On the Galois Group of Linear Difference-Differential Equations

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On the Galois Group of Linear Difference-Differential Equations"

Transcript

1 On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19

2 Contents 1 Basic Notations and Concepts 2 Problem Statement 3 Ring of Sequences 4 Main Results 5 Future Work Ruyong Feng (KLMM, CAS) Galois Group 2 / 19

3 1. Basic Notations and Concepts In this talk, all fields are of characteristic zero. σ: shift operator; δ: differential operator (σδ = δσ) k: σδ-field with alg. closed constant field. Example: C(x, t) with σ(x) = x + 1 and δ = d dt Difference-differential equations: { σ(y ) = AY, δ(y ) = BY where Y = (y 1, y 2,, y n ) T, A GL n (k), B gl n (k). Integrable condition: σ(b)a = δ(a) + AB. Ruyong Feng (KLMM, CAS) Galois Group 3 / 19

4 1. Basic Notations and Concepts Example: Tchebychev polynomial T n (t) = n 2 [ n 2 ] m=0 Let Y = (T n (t), T n+1 (t)) T, then Y (n + 1, t) = ( 1) m (n m 1)! (2t) n 2m. m!(n 2m)! ( ( (n 1)t dy (n,t) dt = n t ) n 1 nt Y (n, t), ) Y (n, t). (Hermite polynomial, Legendre polynomial, Bessel polynomial, ) Ruyong Feng (KLMM, CAS) Galois Group 4 / 19

5 1. Basic Notations and Concepts R: σδ-picard Vessiot extension of k w.r.t. {σ(y ) = AY, δ(y ) = BY } if R is a simple σδ-ring (no nontrivial σδ-ideals); Z GL n (R) s.t. σ(z ) = AZ and δ(z ) = BZ ; R = k[z i,j, 1 det(z ) ] where Z = (Z i,j). Galois group of R over k: Gal(R/k) {σδ-k-automorphism of R} Gal(R/k) is a linear algebraic group over the constant field of k. Reference: Hardouin, C. and Singer, M. F., Differential Galois Theory of Linear Difference Equations, Math. Ann., 342(2), , Ruyong Feng (KLMM, CAS) Galois Group 5 / 19

6 2. Problem Statement Let k = C(x, t). σ(y ) = A(x, t)y G σδ : Galois group over C(x, t) δ(y ) = B(x, t)y Ruyong Feng (KLMM, CAS) Galois Group 6 / 19

7 2. Problem Statement Let k = C(x, t). σ(y ) = A(x, t)y G σδ : Galois group over C(x, t) δ(y ) = B(x, t)y c C, s.t. A(x, c), B(x, c) are well-defined and det(a(x, c)) 0 σ(y ) = A(x, c)y G σ c : Galois group over C(x) Ruyong Feng (KLMM, CAS) Galois Group 6 / 19

8 2. Problem Statement Let k = C(x, t). σ(y ) = A(x, t)y G σδ : Galois group over C(x, t) δ(y ) = B(x, t)y c C, s.t. A(x, c), B(x, c) are well-defined and det(a(x, c)) 0 σ(y ) = A(x, c)y G σ c : Galois group over C(x) l Z, s.t. A(l, t), B(l, t) are well-defined and det(a(l, t)) 0 δ(y ) = B(l, t)y G δ l : Galois group over C(t) Ruyong Feng (KLMM, CAS) Galois Group 6 / 19

9 2. Problem Statement Let k = C(x, t). σ(y ) = A(x, t)y G σδ : Galois group over C(x, t) δ(y ) = B(x, t)y c C, s.t. A(x, c), B(x, c) are well-defined and det(a(x, c)) 0 σ(y ) = A(x, c)y G σ c : Galois group over C(x) l Z, s.t. A(l, t), B(l, t) are well-defined and det(a(l, t)) 0 δ(y ) = B(l, t)y G δ l : Galois group over C(t) Question: What are the relations among G σδ, G δ l and Gσ c? Ruyong Feng (KLMM, CAS) Galois Group 6 / 19

10 2. Problem Statement Let k = C(x, t). σ(y ) = A(x, t)y G σδ : Galois group over C(x, t) δ(y ) = B(x, t)y c C, s.t. A(x, c), B(x, c) are well-defined and det(a(x, c)) 0 σ(y ) = A(x, c)y G σ c : Galois group over C(x) l Z, s.t. A(l, t), B(l, t) are well-defined and det(a(l, t)) 0 δ(y ) = B(l, t)y G δ l : Galois group over C(t) Question: What are the relations among G σδ, G δ l and Gσ c? Note: σ(b)a = δ(a) + AB δ(y ) = B(l, t)y δ(y ) = B(m, t)y G δ l = Gδ m. Ruyong Feng (KLMM, CAS) Galois Group 6 / 19

11 2. Problem Statement Example: Consider σ(y) = ty δ(y) = x t y Ruyong Feng (KLMM, CAS) Galois Group 7 / 19

12 2. Problem Statement Example: Consider σ(y) = ty δ(y) = x t y G σδ = C Ruyong Feng (KLMM, CAS) Galois Group 7 / 19

13 2. Problem Statement Example: Consider σ(y) = ty δ(y) = x t y G σδ = C σ(y) = cy, c C Ruyong Feng (KLMM, CAS) Galois Group 7 / 19

14 2. Problem Statement Example: Consider σ(y) = ty G σδ = C δ(y) = x t y {ξ C ξ m = 1} c m = 1 σ(y) = cy, c C Gc σ = C otherwise Ruyong Feng (KLMM, CAS) Galois Group 7 / 19

15 2. Problem Statement Example: Consider σ(y) = ty G σδ = C δ(y) = x t y {ξ C ξ m = 1} c m = 1 σ(y) = cy, c C Gc σ = C otherwise δ(y) = l t y, l Z Ruyong Feng (KLMM, CAS) Galois Group 7 / 19

16 2. Problem Statement Example: Consider σ(y) = ty G σδ = C δ(y) = x t y {ξ C ξ m = 1} c m = 1 σ(y) = cy, c C Gc σ = C otherwise δ(y) = l t y, l Z Gδ l = 1 Ruyong Feng (KLMM, CAS) Galois Group 7 / 19

17 2. Problem Statement Example: Consider σ(y) = ty G σδ = C δ(y) = x t y {ξ C ξ m = 1} c m = 1 σ(y) = cy, c C Gc σ = C otherwise δ(y) = l t y, l Z Gδ l = 1 G σδ = G σ c G δ l, if c is not a root of unity. Ruyong Feng (KLMM, CAS) Galois Group 7 / 19

18 . I will present partial results on the relations among G σδ, G δ l and Gσ c. To describe the relations among these groups, we would need to embed Picard Vessiot extensions of the above systems into the ring of sequences. Ruyong Feng (KLMM, CAS) Galois Group 8 / 19

19 3. Ring of Sequences F : differential field with derivation δ. The ring of sequences over F : S F := {a = (a 0, a 1, ) a i F }/ where a b d Z 0, s.t. a i = b i for all i d. Define a + b = (a 0 + b 0, a 1 + b 1, ), ab = (a 0 b 0, a 1 b 1, ), σ((a 0, a 1,, )) = (a 1, a 2,, ), δ((a 0, a 1,, )) = (δ(a 0 ), δ(a 1 ),, ). S F is a σδ-ring. Ruyong Feng (KLMM, CAS) Galois Group 9 / 19

20 3. Ring of Sequences Define σ F = 1 F and σ(x) = x + 1. Then F(x) becomes a σδ-field. F (x) can be σδ-embedded into S F : F(x) S F f (x) (0,, 0, f (N), f (N + 1),, ) where f (i) is well-defined for all i N. In particular, F S F b (b, b, b,, ). S F is a σδ-extension ring of F (x). Ruyong Feng (KLMM, CAS) Galois Group 10 / 19

21 3. Ring of Sequences F (x): σδ-field with alg. closed constant field. A(x, t) GL n (F(x)), B(x, t) gl n (F(x)). Let l Z >0 satisfy for all i l, A(i, t), B(i, t) are well-defined; det(a(i, t)) 0. K : quotient field of δ-pv extension of δ(y ) = B(l, t)y over F. U: fundamental matrix of δ(y ) = B(l, t)y in GL n (K ). Ruyong Feng (KLMM, CAS) Galois Group 11 / 19

22 3. Ring of Sequences Define V = (V 0, V 1,, ) GL n (S K ) as V 0 = = V l 1 = 0, V l = U, V l+1 = A(l + 1, t)v l, V l+2 = A(l + 2, t)v l+1,. Ruyong Feng (KLMM, CAS) Galois Group 12 / 19

23 3. Ring of Sequences Define V = (V 0, V 1,, ) GL n (S K ) as V 0 = = V l 1 = 0, V l = U, V l+1 = A(l + 1, t)v l, V l+2 = A(l + 2, t)v l+1,. Theorem: F(x)[V, 1/ det(v )] is a σδ-picard Vessiot extension of { σ(y ) = A(x, t)y, δ(y ) = B(x, t)y over F (x). Note: F (x)[v, 1/ det(v )] is a σδ-subring of S F. Ruyong Feng (KLMM, CAS) Galois Group 12 / 19

24 4. Main Results Let F = C(t). Lemma: G δ l is an algebraic subgroup of Gσδ (under isomorphism). Ruyong Feng (KLMM, CAS) Galois Group 13 / 19

25 4. Main Results Let F = C(t). Lemma: Gl δ is an algebraic subgroup of Gσδ (under isomorphism). Proof: ψ : Gl δ = Gal(K /C(t)) σδ-aut(s K /C(x, t)) ρ ψ(ρ) ψ(ρ)(a) = (ρ(a)) Ruyong Feng (KLMM, CAS) Galois Group 13 / 19

26 4. Main Results Let F = C(t). Lemma: Gl δ is an algebraic subgroup of Gσδ (under isomorphism). Proof: ψ : Gl δ = Gal(K /C(t)) σδ-aut(s K /C(x, t)) ρ ψ(ρ) ψ(ρ)(a) = (ρ(a)) ψ(gl δ ) Gσδ ψ(ρ) ψ(ρ) C(x,t)[V,1/ det(v )] Ruyong Feng (KLMM, CAS) Galois Group 13 / 19

27 4. Main Results Ω: differentially closed field containing C(t). { GΩ σδ : Galois group of σ(y ) = A(x, t)y over Ω(x). δ(y ) = B(x, t)y Ruyong Feng (KLMM, CAS) Galois Group 14 / 19

28 4. Main Results Ω: differentially closed field containing C(t). { GΩ σδ : Galois group of σ(y ) = A(x, t)y over Ω(x). δ(y ) = B(x, t)y Lemma: G σδ Ω Theorem: G σδ = G σδ Ω Gδ l. is a normal algebraic subgroup of Gσδ (under isomorphism). Ruyong Feng (KLMM, CAS) Galois Group 14 / 19

29 4. Main Results Ω: differentially closed field containing C(t). { GΩ σδ : Galois group of σ(y ) = A(x, t)y over Ω(x). δ(y ) = B(x, t)y Lemma: G σδ Ω Theorem: G σδ = G σδ Ω Gδ l. G σ t is a normal algebraic subgroup of Gσδ (under isomorphism). : Galois group of σ(y ) = A(x, t)y over C(t)(x). Ruyong Feng (KLMM, CAS) Galois Group 14 / 19

30 4. Main Results Ω: differentially closed field containing C(t). { GΩ σδ : Galois group of σ(y ) = A(x, t)y over Ω(x). δ(y ) = B(x, t)y Lemma: G σδ Ω Theorem: G σδ = G σδ Ω Gδ l. G σ t is a normal algebraic subgroup of Gσδ (under isomorphism). : Galois group of σ(y ) = A(x, t)y over C(t)(x). Theorem: G σ t (Ω) is conjugate over Ω to Gσδ Ω (Ω). Ruyong Feng (KLMM, CAS) Galois Group 14 / 19

31 4. Main Results Ω: differentially closed field containing C(t). { GΩ σδ : Galois group of σ(y ) = A(x, t)y over Ω(x). δ(y ) = B(x, t)y Lemma: G σδ Ω Theorem: G σδ = G σδ Ω Gδ l. G σ t is a normal algebraic subgroup of Gσδ (under isomorphism). : Galois group of σ(y ) = A(x, t)y over C(t)(x). Theorem: G σ t (Ω) is conjugate over Ω to Gσδ Ω (Ω). Remark: Under the conjugation, Gt σ is an algebraic group defined over C and Gt σ (C) = Gσδ Ω. In this sense, Gσδ = Gt σ(c)gδ l. Ruyong Feng (KLMM, CAS) Galois Group 14 / 19

32 4. Main Results Example: ( 0 1 Y (n + 1, t) = 1 2t (n 1)t dy (n,t) = dt n n 1 nt ) Y (n, t), Y (n, t). Ruyong Feng (KLMM, CAS) Galois Group 15 / 19

33 4. Main Results Example: G σδ = {( ) ξ 0 ξη = 1 0 η ξ, η C ( 0 1 Y (n + 1, t) = 1 2t (n 1)t dy (n,t) = dt n n 1 nt } {( ) 0 ξ ξη = 1 η 0 ξ, η C ) Y (n, t), Y (n, t). } Ruyong Feng (KLMM, CAS) Galois Group 15 / 19

34 4. Main Results Example: ( 0 1 Y (n + 1, t) = 1 2t (n 1)t dy (n,t) = dt n n 1 nt ) Y (n, t), {( ) } G σδ = ξ 0 ξη = 1 {( ) } 0 ξ ξη = 1 0 η ξ, η C η 0 ξ, η C {( ) } GΩ σδ = ξ 0 ξη = 1 0 η ξ, η C Y (n, t). Ruyong Feng (KLMM, CAS) Galois Group 15 / 19

35 4. Main Results Example: ( 0 1 Y (n + 1, t) = 1 2t (n 1)t dy (n,t) = dt n n 1 nt ) Y (n, t), {( ) } G σδ = ξ 0 ξη = 1 {( ) } 0 ξ ξη = 1 0 η ξ, η C η 0 ξ, η C {( ) } GΩ σδ = ξ 0 ξη = 1 0 η ξ, η C Y (n, t). Ruyong Feng (KLMM, CAS) Galois Group 16 / 19

36 4. Main Results Example: ( 0 1 Y (n + 1, t) = 1 2t (n 1)t dy (n,t) = dt n n 1 nt ) Y (n, t), Y (n, t). {( ) } G σδ = ξ 0 ξη = 1 {( ) } 0 ξ ξη = 1 0 η ξ, η C η 0 ξ, η C {( ) } GΩ σδ = ξ 0 ξη = 1 0 η ξ, η C {( ) } {( ) } Gt σ = ξ 0 ξη = 1 0 η G ξ, η C(t) t σ(c) = ξ 0 ξη = 1 0 η ξ, η C Ruyong Feng (KLMM, CAS) Galois Group 16 / 19

37 4. Main Results Example: ( 0 1 Y (n + 1, t) = 1 2t (1 1)t dy (1,t) = dt t ) Y (n, t), Y (1, t). {( ) } G σδ = ξ 0 ξη = 1 {( ) } 0 ξ ξη = 1 0 η ξ, η C η 0 ξ, η C {( ) } GΩ σδ = ξ 0 ξη = 1 0 η ξ, η C {( ) } {( ) } Gt σ = ξ 0 ξη = 1 0 η G ξ, η C(t) t σ(c) = ξ 0 ξη = 1 0 η ξ, η C Ruyong Feng (KLMM, CAS) Galois Group 17 / 19

38 4. Main Results Example: ( 0 1 Y (n + 1, t) = 1 2t (1 1)t dy (1,t) = dt t ) Y (n, t), Y (1, t). {( ) } G σδ = ξ 0 ξη = 1 {( ) } 0 ξ ξη = 1 0 η ξ, η C η 0 ξ, η C {( ) } GΩ σδ = ξ 0 ξη = 1 0 η ξ, η C {( ) } {( ) } Gt σ = ξ 0 ξη = 1 0 η G ξ, η C(t) t σ(c) = ξ 0 ξη = 1 0 η ξ, η C {( ) ( )} G1 δ = , Ruyong Feng (KLMM, CAS) Galois Group 17 / 19

39 4. Main Results Example: ( 0 1 Y (n + 1, t) = 1 2t (n 1)t dy (n,t) = dt n n 1 nt ) Y (n, t), Y (n, t). {( ) } G σδ = ξ 0 ξη = 1 {( ) } 0 ξ ξη = 1 0 η ξ, η C η 0 ξ, η C {( ) } GΩ σδ = ξ 0 ξη = 1 0 η ξ, η C {( ) } {( ) } Gt σ = ξ 0 ξη = 1 0 η G ξ, η C(t) t σ(c) = ξ 0 ξη = 1 0 η ξ, η C {( ) ( )} G1 δ = , G σδ = G σδ Ω Gδ 1 = Gσ t (C)Gδ 1 Ruyong Feng (KLMM, CAS) Galois Group 18 / 19

40 5. Future Work G σ t : Galois group of σ(y ) = A(x, t)y over C(t)(x) Gc σ : Galois group of σ(y ) = A(x, c)y over C(x) To give the complete results, one need to solve Problem: What are the relations between Gt σ and Gc σ? Ruyong Feng (KLMM, CAS) Galois Group 19 / 19

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Differential forms and the de Rham cohomology - Part I

Differential forms and the de Rham cohomology - Part I Differential forms and the de Rham cohomology - Part I Paul Harrison University of Toronto October 30, 2009 I. Review Triangulation of Manifolds M = smooth, compact, oriented n-manifold. Can triangulate

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

arxiv: v1 [math.ra] 19 Dec 2017

arxiv: v1 [math.ra] 19 Dec 2017 TWO-DIMENSIONAL LEFT RIGHT UNITAL ALGEBRAS OVER ALGEBRAICALLY CLOSED FIELDS AND R HAHMED UBEKBAEV IRAKHIMOV 3 arxiv:7673v [mathra] 9 Dec 7 Department of Math Faculty of Science UPM Selangor Malaysia &

Διαβάστε περισσότερα

dim(u) = n 1 and {v j } j i

dim(u) = n 1 and {v j } j i SOLUTIONS Math B4900 Homework 1 2/7/2018 Unless otherwise specified, U, V, and W denote vector spaces over a common field F ; ϕ and ψ denote linear transformations; A, B, and C denote bases; A, B, and

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University) On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University) 1 1 Introduction (E) {1+x 2 +β(x,y)}y u x (x,y)+{x+b(x,y)}y2 u y (x,y) +u(x,y)=f(x,y)

Διαβάστε περισσότερα

Heisenberg Uniqueness pairs

Heisenberg Uniqueness pairs Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

de Rham Theorem May 10, 2016

de Rham Theorem May 10, 2016 de Rham Theorem May 10, 2016 Stokes formula and the integration morphism: Let M = σ Σ σ be a smooth triangulated manifold. Fact: Stokes formula σ ω = σ dω holds, e.g. for simplices. It can be used to define

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS IFSCOM016 1 Proceeding Book No. 1 pp. 84-90 (016) ISBN: 978-975-6900-54-3 SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS SINEM TARSUSLU(YILMAZ), GÖKHAN ÇUVALCIOĞLU,

Διαβάστε περισσότερα

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function March 22, 2013 References: A. Knapp, Lie Groups Beyond an Introduction. Ch V Fulton-Harris, Representation

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition UNIT - I LINEAR ALGEBRA Definition Vector Space : A non-empty set V is said to be vector space over the field F. If V is an abelian group under addition and if for every α, β F, ν, ν 2 V, such that αν

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

arxiv: v3 [math.ra] 24 Nov 2017

arxiv: v3 [math.ra] 24 Nov 2017 In the name of Allah Most Gracious Most Merciful. CLASSIFICATIONS OF TWO-DIMENSIONAL JORDAN ALGEBRAS OVER THE ALGEBRAICALLY CLOSED FIELDS AND R arxiv:7.948v [math.ra] 4 Nov 7 H.AHMED U.BEKBAEV I.RAKHIMOV

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα