(Introduction to Feature Selection)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "(Introduction to Feature Selection)"

Transcript

1 Introduction to Feature Selection! Page 1 Mάριος Μπίκος Μάθημα: Αναγνώριση Προτύπων Ημερομηνία:03/01/2013 Tμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Η/Υ Πανεπιστήμιο Πατρών E ΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΛΟΓΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ 1. Εισαγωγή (Introduction to Feature Selection) Η προεπεξεργασία δεδομένων είναι ένα αναπόσπαστο τμήμα της αποτελεσματικής ανάλυσης δεδομένων.προετοιμάζει τα δεδομένα για την εκμάθηση μηχανής και την εξόρυξη δεδομένων, που στόχο έχουν να μετατρέψουν τις πληροφορίες αυτές σε επιχειρηματική ευφυΐα ή γνώση. ΈΈνα από τα μεγαλύτερα προβλήματα που σχετίζονται με την αναγνώριση προτύπων είναι η αποκαλούμενη κατάρα της διαστασιμότητας.ο αριθμός των χαρακτηριστικών που βρίσκονταν στη διάθεση του σχεδιαστή ενός συστήματος ταξινόμησης το 1997 δεν ξεπερνούσε τα 40 χαρακτηριστικά.ωστόσο σήμερα η κατάσταση έχει αλλάξει δραματικά αφού έχουν επικρατήσει νέοι τύποι δεδομένων και οι περισσότερες ερευνητικές εργασίες και τεχνικές ασχολούνται με τομείς που περιλαμβάνουν εκατοντάδες έως δεκάδες χιλιάδες χαρακτηριστικά. Χαρακτηριστικό παράδειγμα αποτελεί η επιλογή γονιδίων από μικροσυστοιχίες γονιδίων(dna Chip).Στο πρόβλημα αυτό, οι μεταβλητές είναι συντελεστές έκφρασης γονιδίου που δείχνουν την αφθονία του mrna σε ένα δείγμα (π.χ. βιοψία ιστού), για έναν αριθμό ασθενών. Στόχος είναι να διαχωριστούν υγιείς ασθενείς από ασθενείς με καρκίνο, με βάση το «προφίλ» γονιδιακής έκφρασης τους. Συνήθως λιγότερα από 100 παραδείγματα (ασθενείς) είναι διαθέσιμα συνολικά για την εκπαίδευση και τη δοκιμή. ΌΌμως, ο αριθμός των μεταβλητών(χαρακτηριστικών) στα πρωτογενή δεδομένα κυμαίνεται από έως Αλλά και στην καθημερινή μας ζωή χρησιμοποιούμε την επιλογή χαρακτηριστικών για να ταξινομήσουμε αντικείμενα όπως ανθρώπους και αμάξια.οι άνθρωποι έχουν χέρια, κάτι που λείπει από τα αμάξια.επιλέγοντας,λοιπόν, το κατάλληλο υποσύνολο χαρακτηριστικών μπορούμε να κάνουμε την κατάλληλη ταξινόμηση σε κατηγορίες. Η βασική ιδέα της επιλογής χαρακτηριστικών(feature selection) είναι ότι για να σχεδιάσουμε ένα σύστημα ταξινόμησης, επιλέγουμε πρώτα ένα υποσύνολο χαρακτηριστικών στο οποίο θα δοθεί έμφαση, αντί να χρησιμοποιήσουμε όλα τα διαθέσιμα χαρακτηριστικά, αποκλείοντας όσα είναι περιττά ή άσχετα.η επιλογή χαρακτηριστικών είναι αναγκαία σε ορισμένες περιπτώσεις, όπως όταν η διαδικασία επίτευξης των χαρακτηριστικών είναι ακριβή, όταν θέλουμε να εξάγουμε κανόνες με νόημα και όταν τα αρχικά χαρακτηριστικά δεν είναι μετρήσιμα μεγέθη. Υπάρχουν, ωστόσο, περισσότεροι από ένας λόγοι για να μειωθεί ο αριθμός των χαρακτηριστικών σε ένα επαρκές ελάχιστο.έένας από αυτούς είναι προφανώς η υπολογιστική πολυπλοκότητα. Επιπλέον, διευκολύνεται η οπτικοποίηση και η κατανόηση των δεδομένων, ενώ μειώνεται η ποσότητα των δεδομένων που απαιτούνται για την

2 Introduction to Feature Selection! Page 2 εκμάθηση και τη βελτίωση της προγνωστικής ακρίβειας των αλγορίθμων.έέτσι καταπολεμάται η κατάρα της διαστασιμότητας με σκοπό να βελτιωθούν οι επιδόσεις πρόβλεψης. Για να κάνουμε αυτό το είδος ταξινόμησης με βάση τα χαρακτηριστικά, θα πρέπει να καταλάβουμε ποια χαρακτηριστικά κάνουν καλή πρόβλεψη της κατηγορίας, ανάμεσα στις κατηγορίες εκείνες που προσπαθούμε να διακρίνουμε. Για παράδειγμα, οι τροχοί διακρίνουν τους ανθρώπους από τα αυτοκίνητα, αλλά όχι τα αυτοκίνητα από τα τρένα. Αυτοί είναι δύο διαφορετικοί στόχοι ταξινόμησης. Ανάλογα με το πρόβλημα ταξινόμησης που αντιμετωπίζουμε, διαφορετικά χαρακτηριστικά ή σύνολα χαρακτηριστικών μπορεί να είναι σημαντικά, και επιβάλλλεται να γνωρίζουμε τη διαδικασία ώστε να φτάσουμε στη γνώση του ποια από αυτά είναι τελικά απαραίτητα. Σε διάφορες ερευνητικές εργασίες, ένα απλό παράδειγμα αποδεικνύει ότι για ένα πεπερασμένο αριθμό συνόλου εκπαίδευσης Ν, με την αύξηση του αριθμού των χαρακτηριστικών βελτιώνεται αρχικά η απόδοση, αλλά μετά από μια κρίσιμη τιμή, περαιτέρω αύξηση του αριθμού των χαρακτηριστικών οδηγεί σε αύξηση της πιθανότητας σφάλματος.αυτό το φαινόμενο είναι επίσης γνωστό ως το φαινόμενο κορύφωσης(peaking phenomenon).αυτό επιβεβαιώνει τα όσα είπαμε και στην εισαγωγή, ότι δηλαδή δεν είναι πάντα σωστό να υποθέτουμε ότι όσο μεγαλώνει ο αριθμός των χαρακτηριστικών τόσο καλύτερο ταξινομητή θα έχουμε. Σχήμα 1. Peaking Phenomenon-N πρότυπα, l χαρακτηριστικά 2 Επιλογή υποσυνόλου χαρακτηριστικών Η διαδικασία επιλογής ενός υποσυνόλου χαρακτηριστικών προκειμένου να μειώσουμε τον αριθμό των χαρακτηριστικών και να πετύχουμε την βέλτιστη ταξινόμηση περιλαμβάνει 2 φάσεις: I. Ελάττωση του αριθμού των χαρακτηριστικών, με την απόρριψη εκείνων που φέρουν την λιγότερη πληροφορία, χρησιμοποιώντας τις Βαθμωτές τεχνικές επιλογής χαρακτηριστικών. II. Εξέταση των χαρακτηριστικών που έμειναν σε συνδυασμούς προκειμένου να πετύχουμε τον καλύτερο συνδυασμό χαρακτηριστικών, δηλαδή το βέλτιστο υποσύνολο χαρακτηριστικών.

3 Introduction to Feature Selection! Page 3 Ι)ΈΈνας τρόπος να μειωθεί λοιπόν ο αριθμός των χαρακτηριστικών γρήγορα και απλά είναι να εξεταστεί το καθένα ξεχωριστά και να υπάρξει μία ιεράρχηση από το σημαντικότερο προς το λιγότερο σημαντικό για την ταξινόμηση.για παράδειγμα αν σε ένα σύστημα ταξινόμησης έχουμε λεμόνια και μπανάνες, προφανώς το μήκος του φρούτου θα βρίσκεται πιο ψηλά στην ιεραρχία από το χρώμα του φρούτου το οποίο δεν μπορεί να διακρίνει τα φρούτα. 2.1 Βαθμωτές τεχνικές επιλογής χαρακτηριστικών Αρχικά,λοιπόν,εξετάζουμε πόση πληροφορία μεταφέρει κάθε χαρακτηριστικό.η διαδικασία αυτή μας βοηθά να απορρίψουμε εύκολα "κακές" επιλογές και κρατάμε τις πιο εξελιγμένες τεχνικές, οι οποίες θα εξεταστούν στη συνέχεια. Τρεις είναι οι κυριότερες βαθμωτές τεχνικές επιλογής χαρακτηριστικών: I)ΈΈλεγχος υποθέσεων: t-test Η βασική ιδέα στο t-test είναι να ελέγξουμε αν η μέση τιμή του χαρακτηριστικού για κάθε κλάση διαφέρει σημαντικά η μία από την άλλη.πρόκειται για μία δημοφιλή επιλογή όταν τα δεδομένα ακολουθούν την κανονική κατανομή. Στόχος είναι να ελεγχθεί ποια από τις παρακάτω 2 υποθέσεις ισχύει: Η1: Το χαρακτηριστικό έχει διαφορετική μέση τιμή σε κάθε κλάση Η0: Το χαρακτηριστικό έχει την ίδια μέση τιμή σε κάθε κλάση Εάν ισχύει το H0(μηδενική υπόθεση) τότε απορρίπτεται το χαρακτηριστικό, διότι είναι δύσκολο με βάση αυτό να διακρίνουμε τα δεδομένα σε κατηγορίες.αντιθέτως αν ισχύει το H1(εναλλακτική υπόθεση) οι τιμές του χαρακτηριστικού διαφέρουν σημαντικά ανάμεσα στις κατηγορίες και μπορούν να διακριθούν ευκολότερα.έέτσι το χαρακτηριστικό επιλέγεται. II)H καμπύλη Receiver Operating Characteristic(ROC) Εάν στην προηγούμενη μέθοδο, οι αντίστοιχες μέσες τιμές βρίσκονται κοντά, η πληροφορία μπορεί να μην είναι επαρκής για να εγγυηθούμε καλές ιδιότητες ταξινόμησης.η τεχνική ROC μας δίνει πληροφορίες σχετικά με την επικάλυψη ανάμεσα στις κατηγορίες αφού ποσοτικοποιεί μία περιοχή που ορίζουν 2 καμπύλες και ονομάζεται AUC(Area Under the receiver operating Curve). Σχήμα 2. Αριστερά 2 σ.π.π και δεξιά η καμπύλη ROC

4 Introduction to Feature Selection! Page 4 III) Λόγος Διάκρισης Fisher Για την ποσοτικοποίηση της διακριτικής ικανότητας ενός χαρακτηριστικού χρησιμοποιείται και ο λόγος διάκρισης Fisher(FDR).Ο λόγος αυτός είναι ανεξάρτητος της κατανομής που ακολουθεί η κλάση και ορίζεται ως: Feature Selection: An Ever Evolving Frontier in Data Mining and proteomics, and networks in social computing and system biology. Researchers are realizing Τα παραπάνω that in order κριτήρια to achieveδεν successful λαμβάνουν data mining, υπόψην feature τους selection τις συσχετίσεις is an indispensable ανάμεσα στα component χαρακτηριστικά (Liu and Motoda, και δεν 1998; αξιοποιούν Guyon and τον Elissee συντελεστή, 2003; Liu ετεροσυσχέτισης and Motoda, 2007). μεταξύ It τους.στην is βαθμωτή a process of επιλογή selectingχαρακτηριστικών, a subset of originalχρειάζεται features according αφού επιλέξουμε to certain criteria, κάποιο andκριτήριο,να γίνει anιεράρχηση important and των frequently χαρακτηριστικών used technique σε φθίνουσα in data mining σειρά for και dimension να υπολογιστεί reduction. η It ετεροσυσχέτιση reduces the number of features, removes irrelevant, redundant, or noisy features, and brings του πρώτου στην ιεραρχία με όλα τα υπόλοιπα.αυτή η ετεροσυσχέτιση μπορεί να about palpable e ects for applications: speeding up a data mining algorithm, improving learning επηρεάσει accuracy, σημαντικά and leading την toιεράρχηση better model των comprehensibility. χαρακτηριστικών. Various studies show that some features can be removed without performance deterioration (Ng, 2004; Donoho, 2006). 3.Διαδικασία Feature selection επιλογής has been Χαρακτηριστικών an active field of research for decades in data mining, and has been widely applied to many fields such as genomic analysis (Inza et al., 2004), text Στην mining προηγούμενη (Forman, 2003), ενότητα image retrieval είδαμε πώς (Gonzalez μπορούμε and Woods, να ταξινομήσουμε 1993; Swets and Weng, τα χαρακτηριστικά με 1995), βάση intrusion την διακριτική detection (Lee ικανότητα et al., 2000), του to κάθε nameχαρακτηριστικού a few. As new applications ανάμεσα emerge στις inκλάσεις.ωστόσο recent είναι years, ιδιαίτερα many challenges χρήσιμο arise να επιλέγουμε requiring novel υποσύνολα theories and συνδυασμών methods addressing χαρακτηριστικών(δηλ. highdimensional διανύσματα and complex χαρακτηριστικών) data. Feature για selection να πετύχουμε for data of ultrahigh ακόμα καλύτερη dimensionality διακριτική (Fan et ικανότητα.επειδή al., 2009), steam data (Glocer η ιδέα et να al., εξετάσουμε 2005), multi-task όλους data του (Liu δυνατούς et al., 2009; συνδυασμούς G. Obozinski έχει and Jordan, 2006), and multi-source data (Zhao et al., 2008, 2010a) are among emerging απαγορευτική υπολογιστική πολυπλοκότητα(np-hard), επιλέγουμε διαφορετικές μεθόδους. research topics of pressing needs. Feature Selection phase I NO Feature Subset Generation Evaluation Stop Criterion Training Data Yes Test Data Test Learning Model Training Learning Model Best Subset ACC Model Fitting/Performance Evaluation phase II Figure 1: A unified view of a feature selection process Σχήμα 3. Η διαδικασία επιλογής χαρακτηριστικών Το Figure Σχήμα 1 presents 2 παρουσιάζει a unified view μια ενιαία for a feature άποψη selection για μια process. διαδικασία A typical επιλογής feature selection Μία process τυπική contains διαδικασία two phases: επιλογής feature χαρακτηριστικών selection, and model περιλαμβάνει fitting and performance δύο φάσεις: την επιλογή χαρακτηριστικών. evaluation. The feature selection phase contains three steps: (1) generating a candidate set χαρακτηριστικών και την τοποθέτηση του μοντέλου με αξιολόγηση των επιδόσεων. containing a subset of the original features via certain research strategies; (2) evaluating the candidate set and estimating the utility of the features in the candidate set. Based on the evaluation, some features in the candidate set may be discarded or added to the selected feature set according to their relevance; and (3) determining whether the current 5

5 Introduction to Feature Selection! Page 5 Απαρτίζεται από 3 βήματα: (1) Δημιουργία ενός υποψήφιου σετ που περιέχει ένα υποσύνολο από τα αρχικά χαρακτηριστικά μέσω ορισμένων στρατηγικών έρευνας(βλ. προηγούμενες ενότητες) (2) Αξιολόγηση του υποψήφιου συνόλου και εκτίμηση της χρησιμότητας των χαρακτηριστικών στο σύνολο αυτό. Με βάση την αξιολόγηση, ορισμένα χαρακτηριστικά στο υποψήφιο σύνολο μπορεί να απορριφθούν ή να προστεθούν στο επιλεγμένο σύνολο χαρακτηριστικών. (3) Να καθοριστεί εάν το τρέχον σύνολο των επιλεγμένων χαρακτηριστικών είναι αρκετά καλό με τη χρήση ορισμένων κριτηρίων διακοπής. Αν είναι, ένας αλγόριθμος επιλογής χαρακτηριστικών θα επιστρέψει το σύνολο των επιλεγμένων χαρακτηριστικών, διαφορετικά, θα επαναλαμβάνεται μέχρι να ικανοποιηθεί το κριτήριο διακοπής. Ανάλογα με το πώς και πότε αξιολογείται η χρησιμότητα των επιλεγμένων χαρακτηριστικών, μπορούν να υιοθετηθούν διαφορετικές στρατηγικές που χωρίζονται σε 3 κατηγορίες: Filter,Wrapper και embedded μοντέλα. Filter Οι αλγόριθμοι του filter model παρέχουν γρήγορη εκτέλεση,αφού δεν περιλαμβάνουν επαναλήψεις και δεν βασίζονται σε ένα συγκεκριμένο ταξινομητή (classifier).έέχουν απλή κατασκευή, η οποία χρησιμοποιεί συνήθως μια απλή στρατηγική αναζήτησης και ένα κριτήριο αξιολόγησης χαρακτηριστικών σχεδιάζεται με βάση ένα συγκεκριμένο κριτήριο.στην μέθοδο αυτή ουσιαστικά για κάθε συνδυασμό χαρακτηριστικών επιλέγουμε κάποιο κριτήριο(π.χ Bhattacharrya distance,divergence,scatter Matrices) και επιλέγουμε το καλύτερο διάνυσμα συνδυασμού χαρακτηριστικών.αξίζει να σημειωθεί ότι η κατάταξη των χαρακτηριστικών της προηγούμενης ενότητας είναι μία μέθοδος φίλτρου. Wrapper Η μεθοδολογία περιτυλίγματος προσφέρει τρόπο να επιλυθεί το πρόβλημα επιλογής χαρακτηριστικών ανεξάρτητα από την μηχανή εκμάθησης που έχουμε επιλέξει.για κάθε συνδυασμό διανυσμάτων χαρακτηριστικών η εκτιμάται η πιθανότητα λανθασμένης ταξινόμησης και επιλέγουμε με βάση το μικρότερο σφάλμα.έέχουμε αργή εκτέλεση λόγω των επαναλήψεων και τον επανεκπαιδεύσεων που απαιτούνται καθώς και έλλειψη γενικότητας ως προς τη μέθοδο αναγνώρισης, ωστόσο η μηχανή εκμάθησης μπορεί να θεωρηθεί μαύρο κουτί (black box) πράγμα που καθιστά την μέθοδο ιδανική και μπορούμε να την χρησιμοποιήσουμε οπουδήποτε. Embedded Οι αλγόριθμοι του ενσωματωμένου μοντέλου(embedded model) ενσωματώνουν την επιλογή χαρακτηριστικών ως μέρος του μοντέλου διαδικασίας τοποθέτησης/εκπαίδευσης, και η χρησιμότητα των χαρακτηριστικών λαμβάνεται με βάση την βελτιστοποίηση της συνάρτησης του μοντέλου μάθησης.η μέθοδος αυτή δεν διαχωρίζει τα δεδομένα εκπαίδευσης σε σύνολο δεδομένων εκπαίδευσης και σε σύνολο δεδομένων επαλήθευσης.έέτσι φτάνει γρηγορότερα στη λύση.

6 Filters,Wrappers, and Embedded methods Introduction to Feature Selection! Page 6 All features Filter Feature subset Predictor hods All features Multiple Feature subsets Predictor inf.ethz.ch rich.ibm.com ethods All features Wrapper Embedded method Feature subset Predictor Σχήμα 4. Οι μέθοδοι Filter,Wrapper & Embedded Τόσο για τη μέθοδο φίλτρου όσο και την μέθοδο περιτυλίγματος έχουν προταθεί ορισμένες στρατηγικές, κάποιες από τις οποίες είναι βέλτιστες και υποβέλτιστες, τις οποίες όμως θα αναφέρουμε ονομαστικά αφού η περαιτέρω ανάλυση τους αφορά ένα άλλο μεγάλο ερευνητικό πεδίο αλγορίθμων. Οι υποβέλτιστες τεχνικές αναζήτησης περιλαμβάνουν την σειριακή αναζήτηση προς τα εμπρός, την σειριακή αναζήτηση προς τα πίσω και την μέθοδο κινητής αναζήτησης. Στην Sequential Forward Selection(SFS), οι μεταβλητές ενσωματώνονται σταδιακά σε όλο και μεγαλύτερα υποσύνολα, ενώ στο Sequential Backward Selection(SBS) αρχικά έχουμε ένα σύνολο όλων των μεταβλητών και σταδιακά εξαλείφονται αυτές που δεν μας ενδιαφέρουν.όόλα αυτά ανάλογα με το κριτήριο που επιλέγουμε να ελέγξουμε.στην μέθοδο κινητής αναζήτησης(floating Search) έχουμε τη δυνατότητα να επανεξετάσουμε ένα αντικείμενο,ακόμα και αν έχει προστεθεί ή αφαιρεθεί,σε αντίθεση με τις προηγούμενες μεθόδους, καταπολεμώντας έτσι το αποκαλούμενο nesting effect. Wrappers Οι βέλτιστες τεχνικές αναζήτησης χρησιμοποιούνται όταν έχουμε μονοτονικό κριτήριο διάκρισης(όσο περισσότερα Methods: χαρακτηριστικά τόσο μεγαλύτερη η τιμή του κριτηρίου). ture subset Criterion: Measure feature subset 4. Επίλογος usefulness s (individual Search: Search the space of all feature Κλείνοντας, καταλήγουμε sets of features) subsets στο συμπέρασμα ότι υπάρχουν πολλές καλές τεχνικές επιλογής χαρακτηριστικών.εντούτοις ο τομέας του Feature Selection είναι ακόμα σε πρώιμο στάδιο Assessment: Use cross-validation sts και ενδείκνυται για έρευνα.ο αυξανόμενος αριθμός δεδομένων θα αυξήσει την ζήτηση για την ανάπτυξη του συγκεκριμένου Results: τομέα της επιλογής χαρακτηριστικών. ΊΊσως μάλιστα ο τομέας αυτός να είναι η μόνη λογική επιλογή προκειμένου να καταπολεμηθεί σε μεγάλο βαθμό η κατάρα της διαστασιμότητας. Can in principle find the most useful overfitting features, but eful features Φαίνεται λοιπόν ότι η επιλογή Are prone χαρακτηριστικών to overfitting μπορεί να αυξήσει επιτυχώς την απόδοση ενός αλγόριθμου εκμάθησης στον τομέα της αναγνώρισης προτύπων, ενώ παραμένει και θα συνεχίσει να είναι ένα ενεργό πεδίο που διαρκώς θα εξελίσσεται για να απαντά σε νέες προκλήσεις.

7 Introduction to Feature Selection! Page 7 ΒΙΒΙΛΙΟΓΡΑΦΙΑ S.Theodoridis,K.Koutroumbas, Pattern Recognition,Elsevier,(2009) Isabelle Guyon, Andre Elisseeff, An Introduction to Variable and Feature Selection, Journal of Machine Learning Research 3 (2003) H. Liu and L. Yu, Toward Integrating Feature Selection Algorithms for Classification and Clustering, IEEE Trans. Knowledge and Data Eng., vol. 17, no. 4, (2005) Luis Carlos Molina, Lluis Belanche, Angela Nebot. Feature Selection Algorithms: A Survey and Experimental Evaluation, Universitat Politecnica de Catalunya Edward R. Dougherty. Feature-Selection Overfitting with Small-Sample Classifier Design, Texas A&M University (2005) Huan Liu, Hiroshi Motoda, Rudy Setiono, Zheng Zhao. Feature Selection: An Ever Evolving Frontier in Data Mining, JMLR: Workshop and Conference Proceedings 10: 4-13 The Fourth Workshop on Feature Selection in Data Mining(2010) YongSeog Kim, Feature Selection in Supervised and Unsupervised Learning via evolutionary search,university of Iowa(2001) TingYao Wu. Feature Selection in speech and speaker recognition,(2009) Luis Talavera, An evaluation of filter and wrapper methods for feature selection in categorical clustering S.Theodoridis,A.Pikrakis,K.Koutroumbas,D.Cavouras. Introduction to Pattern Recognition using Matlab,Elsevier (2010)

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

substructure similarity search using features in graph databases

substructure similarity search using features in graph databases substructure similarity search using features in graph databases Aleksandros Gkogkas Distributed Management of Data Laboratory intro Θα ενασχοληθούμε με το πρόβλημα των ερωτήσεων σε βάσεις γραφημάτων.

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Εξαγωγή χαρακτηριστικών μαστογραφικών μαζών και σύγκριση

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

Ευφυής Προγραμματισμός

Ευφυής Προγραμματισμός Ευφυής Προγραμματισμός Ενότητα 10: Δημιουργία Βάσεων Κανόνων Από Δεδομένα-Προετοιμασία συνόλου δεδομένων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δημιουργία Βάσεων Κανόνων

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή διατριβή. Ονοματεπώνυμο: Αργυρώ Ιωάννου. Επιβλέπων καθηγητής: Δρ. Αντρέας Χαραλάμπους

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή διατριβή. Ονοματεπώνυμο: Αργυρώ Ιωάννου. Επιβλέπων καθηγητής: Δρ. Αντρέας Χαραλάμπους ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή διατριβή Διερεύνηση της αποτελεσματικότητας εναλλακτικών και συμπληρωματικών τεχνικών στη βελτίωση της ποιότητας της ζωής σε άτομα με καρκίνο

Διαβάστε περισσότερα

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ Ενότητα 12 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Ανάπτυξη του Τεχνικού Κειμένου Η Αρχική Σύνταξη

Ανάπτυξη του Τεχνικού Κειμένου Η Αρχική Σύνταξη Ανάπτυξη του Τεχνικού Κειμένου Η Αρχική Σύνταξη Ενότητες και υποενότητες Εισαγωγή - Δομικές μηχανές - Τύποι, ταξινομήσεις και χρήσεις Γενική θεωρία δομικών μηχανών Χαρακτηριστικά υλικών Αντιστάσεις κίνησης

Διαβάστε περισσότερα

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται δύο κριτήρια απόρριψης απομακρυσμένων από τη μέση τιμή πειραματικών μετρήσεων ενός φυσικού μεγέθους και συγκεκριμένα

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ

ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ)

Διαβάστε περισσότερα

ΑΠΟΣΤΑΣΕΙΣ ΓΙΑ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΈΣ (ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ)

ΑΠΟΣΤΑΣΕΙΣ ΓΙΑ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΈΣ (ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ) «ΣΠ0ΥΔΑI», Τόμος 47, Τεύχος 3o-4o, Πανεπιστήμιο Πειραιώς / «SPOUDAI», Vol. 47, No 3-4, University of Piraeus ΑΠΟΣΤΑΣΕΙΣ ΓΙΑ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΈΣ (ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ) Υπό Γιάννης

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ Πτυχιακή Εργασία Φοιτητής: ΜIΧΑΗΛ ΖΑΓΟΡΙΑΝΑΚΟΣ ΑΜ: 38133 Επιβλέπων Καθηγητής Καθηγητής Ε.

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ

ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.247-256 ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ ΣΥΜΠΤΩΣΕΩΝ

Διαβάστε περισσότερα

Χαρακτηρισµός Νεοπλασµάτων στη Μαστογραφία από το Σχήµα της Παρυφής µε χρήση Νευρωνικών ικτύων

Χαρακτηρισµός Νεοπλασµάτων στη Μαστογραφία από το Σχήµα της Παρυφής µε χρήση Νευρωνικών ικτύων Χαρακτηρισµός Νεοπλασµάτων στη Μαστογραφία από το Σχήµα της Παρυφής µε χρήση Νευρωνικών ικτύων Χ. Γεωργίου 1 (xgeorgio@hol.gr),. Κάβουρας 2 (cavouras@hol.gr), Ν. ηµητρόπουλος 3, Σ. Θεοδωρίδης 1 (stheodor@di.uoa.gr)

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Data Mining) Πανδή Αθηνά

ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Data Mining) Πανδή Αθηνά ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Data Mining) Πανδή Αθηνά Μάιος 2008 Τα δεδομένα που έχουμε προς επεξεργασία χωρίζονται σε τρία μέρη: 1. Τα δεδομένα εκπαίδευσης (training set) που αποτελούνται από 2528

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ

ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ Μωυσιάδης Πολυχρόνης, Ανδρεάδης Ιωάννης Τμήμα Μαθηματικών Α.Π.Θ. ΠΕΡΙΛΗΨΗ Στην εργασία αυτή παρουσιάζεται μία μελέτη για την ελάχιστη διαδρομή σε δίκτυα μεταβλητού

Διαβάστε περισσότερα

Quick algorithm f or computing core attribute

Quick algorithm f or computing core attribute 24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διδάσκων: Γεώργιος Μήτσης, Λέκτορας, Τμήμα ΗΜΜΥ Γραφείο: GP401 Ώρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Τηλ: 22892239 Ηλ. Ταχ.: gmitsis@ucy.ac.cy Βιβλιογραφία C. M.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή εργασία ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΧΡΥΣΟΒΑΛΑΝΤΗΣ ΒΑΣΙΛΕΙΟΥ ΛΕΜΕΣΟΣ 2014 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Το Πιθανοκρατικό Μοντέλο Κλασικά Μοντέλα Ανάκτησης Τρία είναι τα, λεγόμενα, κλασικά μοντέλα ανάκτησης: Λογικό (Boolean) που βασίζεται στη Θεωρία Συνόλων Διανυσματικό (Vector) που βασίζεται στη Γραμμική

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 2 ο : Βασικές έννοιες. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 2 ο : Βασικές έννοιες. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 2 ο : Βασικές έννοιες Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Γλωσσική Τεχνολογία, Μάθημα 2 ο, Βασικές

Διαβάστε περισσότερα

Εισαγωγή Στις Αρχές Της Επιστήμης Των Η/Υ. Η έννοια του Προβλήματος - ΚΕΦΑΛΑΙΟ 2

Εισαγωγή Στις Αρχές Της Επιστήμης Των Η/Υ. Η έννοια του Προβλήματος - ΚΕΦΑΛΑΙΟ 2 Εισαγωγή Στις Αρχές Της Επιστήμης Των Η/Υ Η έννοια του Προβλήματος - ΚΕΦΑΛΑΙΟ 2 2. Η έννοια του προβλήματος 2 2. Η έννοια του προβλήματος 2.1 Το πρόβλημα στην επιστήμη των Η/Υ 2.2 Κατηγορίες προβλημάτων

Διαβάστε περισσότερα

Βελτιστοποίηση κατανομής πόρων συντήρησης οδοστρωμάτων Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών

Βελτιστοποίηση κατανομής πόρων συντήρησης οδοστρωμάτων Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Βελτιστοποίηση κατανομής πόρων συντήρησης οδοστρωμάτων Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Πάτρα 17 - Μαΐου - 2017 Παναγιώτης Τσίκας Σκοπός του προβλήματος Σκοπός του προβλήματος,

Διαβάστε περισσότερα

Ημερίδα διάχυσης αποτελεσμάτων έργου Ιωάννινα, 14/10/2015

Ημερίδα διάχυσης αποτελεσμάτων έργου Ιωάννινα, 14/10/2015 MIS έργου:346983 Τίτλος Έργου: Epirus on Androids: Έμπιστη, με Διαφύλαξη της Ιδιωτικότητας και Αποδοτική Διάχυση Πληροφορίας σε Κοινωνικά Δίκτυα με Γεωγραφικές Εφαρμογές Έργο συγχρηματοδοτούμενο από την

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1

ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «Σχεδιασμός, Διοίκηση και Πολιτική του Τουρισμού» ΜΑΡΚΕΤΙΝΓΚ ΑΘΛΗΤΙΚΩΝ ΤΟΥΡΙΣΤΙΚΩΝ

Διαβάστε περισσότερα

Διδάσκουσα: Χάλκου Χαρά,

Διδάσκουσα: Χάλκου Χαρά, Διδάσκουσα: Χάλκου Χαρά, Διπλωματούχος Ηλεκτρολόγος Μηχανικός & Τεχνολογίας Η/Υ, MSc e-mail: chalkou@upatras.gr Επιβλεπόμενοι Μη Επιβλεπόμενοι Ομάδα Κατηγορία Κανονικοποίηση Δεδομένων Συμπλήρωση Ελλιπών

Διαβάστε περισσότερα

Επιλογή Χαρακτηριστικών για Προβλήµατα Ταξινόµησης

Επιλογή Χαρακτηριστικών για Προβλήµατα Ταξινόµησης Επιλογή Χαρακτηριστικών για Προβλήµατα Ταξινόµησης Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙ ΙΚΕΥΣΗΣ Υποβάλλεται στην ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης του Τµήµατος Πληροφορικής Εξεταστική Επιτροπή

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Π.Μ.Σ. «ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ» «Εφαρμογή

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΚΛΙΜΑΤΟΣ ΑΣΦΑΛΕΙΑΣ ΤΩΝ ΑΣΘΕΝΩΝ ΣΤΟ ΝΟΣΟΚΟΜΕΙΟ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΚΛΙΜΑΤΟΣ ΑΣΦΑΛΕΙΑΣ ΤΩΝ ΑΣΘΕΝΩΝ ΣΤΟ ΝΟΣΟΚΟΜΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΚΛΙΜΑΤΟΣ ΑΣΦΑΛΕΙΑΣ ΤΩΝ ΑΣΘΕΝΩΝ ΣΤΟ ΝΟΣΟΚΟΜΕΙΟ ΑΝΔΡΕΑΣ ΛΕΩΝΙΔΟΥ Λεμεσός, 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ

Διαβάστε περισσότερα

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE) EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class

Διαβάστε περισσότερα

athanasiadis@rhodes.aegean.gr , -.

athanasiadis@rhodes.aegean.gr , -. παιδαγωγικά ρεύµατα στο Αιγαίο Προσκήνιο 88 - * athanasiadis@rhodes.aegean.gr -., -.. Abstract The aim of this survey is to show how students of the three last school classes of the Primary School evaluated

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 15η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 15η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 15η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται σε ύλη του βιβλίου Artificial Intelligence A Modern Approach των

Διαβάστε περισσότερα

Χαλκίδης Νέστωρας, Τσαγιοπούλου Μαρία, Παπακωνσταντίνου Νίκος, Μωυσιάδης Θεόδωρος. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 2016

Χαλκίδης Νέστωρας, Τσαγιοπούλου Μαρία, Παπακωνσταντίνου Νίκος, Μωυσιάδης Θεόδωρος. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 2016 Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 2016 Χαλκίδης Νέστωρας, Τσαγιοπούλου Μαρία, Παπακωνσταντίνου Νίκος, Μωυσιάδης Θεόδωρος Η παρούσα εργασία έγινε στα πλαίσια της εκπόνησης της διπλωματικής διατριβής

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

Χρηματοοικονομική Ανάπτυξη, Θεσμοί και

Χρηματοοικονομική Ανάπτυξη, Θεσμοί και ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ, ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Τομέας Ανάπτυξης και Προγραμματισμού Χρηματοοικονομική Ανάπτυξη, Θεσμοί και Οικονομική

Διαβάστε περισσότερα

ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ: ΣΤΑΤΙΣΤΙΚΗ-ΠΙΘΑΝΟΤΗΤΕΣ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΔΗΜΗΤΡΑ ΤΑΤΣΙΟΥ

ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ: ΣΤΑΤΙΣΤΙΚΗ-ΠΙΘΑΝΟΤΗΤΕΣ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΔΗΜΗΤΡΑ ΤΑΤΣΙΟΥ ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ: ΣΤΑΤΙΣΤΙΚΗ-ΠΙΘΑΝΟΤΗΤΕΣ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΔΗΜΗΤΡΑ ΤΑΤΣΙΟΥ ΠΡΟΕΠΙΣΚΟΠΗΣΗ ΚΑΙ ΕΞΕΡΕΥΝΗΣΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ Τα προς επεξεργασία

Διαβάστε περισσότερα

On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο

On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο Υπ. Διδάκτωρ : Ευαγγελία Χρυσοχόου Επιβλέπων Καθηγητής: Αθανάσιος Ζηλιασκόπουλος Τμήμα Μηχανολόγων Μηχανικών Περιεχόμενα Εισαγωγή

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή διατριβή Η ΚΑΤΑΘΛΙΨΗ ΩΣ ΠΑΡΑΓΟΝΤΑΣ ΚΙΝΔΥΝΟΥ ΓΙΑ ΑΠΟΠΕΙΡΑ ΑΥΤΟΚΤΟΝΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή διατριβή Η ΚΑΤΑΘΛΙΨΗ ΩΣ ΠΑΡΑΓΟΝΤΑΣ ΚΙΝΔΥΝΟΥ ΓΙΑ ΑΠΟΠΕΙΡΑ ΑΥΤΟΚΤΟΝΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή διατριβή Η ΚΑΤΑΘΛΙΨΗ ΩΣ ΠΑΡΑΓΟΝΤΑΣ ΚΙΝΔΥΝΟΥ ΓΙΑ ΑΠΟΠΕΙΡΑ ΑΥΤΟΚΤΟΝΙΑΣ Παναγιώτου Νεοφύτα 2008969752 Επιβλέπων καθηγητής Δρ. Νίκος Μίτλεττον,

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

ΕΥΘΑΛΙΑ ΚΑΜΠΟΥΡΟΠΟΥΛΟΥ

ΕΥΘΑΛΙΑ ΚΑΜΠΟΥΡΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗ: ΣΥΝΕΧΙΖΟΜΕΝΗ ΕΚΠΑΙΔΕΥΣΗ ΕΥΘΑΛΙΑ ΚΑΜΠΟΥΡΟΠΟΥΛΟΥ H επίδραση του «e-mentor» σε επιμορφούμενους

Διαβάστε περισσότερα

ΠΡΟΓΝΩΣΤΙΚA ΣΥΣTHΜΑΤΑ

ΠΡΟΓΝΩΣΤΙΚA ΣΥΣTHΜΑΤΑ ΠΡΟΓΝΩΣΤΙΚA ΣΥΣTHΜΑΤΑ Ιωάννα Τζουλάκη Κώστας Τσιλίδης Ιωαννίδης: κεφάλαιο 2 Guyatt: κεφάλαιο 18 ΕΠΙςΤΗΜΟΝΙΚΗ ΙΑΤΡΙΚΗ Επιστήμη (θεωρία) Πράξη (φροντίδα υγείας) Γνωστικό μέρος Αιτιό-γνωση Διά-γνωση Πρό-γνωση

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Επιβλέπων Καθηγητής: Δρ. Νίκος Μίτλεττον Η ΣΧΕΣΗ ΤΟΥ ΜΗΤΡΙΚΟΥ ΘΗΛΑΣΜΟΥ ΜΕ ΤΗΝ ΕΜΦΑΝΙΣΗ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΤΥΠΟΥ 2 ΣΤΗΝ ΠΑΙΔΙΚΗ ΗΛΙΚΙΑ Ονοματεπώνυμο: Ιωσηφίνα

Διαβάστε περισσότερα

ΑΠΟΓΡΑΦΙΚΟ ΔΕΛΤΙΟ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ ΤΙΤΛΟΣ

ΑΠΟΓΡΑΦΙΚΟ ΔΕΛΤΙΟ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ ΤΙΤΛΟΣ ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΝΑΓΝΩΣΤΗΡΙΟ Πανεπιστημιούπολη, Κτήρια Πληροφορικής & Τηλεπικοινωνιών 15784 ΑΘΗΝΑ Τηλ.: 210 727 5190, email: library@di.uoa.gr,

Διαβάστε περισσότερα

ΑΠΟΓΡΑΦΙΚΟ ΔΕΛΤΙΟ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ ΤΙΤΛΟΣ Συμπληρώστε τον πρωτότυπο τίτλο της Διδακτορικής διατριβής ΑΡ. ΣΕΛΙΔΩΝ ΕΙΚΟΝΟΓΡΑΦΗΜΕΝΗ

ΑΠΟΓΡΑΦΙΚΟ ΔΕΛΤΙΟ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ ΤΙΤΛΟΣ Συμπληρώστε τον πρωτότυπο τίτλο της Διδακτορικής διατριβής ΑΡ. ΣΕΛΙΔΩΝ ΕΙΚΟΝΟΓΡΑΦΗΜΕΝΗ ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΝΑΓΝΩΣΤΗΡΙΟ Πανεπιστημιούπολη, Κτήρια Πληροφορικής & Τηλεπικοινωνιών 15784 ΑΘΗΝΑ Τηλ.: 210 727 5190, email: library@di.uoa.gr,

Διαβάστε περισσότερα

Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά

Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά ΤΕΙ Κεντρικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταπτυχιακό Πρόγραμμα Τηλεπικοινωνιών & Πληροφορικής Μάθημα : 204a Υπολογιστική Ευφυία Μηχανική Μάθηση Καθηγητής : Σπύρος Καζαρλής Ενότηα : Εξελικτική

Διαβάστε περισσότερα

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

Αναγνώριση Προτύπων (Pattern Recognition) Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Αναγνώριση Προτύπων (Pattern Recognition) Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Ενότητα 1: Εισαγωγικές Έννοιες Θεωρίας Εκµάθησης Αναγνώριση Προτύπων: Η επιστήµη που προσπαθεί να

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #02 Ιστορική αναδρομή Σχετικές επιστημονικές περιοχές 1 Άδεια χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 7α: Impact of the Internet on Economic Education Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Σημασιολογική Συσταδοποίηση Αντικειμένων Με Χρήση Οντολογικών Περιγραφών.

Διαβάστε περισσότερα

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332 ,**1 The Japanese Society for AIDS Research The Journal of AIDS Research +,, +,, +,, + -. / 0 1 +, -. / 0 1 : :,**- +,**. 1..+ - : +** 22 HIV AIDS HIV HIV AIDS : HIV AIDS HIV :HIV AIDS 3 :.1 /-,**1 HIV

Διαβάστε περισσότερα

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας

Διαβάστε περισσότερα

Κεφάλαιο 20. Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 20. Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 20 Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Τεχνητή Νοηµοσύνη, B' Έκδοση - 1 - Ανακάλυψη Γνώσης σε

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

Περίληψη (Executive Summary)

Περίληψη (Executive Summary) 1 Περίληψη (Executive Summary) Η παρούσα διπλωματική εργασία έχει ως αντικείμενο την "Αγοραστική/ καταναλωτική συμπεριφορά. Η περίπτωση των Σπετσών" Κύριος σκοπός της διπλωματικής εργασίας είναι η διερεύνηση

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ. Εισαγωγή. Σκοπός

ΠΕΡΙΛΗΨΗ. Εισαγωγή. Σκοπός ΠΕΡΙΛΗΨΗ Εισαγωγή Η παιδική παχυσαρκία έχει φτάσει σε επίπεδα επιδημίας στις μέρες μας. Μαστίζει παιδιά από μικρές ηλικίες μέχρι και σε εφήβους. Συντείνουν αρκετοί παράγοντες που ένα παιδί γίνεται παχύσαρκο

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟ ΓΙ ΚΟ ΕΚΠΑ ΙΔ ΕΥ Τ ΙΚΟ Ι ΔΡΥ Μ Α 'ΠΕ Ι ΡΑ ΙΑ ΤΜΗΜΑ ΚΛΩΣΤΟΥΦΑΝΤΟΥΡΓΙΑΣ ΕΙΔΙΚΟΤΗΤΑ ΒΑΦΙΚΗΣ ΠΤΥΧΙΑΚΉ ΕΡΓ ΑΣΙΑ ΤΙΤΛΟΣ ΕΥΧΡΗΣΤΙΑ ΕΞΕΙΔΙΚΕΥΜΕΝΟΥ

ΤΕΧΝΟΛΟ ΓΙ ΚΟ ΕΚΠΑ ΙΔ ΕΥ Τ ΙΚΟ Ι ΔΡΥ Μ Α 'ΠΕ Ι ΡΑ ΙΑ ΤΜΗΜΑ ΚΛΩΣΤΟΥΦΑΝΤΟΥΡΓΙΑΣ ΕΙΔΙΚΟΤΗΤΑ ΒΑΦΙΚΗΣ ΠΤΥΧΙΑΚΉ ΕΡΓ ΑΣΙΑ ΤΙΤΛΟΣ ΕΥΧΡΗΣΤΙΑ ΕΞΕΙΔΙΚΕΥΜΕΝΟΥ 515 ΤΕΧΝΟΛΟ ΓΙ ΚΟ ΕΚΠΑ ΙΔ ΕΥ Τ ΙΚΟ Ι ΔΡΥ Μ Α 'ΠΕ Ι ΡΑ ΙΑ ~ " ΤΜΗΜΑ ΚΛΩΣΤΟΥΦΑΝΤΟΥΡΓΙΑΣ ΕΙΔΙΚΟΤΗΤΑ ΒΑΦΙΚΗΣ ΠΤΥΧΙΑΚΉ ΕΡΓ ΑΣΙΑ ΤΙΤΛΟΣ ΕΥΧΡΗΣΤΙΑ ΕΞΕΙΔΙΚΕΥΜΕΝΟΥ ΠΡΟΣΤΑΤΕΥΤΙΚΟΥ ΙΜΑΤΙΣΜΟΥ ΑΡΓΥΡΟΠΟΥ ΛΟΣ ΘΕΜΙΣΤΟΚΛΗΣ

Διαβάστε περισσότερα

Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΗΛΙΚΙΩΜΕΝΩΝ ΑΣΘΕΝΩΝ ΜΕΤΑ ΤΗΝ ΕΞΟΔΟ ΤΟΥΣ ΑΠΟ ΤΗΝ ΜΟΝΑΔΑ ΕΝΤΑΤΙΚΗΣ ΘΕΡΑΠΕΙΑΣ. Στυλιανός Σολωμή

Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΗΛΙΚΙΩΜΕΝΩΝ ΑΣΘΕΝΩΝ ΜΕΤΑ ΤΗΝ ΕΞΟΔΟ ΤΟΥΣ ΑΠΟ ΤΗΝ ΜΟΝΑΔΑ ΕΝΤΑΤΙΚΗΣ ΘΕΡΑΠΕΙΑΣ. Στυλιανός Σολωμή ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Επιβλέπουσα Καθηγήτρια: Δρ. Λαμπρινού Αικατερίνη Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΗΛΙΚΙΩΜΕΝΩΝ ΑΣΘΕΝΩΝ ΜΕΤΑ ΤΗΝ ΕΞΟΔΟ ΤΟΥΣ ΑΠΟ ΤΗΝ ΜΟΝΑΔΑ ΕΝΤΑΤΙΚΗΣ

Διαβάστε περισσότερα

Ο νοσηλευτικός ρόλος στην πρόληψη του μελανώματος

Ο νοσηλευτικός ρόλος στην πρόληψη του μελανώματος ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή διατριβή Ο νοσηλευτικός ρόλος στην πρόληψη του μελανώματος Ονοματεπώνυμο: Αρτέμης Παναγιώτου Επιβλέπων καθηγητής: Δρ. Αντρέας Χαραλάμπους

Διαβάστε περισσότερα

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ Ενότητα 8 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Σύστημα επεξεργασίας, ανάλυσης και ταξινόμησης εικόνων δισδιάστατης ηλεκτροφόρησης με τεχνικές αναγνώρισης προτύπων

Σύστημα επεξεργασίας, ανάλυσης και ταξινόμησης εικόνων δισδιάστατης ηλεκτροφόρησης με τεχνικές αναγνώρισης προτύπων ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ "ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗΝ ΙΑΤΡΙΚΗ ΚΑΙ ΤΗ ΒΙΟΛΟΓΙΑ"

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Πτυχιακή Εργασία ΓΝΩΣΕΙΣ KAI ΣΤΑΣΕΙΣ ΤΩΝ ΕΠΑΓΓΕΛΜΑΤΙΩΝ ΥΓΕΙΑΣ ΓΙΑ ΤΗΝ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΚΘΕΣΗ ΣΤΟΝ HIV. Στυλιανού Στυλιανή

Πτυχιακή Εργασία ΓΝΩΣΕΙΣ KAI ΣΤΑΣΕΙΣ ΤΩΝ ΕΠΑΓΓΕΛΜΑΤΙΩΝ ΥΓΕΙΑΣ ΓΙΑ ΤΗΝ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΚΘΕΣΗ ΣΤΟΝ HIV. Στυλιανού Στυλιανή ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία ΓΝΩΣΕΙΣ KAI ΣΤΑΣΕΙΣ ΤΩΝ ΕΠΑΓΓΕΛΜΑΤΙΩΝ ΥΓΕΙΑΣ ΓΙΑ ΤΗΝ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΚΘΕΣΗ ΣΤΟΝ HIV Στυλιανού Στυλιανή Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Information and Communication Technologies in Education

Information and Communication Technologies in Education Information and Communication Technologies in Education Instructional Design = Instructional Systems Design (ISD) K. Vassilakis / M. Kalogiannakis Instructional Design Instructional Design (also called

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1

Διαβάστε περισσότερα

Εισαγωγικά για την αναγνώριση έκφρασης προσώπου (Facial Expression Recognition)

Εισαγωγικά για την αναγνώριση έκφρασης προσώπου (Facial Expression Recognition) Ο στόχος της διπλωματικής είναι η αναγνώριση του συναισθήματος ενός συγκεκριμένου ανθρώπου από μια αλληλουχία εικόνων στις οποίες παίρνει διάφορες εκφράσεις. Αυτό θα γίνει κάνοντας χρήση τεχνικών βαθιάς

Διαβάστε περισσότερα

Αξιολόγηση της ερευνητικής δραστηριότητας των Ελληνικών Πανεπιστημιακών Τμημάτων με τη χρήση βιβλιομετρικών δεικτών

Αξιολόγηση της ερευνητικής δραστηριότητας των Ελληνικών Πανεπιστημιακών Τμημάτων με τη χρήση βιβλιομετρικών δεικτών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Δημοκρίτειο Πανεπιστήμιο Θράκης ΜΟΝΑΔΑ ΔΙΑΣΦΑΛΙΣΗΣ ΠΟΙΟΤΗΤΑΣ (ΜΟ.ΔI.Π.) Αξιολόγηση της ερευνητικής δραστηριότητας των Ελληνικών Πανεπιστημιακών Τμημάτων με τη χρήση βιβλιομετρικών δεικτών

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. Χρυσάνθη Στυλιανού Λεμεσός 2014 ΤΕΧΝΟΛΟΓΙΚΟ

Διαβάστε περισσότερα

Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος

Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ-ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Αναγνώριση Προτύπων - Νευρωνικά ίκτυα

Αναγνώριση Προτύπων - Νευρωνικά ίκτυα ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ Αναγνώριση Προτύπων - Νευρωνικά ίκτυα ρ. Χαράλαµπος Π. Στρουθόπουλος Αναπληρωτής Καθηγητής

Διαβάστε περισσότερα

Επεξεργασία πειραματικών αποτελεσμάτων

Επεξεργασία πειραματικών αποτελεσμάτων ΠΥΘΑΓΟΡΑΣ: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ / ΠΡΟΓΡΑΜΜΑ ΠΡΟΣΤΑΣΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Τίτλος Υποέργου: «Εργαστηριακή προσομοίωση περιβαλλοντικών

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι στις Κατασκευές

Υπολογιστικές Μέθοδοι στις Κατασκευές Γενικά Για Τη Βελτιστοποίηση Η βελτιστοποίηση µπορεί να χωριστεί σε δύο µεγάλες κατηγορίες: α) την Βελτιστοποίηση Τοπολογίας (Topological Optimization) και β) την Βελτιστοποίηση Σχεδίασης (Design Optimization).

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version 2 1 ΔΕΔΟΜΕΝΑ Δεδομένα μπορούν να αποκτηθούν στα πλαίσια διαφόρων εφαρμογών, χρησιμοποιώντας, όπου είναι απαραίτητο, κατάλληλο εξοπλισμό. Μερικά παραδείγματα

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης Διπλωματική Εργασία Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική Αντωνίου Φάνης Επιβλέπουσες: Θεοδώρα Παπαδοπούλου, Ομότιμη Καθηγήτρια ΕΜΠ Ζάννη-Βλαστού Ρόζα, Καθηγήτρια

Διαβάστε περισσότερα

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΣΕΡΡΩΝ Τμήμα ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ

Διαβάστε περισσότερα

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή Εργασία. Κόπωση και ποιότητα ζωής ασθενών με καρκίνο.

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή Εργασία. Κόπωση και ποιότητα ζωής ασθενών με καρκίνο. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία Κόπωση και ποιότητα ζωής ασθενών με καρκίνο Μαργαρίτα Μάου Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η

Διαβάστε περισσότερα

Ανάλυση Χρόνου, Πόρων & Κόστους

Ανάλυση Χρόνου, Πόρων & Κόστους ΠΜΣ: «Παραγωγή και ιαχείριση Ενέργειας» ιαχείριση Ενέργειας και ιοίκηση Έργων Ανάλυση Χρόνου, Πόρων & Κόστους Επ. Καθηγητής Χάρης ούκας, Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης

Διαβάστε περισσότερα

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας» ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη

Διαβάστε περισσότερα

Ενημερωτική εκδήλωση για τις ερευνητικές υποδομές 26.04.2013. Δημήτρης Δενιόζος Γενική Γραμματεία Δημοσίων Επενδύσεων και ΕΣΠΑ

Ενημερωτική εκδήλωση για τις ερευνητικές υποδομές 26.04.2013. Δημήτρης Δενιόζος Γενική Γραμματεία Δημοσίων Επενδύσεων και ΕΣΠΑ Ενημερωτική εκδήλωση για τις ερευνητικές υποδομές 26.04.2013 Δημήτρης Δενιόζος Γενική Γραμματεία Δημοσίων Επενδύσεων και ΕΣΠΑ Οι «αιρεσιμότητες» του «νέου ΕΣΠΑ» Θεματικός στόχος 1: Ενδυνάμωση της έρευνας,

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Πτυχιακή εργασία ΓΝΩΣΕΙΣ ΚΑΙ ΣΤΑΣΕΙΣ ΝΟΣΗΛΕΥΤΩΝ ΠΡΟΣ ΤΟΥΣ ΦΟΡΕΙΣ ΜΕ ΣΥΝΔΡΟΜΟ ΕΠΙΚΤΗΤΗΣ ΑΝΟΣΟΑΝΕΠΑΡΚΕΙΑΣ (AIDS) Αλέξης Δημήτρη Α.Φ.Τ: 20085675385 Λεμεσός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΑΤΡΙΒΗ ΤΟΥ ΕΥΘΥΜΙΟΥ ΘΕΜΕΛΗ ΤΙΤΛΟΣ Ανάλυση

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΑΡΑΓΟΝΤΕΣ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗ ΖΩΗ ΤΟΥ ΠΑΙΔΙΟΥ ΚΑΙ ΕΦΗΒΟΥ ΜΕ ΔΙΑΒΗΤΗ ΤΥΠΟΥ 1 ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΟΥΝ ΑΝΤΛΙΕΣ ΣΥΝΕΧΟΥΣ ΕΚΧΥΣΗΣ ΙΝΣΟΥΛΙΝΗΣ

Διαβάστε περισσότερα

Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα Τεχνητή Νοημοσύνη (Artificial Intelligence) Ανάπτυξη μεθόδων και τεχνολογιών για την επίλυση προβλημάτων στα οποία ο άνθρωπος υπερέχει (?) του υπολογιστή Συλλογισμοί

Διαβάστε περισσότερα