Inverse trigonometric functions & General Solution of Trigonometric Equations

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------"

Transcript

1 Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin θ = 8/17 then cos θ = 15/17 GE 15/17. c is rejected. b is the answer. OR Let sin = θ then sin θ = Cos θ = 1 sin θ = 1 = = 17 then G E =sin = = = = = 2. The value of Tan ( - ) = a) b) c) d) Ans: b. Solution: Let tan = θ then tan θ = Tan ( - tan ) = Tan ( - θ) = = =. 3. The domain of the function f(x) = is a) 1 x 2 b) -1 x 2 c) 2 x 4 d) 1 x 5 Ans: a. Solution : we know that sin is defined when - 1 x x 4 1 x

2 4. If cos ( 3 ) = tan ( ) then x = a) 0 b) 1 c) -1 d) 0,1, -1 Ans: d. Solution : 1) inspection method GE is satisfied by all values. Hence ans is d. or ii) cos = θ cos θ = x GE. cos3 θ = x 4 cos θ 3 cos θ = x 4x - 3x = x 4( x - x )= 0 x( x - 1) = 0 x = 0,1, If = + β and - β ) = then + = a) 1 + a b) a + b c) 1 + ab d) 1+ b Ans: c. Solution: α - β ) = 1 b α - β = cos 1 b ) = sin sin (α - β) = b Now sin α + cos β = sin α + 1 sin β 1 + sin α sin β = 1 + sin (α + β) sin (α - β) = 1 + a b If + then x satisfies a) 2x + 3x + 1 =0 b) 2x - 3x = 0 c) 2x + x - 1 =0 d) 2x + x + 1 =0 Ans: b Solution: ( x= 0 satisfies GE and b also. Hence ans b) Or sin + cos 1 sin sin + cos 1 - sin cos 1-2 sin = -2 θ (sin θ = x) 1 x = cos (-2 θ ) = cos 2 θ = 1 2 sin 2 θ 1 x = 1 2x x = 2x 2x - x = 0 x = 0 or x = x = 0 is the solution ( x = does not satisfies the equation )

3 7. If sec -1 x = cosec -1 y then sin -1 ( ) + sin-1 ( ) = a) Π b) π / 2 c) - π /2 d) - π Ans: b. Solution: Given sec -1 x = cosec -1 y cos ) = sin ) sin -1 ( ) + sin-1 ( ) = sin-1 ( ) + cos-1 ( ) =. 8. If tan ax tan bx = 0 ( a b) then the values of x form a series in a) AP b) G P c) H P d) AGP. Ans: a. Solution : tan ax = tan bx ax = n π + bx ax bx = n π x ( a b) = n π x =. put n = 1,2, x=, 9. If ( ) + ( ) = ( ) then x = etc. which are in AP. a) 0 b) c) d) π / 2. Ans: C Solution: w.k.t sin x )+ sin ( y ) = sin ( x1 + y 1 ) sin ( ) + sin ( ) = sin ( 1 )+ 1 ) ) = sin ( ( )/ 9 ) ) x =( )/ 9 Ans c 10. The value of = a) b) c) d). Ans: c Solution: GE = π + tan ( ) -. cot = π + tan ( ) - cot = π - tan ( ) - cot = π [tan ( ) + cot ] = π - = Ans c

4 11. Two angles of a triangle are and, then the third angle is a) b) c) d). Ans: b. Solution: A + B + C = Π where A = cot 2 = tan B= cot 3 = tan. A+ B = tan + tan = tan.. ] = tan 1 ] = C = π - ( A + B) = π - = a) :. : cos sin x cos cos 1 x 1 x sin cos x sin sin 1 x 1 x GE sin 1 x cos 1 x cos x sin x π 2. or Put x 0 then GE sin cos 0 cos sin sin 1 cos 1 π 2. sin If - = then the values of x are a) 0 or ½ b) 1 or 1/3 c) -1 or -1/3 d) -1,1/2 Ans: a Solution type 1: Inspection method: GE is satisfied by a) type 2: GE = cos x sin x = sin 1 x = sin x - sin x = sin 1 x sin 1 x = 2 sin x ( 1 x ) = sin 2 sin x ) = cos 2 sin x ) = 1 2 sin ( sin x) = 1 2x 1 x = 1 2x 2x x 2x x = 0 x ( 2x 1) = 0 x= 0, ½ ----

5 14. If + = then x = a) ± 3 b) 1 c) d) 0 Ans: b. Solution. Inspection method: ± 3 is not a solution since cos 3 is not defined. GE is satisfied by x = The value of + + = a) 0 b) cot 26 c) cot 1 d) cot 1 Ans: a. Solution: w.k.t cot a - cot b = cot cot 21 = cot. = cot 5 - cot 4 Similarly cot 13 = cot 4 - cot 3 And cot 8 = cot 3 - cot 5 GE = cot 5 - cot 4 + cot 4 - cot 3 + cot 3 - cot 5 = If +. = for 0< < then x = a) 1 b) 3) 0 d) Ans: a) Solution: clearly when x = 1 GE = ans: a) Or x = x = = x (2 x x ( 2 + x ) x = 0, 1. But x The value of 2 = a) b) c) d) Ans: b. searching method. put x = 1 then GE = 2tan 2-1] = 2 =. Put x = 1 in choices, Hence cot 1 = tan 1 = b Put x = -1 then GE = 2tan 2 - tan (π ) ] = = 2tan ] = - 2tan 2-1 ] = -2 ( ) = Hence answer must be either a or

6 Put x= -1 in a and b Then cot 1 = π = b tan 1 ) =. Hence answer is b If 2 =, then x is in a) [-1, 1 ] b) [-, 1] c) [- ] d) [ 0, 1]. Ans: c. Solution w.k. t. the range of RHS is [ 2 sin x sin x sin The solution set of the equation = 2 is a) { 1, 2} b) { -1, 2} c) {-1, 1, 0} d) {1, ½, 0} Ans: c) Solution : clearly is not defined. reject a) and b). consider d) = but =. = 2 hence reject d) Only possibility is ans c. or = 2 = x = x( ) = 2x x - = 0 x( 1 x ) = 0 x = 0, ±1 20. If in a triangle ABC, C is 90 0, then + a) b) c) Ans: c) d) = Solution: ABC is a right angled triangle. Put a= 3, b= 4 and c= 5. Then C= 90 Then tan + tan = tan + tan = tan + tan = = tan + tan = where m = 1. Ans: c.

7 21. The value of tan[ ) + )] = a) a b) c) b d) Ans: b). Solution Inspection method. Step1. Put a = 1, b= 0 Then GE = tan [tan 1)] = 1. When we put a=1, b= 0 in choices answer is either a or b Step2. a=0, b= 1 Then GE = tan [tan 1)+ tan 1) ] = tan [ ] = When we put a=0, b= 1 in choices Ans b) ( 1/a = 1/0 = ) If,,...a n is an AP with common difference d, then tan { } = a) b) c) Ans : b ) Solution: Given,,...a n are in AP - a 1 = a 3 a 2 =... a n - a n-1 = d d) Consider tan + tan tan = + tan tan = tan a - tan a + tan a - tan a tan a - tan a = tan a - tan a = tan = = tan =tan GE: tan tan ) = Hence answer is b.

8 23. If + = then x = a) 0 b) 1 c) 2-1 d) 1 Ans: d). Solution: Inspection method: Clearly x = o is not a solution since tan 0 =0 And cot 0 = LHS = When x= 1 LHS of GE = X = I is not a solution When x= 2-1, LHS of GE = is not a solution. x = -1 is only a solution If + + =, then X 1 x = a xyz b) 2xyz c) 2( x+ y + z) d) x y z Ans b Solution: It is a standard result. Or Inspection method. Step 1. put x= y = 1 and z = 0. Then sin x = π and choice b) and d) matches with this value. Step 2. Put x = and z = 1. Then sin x = π and choice b) matches with this value b is the answer If tan( x + y ) = 33 and x = then y = a) b) tan 30 c) tan d) Ans: d) tan Solution: x + y = tan 33 y =tan 33 - tan 3 = tan. =tan tan answer d)

9 26. 2 with x = a) sin 2x b) cos 2x c) cos x d) tan 1 x Ans: c Solution : put x = 1 then GE : When x = 1, a) and b) are not defined due to & c) = 0 and d) =. Hence Ans is c. 27. The general solution of sin5x = k where k is a real root of x - 1 = 0 is given by a) x = + 1 b x = + 1 (c) x = + 1 (d) x = n π + 1 Ans (a). Solution: Consider 2x - x +2x - 1 = 0 x (2x -1) +1 ( 2x 1) = 0 x +1 ) ( 2x 1) = 0 Since x is real x = ½. sin 5x = k = ½ = sin ( ) α = 5x = n π + 1 α = n 1 x = + 1 Ans (a) 28. If 5cos 2 θ = 0, θε (- π, π ),then θ = a) ( b), cos c) cos (d), π - cos Ans: (d ). Solution: GE = 5cos 2 θ + 2 cos + 1 = 0 5( 2 cos θ -1) + ( 1 + cos θ ) + 1 =0 10 x + x - 3 =0 where x = cos θ 10 x + 6x - 5x - 3 =0 2x ( 5x + 3 ) -1 ( 5x + 3 ) =0 x =, cos θ = ½ = cos, and cos θ = = cos( π - cos -1 (3/5)) Solution is, π - cos-1 (3/5)).

10 29. If The general solution of = 3 is given by θ = a) 2n π ± (b) n π ± (c). 2n π ± (b) n π ± Ans: (d) Solution: GE = = 3 tan θ = 3 tan θ =± 3 = tan( ± ) θ = n π ± If Sec x cos5x + 1 =0 where 0<x < 2 π, then x is equal to : a), b) c) d) none of these Ans: c Solution: GE : +1 = 0 cos5x + cosx = 0 2 cos 3x cos 2x =0 Cos 3x = 0 or cos2x =0 3x = or 2x = or X= or or or x = or inspection method. 31. The solution of the equation 2x = 1+ x is a) x = ( 2n + 1 ), n Є Z (b) x = n π, n Є Z.(C) x= ( 2n + 1 ), n Є Z (d) no solution. Ans: d Solution:GE: sin 2x = 1+ cos x Here cos x 0 The max value of LHS is 1 and minimum Vaue of RHS is 1. This is possible only when cos x = 0 and sin 2x = 1 x = and 2x = X =.This is not possible. Hence solution does not exists.

11 32. The most general value of θ satisfying the equation + tan θ - 1) 2 = 0 are given by a) n π ± b) n π + ( -1) n c). 2n π + (d) 2n π + Ans: c. Solution: a b = 0 a = 0 and b =0 1 2 sin θ = 0 and 3 tan θ - 1 = 0 sin θ = - ½ and tan θ = G.S. is θ = m π + ( -1) m and θ = mπ + only when m is odd m = 2n + 1 G.S. is θ = ( 2n + 1)π = 2n π The most general solution of θ satisfying Tan θ + tan( + θ ) = 2 is / are a) n π ±, n Є Z. b) 2n π +, n Є Z.c) 2n π ±, n Є Z d) ) 2n π +( -1) n, n Є Z. Both holds good Ans: a Solution: GE: Tan θ + tan( + θ ) = 2 Tan θ + tan 135 θ = 2 Tan θ + = 2 Tan θ + tan θ tan θ = tan θ tan θ = 3 tan θ = ± 3 θ = n π ±, n Є I The general solution of x for which cos2x,, and sin 2x are in Ap, are given by a) n π, n π + b) n π, n π + c) n π +, d) none of these. Ans: b. Solution: a,b,c are in AP a + c = 2b Cos2x + sin 2x = 1 Sin2x = 1 cos2x = 2 sin 2 x 2 sinx cos x - 2 sin 2 x = 0 2 sinx( cos x sinx) =0 sinx = o or cosx = sinx

12 sinx = 0 or tanx = 1 X = n π or x = n π +, n Є Z. 35. If sec θ + tan θ =1 then the general solution of θ= a) n π + b) 2n π + c) 2n π - d) 2n π ± Ans : c. GE : + = 1 cos θ sin θ = 2 cos( θ + ) = cos( 0 ) G.S. is θ + = 2 n π θ = 2 n π The equation sin cos has a) one solution b) two solutions c) infinite solutions d) no solution. Ans: d GE: sin3x = -2 < - 1. Hence solution does not exists The general solution of ( + ) = 2 is a) x = n π b) x = ( 4n + 1) c) x = ( 4n + 1) d) n π +. Ans: b. Solution clearly x = satisfies the GE If π x Π, π y Π and cos x + cosy = 2 then general solution is x = a) 2 n π + y b) 2 n π - y c) n π + y d) n π + ( -1) n y. Ans a. Solution : the Max. value of cosx is 1. Hence cos x + cosy = 2 cosx = 1 and cosy =1 x = 0 and y = 0 hence x y = 0 Hence cos( x y) = cos 0 X y = 2 n π x = 2 n π + y

13 39. The equation 3 x + 10cosx 6 =0 is satisfied if a) x = n π ± cos b) x = 2n π ± cos c) x = n π ± cos b) x = 2n π ± cos Ans: b. Solution GE.: 3( 1 - cos x ) + 10cosx 6 =0 3 3t + 10 t - 6 =0 where t = cosx 3t - 10 t +3 =0 3t - 9t - t +3 =0 3t( t 3 ) -1 ( t 3) =0 ( 3t -1) (t-3)=0 cosx = t = 3 > 1 No solution, Cosx = 1/3 = cos α where α = cos X = 2n π ± cos i.e. b). 40. If tan2x = tan, then the value of x = a) b) c) d) None of these Ans: a) Solution: GE: tan2x = tan 2x = n π + 2x - nπ x 2 = 0 X = 41. If the equation cos3x x + sin3x x= 0., then x = a) ( 2n+1) b) ( 2n - 1) c) d) n π,. Ans: a:) Solution: put n = 0 in answers a,b,c and d, Substitute x=0, x=, x=. GE is not satisfied when x =0 Hence c and d are not correct answers. GE is not satisfied when x = answer. Hence a is the answer. Or. Hence b is not the correct

14 cos3xcos x + sin3x sin x= 0. cos3x [ ( cos3x + 3 cosx )] + sin3x[ ( 3sinx - sin3x)] =0 ( cos 3x - sin 3x ) +3 ( cos3x cosx + sin3x sinx )} =0 {cos6x + 3 cos2x} =0 2x = A {cos3a + 3 cosa} =0 cos A0 cos 2x 0 cos2x = 0 2x = ( 2n + 1) x = ( 2n + 1) 42. If x and = 1, then all solutions of x are given by a) 2n π + b) ( 2n + 1) π - c) 2n π + 1 d) None of these. Ans : d. Solution: Since x, cos x 0,1,-1. Hence only possibility is sin x 3 sinx 2 = 0 sin x 2 sinx sinx 2 0 ( sinx - 1 ) ( sinx 2) =0 Sin x = 1 or 2 which is not possible as x and 2 > 1 Hence d is the answer. 43. If 1 + sin x + x + x +... = with 0<x < π and x, then x = a) b) c) Ans d. or d) Solution : put sinx = r then GE: 1 + r + r +... = ( in GP.) or With < 1 since 0<x < π and x. S = = = sinx = 1 sinx = x =

15 sinx = 1 - = = x = 60 or 120 Ans: d The general solution of of = cos2x 1 is a) 2n π b) c) n π d) (2n + 1) π Ans: c Solution: when n=1 a) π c) 2 π d is 3 π b) Among these GE is not satisfied by b) b is not the correct answer. Since GE is satisfied for π, 2π, 3 π also. General solution is θ = n π. Or tan x = cos2x 1 = - ( 1 cos2x) = - 2sin x sin x = - 2sin x cos x sin x ( 1 + 2cos x ) = 0 sin x = 0 sinx = 0 x= n π where n Є Z Cot θ =sin2 θ ( θ n π ),if θ = a), b), c) only d) only Ans b) Solution : when θ =, in GE LHS = RHS = 1. GE is satisfied by θ = also. and solution θ =,. Or GE = 2 sin θ cos θ cos θ = 2 sin θ cos θ cos θ ( 1-2 sin θ ) = 0 is not a Cos θ =0 θ = sin θ = ½ sin θ = ± θ = ±

16 46. If sin( cotθ ) =cos( tanθ) then the value of θ = a)n π + b ) 2n π ± c) n π - d) 2n π ± Ans: a) Solution: we know that sin = cos π cotθ = π tanθ cotθ = tanθ tan θ = 1 θ = n π If tan θ + 3 cot θ = 5 sec θ then θ = a) n π + ( -1) n, nє Z. b) n π + ( -1) n, nє Z c) n π + ( -1) n+ 1, nє Z or n π + ( -1) n, nє Z d) n π + ( -1) n, nє Z or n π + ( -1) n, nє Z Ans: b). Solution. GE: +3 sin θ + 3 cos θ = 5 sin θ cos θ = 5sin θ which is satisfied for x = only. answer is b) If tanx + tan4x + tan7x = tanx tan4x tan7x then x = a) n π / 3 b) n π / 4 c) n π / 6 d) n π / 12 Ans d). Solution : w. k.t if tan x + tany + tanz = tanx tany tanz then ] tan( x + y + z ) = 0. tan12x = 0 12x = n π x = n π / The general solution of sinx + sin7x = sin4x in ( 0, ) are a), b), c), d), Ans d) Solution: GE : sin7x + sin x sin4x =0 2 sin4x cos 3x sin 4x =0 sin4x( 2 cos3x - 1) =0 sin4x =0 4x = n π or x = n π / 4 = π / 4 in ( 0, ) cos 3x = = cos ( ) in ( 0, ) 3x = x = x =, Ans d

17 50. The number of solutions of cosx =, 0x 3 π is a) 3 b) 2 c) 4 d) 5 Ans: a. Solution: clearly 1 0 cosx = 1 + sinx ( = x if x 0 ) cos x sin x = 1 By inspection x = 0, 2π, 3 π /2 are 3 solutions in [0,3π] Ans a The set of values of x for which a) φ b) { n π +, n Є Z } c) Ans a. Solution: Clearly tan x = 1 = tan ( ) = 1 is d) { 2n π +, n Є Z } X = n π +, n Є Z. But for no values of x, sin2x is not defined, so that the equation has no solution. 52. The general solution of cos7 θ cos 5 θ = cos3θ cosθ is a), b), c), d ), Ans c. Solution : GE: cos7 θ cos 5 θ = cos3θ cosθ ( cos12 θ + cos2 θ ) = ( cos 4 θ + cos2 θ ) cos12 θ cos 4 θ = 0-2 sin 8θ sin 4θ =0 8θ = n or 4θ = n θ = Ans c If sec 2 x + + cosec 2 x = 4, then the value of x is a) b) c) d) Ans d. Clearly by inspection method d) is the answer ,

18 54. The equation 2 sin θ cos θ = x 2 + has a) one real solution b) no solution c) two real solutions d) θ = n π. ans b) Solution : GE : sin 2 θ = x 2 +. clearly sin 2 θ > 0. If x 1 solution does not exists. If 0<x< 1 then x < 1 but >1 hence x 2 + > 1 Solution does not exists. no solution 55. If A and B are acute angles such that sina = sin 2 B and 2 cos 2 A = 3 cos 2 B then A is d) a) b) c) Solution : Clearly by inspection method A=. Since when A=, B = from sina = sin 2 B. These values satisfies 2 cos 2 A = 3 cos 2 B also. a = is the ans Let n be a positive integer such that sin + cos =,then a) n = 4 b) n= 1,2,3,4,... c) n = 2 d) n = 6 Ans d. Solution: clearly by inspection n = 6. Or sin + cos squaring sin cos = sin = - 1 = which is true when n = 6. sin = n =6 only. 57. If sin 40 0 = k and cosx = 1 2 then the value of x in ( 0 0, ) are a) 40 o and 140 o b) 80 o and 280 o c) 40 o and 220 o d) 80 o and 260 o Ans: b. Solution : Now cosx = 1 2 sin = cos80 0. x = 80 0 and = x = 80 0, in ( 0 0, ) =

19 58. If 3 cos 2 x - 2 cos x sinx - 3 sin 2 x = 0 then x = a) + b) + c) d) n π + Ans: a) Solution : GE: 3 cos2x - 3 sin2x =0 3 cos2x = 3 sin2x = 3 tan2x = x = n π + x = The most general solution of + =0 a) 2n π +, n ЄZ, b) n π +, n ЄZ c) 2n π -, n ЄZ d) n π -, n ЄZ Ans: b. Solution: GE: log tanx = - log cotx log tanx = - log = log tanx log tanx = log tanx sinx = cosx Tanx = 1 x = n π +, n ЄZ ans :b The general solution of 3 tan( θ 15 o )= tan ( θ + 15 o ) is a) θ = ± b) n ± c) + ( -1) n d) 2n - Ans: c Solution: 3 tan( θ 15 o )= tan ( θ + 15 o ) 3 = 3 sin θ 15 cos θ 15 = sin θ 15 cos θ 15 2 sin θ 15 cos θ 15 + sin ( ) =0 sin2 θ + sin ( ) + sin ( ) =0 Sin 2 θ = 1 2 θ = n π + ( -1) n θ = ( -1) n

20 61. The most general solution of tan θ +1 = 0 & secθ - 2 =0 is a) 2n π - c) n π + ( -1) n Ans b) Solution: Given b) 2n π + d) 2n π + tan θ = quadrant take θ = 2 π = general solution is θ = 2n π + and cos θ = Ans b. θ in IV 62. If cosx + cosy = 1 and cosxcosy = ¼ then the general solutions are a) x = 2n π ±, y = 2k π ± b) 2n π ±, y = 2k π ± c) x = 2n π ±, y = 2k π ± b) n π ±, y = k π ± Ans: b. Solution: clearly by inspection method x =, y= is a solution. Hence ans is b). Or Cosx cosy = cosx cosy 4 cosxcosy = 1 4 =0 Now cosx + cosy = 1 and cosx - cosy = 0 cosx = ½ and cosy = ½ x = 2n π ±, y = 2k π ± ans : b = a b) - c) d) Ans : c Solution: put x= 0 then GE : In choices only a and c results in Hence answer is either a or c.. Put x = then GE: tan = tan 3= In choices a reduces to 15 0 and c reduces to Hence c is the answer.

21 Tan[ + cos-1 ( ) ] + Tan[ - cos-1 ( ) ] with x 0 a) 2x b) c) 2x d) 2 1 x Ans: b) Solution : put x = 1 in GE: = 2 reject d. Put x = in GE: tan( ) + tan ( ) = tan ( 750 ) + tan 15 0 = = 4 In choices b) gives 4. hence b is the correct answer If sin -1 ( ) + ) =, then x = a) 4 b) 5 c ) 1 d) 3 Ans: d. Solution: cosec ) = sin-1 ( ) GE : sin -1 ( ) + sin-1 ( ) = sin -1 ( ) = cos-1 ( ) clearly x = 3. sin -1 ( ) = cos-1 ( ) The value of cos( 2 + ) at x = 1/5 is a) b) c) d) 2 6 Ans: b Solution: cos( 2cos x + sin x ) = cos ( + cos x ) = - sin (cos x ) = - sin (sin 1 x ) = - 1 x At x = 1/5 ans is - 1 = - = The general solution of cosecx + cotx = is a) x = 2n π ± b) x = + - c) x = - d) x = 2n π ± - Ans: d. Solution: GE: cosecx + cotx = cosx = 3 sinx cosx + 3 sinx = - 1 cosx + cos( x + ) = cos G.S. is x = 2n π ± - ans :d..

22 68. If α, β and γ are the roots of the equation x 3 + m x 2 + 3x + m = 0, then the general solution of + + = a) ( 2n + 1) b) n π c) d) depend upon the value of x. Ans: b Solution : consider x 3 + m x 2 + 3x + m = 0 α = -b/a = -m, α = c/a = 3 ; α β γ = -d/a = -m Now =tan tan α + tan β + tan γ = tan = tan -1 (0) =0. G.S. is tan α +tan β +tan γ = n.where n Є Z. Ans b 69. The equation 3 cosx + 4 sinx = 6 has a) finite solution b) infinite solution c) one solution d) no solution. Ans: d Here r = > 1 where a= 3, b= 4 c = 6. Hence no solution. 70. The value of x satisfying the equation sinx + is given by a) 10 0 b) 30 0 c) 45 0 d) 60 0 = Ans: d Solution : Clearly by inspection x = 60 0 satisfies the equation. because sin = + = 71. If log 5 (1 + sinx) + log 5 (1 - sinx) = 0 then x in ( 0, ) is a) b) 0 c) d No value Ans d Solution: Clearly If log 5 [ (1 + sinx)( 1 sinx)] =0 1 sin 2 x = 0 cos 2 x =1 cosx = ± 1 x = 0, 0, ) no value.

23 72. If y = cosx and y = sin 5x then x = a) b) c) d) Ans: c Solution: clearly sin5x = cosx sin5x = sin ( - x) 5x = - x 6x = x = ans C 73. The value of ) ) + ) ) = a) Ans: d : b) c) = 2. d) 0 cos cos ) ) = cos cos 2π ) ) = sin sin ) = sin sin2π ) = - GE: = 0 Ans: d 74. If θ = )), then one of the possible value of θ is a) b) c) d) Ans: a) Solution: = θ = sin sin 600 = sin sin 120 = sin sin ) = sin sin 60 ) = 60 = 75. The value of sin( 2. = a) 0.96 b) 0.86 c) 0.94 d) Ans a) Solution: 0.8 = sin( 2 sin 0.8 = sin ( 2 θ ) where θ = sin = 2 sin θ cos θ = 2.. = = Ans a)

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2 SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

MATH 150 Pre-Calculus

MATH 150 Pre-Calculus MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree

Διαβάστε περισσότερα

Chapter 7 Analytic Trigonometry

Chapter 7 Analytic Trigonometry Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y 8. 0 9. 0. False. The domain of. True. True.. y sin is. sin 0 We are finding

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

UNIT-1 SQUARE ROOT EXERCISE 1.1.1 UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Προβολές και Μετασχηματισμοί Παρατήρησης

Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS

DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS Differentiation of Trigonometric Functions MODULE - V DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS Trigonometry is the branch of Mathematics that has mae itself inispensable for other branches of higher

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

On an area property of the sum cota + cotb + cotγ in a triangle

On an area property of the sum cota + cotb + cotγ in a triangle On an area property of the sum cota + cotb + cot in a triangle 1. Introduction Rummaging through an obscure trigonometry book published in Athens, Greece (and in the Greek language), and long out of print,

Διαβάστε περισσότερα

Lecture 6 Mohr s Circle for Plane Stress

Lecture 6 Mohr s Circle for Plane Stress P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2014 Β & Γ ΛΥΚΕΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2014 Β & Γ ΛΥΚΕΙΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 014 6 ΑΠΡΙΛΙΟΥ 014 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC Metallized Polyester Film Capacitor Type: ECQE(F) Non-inductive construction using metallized Polyester film with flame retardant epoxy resin coating Features Self-healing property Excellent electrical

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014 LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Άσκηση αυτοαξιολόγησης 4 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών CS-593 Game Theory 1. For the game depicted below, find the mixed strategy

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα IPHO_42_2011_EXP1.DO Experimental ompetition: 14 July 2011 Problem 1 Page 1 of 5 1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα Για ένα πυκνωτή χωρητικότητας ο οποίος είναι μέρος

Διαβάστε περισσότερα