a = tan = = tan =tan GE: tan tan ) = Hence answer is b.

8 23. If + = then x = a) 0 b) 1 c) 2-1 d) 1 Ans: d). Solution: Inspection method: Clearly x = o is not a solution since tan 0 =0 And cot 0 = LHS = When x= 1 LHS of GE = X = I is not a solution When x= 2-1, LHS of GE = is not a solution. x = -1 is only a solution If + + =, then X 1 x = a xyz b) 2xyz c) 2( x+ y + z) d) x y z Ans b Solution: It is a standard result. Or Inspection method. Step 1. put x= y = 1 and z = 0. Then sin x = π and choice b) and d) matches with this value. Step 2. Put x = and z = 1. Then sin x = π and choice b) matches with this value b is the answer If tan( x + y ) = 33 and x = then y = a) b) tan 30 c) tan d) Ans: d) tan Solution: x + y = tan 33 y =tan 33 - tan 3 = tan. =tan tan answer d)

9 26. 2 with x = a) sin 2x b) cos 2x c) cos x d) tan 1 x Ans: c Solution : put x = 1 then GE : When x = 1, a) and b) are not defined due to & c) = 0 and d) =. Hence Ans is c. 27. The general solution of sin5x = k where k is a real root of x - 1 = 0 is given by a) x = + 1 b x = + 1 (c) x = + 1 (d) x = n π + 1 Ans (a). Solution: Consider 2x - x +2x - 1 = 0 x (2x -1) +1 ( 2x 1) = 0 x +1 ) ( 2x 1) = 0 Since x is real x = ½. sin 5x = k = ½ = sin ( ) α = 5x = n π + 1 α = n 1 x = + 1 Ans (a) 28. If 5cos 2 θ = 0, θε (- π, π ),then θ = a) ( b), cos c) cos (d), π - cos Ans: (d ). Solution: GE = 5cos 2 θ + 2 cos + 1 = 0 5( 2 cos θ -1) + ( 1 + cos θ ) + 1 =0 10 x + x - 3 =0 where x = cos θ 10 x + 6x - 5x - 3 =0 2x ( 5x + 3 ) -1 ( 5x + 3 ) =0 x =, cos θ = ½ = cos, and cos θ = = cos( π - cos -1 (3/5)) Solution is, π - cos-1 (3/5)).

10 29. If The general solution of = 3 is given by θ = a) 2n π ± (b) n π ± (c). 2n π ± (b) n π ± Ans: (d) Solution: GE = = 3 tan θ = 3 tan θ =± 3 = tan( ± ) θ = n π ± If Sec x cos5x + 1 =0 where 0<x < 2 π, then x is equal to : a), b) c) d) none of these Ans: c Solution: GE : +1 = 0 cos5x + cosx = 0 2 cos 3x cos 2x =0 Cos 3x = 0 or cos2x =0 3x = or 2x = or X= or or or x = or inspection method. 31. The solution of the equation 2x = 1+ x is a) x = ( 2n + 1 ), n Є Z (b) x = n π, n Є Z.(C) x= ( 2n + 1 ), n Є Z (d) no solution. Ans: d Solution:GE: sin 2x = 1+ cos x Here cos x 0 The max value of LHS is 1 and minimum Vaue of RHS is 1. This is possible only when cos x = 0 and sin 2x = 1 x = and 2x = X =.This is not possible. Hence solution does not exists.

11 32. The most general value of θ satisfying the equation + tan θ - 1) 2 = 0 are given by a) n π ± b) n π + ( -1) n c). 2n π + (d) 2n π + Ans: c. Solution: a b = 0 a = 0 and b =0 1 2 sin θ = 0 and 3 tan θ - 1 = 0 sin θ = - ½ and tan θ = G.S. is θ = m π + ( -1) m and θ = mπ + only when m is odd m = 2n + 1 G.S. is θ = ( 2n + 1)π = 2n π The most general solution of θ satisfying Tan θ + tan( + θ ) = 2 is / are a) n π ±, n Є Z. b) 2n π +, n Є Z.c) 2n π ±, n Є Z d) ) 2n π +( -1) n, n Є Z. Both holds good Ans: a Solution: GE: Tan θ + tan( + θ ) = 2 Tan θ + tan 135 θ = 2 Tan θ + = 2 Tan θ + tan θ tan θ = tan θ tan θ = 3 tan θ = ± 3 θ = n π ±, n Є I The general solution of x for which cos2x,, and sin 2x are in Ap, are given by a) n π, n π + b) n π, n π + c) n π +, d) none of these. Ans: b. Solution: a,b,c are in AP a + c = 2b Cos2x + sin 2x = 1 Sin2x = 1 cos2x = 2 sin 2 x 2 sinx cos x - 2 sin 2 x = 0 2 sinx( cos x sinx) =0 sinx = o or cosx = sinx

12 sinx = 0 or tanx = 1 X = n π or x = n π +, n Є Z. 35. If sec θ + tan θ =1 then the general solution of θ= a) n π + b) 2n π + c) 2n π - d) 2n π ± Ans : c. GE : + = 1 cos θ sin θ = 2 cos( θ + ) = cos( 0 ) G.S. is θ + = 2 n π θ = 2 n π The equation sin cos has a) one solution b) two solutions c) infinite solutions d) no solution. Ans: d GE: sin3x = -2 < - 1. Hence solution does not exists The general solution of ( + ) = 2 is a) x = n π b) x = ( 4n + 1) c) x = ( 4n + 1) d) n π +. Ans: b. Solution clearly x = satisfies the GE If π x Π, π y Π and cos x + cosy = 2 then general solution is x = a) 2 n π + y b) 2 n π - y c) n π + y d) n π + ( -1) n y. Ans a. Solution : the Max. value of cosx is 1. Hence cos x + cosy = 2 cosx = 1 and cosy =1 x = 0 and y = 0 hence x y = 0 Hence cos( x y) = cos 0 X y = 2 n π x = 2 n π + y

13 39. The equation 3 x + 10cosx 6 =0 is satisfied if a) x = n π ± cos b) x = 2n π ± cos c) x = n π ± cos b) x = 2n π ± cos Ans: b. Solution GE.: 3( 1 - cos x ) + 10cosx 6 =0 3 3t + 10 t - 6 =0 where t = cosx 3t - 10 t +3 =0 3t - 9t - t +3 =0 3t( t 3 ) -1 ( t 3) =0 ( 3t -1) (t-3)=0 cosx = t = 3 > 1 No solution, Cosx = 1/3 = cos α where α = cos X = 2n π ± cos i.e. b). 40. If tan2x = tan, then the value of x = a) b) c) d) None of these Ans: a) Solution: GE: tan2x = tan 2x = n π + 2x - nπ x 2 = 0 X = 41. If the equation cos3x x + sin3x x= 0., then x = a) ( 2n+1) b) ( 2n - 1) c) d) n π,. Ans: a:) Solution: put n = 0 in answers a,b,c and d, Substitute x=0, x=, x=. GE is not satisfied when x =0 Hence c and d are not correct answers. GE is not satisfied when x = answer. Hence a is the answer. Or. Hence b is not the correct

14 cos3xcos x + sin3x sin x= 0. cos3x [ ( cos3x + 3 cosx )] + sin3x[ ( 3sinx - sin3x)] =0 ( cos 3x - sin 3x ) +3 ( cos3x cosx + sin3x sinx )} =0 {cos6x + 3 cos2x} =0 2x = A {cos3a + 3 cosa} =0 cos A0 cos 2x 0 cos2x = 0 2x = ( 2n + 1) x = ( 2n + 1) 42. If x and = 1, then all solutions of x are given by a) 2n π + b) ( 2n + 1) π - c) 2n π + 1 d) None of these. Ans : d. Solution: Since x, cos x 0,1,-1. Hence only possibility is sin x 3 sinx 2 = 0 sin x 2 sinx sinx 2 0 ( sinx - 1 ) ( sinx 2) =0 Sin x = 1 or 2 which is not possible as x and 2 > 1 Hence d is the answer. 43. If 1 + sin x + x + x +... = with 0<x < π and x, then x = a) b) c) Ans d. or d) Solution : put sinx = r then GE: 1 + r + r +... = ( in GP.) or With < 1 since 0<x < π and x. S = = = sinx = 1 sinx = x =

15 sinx = 1 - = = x = 60 or 120 Ans: d The general solution of of = cos2x 1 is a) 2n π b) c) n π d) (2n + 1) π Ans: c Solution: when n=1 a) π c) 2 π d is 3 π b) Among these GE is not satisfied by b) b is not the correct answer. Since GE is satisfied for π, 2π, 3 π also. General solution is θ = n π. Or tan x = cos2x 1 = - ( 1 cos2x) = - 2sin x sin x = - 2sin x cos x sin x ( 1 + 2cos x ) = 0 sin x = 0 sinx = 0 x= n π where n Є Z Cot θ =sin2 θ ( θ n π ),if θ = a), b), c) only d) only Ans b) Solution : when θ =, in GE LHS = RHS = 1. GE is satisfied by θ = also. and solution θ =,. Or GE = 2 sin θ cos θ cos θ = 2 sin θ cos θ cos θ ( 1-2 sin θ ) = 0 is not a Cos θ =0 θ = sin θ = ½ sin θ = ± θ = ±

16 46. If sin( cotθ ) =cos( tanθ) then the value of θ = a)n π + b ) 2n π ± c) n π - d) 2n π ± Ans: a) Solution: we know that sin = cos π cotθ = π tanθ cotθ = tanθ tan θ = 1 θ = n π If tan θ + 3 cot θ = 5 sec θ then θ = a) n π + ( -1) n, nє Z. b) n π + ( -1) n, nє Z c) n π + ( -1) n+ 1, nє Z or n π + ( -1) n, nє Z d) n π + ( -1) n, nє Z or n π + ( -1) n, nє Z Ans: b). Solution. GE: +3 sin θ + 3 cos θ = 5 sin θ cos θ = 5sin θ which is satisfied for x = only. answer is b) If tanx + tan4x + tan7x = tanx tan4x tan7x then x = a) n π / 3 b) n π / 4 c) n π / 6 d) n π / 12 Ans d). Solution : w. k.t if tan x + tany + tanz = tanx tany tanz then ] tan( x + y + z ) = 0. tan12x = 0 12x = n π x = n π / The general solution of sinx + sin7x = sin4x in ( 0, ) are a), b), c), d), Ans d) Solution: GE : sin7x + sin x sin4x =0 2 sin4x cos 3x sin 4x =0 sin4x( 2 cos3x - 1) =0 sin4x =0 4x = n π or x = n π / 4 = π / 4 in ( 0, ) cos 3x = = cos ( ) in ( 0, ) 3x = x = x =, Ans d

17 50. The number of solutions of cosx =, 0x 3 π is a) 3 b) 2 c) 4 d) 5 Ans: a. Solution: clearly 1 0 cosx = 1 + sinx ( = x if x 0 ) cos x sin x = 1 By inspection x = 0, 2π, 3 π /2 are 3 solutions in [0,3π] Ans a The set of values of x for which a) φ b) { n π +, n Є Z } c) Ans a. Solution: Clearly tan x = 1 = tan ( ) = 1 is d) { 2n π +, n Є Z } X = n π +, n Є Z. But for no values of x, sin2x is not defined, so that the equation has no solution. 52. The general solution of cos7 θ cos 5 θ = cos3θ cosθ is a), b), c), d ), Ans c. Solution : GE: cos7 θ cos 5 θ = cos3θ cosθ ( cos12 θ + cos2 θ ) = ( cos 4 θ + cos2 θ ) cos12 θ cos 4 θ = 0-2 sin 8θ sin 4θ =0 8θ = n or 4θ = n θ = Ans c If sec 2 x + + cosec 2 x = 4, then the value of x is a) b) c) d) Ans d. Clearly by inspection method d) is the answer ,

18 54. The equation 2 sin θ cos θ = x 2 + has a) one real solution b) no solution c) two real solutions d) θ = n π. ans b) Solution : GE : sin 2 θ = x 2 +. clearly sin 2 θ > 0. If x 1 solution does not exists. If 0<x< 1 then x < 1 but >1 hence x 2 + > 1 Solution does not exists. no solution 55. If A and B are acute angles such that sina = sin 2 B and 2 cos 2 A = 3 cos 2 B then A is d) a) b) c) Solution : Clearly by inspection method A=. Since when A=, B = from sina = sin 2 B. These values satisfies 2 cos 2 A = 3 cos 2 B also. a = is the ans Let n be a positive integer such that sin + cos =,then a) n = 4 b) n= 1,2,3,4,... c) n = 2 d) n = 6 Ans d. Solution: clearly by inspection n = 6. Or sin + cos squaring sin cos = sin = - 1 = which is true when n = 6. sin = n =6 only. 57. If sin 40 0 = k and cosx = 1 2 then the value of x in ( 0 0, ) are a) 40 o and 140 o b) 80 o and 280 o c) 40 o and 220 o d) 80 o and 260 o Ans: b. Solution : Now cosx = 1 2 sin = cos80 0. x = 80 0 and = x = 80 0, in ( 0 0, ) =

19 58. If 3 cos 2 x - 2 cos x sinx - 3 sin 2 x = 0 then x = a) + b) + c) d) n π + Ans: a) Solution : GE: 3 cos2x - 3 sin2x =0 3 cos2x = 3 sin2x = 3 tan2x = x = n π + x = The most general solution of + =0 a) 2n π +, n ЄZ, b) n π +, n ЄZ c) 2n π -, n ЄZ d) n π -, n ЄZ Ans: b. Solution: GE: log tanx = - log cotx log tanx = - log = log tanx log tanx = log tanx sinx = cosx Tanx = 1 x = n π +, n ЄZ ans :b The general solution of 3 tan( θ 15 o )= tan ( θ + 15 o ) is a) θ = ± b) n ± c) + ( -1) n d) 2n - Ans: c Solution: 3 tan( θ 15 o )= tan ( θ + 15 o ) 3 = 3 sin θ 15 cos θ 15 = sin θ 15 cos θ 15 2 sin θ 15 cos θ 15 + sin ( ) =0 sin2 θ + sin ( ) + sin ( ) =0 Sin 2 θ = 1 2 θ = n π + ( -1) n θ = ( -1) n

20 61. The most general solution of tan θ +1 = 0 & secθ - 2 =0 is a) 2n π - c) n π + ( -1) n Ans b) Solution: Given b) 2n π + d) 2n π + tan θ = quadrant take θ = 2 π = general solution is θ = 2n π + and cos θ = Ans b. θ in IV 62. If cosx + cosy = 1 and cosxcosy = ¼ then the general solutions are a) x = 2n π ±, y = 2k π ± b) 2n π ±, y = 2k π ± c) x = 2n π ±, y = 2k π ± b) n π ±, y = k π ± Ans: b. Solution: clearly by inspection method x =, y= is a solution. Hence ans is b). Or Cosx cosy = cosx cosy 4 cosxcosy = 1 4 =0 Now cosx + cosy = 1 and cosx - cosy = 0 cosx = ½ and cosy = ½ x = 2n π ±, y = 2k π ± ans : b = a b) - c) d) Ans : c Solution: put x= 0 then GE : In choices only a and c results in Hence answer is either a or c.. Put x = then GE: tan = tan 3= In choices a reduces to 15 0 and c reduces to Hence c is the answer.

21 Tan[ + cos-1 ( ) ] + Tan[ - cos-1 ( ) ] with x 0 a) 2x b) c) 2x d) 2 1 x Ans: b) Solution : put x = 1 in GE: = 2 reject d. Put x = in GE: tan( ) + tan ( ) = tan ( 750 ) + tan 15 0 = = 4 In choices b) gives 4. hence b is the correct answer If sin -1 ( ) + ) =, then x = a) 4 b) 5 c ) 1 d) 3 Ans: d. Solution: cosec ) = sin-1 ( ) GE : sin -1 ( ) + sin-1 ( ) = sin -1 ( ) = cos-1 ( ) clearly x = 3. sin -1 ( ) = cos-1 ( ) The value of cos( 2 + ) at x = 1/5 is a) b) c) d) 2 6 Ans: b Solution: cos( 2cos x + sin x ) = cos ( + cos x ) = - sin (cos x ) = - sin (sin 1 x ) = - 1 x At x = 1/5 ans is - 1 = - = The general solution of cosecx + cotx = is a) x = 2n π ± b) x = + - c) x = - d) x = 2n π ± - Ans: d. Solution: GE: cosecx + cotx = cosx = 3 sinx cosx + 3 sinx = - 1 cosx + cos( x + ) = cos G.S. is x = 2n π ± - ans :d..

22 68. If α, β and γ are the roots of the equation x 3 + m x 2 + 3x + m = 0, then the general solution of + + = a) ( 2n + 1) b) n π c) d) depend upon the value of x. Ans: b Solution : consider x 3 + m x 2 + 3x + m = 0 α = -b/a = -m, α = c/a = 3 ; α β γ = -d/a = -m Now =tan tan α + tan β + tan γ = tan = tan -1 (0) =0. G.S. is tan α +tan β +tan γ = n.where n Є Z. Ans b 69. The equation 3 cosx + 4 sinx = 6 has a) finite solution b) infinite solution c) one solution d) no solution. Ans: d Here r = > 1 where a= 3, b= 4 c = 6. Hence no solution. 70. The value of x satisfying the equation sinx + is given by a) 10 0 b) 30 0 c) 45 0 d) 60 0 = Ans: d Solution : Clearly by inspection x = 60 0 satisfies the equation. because sin = + = 71. If log 5 (1 + sinx) + log 5 (1 - sinx) = 0 then x in ( 0, ) is a) b) 0 c) d No value Ans d Solution: Clearly If log 5 [ (1 + sinx)( 1 sinx)] =0 1 sin 2 x = 0 cos 2 x =1 cosx = ± 1 x = 0, 0, ) no value.

23 72. If y = cosx and y = sin 5x then x = a) b) c) d) Ans: c Solution: clearly sin5x = cosx sin5x = sin ( - x) 5x = - x 6x = x = ans C 73. The value of ) ) + ) ) = a) Ans: d : b) c) = 2. d) 0 cos cos ) ) = cos cos 2π ) ) = sin sin ) = sin sin2π ) = - GE: = 0 Ans: d 74. If θ = )), then one of the possible value of θ is a) b) c) d) Ans: a) Solution: = θ = sin sin 600 = sin sin 120 = sin sin ) = sin sin 60 ) = 60 = 75. The value of sin( 2. = a) 0.96 b) 0.86 c) 0.94 d) Ans a) Solution: 0.8 = sin( 2 sin 0.8 = sin ( 2 θ ) where θ = sin = 2 sin θ cos θ = 2.. = = Ans a)

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2 SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

MATH 150 Pre-Calculus

MATH 150 Pre-Calculus MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Chapter 7 Analytic Trigonometry

Chapter 7 Analytic Trigonometry Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y 8. 0 9. 0. False. The domain of. True. True.. y sin is. sin 0 We are finding

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

UNIT-1 SQUARE ROOT EXERCISE 1.1.1 UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Προβολές και Μετασχηματισμοί Παρατήρησης

Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει

Διαβάστε περισσότερα

DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS

DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS Differentiation of Trigonometric Functions MODULE - V DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS Trigonometry is the branch of Mathematics that has mae itself inispensable for other branches of higher

Διαβάστε περισσότερα

Lecture 6 Mohr s Circle for Plane Stress

Lecture 6 Mohr s Circle for Plane Stress P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»

Διαβάστε περισσότερα

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC Metallized Polyester Film Capacitor Type: ECQE(F) Non-inductive construction using metallized Polyester film with flame retardant epoxy resin coating Features Self-healing property Excellent electrical

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014 LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο

Διαβάστε περισσότερα

10.4 Trigonometric Identities

10.4 Trigonometric Identities 770 Foundations of Trigonometry 0. Trigonometric Identities In Section 0.3, we saw the utility of the Pythagorean Identities in Theorem 0.8 along with the Quotient and Reciprocal Identities in Theorem

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Άσκηση αυτοαξιολόγησης 4 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών CS-593 Game Theory 1. For the game depicted below, find the mixed strategy

Διαβάστε περισσότερα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα IPHO_42_2011_EXP1.DO Experimental ompetition: 14 July 2011 Problem 1 Page 1 of 5 1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα Για ένα πυκνωτή χωρητικότητας ο οποίος είναι μέρος

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

MATRICES

MATRICES MARICES 1. Matrix: he arrangement of numbers or letters in the horizontal and vertical lines so that each horizontal line contains same number of elements and each vertical row contains the same numbers

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε

Διαβάστε περισσότερα

ΕΘΝΙΚΗ ΥΟΛΗ ΔΗΜΟΙΑ ΔΙΟΙΚΗΗ ΙH ΕΚΠΑΙΔΕΤΣΙΚΗ ΕΙΡΑ ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΟΙΚΗΣΗ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ

ΕΘΝΙΚΗ ΥΟΛΗ ΔΗΜΟΙΑ ΔΙΟΙΚΗΗ ΙH ΕΚΠΑΙΔΕΤΣΙΚΗ ΕΙΡΑ ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΟΙΚΗΣΗ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ Δ ΕΘΝΙΚΗ ΥΟΛΗ ΔΗΜΟΙΑ ΔΙΟΙΚΗΗ ΙH ΕΚΠΑΙΔΕΤΣΙΚΗ ΕΙΡΑ ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΟΙΚΗΣΗ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ Θέμα: «Αποκενηρωμένες δομές ζηο ζύζηημα σγείας ηης Ασζηρίας : Μια ζσζηημαηική θεωρηηική

Διαβάστε περισσότερα

FSM Toolkit Exercises Part II

FSM Toolkit Exercises Part II ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών Αναπληρωτής Καθηγητής: Αλέξανδρος Ποταμιάνος Ονοματεπώνυμο: Α. Μ. : ΗΜΕΡΟΜΗΝΙΑ: ΤΗΛ 413 : Συστήματα Επικοινωνίας

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com 1 Τριγωνομετρία Τριγωνομετρικοί αριθμοί οξείας γωνίας Έστω ορθογώνιο τρίγωνο ΑΒΓ με Α = 90 ο. Β φ x Α Γ Οι τριγωνομετρικοί αριθμοί μιας οξείας γωνίας ενός ορθογωνίου τριγώνου, που γνωρίζουμε τις πλευρές

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

þÿ Á Ä Ãµ¹Â º±¹ ÃÇ ¹±»ÍÃ Â Ä þÿšåàá¹±º Í ( 1 9 4 8-1 9 6 0 ) : ¹

þÿ Á Ä Ãµ¹Â º±¹ ÃÇ ¹±»ÍÃ Â Ä þÿšåàá¹±º Í ( 1 9 4 8-1 9 6 0 ) : ¹ Neapolis University HEPHAESTUS Repository School of Health Sciences http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ Á Ä Ãµ¹Â º±¹ ÃÇ ¹±»ÍÃ Â Ä þÿšåàá¹±º Í ( 1 9 4 8-1 9 6 0 ) : ¹ þÿ ¹À»É¼±Ä¹º Â

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Firm Behavior GOAL: Firms choose the maximum possible output (technological

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method)

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method) ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)

Διαβάστε περισσότερα

ΙΩΑΝΝΗ ΑΘ. ΠΑΠΑΪΩΑΝΝΟΥ

ΙΩΑΝΝΗ ΑΘ. ΠΑΠΑΪΩΑΝΝΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΓΕΩΠΟΝΙΑΣ, ΔΑΣΟΛΟΓΙΑΣ ΚΑΙ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΓΕΩΠΟΝΙΑΣ ΤΟΜΕΑΣ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΙΩΑΝΝΗ ΑΘ. ΠΑΠΑΪΩΑΝΝΟΥ Πτυχιούχου Γεωπόνου Κατόχου Μεταπτυχιακού

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών

Διαβάστε περισσότερα

Strukturalna poprawność argumentu.

Strukturalna poprawność argumentu. Strukturalna poprawność argumentu. Marcin Selinger Uniwersytet Wrocławski Katedra Logiki i Metodologii Nauk marcisel@uni.wroc.pl Table of contents: 1. Definition of argument and further notions. 2. Operations

Διαβάστε περισσότερα

Introduction to Time Series Analysis. Lecture 16.

Introduction to Time Series Analysis. Lecture 16. Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral

Διαβάστε περισσότερα

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

ΠΕΡΙ ΑΠΕΙΛΟΥΜΕΝΩΝ ΖΩΩΝ...ΑΝΘΡΩΠΩΝ ΕΡΓΑ.

ΠΕΡΙ ΑΠΕΙΛΟΥΜΕΝΩΝ ΖΩΩΝ...ΑΝΘΡΩΠΩΝ ΕΡΓΑ. ΠΕΡΙ ΑΠΕΙΛΟΥΜΕΝΩΝ ΖΩΩΝ...ΑΝΘΡΩΠΩΝ ΕΡΓΑ. ΤΣΟΧΑΝΤΑΡΙΔΟΥ Μ. 2 ο Νηπιαγωγείο Αγ. Ι. Ρέντη και Διεύθυνση Πρωτοβάθμιας Εκπαίδευσης Πειραιά e-mail: martha_tso@hotmail.com ΠΕΡΙΛΗΨΗ Η έννοια του περιβάλλοντος είναι

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

ΜΑΡΙΟΛΑΚΟΣ Η., ΦΟΥΝΤΟΥΛΗΣ Ι., ΣΠΥΡΙΔΩΝΟΣ Ε., ΑΝΔΡΕΑΔΑΚΗΣ Ε., ΚΑΠΟΥΡΑΝΗ, Ε.

ΜΑΡΙΟΛΑΚΟΣ Η., ΦΟΥΝΤΟΥΛΗΣ Ι., ΣΠΥΡΙΔΩΝΟΣ Ε., ΑΝΔΡΕΑΔΑΚΗΣ Ε., ΚΑΠΟΥΡΑΝΗ, Ε. ΔΗΜΟΣΙΕΥΣΗ Νο 95 ΜΑΡΙΟΛΑΚΟΣ Η., ΦΟΥΝΤΟΥΛΗΣ Ι., ΣΠΥΡΙΔΩΝΟΣ Ε., ΑΝΔΡΕΑΔΑΚΗΣ Ε., ΚΑΠΟΥΡΑΝΗ, Ε. (2003). Το πρόβλημα του νερού στη Θεσσαλία και προτάσεις για την αντιμετώπισή του στα πλαίσια της αειφόρου ανάπτυξης.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα