From Fierz-Pauli to Einstein-Hilbert

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "From Fierz-Pauli to Einstein-Hilbert"

Transcript

1 From Fierz-Pauli to Einstein-Hilbert Gravity as a special relativistic field theory Bert Janssen Universidad de Granada & CAFPE A pedagogical review References: R. Feynman et al, The Feynman Lectures on Gravitation, 1995 T. Ortín, Gravity and Strings, 2004 B. Janssen (UGR) Granada, 14 dec

2 Central Idea Orionites with knowlegde of special relativity quantum field theory standard model & QCD NOT general relativity B. Janssen (UGR) Granada, 14 dec

3 Central Idea Orionites with knowlegde of special relativity quantum field theory standard model & QCD NOT general relativity discover gravity F = G N m 1 m 2 r 2 B. Janssen (UGR) Granada, 14 dec

4 Central Idea Orionites with knowlegde of special relativity quantum field theory standard model & QCD NOT general relativity discover gravity F = G N m 1 m 2 r 2 They will try to describe gravity as a special relativistic field theory try to find a bosonic field (graviton) that is responsable for gravity B. Janssen (UGR) Granada, 14 dec

5 Properties of the graviton: Gravity is long range = Massless B. Janssen (UGR) Granada, 14 dec

6 Properties of the graviton: Gravity is long range = Massless is static = integer spin (bosonic field) B. Janssen (UGR) Granada, 14 dec

7 Properties of the graviton: Gravity is long range = Massless is static = integer spin (bosonic field) is universally attractive = even spin (spin 0, 2, 4,...) B. Janssen (UGR) Granada, 14 dec

8 Properties of the graviton: Gravity is long range = Massless is static = integer spin (bosonic field) is universally attractive = even spin (spin 0, 2, 4,...) has deflection of light = not spin 0 spin 0 propagator k 2 only coupling T µ µ k 2 T ν ν electromagnetism (in D = 4): T µ µ = 0 B. Janssen (UGR) Granada, 14 dec

9 Properties of the graviton: Gravity is long range = Massless is static = integer spin (bosonic field) is universally attractive = even spin (spin 0, 2, 4,...) has deflection of light = not spin 0 spin 0 propagator k 2 only coupling T µ µ k 2 T ν ν electromagnetism (in D = 4): T µ µ = 0 theoretical problems for spin 5/2 = spin 2 B. Janssen (UGR) Granada, 14 dec

10 Properties of the graviton: Gravity is long range = Massless is static = integer spin (bosonic field) is universally attractive = even spin (spin 0, 2, 4,...) has deflection of light = not spin 0 spin 0 propagator k 2 only coupling T µ µ k 2 T ν ν electromagnetism (in D = 4): T µ µ = 0 theoretical problems for spin 5/2 = spin 2 = Spin 2 field h µν : Representation theory: 16 = with 9 = symmetric & traceless 6 = antisymmetric = spin 1 1 = trace = spin 0 B. Janssen (UGR) Granada, 14 dec

11 Properties of the graviton: Gravity is long range = Massless is static = integer spin (bosonic field) is universally attractive = even spin (spin 0, 2, 4,...) has deflection of light = not spin 0 spin 0 propagator k 2 only coupling T µ µ k 2 T ν ν electromagnetism (in D = 4): T µ µ = 0 theoretical problems for spin 5/2 = spin 2 = Spin 2 field h µν : Representation theory: 16 = with 9 = symmetric & traceless 6 = antisymmetric = spin 1 1 = trace = spin 0 = Massless traceless symmetric spin 2 field h µν : B. Janssen (UGR) Granada, 14 dec

12 Outlook 1. Introduction 1: Short review of General Relativity 2. Introduction 2: Electromagnetism as SRFT of spin 1 B. Janssen (UGR) Granada, 14 dec

13 Outlook 1. Introduction 1: Short review of General Relativity 2. Introduction 2: Electromagnetism as SRFT of spin 1 3. Construction of Fierz-Pauli theory 4. Consistency problems with couplings 5. Deser s argument & General Relativity 6. (Philosophical) Conclusions B. Janssen (UGR) Granada, 14 dec

14 1 Short review of General Relativity Einstein & Hilbert (1915): Gravity is curvature of spacetime, caused by matter Interaction between g µν and T µν S = 1 κ d 4 x ] g [R + L matter R µν 1 2 g µνr = κ T µν with R µν = µ Γ λ νλ λ Γ λ µν + Γ λ µσγ σ λν Γ λ µνγ σ λσ ( ) Γ ρ µν = 1 2 gρσ µ g σν + ν g µσ σ g µν T µν = 1 g δl matter δg µν Very geometrical way to understand gravity B. Janssen (UGR) Granada, 14 dec

15 Linear perturbations of Minkowski space Suppose g µν = η µν + εh µν h = h µ µ = η µν h µν B. Janssen (UGR) Granada, 14 dec

16 Linear perturbations of Minkowski space Suppose g µν = η µν + εh µν h = h µ µ = η µν h µν = g µν η µν εh µν R µν 1 2 ε [ 2 h µν + µ ν h µ ρ h νρ ν ρ h µρ ] R µν 1 2 g µνr 1 2 [ ε 2 h µν + µ ν h µ ρ h νρ ν ρ h µρ ( )] η µν 2 h ρ λ h ρλ T µν 0 + ετ µν B. Janssen (UGR) Granada, 14 dec

17 Linear perturbations of Minkowski space Suppose g µν = η µν + εh µν h = h µ µ = η µν h µν = g µν η µν εh µν R µν 1 2 ε [ 2 h µν + µ ν h µ ρ h νρ ν ρ h µρ ] 1 2 R µν 1 2 g µνr [ 1 2 ε 2 h µν + µ ν h µ ρ h νρ ν ρ h µρ ( )] η µν 2 h ρ λ h ρλ T µν 0 + ετ µν Einstein eqn R µν = κ(t µν 1 2 g µνt ) = ] [ 2 h µν + µ ν h µ ρ h νρ ν ρ h µρ κ(τ µν 1 2 η µντ) B. Janssen (UGR) Granada, 14 dec

18 Intermezzo ( Linear perturbations of general solution Suppose g µν = ḡ µν + εh µν h = h µ µ = ḡ µν h µν = R µν R µν ε [ 2 h µν + µ ν h µ ρ h νρ ν ρ h µρ ] T µν T µν + ετ µν Einstein eqn R µν = κ(t µν 1 2 g µνt ) = [ε 0 ] : Rµν = κ( T µν 1 T 2ḡµν ) ] [ε 1 1 ] : 2 [ 2 h µν + µ ν h µ ρ h νρ ν ρ h µρ κ (τ µν 12ḡµντ 12 h T µν + 12ḡµνh ) ρλ Tρλ ) B. Janssen (UGR) Granada, 14 dec

19 Gauge invariance Suppose g µν = η µν + εh µν δx µ = ξ µ, with ξ µ = 0 + εχ µ B. Janssen (UGR) Granada, 14 dec

20 Gauge invariance Suppose g µν = η µν + εh µν δx µ = ξ µ, with ξ µ = 0 + εχ µ = δg µν = ξ ρ ρ g µν + µ ξ ρ g ρν + ν ξ ρ g µρ [ε 0 ] : δη µν = 0 [ε 1 ] : δh µν = µ χ ν + ν χ µ Gauge invariance B. Janssen (UGR) Granada, 14 dec

21 Gauge invariance Suppose g µν = η µν + εh µν δx µ = ξ µ, with ξ µ = 0 + εχ µ = δg µν = ξ ρ ρ g µν + µ ξ ρ g ρν + ν ξ ρ g µρ [ε 0 ] : δη µν = 0 [ε 1 ] : δh µν = µ χ ν + ν χ µ Gauge invariance = δγ ρ µν = ε µ ν χ ρ δr µνρλ = δr µν = 0 B. Janssen (UGR) Granada, 14 dec

22 Gauge invariance Suppose g µν = η µν + εh µν δx µ = ξ µ, with ξ µ = 0 + εχ µ = δg µν = ξ ρ ρ g µν + µ ξ ρ g ρν + ν ξ ρ g µρ [ε 0 ] : δη µν = 0 [ε 1 ] : δh µν = µ χ ν + ν χ µ Gauge invariance = δγ ρ µν = ε µ ν χ ρ δr µνρλ = δr µν = 0 NB: g µν = η µν + εh µν with h µν = µ χ ν + ν χ µ = g µν = η µν since h µν is pure gauge B. Janssen (UGR) Granada, 14 dec

23 Let s forget about all this (for a moment) B. Janssen (UGR) Granada, 14 dec

24 2 Electromagnetism as SRFT of spin 1 Massless spin 1 field A µ : µ µ A ν = j ν B. Janssen (UGR) Granada, 14 dec

25 2 Electromagnetism as SRFT of spin 1 Massless spin 1 field A µ : µ µ A ν = j ν not pos. def. energy density due to non-physical states (A µ : 4 components photon: 2 helicity states) B. Janssen (UGR) Granada, 14 dec

26 2 Electromagnetism as SRFT of spin 1 Massless spin 1 field A µ : µ µ A ν = j ν not pos. def. energy density due to non-physical states (A µ : 4 components photon: 2 helicity states) We can impose Lorenz condition µ A µ = 0 by hand = µ j µ = 0 (charge conservation) B. Janssen (UGR) Granada, 14 dec

27 2 Electromagnetism as SRFT of spin 1 Massless spin 1 field A µ : µ µ A ν = j ν not pos. def. energy density due to non-physical states (A µ : 4 components photon: 2 helicity states) We can impose Lorenz condition µ A µ = 0 by hand = µ j µ = 0 (charge conservation) We would like L such that eqns of motion yield F µ (A) = j µ charge conservation µ F µ (A) = 0 gauge identity implying Lorenz cond. B. Janssen (UGR) Granada, 14 dec

28 Most general Lorentz-invar action, quadratic in A L = α µ A ν µ A ν + β µ A ν ν A µ Eqns of motion: F ν (A) = α 2 A ν + β µ ν A µ = 0 Gauge condition: ν F ν (A) 0 = α = β B. Janssen (UGR) Granada, 14 dec

29 Most general Lorentz-invar action, quadratic in A L = α µ A ν µ A ν + β µ A ν ν A µ Eqns of motion: F ν (A) = α 2 A ν + β µ ν A µ = 0 Gauge condition: ν F ν (A) 0 = α = β The action is [ µ A ν µ A ν µ A ν ν A µ ] L = 1 2 = 1 4 F µνf µν with F µν = µ A ν ν A µ F ν = µ F µν B. Janssen (UGR) Granada, 14 dec

30 Most general Lorentz-invar action, quadratic in A L = α µ A ν µ A ν + β µ A ν ν A µ Eqns of motion: F ν (A) = α 2 A ν + β µ ν A µ = 0 Gauge condition: ν F ν (A) 0 = α = β The action is L = 1 2 [ µ A ν µ A ν µ A ν ν A µ ] = 1 4 F µνf µν with F µν = µ A ν ν A µ F ν = µ F µν Gauge invariance: [ δl δl = µ δ( µ A ν ) δl ] δa ν = µ F µν δa ν µ ν F µν Λ δa ν = δa µ = µ Λ B. Janssen (UGR) Granada, 14 dec

31 Coupling to matter L 0 = 1 2 µφ µ φ 1 4 F µνf µν Eqns of motion: µ µ φ = 0, µ µ φ = 0, µ F µν = 0 Invariant under: δa µ = µ Λ (local U(1)) δφ = ieλφ (global U(1)) B. Janssen (UGR) Granada, 14 dec

32 Coupling to matter L 0 = 1 2 µφ µ φ 1 4 F µνf µν Eqns of motion: µ µ φ = 0, µ µ φ = 0, µ F µν = 0 Invariant under: δa µ = µ Λ (local U(1)) δφ = ieλφ (global U(1)) Noether current for λ: δ λ L 0 ) = ie 2 µλ (φ µ φ φ µ φ = eλ µ j µ (0) j µ (0) preserved on-shell: µj µ (0) ] = [φ i 2 µ µ φ φ µ µ φ B. Janssen (UGR) Granada, 14 dec

33 Coupling to matter L 0 = 1 2 µφ µ φ 1 4 F µνf µν Eqns of motion: µ µ φ = 0, µ µ φ = 0, µ F µν = 0 Invariant under: δa µ = µ Λ (local U(1)) δφ = ieλφ (global U(1)) Noether current for λ: δ λ L 0 ) = ie 2 µλ (φ µ φ φ µ φ = eλ µ j µ (0) j µ (0) preserved on-shell: µj µ (0) ] = [φ i 2 µ µ φ φ µ µ φ j µ (0) is not source term for F µν add coupling term L ea µ j µ (0) B. Janssen (UGR) Granada, 14 dec

34 Coupling term L 1 = 1 2 µφ µ φ 1 4 F µνf µν + ea µ j µ (0) (φ µ φ φ µ φ ) with j µ (0) = ie 2 Eqn of motion: µ F µν = ej ν (0) µ µ φ ie µ A µ φ 2ieA µ µ φ = 0 µ µ φ + ie µ A µ φ + 2ieA µ µ φ = 0 Problem: j µ (0) is not conserved on-shell! 0 = µ ν F µν = µ j µ (0) 0 INCONSISTENCY!!! B. Janssen (UGR) Granada, 14 dec

35 Coupling term L 1 = 1 2 µφ µ φ 1 4 F µνf µν + ea µ j µ (0) (φ µ φ φ µ φ ) with j µ (0) = ie 2 Eqn of motion: µ F µν = ej ν (0) µ µ φ ie µ A µ φ 2ieA µ µ φ = 0 µ µ φ + ie µ A µ φ + 2ieA µ µ φ = 0 Problem: j µ (0) is not conserved on-shell! 0 = µ ν F µν = µ j µ (0) 0 INCONSISTENCY!!! Reason: j µ (0) is Noether current of L 0, not of L 1 Real Noether current: j µ (1) = jµ (0) + eaµ φ φ B. Janssen (UGR) Granada, 14 dec

36 Noether procedure Identify λ and Λ δa µ = µ Λ, δφ = ieλφ B. Janssen (UGR) Granada, 14 dec

37 Noether procedure Identify λ and Λ Then: δl 0 = e Λj µ (0) 0 δa µ = µ Λ, δφ = ieλφ add L ea µ j µ (0) B. Janssen (UGR) Granada, 14 dec

38 Noether procedure Identify λ and Λ Then: δl 0 = e Λj µ (0) 0 δa µ = µ Λ, δφ = ieλφ add L ea µ j µ (0) δl 1 = e Λj µ (0) + e Λjµ (0) e2 µ ΛA µ φ φ 0 add L 1 2 e2 A µ A µ φ φ B. Janssen (UGR) Granada, 14 dec

39 Noether procedure Identify λ and Λ Then: δl 0 = e Λj µ (0) 0 δa µ = µ Λ, δφ = ieλφ add L ea µ j µ (0) δl 1 = e Λj µ (0) + e Λjµ (0) e2 µ ΛA µ φ φ 0 add L 1 2 e2 A µ A µ φ φ L 2 = 1 2 µφ µ φ 1 4 F µνf µν + ea µ j µ (0) e2 A µ A µ φ φ δl 2 = e 2 µ ΛA µ φ φ + e 2 µ ΛA µ φ φ = 0 B. Janssen (UGR) Granada, 14 dec

40 Nota bene: L 2 = 1 2 µφ µ φ 1 4 F µνf µν + ie 2 A µ(φ µ φ φ µ φ ) e2 A µ A µ φ φ = 1 2 ( µφ + iea µ φ )( µ φ iea µ φ) 1 4 F µνf µν = D µ φ D µ φ 1 4 F µνf µν with: D µ φ = µ φ iea µ φ δd µ φ = D µ (δφ) B. Janssen (UGR) Granada, 14 dec

41 Nota bene: L 2 = 1 2 µφ µ φ 1 4 F µνf µν + ie 2 A µ(φ µ φ φ µ φ ) e2 A µ A µ φ φ = 1 2 ( µφ + iea µ φ )( µ φ iea µ φ) 1 4 F µνf µν = D µ φ D µ φ 1 4 F µνf µν with: D µ φ = µ φ iea µ φ δd µ φ = D µ (δφ) Lesson: Lorentz symm & gauge invariance = free theory Gauge invariance & consistent couplings = fully consistent theory coupled to matter B. Janssen (UGR) Granada, 14 dec

42 3 Gravity as a SRFT of spin 2 Massless spin 2 field h µν : ρ ρ h µν = κt µν not pos. def. energy density due to non-physical states (h µν : 4 components graviton: 2 helicity states) B. Janssen (UGR) Granada, 14 dec

43 3 Gravity as a SRFT of spin 2 Massless spin 2 field h µν : ρ ρ h µν = κt µν not pos. def. energy density due to non-physical states (h µν : 4 components graviton: 2 helicity states) Look for action L such that eqns of motion yield H µν (h) = κt µν energy conservation µ T µν = 0 = µ H µν (h) = 0 gauge invariant action B. Janssen (UGR) Granada, 14 dec

44 Most general Lorentz-invar action, quadratic in h L = a µ h νρ µ h νρ + b µ h νρ ν h µρ + c µ h ρ h µρ + d µ h µ h with h = h µ µ = η µν h µν Eqns of motion: H νρ (h) a 2 h νρ + 2b µ (ν h ρ)µ + c (ν ρ) h + c η νρ µ λ h µλ + 2d η νρ 2 h = 0 Gauge condition: ν H νρ (h) 0 = a = 1 2 b = 1 2 c = d B. Janssen (UGR) Granada, 14 dec

45 Most general Lorentz-invar action, quadratic in h L = a µ h νρ µ h νρ + b µ h νρ ν h µρ + c µ h ρ h µρ + d µ h µ h with h = h µ µ = η µν h µν Eqns of motion: H νρ (h) a 2 h νρ + 2b µ (ν h ρ)µ + c (ν ρ) h + c η νρ µ λ h µλ + 2d η νρ 2 h = 0 Gauge condition: ν H νρ (h) 0 = a = 1 2 b = 1 2 c = d The action then is L = 1 4 µh νρ µ h νρ 1 2 µh νρ ν h µρ µh ρ h µρ 1 4 µh µ h H µν (h) 2 h µν + µ ν h ρ µ h νρ ρ ν h µρ η µν 2 h + η µν ρ λ h ρλ = 0 (NB: H µν (h) is first order of R µν 1 2 g µνr for g µν = η µν + εh µν ) B. Janssen (UGR) Granada, 14 dec

46 Gauge invariance [ δl δl = µ δ( µ h νρ ) δl ] δh µν = H νρ δh νρ ν H νρ χ δh νρ = δh µν = µ χ ν + ν χ µ (NB: δh µν is first order of δg µν for g µν = η µν + εh µν ) B. Janssen (UGR) Granada, 14 dec

47 Gauge invariance [ δl δl = µ δ( µ h νρ ) δl ] δh µν = H νρ δh νρ ν H νρ χ δh νρ = δh µν = µ χ ν + ν χ µ (NB: δh µν is first order of δg µν for g µν = η µν + εh µν ) Transverse traceless gauge: µ h µν = 0 = h = H µν (h) = ρ ρ h µν = 0 De Donder gauge: µ hµν = 0 with h µν = h µν 1 2 η µνh = H µν (h) = ρ ρ hµν = 0 B. Janssen (UGR) Granada, 14 dec

48 Coupling to matter L = L FP + L φ + κ h µν T µν (φ) Eqns of motion: H µν = κt µν (φ) 2 φ +... = 0 Gauge condition: µ H µν = 0 = µ T µν (φ) = 0 B. Janssen (UGR) Granada, 14 dec

49 Coupling to matter L = L FP + L φ + κ h µν T µν (φ) Eqns of motion: H µν = κt µν (φ) 2 φ +... = 0 Gauge condition: µ H µν = 0 = µ T µν (φ) = 0 Questions: 1. How good is this theory? Experimental verification 2. Is µ T µν (φ) = 0 consistent with 2 φ +... = 0? Consistency problems B. Janssen (UGR) Granada, 14 dec

50 Newtonian limit Point mass: T µν = M δ µ 0 δν 0 δ(x ρ ) = H 00 = κmδ(x ρ ), H ij = 0 = h 00 = Φ, h ii = Φδ ij Φ = M 8π x Action for mass m moving in gravitational potential Φ: 1 } S = m dt{ 1 v2 + [1 + 1 v 2 v2 ]Φ { } 1 dt 2 mv2 mφ 1 4 mv mv2 Φ +... (Newtonian potential) = Good agreement for light deflection, time dilatation,... Perihelium Mercury is 0.75 observed value B. Janssen (UGR) Granada, 14 dec

51 4 Consistency problems with couplings L 0 = 1 4 µh νρ µ h νρ 1 2 µh νρ ν h µρ µh ρ h µρ 1 4 µh µ h µφ µ φ Eqns of motion: H µν = 0 µ µ φ = 0 Invariant under: δh µν = µ χ ν + ν χ µ + κ Σ λ λ h µν δφ = κ Σ µ µ φ δx µ = κ Σ µ with Σ µ global symm B. Janssen (UGR) Granada, 14 dec

52 4 Consistency problems with couplings L 0 = 1 4 µh νρ µ h νρ 1 2 µh νρ ν h µρ µh ρ h µρ 1 4 µh µ h µφ µ φ Eqns of motion: H µν = 0 µ µ φ = 0 Invariant under: δh µν = µ χ ν + ν χ µ + κ Σ λ λ h µν δφ = κ Σ µ µ φ δx µ = κ Σ µ Noether current for Σ µ : ] δ Σ L 0 = κ µ Σ [T ν µν (φ) + T µν (h) with Σ µ global symm with T µν (φ) energy-momentum tensor of matter T µν (h) gravitational energy-momentum tensor B. Janssen (UGR) Granada, 14 dec

53 T µν (φ) = µ φ ν φ η µν( φ) 2 T µν (h) = 1 2 µh ρλ ν h ρλ + µ h ρλ ρ h λ ν 1 2 µh ρ h νρ 1 2 ρ h µ h νρ µh µ h + η µν L FP T µν (φ) and T µν (h) preserved on shell: µ T µν (φ) = 2 φ ν φ µ T µν (h) = ν h µρ H µρ B. Janssen (UGR) Granada, 14 dec

54 T µν (φ) = µ φ ν φ η µν( φ) 2 T µν (h) = 1 2 µh ρλ ν h ρλ + µ h ρλ ρ h ν λ 1 2 µh ρ h νρ 1 2 ρ h µ h νρ µh µ h + η µν L FP T µν (φ) and T µν (h) preserved on shell: µ T µν (φ) = 2 φ ν φ µ T µν (h) = ν h µρ H µρ T µν (φ) is not source term for h µν : add coupling term L κh µν T µν (φ) B. Janssen (UGR) Granada, 14 dec

55 Coupling term L 1 = 1 4 µh νρ µ h νρ 1 2 µh νρ ν h µρ µh ρ h µρ 1 4 µh µ h µφ µ φ κhµν T µν (φ) Eqns of motion: H µν = κt µν (φ) ] µ µ φ = κ µ [h µν ν φ 1 2 h µφ Problem: T µν (φ) is no longer conserved on shell! 0 = µ H µν = κ µ T µν (φ) = κ 2 φ ν φ 0 (-22) INCONSISTENCY!!! B. Janssen (UGR) Granada, 14 dec

56 Coupling term L 1 = 1 4 µh νρ µ h νρ 1 2 µh νρ ν h µρ µh ρ h µρ 1 4 µh µ h µφ µ φ κhµν T µν (φ) Eqns of motion: H µν = κt µν (φ) ] µ µ φ = κ µ [h µν ν φ 1 2 h µφ Problem: T µν (φ) is no longer conserved on shell! Reason: 0 = µ H µν = κ µ T µν (φ) = κ 2 φ ν φ 0 (-22) INCONSISTENCY!!! T µν (φ) is Noether current of L 0, not of L 1 Total energy conserved, not only energy of φ Gravity couples also to own energy non-linear theory B. Janssen (UGR) Granada, 14 dec

57 Gravity self-coupling L 2 = 1 4 µh νρ µ h νρ 1 2 µh νρ ν h µρ µh ρ h µρ 1 4 µh µ h µφ µ φ κhµν T µν (φ) κhµν T µν (h) B. Janssen (UGR) Granada, 14 dec

58 Gravity self-coupling L 2 = 1 4 µh νρ µ h νρ 1 2 µh νρ ν h µρ µh ρ h µρ 1 4 µh µ h µφ µ φ κhµν T µν (φ) κhµν T µν (h) TOO NAIVE!!! Eqn of motion does not give H µν = κt µν (φ) + κt µν (h) due to contribuition of T µν (h) B. Janssen (UGR) Granada, 14 dec

59 Gravity self-coupling L 2 = 1 4 µh νρ µ h νρ 1 2 µh νρ ν h µρ µh ρ h µρ 1 4 µh µ h µφ µ φ κhµν T µν (φ) κhµν T µν (h) TOO NAIVE!!! Eqn of motion does not give H µν = κt µν (φ) + κt µν (h) due to contribuition of T µν (h) T µν (h) too simple for energy-monentum tensor for h µν B. Janssen (UGR) Granada, 14 dec

60 We need L corr = κ h µν L µν κ h( h)( h) such that L 3 = 1 4 µh νρ µ h νρ 1 2 µh νρ ν h µρ µh ρ h µρ 1 4 µh µ h µφ µ φ κ hµν T µν (φ) + κ h µν L µν yields B. Janssen (UGR) Granada, 14 dec

61 We need L corr = κ h µν L µν κ h( h)( h) such that L 3 = 1 4 µh νρ µ h νρ 1 2 µh νρ ν h µρ µh ρ h µρ yields 1 4 µh µ h µφ µ φ κ hµν T µν (φ) + κ h µν L µν ( ) T µν (h) = L µν σ h ρλ δl ρλ δ σ h µν B. Janssen (UGR) Granada, 14 dec

62 We need L corr = κ h µν L µν κ h( h)( h) such that L 3 = 1 4 µh νρ µ h νρ 1 2 µh νρ ν h µρ µh ρ h µρ yields 1 4 µh µ h µφ µ φ κ hµν T µν (φ) + κ h µν L µν ( ) T µν (h) = L µν σ h ρλ δl ρλ δ σ h µν L 3 is invariant upto order κ 2 under δh µν = µ χ ν + ν χ µ + κ χ ρ ρ h µν δφ = κ χ ρ ρ φ B. Janssen (UGR) Granada, 14 dec

63 We need L corr = κ h µν L µν κ h( h)( h) such that L 3 = 1 4 µh νρ µ h νρ 1 2 µh νρ ν h µρ µh ρ h µρ yields 1 4 µh µ h µφ µ φ κ hµν T µν (φ) + κ h µν L µν ( ) T µν (h) = L µν σ h ρλ δl ρλ δ σ h µν L 3 is invariant upto order κ 2 under δh µν = µ χ ν + ν χ µ + κ χ ρ ρ h µν δφ = κ χ ρ ρ φ ) H µν = κt µν (φ) + κt µν (h) (T µ µν (φ) + T µν (h) = 0 B. Janssen (UGR) Granada, 14 dec

64 Most general term for L corr : L corr = 1 2 κ hµν [α µ h ρλ ν h ρλ + β µ h ρλ ρ h λ ν +... ] 20 terms with 16 coefficients determine coefficients by demanding µ T µν (h) = γ ν ρλ Hρλ B. Janssen (UGR) Granada, 14 dec

65 Most general term for L corr : L corr = 1 2 κ hµν [α µ h ρλ ν h ρλ + β µ h ρλ ρ h λ ν +... ] 20 terms with 16 coefficients determine coefficients by demanding µ T µν (h) = γ ν ρλ Hρλ = L corr = 1 2 κ hµν [ 1 2 µh ρλ ν h ρλ ρ h µ λ ρ h λν + λ h ρ (µ ρ h ν)λ +2 λ h ρ (µ ν) h ρλ (µ h ν)λ λ h λ h µν ρ h ρλ λ h λ(µ ν) h + λ h µν λ h µh ν h + η µν L FP ] Eqns of motion: H µν = κt µν (h) + κt µν (φ) ] µ µ φ = κ µ [h µν ν φ 1 2 h m uφ ] Conservation of energy: [T µ µν (h) + T µν (φ) = 0 B. Janssen (UGR) Granada, 14 dec

66 Consistent result upto order κ Right values for perihelium of Mercury previous deficit due to neglecting self-interaction What about order κ 2, κ 3,...? Extremely tedious!! B. Janssen (UGR) Granada, 14 dec

67 Consistent result upto order κ Right values for perihelium of Mercury previous deficit due to neglecting self-interaction What about order κ 2, κ 3,...? Extremely tedious!! WE NEED A MORE GENERAL ARGUMENT! B. Janssen (UGR) Granada, 14 dec

68 5 Deser s argument & General Relativity L 0 = κ h ] ] µν [ µ Γ ρ νρ ρ Γ ρ µν + η [Γ µν λ µργ ρ νλ Γλ µνγ ρ λρ with h µν = h µν 1 2 η µνh Invariant under: δh µν = µ χ ν + ν χ µ δγ ρ µν = µ ν χ ρ Γ ρ µν = Γ ρ νµ Eqns of motion: [ h µν ] : ρ Γ ρ µν 1 2 µγ ρ νρ 1 2 µγ ρ νρ = 0 [Γ ρ µν] : κ ρ hµν + κ λ hλ(µ δρ ν) + 2η λ(µ Γ ν) ρλ η λσ Γ (µ λσ δν) ρ η µν Γ λ ρλ = 0 [Γ ρ µν] is algebraic eqn for Γ ρ µν Constraint on Γ ρ µν B. Janssen (UGR) Granada, 14 dec

69 Constraint on Γ ρ µν: Γ ρ µν = 1 2 κ ηρλ [ µ h λν + ν h µλ λ h µν ] Γ ρ µν is not independent field ( Γ ρ µν is 1st order of Christoffel symbol for g µν = η µν + εh µν ) B. Janssen (UGR) Granada, 14 dec

70 Constraint on Γ ρ µν: Γ ρ µν = 1 2 κ ηρλ [ µ h λν + ν h µλ λ h µν ] Γ ρ µν is not independent field ( Γ ρ µν is 1st order of Christoffel symbol for g µν = η µν + εh µν ) Substitute in [ h µν ]: 2 h µν + µ ν ρ µ h νρ ρ ν h µρ = 0 H µν 1 2 η µνh ρ ρ = 0 ( 1st order of R µν = 0 for g µν = η µν + εh µν ) = L 0 is equivalent to L FP B. Janssen (UGR) Granada, 14 dec

71 We want to find correction to L 0 which takes in account the self-interaction of h µν, such that H µν = κt µν L 1 = κ h ] [ ] µν [ µ Γ ρ νρ ρ Γ ρ µν + (η µν κh µν ) Γ λ µργ ρ νλ Γλ µνγ ρ λρ Eqns of motion: [ h µν ]: R µν (Γ) = 0 [Γ ρ µν]: κ ρ hµν + κ λ hλ(µ δρ ν) + 2(η λ(µ κ h λ(µ )Γ ν) ρλ (η λσ κ h λσ )Γ (µ λσ δν) ρ (η µν κ h µν )Γ λ ρλ = 0 B. Janssen (UGR) Granada, 14 dec

72 We want to find correction to L 0 which takes in account the self-interaction of h µν, such that H µν = κt µν L 1 = κ h ] [ ] µν [ µ Γ ρ νρ ρ Γ ρ µν + (η µν κh µν ) Γ λ µργ ρ νλ Γλ µνγ ρ λρ Eqns of motion: [ h µν ]: R µν (Γ) = 0 [Γ ρ µν]: κ ρ hµν + κ λ hλ(µ δρ ν) + 2(η λ(µ κ h λ(µ )Γ ν) ρλ (η λσ κ h λσ )Γ (µ λσ δν) ρ (η µν κ h µν )Γ λ ρλ = 0 Correction term has no η µν = No contribution to T µν (h) No further correction needed B. Janssen (UGR) Granada, 14 dec

73 We want to find correction to L 0 which takes in account the self-interaction of h µν, such that H µν = κt µν L 1 = κ h ] [ ] µν [ µ Γ ρ νρ ρ Γ ρ µν + (η µν κh µν ) Γ λ µργ ρ νλ Γλ µνγ ρ λρ Eqns of motion: [ h µν ]: R µν (Γ) = 0 [Γ ρ µν]: κ ρ hµν + κ λ hλ(µ δρ ν) + 2(η λ(µ κ h λ(µ )Γ ν) ρλ (η λσ κ h λσ )Γ (µ λσ δν) ρ (η µν κ h µν )Γ λ ρλ = 0 Correction term has no η µν = No contribution to T µν (h) No further correction needed R µν (Γ) = ρ Γ ρ µν µγ ρ νρ + Γλ µν Γρ λρ Γλ µρ Γρ νλ (Surprise!) What is the conecction Γ ρ µν? is Ricci tensor B. Janssen (UGR) Granada, 14 dec

74 Define η µν κ h µν = ĝ µν ĝ µν ĝ νρ = δ ρ µ g µν = ĝ ĝ µν g µν non-linear combination of h µν (infinite series) g µν acts as metric B. Janssen (UGR) Granada, 14 dec

75 Define η µν κ h µν = ĝ µν ĝ µν ĝ νρ = δ ρ µ g µν = ĝ ĝ µν g µν non-linear combination of h µν (infinite series) g µν acts as metric Constraint on Γ ρ µν: Γ ρ µν = 1 2 gρλ [ µ g λν + ν g µλ λ g µν ] Γ ρ µν is Levi-Civita conection R µν (Γ) = R µν (g) [ h µν ] is Einstein eqn R µν = 0 B. Janssen (UGR) Granada, 14 dec

76 Eqn of motion R µν = 0 invariant under general coord transf However L 1 is not! ] add total derivative η µν [ µ Γ ρ νρ ρ Γ ρ µν B. Janssen (UGR) Granada, 14 dec

77 Eqn of motion R µν = 0 invariant under general coord transf However L 1 is not! add total derivative η µν [ µ Γ ρ νρ ρ Γ ρ µν ] = L 2 = (η µν κ h [ ] µν ) µ Γ ρ νρ ρ Γ ρ µν = g µν [ µ Γ ρ νρ ρ Γ ρ µν = g µν R µν (g) [ ] +(η µν κh µν ) Γ λ µργ ρ νλ Γλ µνγ ρ λρ Einstein-Hilbert action! ] [ ] + g µν Γ λ µργ ρ νλ Γλ µνγ ρ λρ B. Janssen (UGR) Granada, 14 dec

78 6 Conclusions Fierz-Pauli L FP is consistent as free theory Couplings to matter = self-coupling of gravity = inconsistent Possible (but difficult) to construct consistent theory upto order κ 2 General Relativity is consistent extension to all orders (unique?) Suprising geometrical interpretation: non-linear function of h µν is metric very elegant & much richer structure B. Janssen (UGR) Granada, 14 dec

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Dark matter from Dark Energy-Baryonic Matter Couplings

Dark matter from Dark Energy-Baryonic Matter Couplings Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010

Διαβάστε περισσότερα

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR Dieter Van den Bleeken arxiv.org/submit/1828684 Supported by Bog azic i University Research Fund Grant nr 17B03P1 SCGP 10th March 2017

Διαβάστε περισσότερα

Physics 582, Problem Set 2 Solutions

Physics 582, Problem Set 2 Solutions Physics 582, Problem Set 2 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 Symmetries and Conservation Laws In this problem set we return to a study of scalar electrodynamics which has the Lagrangian

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

A Short Introduction to Tensors

A Short Introduction to Tensors May 2, 2007 Tensors: Scalars and Vectors Any physical quantity, e.g. the velocity of a particle, is determined by a set of numerical values - its components - which depend on the coordinate system. Studying

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

3+1 Splitting of the Generalized Harmonic Equations

3+1 Splitting of the Generalized Harmonic Equations 3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Geometric Lagrangians. for. massive higher-spin fields

Geometric Lagrangians. for. massive higher-spin fields Geometric Lagrangians for massive higher-spin fields Dario Francia Chalmers University of Technology - Göteborg Valencia - 3 rd RTN Workshop October, 4-2007 D. F. - in preparation Introduction I: geometry

Διαβάστε περισσότερα

Palatiniversus metricformalism inhigher-curvaturegravity

Palatiniversus metricformalism inhigher-curvaturegravity Palatiniversus metricformalism inhigher-curvaturegravity Bert Janssen Universidad de Granada & CAFPE In collaboration with: M. Borunda and M. Bastero-Gil (UGR) References: JCAP 0811(2008) 008, arxiv:0804.4440[hep-th.

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 s Free graviton Hamiltonian Show that the free graviton action we discussed in class (before making it gauge- and Lorentzinvariant), S 0 = α d 4 x µ h ij µ h ij, () yields the correct free Hamiltonian

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

UV fixed-point structure of the 3d Thirring model

UV fixed-point structure of the 3d Thirring model UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches

Διαβάστε περισσότερα

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY Walter Wyss Department of Physics University of Colorado Boulder, CO 80309 (Received 14 July 2005) My friend, Asim Barut, was always interested in classical

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Cosmological Space-Times

Cosmological Space-Times Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Non-Gaussianity from Lifshitz Scalar

Non-Gaussianity from Lifshitz Scalar COSMO/CosPA 200 September 27, 200 Non-Gaussianity from Lifshitz Scalar Takeshi Kobayashi (Tokyo U.) based on: arxiv:008.406 with Keisuke Izumi, Shinji Mukohyama Lifshitz scalars with z=3 obtain super-horizon,

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Relativistic particle dynamics and deformed symmetry

Relativistic particle dynamics and deformed symmetry Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

THE ENERGY-MOMENTUM TENSOR FOR THE GRAVITATIONAL FIELD.

THE ENERGY-MOMENTUM TENSOR FOR THE GRAVITATIONAL FIELD. THE ENERGY-MOMENTUM TENSOR FOR THE GRAVITATIONAL FIELD. S.V. Babak and L.P. Grishchuk Department of Physics and Astronomy, Cardiff University, PO Box 93, CF2 3YB, UK. Email: babak@astro.cf.ac.uk ; grishchuk@astro.cf.ac.uk

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II 8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 200 Lecture 2 3: GENERAL ASPECTS OF QUANTUM ELECTRODYNAMICS 3.: RENORMALIZED LAGRANGIAN Consider the Lagrangian

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Toward a non-metric theory of gravity

Toward a non-metric theory of gravity oward a non-metric theory of gravity playing around with the (affine) connection! Oscar Castillo-Felisola o.castillo.felisola(at)gmail.com UFSM, Valparaiso O. Castillo-Felisola (UFSM, Valparaiso) oward

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Higher spin gauge theories and their CFT duals

Higher spin gauge theories and their CFT duals Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)

Διαβάστε περισσότερα

Solutions Ph 236a Week 8

Solutions Ph 236a Week 8 Solutions Ph 236a Week 8 Page 1 of 9 Solutions Ph 236a Week 8 Kevin Barkett, Jonas Lippuner, and Mark Scheel December 1, 2015 Contents Problem 1................................... 2...................................

Διαβάστε περισσότερα

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability A. Cisterna 1 M. Cruz 2 T. Delsate 3 J. Saavedra 4 1 Universidad Austral de Chile 2 Facultad de

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

A Short Introduction to Tensor Analysis

A Short Introduction to Tensor Analysis June 20, 2008 Scalars and Vectors An n-dim manifold is a space M on every point of which we can assign n numbers (x 1,x 2,...,x n ) the coordinates, in such a way that there will be a one to one correspondence

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

About these lecture notes. Simply Typed λ-calculus. Types

About these lecture notes. Simply Typed λ-calculus. Types About these lecture notes Simply Typed λ-calculus Akim Demaille akim@lrde.epita.fr EPITA École Pour l Informatique et les Techniques Avancées Many of these slides are largely inspired from Andrew D. Ker

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Hartree-Fock Theory. Solving electronic structure problem on computers

Hartree-Fock Theory. Solving electronic structure problem on computers Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Riemannian Curvature

Riemannian Curvature Riemannian Curvature February 6, 013 We now generalize our computation of curvature to arbitrary spaces. 1 Parallel transport around a small closed loop We compute the change in a vector, w, which we parallel

Διαβάστε περισσότερα

1 Lorentz transformation of the Maxwell equations

1 Lorentz transformation of the Maxwell equations 1 Lorentz transformation of the Maxwell equations 1.1 The transformations of the fields Now that we have written the Maxwell equations in covariant form, we know exactly how they transform under Lorentz

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Eulerian Simulation of Large Deformations

Eulerian Simulation of Large Deformations Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

Solutions for String Theory 101

Solutions for String Theory 101 Solutions for String Theory 0 Lectures at the International School of Strings and Fundamental Physics Munich July 6 - August 6 00 Email: Neil Lambert Theory Division CERN Geneva 3 Switzerland neil.lambert@cern.ch

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα