Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ"

Transcript

1 Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ

2 Γενικές Γραμμές Δυαδικοί Αριθμοί έναντι Δυαδικών Κωδίκων Δυαδικοί Αποκωδικοποιητές Υλοποίηση Συνδυαστικής Λογικής με Δυαδικό Αποκωδικοποιητή Αποπλέκτες Δυαδικοί Κωδικοποιητές Κωδικοποιητές Προτεραιότητας Πολυπλέκτες Μετάδοση Πληροφορίας Υλοποίηση Συνδυαστικής Λογικής με Πολυπλέκτη Βλέπε: Βιβλίο Wakerly Παράγραφοι 2.3, 5.4, 5.4., 5.4.2, 5.4.3, 5.4.4, 5.4.5, 5.5, 5.5., 5.7, 5.7., 5.7.2, Βιβλίο Mano Παράγραφοι.2,.7, 4.9, 4., 4.

3

4

5 Δυαδικοί Αριθμοί Τα ψηφιακά συστήματα επεξεργάζονται: Δυαδικούς αριθμούς, στο δυαδικό σύστημα αρίθμησης με βάση το 2 n-bit ακέραιοι μη προσημασμένοι δυαδικοί αριθμοί a n a n- a με δεκαδικό ισοδύναμο της μορφής a n 2 n + a n- 2 n- + + a 2 Παράδειγμα: ο 4-ψηφιος μη προσημασμένος δυαδικός αριθμός με δεκαδικό ισοδύναμο της μορφής = ()

6 Δυαδικοί Κώδικες Τα ψηφιακά συστήματα επεξεργάζονται: Διακριτά στοιχεία πληροφορίας, που αναπαρίστανται με τη χρήση ενός δυαδικού κώδικά, δηλαδή μίας ακολουθίας από και, που ονομάζονται δυαδικές κωδικές λέξεις Προσοχή: απαιτείται μία -προς- αντιστοιχία μεταξύ τωνδιακριτώνστοιχείωνκαιτωνκωδικώνλέξεων

7 Δυαδικοί Κώδικες Έστω ότι σε ένα ψηφιακό σύστημα απαιτείται η επεξεργασία των τεσσάρων διακριτών στοιχείων Σ, Σ, Σ2, Σ3 Παράδειγμα : Τα στοιχεία αυτά μπορούν να αναπαρασταθούν στον δυαδικό κώδικα με δυαδικές κωδικές λέξεις, που έχουν ελάχιστο αριθμό ψηφίων (bits) log 2 4 = 2: Σ =, Σ =, Σ2 =, Σ3 = (ως δυαδικός αριθμός)

8 Δυαδικοί Κώδικες Έστω ότι σε ένα ψηφιακό σύστημα απαιτείται η επεξεργασία των τεσσάρων διακριτών στοιχείων Σ, Σ, Σ2, Σ3 Παράδειγμα 2: Τα στοιχεία αυτά μπορούν να αναπαρασταθούν στον δυαδικό κώδικα με δυαδικές κωδικές λέξεις, που έχουν περισσότερα ψηφία (bits) π.χ. 4: Σ =, Σ =, Σ2 =, Σ3 = (ως δυαδικός κώδικας από 4, όπου σε κάθε κωδική λέξημόνοτοέναψηφίοείναι στα 4 ψηφία) Προσοχή: Δεν υπάρχει άνω όριο στον αριθμό των ψηφίων, που μπορεί να έχει μία κωδική λέξη

9 Αποκωδικοποιητής (Decoder) Συνδυαστικό κύκλωμα πολλών εισόδων και εξόδων που χρησιμοποιείται για μετατροπή δυαδικών κωδίκων : είσοδοι κωδικοποιημένες στον κώδικα X(m-ψηφίων) μετατρέπονται σε εξόδους κωδικοποιημένες στον κώδικα Y (n-ψηφίων) m n -προς- αντιστοιχία μεταξύ εισόδων και εξόδων πιθανή ύπαρξη εισόδων επίτρεψης (enable) που χρησιμοποιούνται για τη σχεδίαση αποκωδικοποιητών μεγαλύτερου μεγέθους (π.χ. θέτουν όλες τις εξόδους στο )

10 Αποκωδικοποιητής (Decoder) Γενική Δομή -προς- αντιστοιχία Χ X m-. αποκωδικοποιητής Decoder.. Y Y n- κώδικας Χ enable κώδικας Y παραδείγματα δυαδικός σε Gray BCD σε excess-3 BCD σε επτά κομμάτια m n

11 Δυαδικός Αποκωδικοποιητής (Binary Decoder) Αποκωδικοποιητής n-σε-2 n είσοδοι κωδικοποιημένες στο δυαδικό κώδικα ως δυαδικοί αριθμοί (n-ψηφίων) μετατρέπονται σε εξόδους κωδικοποιημένες στον κώδικα -από-2 n (2 n -ψηφίων) -προς- αντιστοιχία μεταξύ εισόδων και εξόδων (εάν στις εισόδους εμφανίζονται αχρησιμοποίητες ή αδιάφορες τιμές, τότε οι έξοδοι είναι λιγότεροι από 2 n ) πιθανή ύπαρξη εισόδων επίτρεψης (enable) που θέτουν όλες τις εξόδους στο (όλα-) σε κάθε έξοδο αντιστοιχεί και ένας ελαχιστόρος

12 Δυαδικός Αποκωδικοποιητής (Βinary Decoder) 2-σε-4 με επίτρεψη (enable) Y Χ X 2-σε-4 Y Y 2 Y 3 Χ Y =X X en en en Χ X Y 3 Y 2 Y x x Y X -από-4 en Y =X X en Y 2 =X X en Y 3 =X X en

13 MSI κύκλωμα 74x39 Dual 2-to-4 Decoder Είσοδοι ενεργοί στο (active low) x39 Χ X E 2Χ 2X 2E Y Y Y2 Y3 2Y 2Y 2Y2 2Y Έξοδοι ενεργοί στο (active low) 8 GND 6 V cc

14 /2 74x39 MSI κύκλωμα 74x39 Dual 2-to-4 Decoder Χ Χ Y Y X en X E Y Y2 Y3 Y Y 2 Y 3 X X en Χ X Y 3 Y 2 Y Y x x 3-από-4 en Y 3 Y 2 Y Y

15 Άσκηση 7. Να σχεδιάσετε έναν αποκωδικοποιητή 2-σε-4 χωρίς enable Να σχεδιάσετε έναν αποκωδικοποιητή 3-σε-8 χωρίς enable, χρησιμοποιώντας 2 αποκωδικοποιητές 2-σε-4 με enable. Τι άλλο χρειάζεστε; Να σχεδιάσετε έναν αποκωδικοποιητή 4-σε-6 χωρίς enable, χρησιμοποιώντας 4 αποκωδικοποιητές 2-σε-4 με enable. Τι άλλο χρειάζεστε; Να σχεδιάσετε έναν αποκωδικοποιητή 4-σε-6 χωρίς enable χρησιμοποιώντας 2 αποκωδικοποιητές 2-σε-4 χωρίς enable και μία σειρά από πύλες 2 εισόδων Τι είδους πύλες και πόσες πύλες 2 εισόδων απαιτούνται; Να συγκρίνετε τις δύο μεθόδους σχεδίασης του αποκωδικοποιητή 4-σε-6 χωρίς enable (#πυλών, #εισόδων στις πύλες, καθυστέρηση διάδοσης)

16

17 Δυαδικός Αποκωδικοποιητής Υλοποίηση Συνδυαστικής Λογικής Αποκωδικοποιητής n-σε-2 n σε κάθε έξοδο αντιστοιχεί και ένας ελαχιστόρος υλοποίηση λογικής συνάρτησης που ορίζεται με τη λίστα ελαχιστόρων της κανονικής συνάρτησης, όταν το πλήθος των ελαχιστόρων m στη λίστα ελαχιστόρων της κανονικής συνάρτησης είναι μικρότερος ή ίσος του 2 n /2 επιτυγχάνεται με τη χρήση μίας πύλης OR m-εισόδων, σαν είσοδοι στην πύλη OR λαμβάνονται οι έξοδοι τουδυαδικούαποκωδικοποιητήπουαντιστοιχούν στους ελαχιστόρους που συμπεριλαμβάνονται στη λίστα ελαχιστόρων της κανονικής συνάρτησης χρησιμοποιείται μόνο στην υλοποίηση λογικών συναρτήσεων πολλών εξόδων με λίγες εισόδους

18 Δυαδικός Αποκωδικοποιητής Υλοποίηση Συνδυαστικής Λογικής Αποκωδικοποιητής n-σε-2 n σε κάθε έξοδο αντιστοιχεί και ένας ελαχιστόρος υλοποίηση λογικής συνάρτησης που ορίζεται με τη λίστα ελαχιστόρων της συμπληρωματικής συνάρτησης, όταν το πλήθος των ελαχιστόρων m στη λίστα ελαχιστόρων της κανονικής συνάρτησης είναι μεγαλύτερος από 2 n /2 επιτυγχάνεται με τη χρήση μίας πύλης NOR k-εισόδων, όπου k = 2 n -m σαν είσοδοι στην πύλη ΝOR λαμβάνονται οι έξοδοι τουδυαδικούαποκωδικοποιητήπουαντιστοιχούν στους ελαχιστόρους που συμπεριλαμβάνονται στη λίστα ελαχιστόρων της συμπληρωματικής συνάρτησης χρησιμοποιείται μόνο στην υλοποίηση λογικών συναρτήσεων πολλών εξόδων με λίγες εισόδους

19 Παράδειγμα: Δυαδικός Αποκωδικοποιητής Υλοποίηση Συνδυαστικής Λογικής A = Σ(,3,7) B = Σ(,,2,5,6,7) B = Σ(3,4) Χ X Χ2 3-σε-8 DEC Y Y Y2 Y3 Y4 Y5 Y6 Y7 A B

20

21 Άσκηση 7.2 Να υλοποιήσετε τις συναρτήσεις F, F 2, και F 3 χρησιμοποιώντας έναν αποκωδικοποιητή, αφού πρώτα βρείτε τις λίστες ελαχιστόρων A A Β Β F F 2 F 3 A A Β Β F F 2 F 3

22 Άσκηση 7.2 Λίστες Ελαχιστόρων Λίστες ελαχιστόρων: F = Σ(,5,,5) F2 = Σ(,2,3,6,7,) F3 = Σ(4,8,9,2,3,4) A A Β Β F F 2 F 3 A A Β Β F F 2 F

23 Άσκηση 7.2 Υλοποίηση F = Σ(,5,,5) F 2 = Σ(,2,3,6,7,) F 3 = Σ(4,8,9,2,3,4) Β Β Α Α X X X2 X3 Προσοχή: Δεν έχουμε λάβει υπόψη μας περιορισμό στο fan-in των πυλών OR 4-σε-6 DEC Y Y Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y Y Y2 Y3 Y4 Y5 F F 2 F 3

24 Άσκηση 7.3 Να υλοποιήσετε με τη χρήση αποκωδικοποιητή τις συναρτήσεις F = Σ(,,2,3) και F2 = Σ(,4,5,6) χρησιμοποιώντας 4 πύλες 2 εισόδων

25 Αποπλέκτης (Demultiplexer) Αποπλέκτης -σε-2 n δέχεται πληροφορία σε είσοδο και τη μεταβιβάζει σε -από-2 n εξόδους, ανάλογα με την τιμή που έχουν οι n είσοδοι επιλογής ανάστροφη λειτουργία του πολυπλέκτη (multiplexer) Χ είσοδος αποπλέκτης Demultiplexer S S n- επιλογή.. Y Y 2n - -από-2 n έξοδοι

26 O Δυαδικός Αποκωδικοποιητής n-σε-2 n με Enable χρησιμοποιείται σαν Αποπλέκτης -σε-2 n Χ = S X = S 2-σε-4 Y Y Y 2 Y 3 S Ο δυαδικός αποκωδικοποιητής 2-σε-4 με enable χρησιμοποιείται σαν αποπλέκτης -σε-4 Y =X X en en = Χ X S S Y 3 Y 2 Y x x Y S X Y =X X en Y 2 =X X en Y 3 =X X en

27 Kωδικοποιητής (Encoder) Συνδυαστικό κύκλωμα πολλών εισόδων και εξόδων που χρησιμοποιείται για μετατροπή κωδίκων : είσοδοι κωδικοποιημένες στον κώδικα X(m-ψηφίων) μετατρέπονται σε εξόδους κωδικοποιημένες στον κώδικα Y (n-ψηφίων) m > n πιθανή αναγκαιότητα διαχωρισμού των κωδικών λέξεων από τις μη κωδικές λέξεις στην είσοδο με τη χρήση μίας επιπλέον εξόδου που δηλώνει εγκυρότητα (valid) ανάστροφη λειτουργία του αποκωδικοποιητή (decoder)

28 Κωδικοποιητής (Encoder) Γενική Δομή Χ X m-. Kωδικοποιητής Encoder.. Y Y n- κώδικας Χ valid κώδικας Y m > n

29 Δυαδικός Kωδικοποιητής (Binary Encoder) Kωδικοποιητής 2 n -σε-n Είσοδοι κωδικοποιημένες στον κώδικα -από-2 n μετατρέπονται σε εξόδους κωδικοποιημένες στο δυαδικό κώδικα ως δυαδικοί αριθμοί (n-ψηφίων) -προς- αντιστοιχία μεταξύ εισόδων και εξόδων εάνοαριθμόςτωνεισόδωνείναιμικρότεροςαπό2 n και μεγαλύτερος από 2 n-, δεν εμφανίζονται στις εξόδους όλοι οι δυνατοί δυαδικοί αριθμοί n ψηφίων αναγκαιότητα διαχωρισμού των κωδικών λέξεων από τις μη κωδικές λέξεις στην είσοδο με τη χρήση μίας επιπλέον εξόδου που δηλώνει εγκυρότητα (validation) ανάστροφη λειτουργία του δυαδικού αποκωδικοποιητή

30 Δυαδικός Κωδικοποιητής (Βinary Encoder) 4-σε-2 με validation X X X 2 X 3 4-σε-2 V X 3 X 2 X X Y Y V Y Y Χ X Χ 2 X 3 V = Χ +Χ +Χ 2 +Χ 3 Y = Χ +Χ 3 Y = Χ 2 +Χ 3 To V χρησιμοποιείται για να γίνει διαχωρισμός της κωδικής λέξης απότημηκωδικήλέξη. Υποθέτουμε ότι οι υπόλοιπες μη κωδικές λέξεις δεν εμφανίζονται σε κανονική λειτουργία.

31 Kωδικοποιητής Προτεραιότητας (Priority Encoder) Kωδικοποιητής Προτεραιότητας είσοδοι (2 n -ψηφίων, το πολύ), που ταξινομούνται σε σειρά αύξουσας προτεραιότητας, (από μέχρι 2 n -, το πολύ) μετατρέπονται σε εξόδους (δυαδικούς αριθμούς n-ψηφίων ) των οποίων η δυαδική τιμή καθορίζεται από την είσοδο που έχει τη μεγαλύτερη προτεραιότητα αναγκαιότητα διαχωρισμού της τιμής όλα- (..) στην είσοδο με χρήση μίας επιπλέον εξόδου που δηλώνει εγκυρότητα (valid) χρησιμοποιούνται για την υλοποίηση των αιτήσεων εξυπηρέτησης διακοπών με προτεραιότητα

32 Kωδικοποιητής Προτεραιότητας (Priority Encoder) X X X 2 X 3 priority encoder V X 3 X 2 X X Y Y V X X X X X X Y Y Χ Χ Χ 3 Χ 2 Y = Χ 3 +Χ 2 Χ Το σήμα Χ 3 ενεργοποιείται από τη μονάδα που έχει τη μεγαλύτερη προτεραιότητα

33 Kωδικοποιητής Προτεραιότητας (Priority Encoder) X X X 2 X 3 priority encoder V X 3 X 2 X X Y Y V X X X X X X Y Y Χ Χ Χ 3 Χ 2 Y = Χ 3 +Χ 2

34 Kωδικοποιητής Προτεραιότητας (Priority Encoder) X priority encoder X Y X 2 X 3 Y Χ V = Χ +Χ +Χ 2 +Χ 3 V X 3 X 2 X X Y Y V X X X X X X X Χ 2 X 3 Y = Χ 3 +Χ 2 Χ Y = Χ 3 +Χ 2

35 Πολυπλέκτης (Μultiplexer) Συνδυαστικό κύκλωμα πολλών εισόδων (αρτηριών) και μόνο μίας εξόδου (αρτηρίας) που χρησιμοποιείται για τη μετάδοση της πληροφορίας, που παράγεται σε n ανεξάρτητες μεταξύ τους μονάδες, μέσα από μόνο μία γραμμή μεταφοράς ανάλογα με την τιμή που έχουν οι s γραμμές επιλογής, s = log 2 n πιθανή ύπαρξη εισόδων επίτρεψης (enable-strobe), που απενεργοποιούν την έξοδο, ώστε να χρησιμοποιηθεί για επέκταση ανάστροφη λειτουργία του αποπλέκτη (demultiplexer)

36 Πολυπλέκτης (Multiplexer) Γενική Δομή Χ Χ n ανεξάρτητες μονάδες X n MUX Y γραμμή μεταφοράς S επιλογή select επίτρεψη enable-strobe

37 en Πολυπλέκτης (Μultiplexer) 4-σε- με enable X MUX en X Y X 2 4-σε- Χ X 3 X S en S S S Y Χ 2 Y x x X X X 2 X 3 Πίνακας λειτουργίας S S X 3

38 en Πολυπλέκτης (Μultiplexer) 4-σε- με enable Χ X X X 2 X 3 MUX 4-σε- Y X Χ 2 Y S S en S S Y x x X X X 2 X 3 X 3 S S en Y Y Y 2 Y 3 Decoder 2-σε-4 MUX 4-σε- Ο πολυπλέκτης κρύβει μέσα του ένα δυαδικό αποκωδικοποιητή!!!

39 κοινή επιλογή S, S MSI κύκλωμα 74x53 2 X 4-to- Multiplexer X X X2 X3 E S S 74x53 Υ 2E 2X 2X 8 GND 2 2X2 6 V cc 3 2X3 2Υ 7 9 ξεχωριστή επίτρεψη enable-strobe Ε, 2Ε

40 X X X 2 X 3 en S S /2 74x53 X Υ X X2 X3 E S S en S S Y x x X X X 2 X 3 MSI κύκλωμα 74x53 2 X 4-to- Multiplexer Y S S en Χ 3 X 2 Χ X Y

41 MSI κύκλωμα 74x53 2 X 4-to- Multiplexer UA UB UC UD a a b b c c d d s s GND x53 X X X2 X3 E Υ S S 2E 2Υ 2X 2X 2X2 2X3 Κατοχή της 2-ψήφιας αρτηρίας Y=(y,y) από μόνο μία από τις 4 μονάδες UA, UB, UC και UD, που αντίστοιχα παράγουν τις αρτηρίες A=(a,a), B=(b,b), C=(c,c) και D=(d,d), σύμφωνα με την τιμή της αρτηρίας επιλογής S=(s,s) 7 9 y y UY

42

43 MSI κύκλωμα 74x57 4 Χ 2-to- Multiplexer 8 GND 6 V cc κοινή επιλογή S Ε S X X 2X 2X 3X 3X 4X 4X 74x57 Υ 2Υ 3Υ Υ 2 κοινή επίτρεψη enable-strobe Ε

44 en S X Χ 4X 4Χ Ε S X X 4X 4X 74x57 MSI κύκλωμα 74x57 Υ 4Υ 4 Χ 2-to- Multiplexer en S Y 4Y X Χ S en S en Y en S Y 2Y 3Y 4Y x X 2X 3X 4X X 2X 3X 4X Πίνακας λειτουργίας 4X 4Χ 4Y

45 MSI κύκλωμα 74x57 4 Χ 2-to- Multiplexer UA a3 b UB a b3 a a2 b b2 GND S Ε S X X 2X 2X 3X 3X 4X 4X 74x57 Υ 4 2Υ 7 3Υ 9 4Υ 2 Κατοχή της 4-ψήφιας αρτηρίας Y=(y3,y2,y,y) από μόνο μία από τις 2 μονάδες UA και UB, που αντίστοιχα παράγουν τις αρτηρίες A=(a3,a2,a,a) και B=(b3,b2,b,b), σύμφωνα με την τιμή του σήματος επιλογής S y y2 y y3 UY

46 Άσκηση 7.3 Να σχεδιάσετε με τη χρήση πολυπλεκτών το κατάλληλο κύκλωμα, που να επιτρέπει την κατοχή της 4-ψήφιας αρτηρίας Y=(y3,y2,y,y) από μόνο μία από τις 4 μονάδες UA, UB, UC και UD, που αντίστοιχα παράγουν τις αρτηρίες A=(a3,a2,a,a), B=(b3,b2,b,b), C=(c3,c2,c,c) και D=(d3,d2,d,d) σύμφωνα με την τιμή της αρτηρίας επιλογής S=(s,s).

47 Μετάδοση Πληροφορίας Χρήση Πολυπλέκτη - Αποπλέκτη S -2 S 3-5 X X X 2 X 3 X 4 X 5 X 6 X 7 MUX 8-to- γραμμή μεταφοράς DEMUX -to-8 Y Y Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Δυνατότητα σύνδεσης οποιασδήποτε μονάδας Χ m με οποιαδήποτε μονάδα Y n (64 δυνατοί συνδυασμοί)

48

49 Πολυπλέκτης 2 n -σε- Υλοποίηση Συνδυαστικής Λογικής Μέθοδος. Συνάρτηση με n μεταβλητές A n-,.., A κάθε είσοδος Χ i (i=,,.., 2 n -) του πολυπλέκτη αντιστοιχεί στον ελαχιστόρο m, m,.., m 2 n -, αντίστοιχα οι είσοδοι Χ i που αντιστοιχούν στους ελαχιστόρους της κανονικής συνάρτησης οδηγούνται στο οι είσοδοι Χ i που αντιστοιχούν στους ελαχιστόρους της συμπληρωματικής συνάρτησης οδηγούνται στο οι n είσοδοι επιλογής S k (k=,,.., n-) συνδέονται με τα σήματα που αντιστοιχούν στις n μεταβλητές A,.., A n- χρησιμοποιείται μόνο στην υλοποίηση λογικών συναρτήσεων μίας εξόδου με λίγες εισόδους

50 Πολυπλέκτης 4-σε- Υλοποίηση Συνδυαστικής Λογικής Μέθοδος. Παράδειγμα: Συνάρτηση με 2 μεταβλητές Α, Α F = Σ(,3) Χ = m m m 2 m 3 Α Α F X = Χ 2 = X 3 = Y Y Y 2 Y 3 Y Στην έξοδο Υ i του αποκωδικοποιητή αντιστοιχεί ο ελαχιστόρος m i S = A S = A en Decoder 2-σε-4 MUX 4-σε-

51 Πολυπλέκτης 2 n -σε- Υλοποίηση Συνδυαστικής Λογικής Μέθοδος 2. Συνάρτηση με n+ μεταβλητές Α n,a n-,.., A χωρίζουμε τον πίνακα αλήθειας σε 2 n διαδοχικές ομάδες των 2 σειρών, όπου οι 2 σειρές σε κάθε ομάδα έχει τιςίδιεςτιμέςγιατιςμεταβλητέςα m (m=, 2,.., n) και διαφορετική τιμή για τη μεταβλητή Α (Α = και Α =) σε κάθε ομάδα των 2 σειρών η συνάρτηση F μπορεί να έχει ένα από τους ακόλουθους 4 συνδυασμούς τιμών : F= για Α = και F= για Α = (περίπτωση ) F= για Α = και F= για Α = (περίπτωση A ) F= για Α = και F= για Α = (περίπτωση A ) F= για Α = και F= για Α = (περίπτωση )

52 Πολυπλέκτης 4-σε- Υλοποίηση Συνδυαστικής Λογικής Μέθοδος 2. Παράδειγμα: Συνάρτηση με 3 μεταβλητές Α 2, Α, Α F = Σ(,2,4,5) Α 2 Α Α F περίπτωση A περίπτωση A περίπτωση περίπτωση Xωρίζουμε τον πίνακα αλήθειας σε 4 διαδοχικές ομάδες των 2 σειρών

53 Πολυπλέκτης 2 n -σε- Υλοποίηση Συνδυαστικής Λογικής Μέθοδος 2. Συνάρτηση με n+ μεταβλητές Α n,a n-,.., A (συνέχεια) κάθε ομάδα 2 σειρών αντιστοιχεί στο γινόμενο των μεταβλητών A n..a καθώς και σε μία είσοδο Χ i : η είσοδος Χ i οδηγείται στο, εάν η ομάδα 2 σειρών ανήκει στην περίπτωση η είσοδος Χ i συνδέεται με το σήμα Α, εάν η ομάδα 2 σειρών ανήκει στην περίπτωση Α η είσοδος Χ i συνδέεται με το σήμα Α, εάν η ομάδα 2 σειρών ανήκει στην περίπτωση Α η είσοδος Χ i οδηγείται στο, εάν η ομάδα 2 σειρών ανήκει στην περίπτωση οι n είσοδοι επιλογής S k (k=,,.., n-) συνδέονται με τα σήματα που αντιστοιχούν στις n μεταβλητές Α,.., A n

54 Πολυπλέκτης 4-σε- Υλοποίηση Συνδυαστικής Λογικής Μέθοδος 2. Παράδειγμα: Συνάρτηση με 3 μεταβλητές Α 2, Α, Α F = Σ(,2,4,5) Α 2 Α Α F Χ =Α X =Α Χ 2 = X 3 = S =A S =A 2 en Decoder 2-σε-4 Y=F Y Y Y 2 Y 3 Y =A 2 A MUX Y =A 2 A Y 2 =A 2 A 4-σε- Y 3 =A 2 A

55 Άσκηση 7.4 Να υλοποιήσετε τις συναρτήσεις F, F 2, και F 3 χρησιμοποιώντας πολυπλέκτες 8-σε- A A Β Β F F 2 F 3 A A Β Β F F 2 F 3

56 Άσκηση 7.4 Υλοποίηση F A A Β Β F A A Β Β F Β Α Α S S Β Β Β Β X X X 2 X 3 X 4 X 5 X 6 X 7 S 2 MUX 8-σε- F Παράδειγμα

57 Πολυπλέκτης 2 n -σε- Υλοποίηση Συνδυαστικής Λογικής Μέθοδος 3. Συνάρτηση με n+2 μεταβλητές Α n+, Α n,a n-,.., A χωρίζουμε τον πίνακα αλήθειας σε 2 n διαδοχικές ομάδες των 4 σειρών, όπου οι 4 σειρές σε κάθε ομάδα έχει τιςίδιεςτιμέςγιατιςμεταβλητέςα m (m=2, 3,.., n+) και διαφορετική τιμή για τις μεταβλητές Α και Α σε κάθε ομάδα των 4 σειρών ησυνάρτησηf μπορεί να είναι οποιαδήποτε από τις 6 συναρτήσεις 2 μεταβλητών Α και Α, οι οποίες και υλοποιούνται με επιπλέον λογική στις αντίστοιχες εισόδους του πολυπλέκτη ΔΕΝ ΥΠΑΡΧΕΙ ΣΤΑ ΒΙΒΛΙΑ

58 Πολυπλέκτης 4-σε- Υλοποίηση Συνδυαστικής Λογικής Μέθοδος 3. Παράδειγμα: Συνάρτηση με 4 μεταβλητές Α 3, Α 2, Α, Α 3 Α 2 Α Α F Χ =Α Α X =Α +Α Χ 2 =Α X 3 = S =A 2 S =A 3 en Α Decoder 2-σε-4 Y=F Y Y Y 2 Y 3 Y =A 3 A 2 MUX Y =A 3 A 2 Y 2 =A 3 A 2 4-σε- Y 3 =A 3 A 2

59 W X Y Z F Άσκηση 7.5 Στα πλαίσια της σχεδίασης του συνδυαστικού κυκλώματος με τον αναφερόμενο πίνακα αλήθειας, να υλοποιηθεί η συνάρτηση F με χρήση ενός πολυπλέκτη 2-σε- και προσθέτοντας μόνο τον ελάχιστο αριθμό πυλών NAND δύο εισόδων. Δεν επιτρέπεται η χρήση κανενός άλλου τύπου πυλών. Ζ Συνδυαστική Λογική S X X MUX 2-σε- Να βρείτε πρώτα τη συνάρτηση και να ξαναφτιάξετε τον Πίνακα Αλήθειας Μία σύνθετη άσκηση, που συνδυάζει ότι έχουμε μάθει μέχρι τώρα

60

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Σύνθετα Συνδυαστικά Κυκλώµατα Πύλες AND Πύλες OR Πύλες NAND Τυχαία Λογική Πύλες NOR Πύλες XNOR Η ολοκληρωµένη

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης 5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI υαδικός Αθροιστής & Αφαιρέτης A i B i FA S i C i C i+1 D Σειριακός Αθροιστής Σειριακός Αθροιστής: απαιτεί 1 πλήρη αθροιστή, 1 στοιχείο µνήµης και παράγει

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 1 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Μαρ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 4 -i: Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώµατα Περίληψη Συναρτήσεις και συναρτησιακές (λειτουργικές)

Διαβάστε περισσότερα

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου

Διαβάστε περισσότερα

6.1 Θεωρητική εισαγωγή

6.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Επιµέλεια διαφανειών: Χρ. Καβουσιανός Λογικά Κυκλώµατα Ø Τα λογικά κυκλώµατα διακρίνονται σε συνδυαστικά (combinational) και ακολουθιακά (sequential). Ø Τα συνδυαστικά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 8 ης εργαστηριακής άσκησης: Αποκωδικοποιητής ΔΗΜΗΤΡΙΟΣ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (1 η σειρά διαφανειών)

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (1 η σειρά διαφανειών) ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (1 η σειρά διαφανειών) Τα ηλεκτρονικά κυκλώματα, ιδιαίτερα τα ψηφιακά χρησιμοποιούνται για την υλοποίηση λογικών συναρτήσεων και την αποθήκευση

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21 Περιεχόµενα Πρόλογος 11 Σκοπός αυτού του βιβλίου 11 Σε ποιους απευθύνεται αυτό το βιβλίο 12 Βασικά χαρακτηριστικά του βιβλίου 12 Κάλυψη συστηµάτων CAD 14 Εργαστηριακή υποστήριξη 14 Συνοπτική παρουσίαση

Διαβάστε περισσότερα

7.1 Θεωρητική εισαγωγή

7.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)

Διαβάστε περισσότερα

ΘΕΜΑ : ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ DIGITAL ELECTRONICS

ΘΕΜΑ : ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ DIGITAL ELECTRONICS ΘΕΜΑ : ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ DIGITAL ELECTRONICS ΔΙΑΡΚΕΙΑ: 1 περιόδους 16/11/2011 10:31 (31) καθ. Τεχνολογίας ΚΑΤΗΓΟΡΙΕΣ ΜΕΓΕΘΩΝ ΑΝΑΛΟΓΙΚΟ (ANALOGUE) ΨΗΦΙΑΚΟ (DIGITAL) 16/11/2011 10:38 (38) ΕΙΣΑΓΩΓΗ ΣΤΑ

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

Ψηφιακοί Υπολογιστές

Ψηφιακοί Υπολογιστές 1 η Θεµατική Ενότητα : υαδικά Συστήµατα Ψηφιακοί Υπολογιστές Παλαιότερα οι υπολογιστές χρησιµοποιούνταν για αριθµητικούς υπολογισµούς Ψηφίο (digit) Ψηφιακοί Υπολογιστές Σήµατα (signals) : διακριτά στοιχεία

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5 ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ

ΑΣΚΗΣΗ 5 ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΣΚΗΣΗ 5 ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ Αντικείμενο της άσκησης: Λογική και μεθοδολογία σχεδίασης κωδικοποιητών και αποκωδικοποιητών, υλοποίηση συνδυαστικών κυκλωμάτων με αποκωδικοποιητές και λογικές πύλες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: Τεχνολογία Αναλογικών και Ψηφιακών Ηλεκτρονικών Τεχνολογία Τεχνικών Σχολών

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΞEΙΔΙΚΕΥΣΕΙΣ ΣΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΒΑΣΙΚΕΣ ΕΞEΙΔΙΚΕΥΣΕΙΣ ΣΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ Μεταπτυχιακή Εξειδίκευση στα Πληροφοριακά Συστήματα Θεματική Ενότητα ΠΛΣ-5 ΒΑΣΙΚΕΣ ΕΞEΙΔΙΚΕΥΣΕΙΣ ΣΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ - ΣΗΜΕΙΩΣΕΙΣ ΔΙΔΑΣΚΑΛΙΑΣ - Δρ. Λάμπρος Μπισδούνης Σύμβουλος Καθηγητής

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ

ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Εργαστήριο Λογικής Σχεδίασης Ψηφιακών Συστημάτων ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμήμα Πληροφορικής - Πανεπιστήμιο Πειραιώς i ΠΕΡΙΕΧΟΜΕΝΑ ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 1-1 Σχηµατισµός Μηνύµατος 1 1-2 Βάση Αρίθµησης 2 1-3 Παράσταση Αριθµών στο εκαδικό Σύστηµα 2 Μετατροπή υαδικού σε εκαδικό 3 Μετατροπή εκαδικού σε υαδικό 4

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Εκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς

Εκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 24-5 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης ; Ποιες κατηγορίες

Διαβάστε περισσότερα

Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΠΜΣ στις Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών Διδάσκων : Παρασκευάς Κίτσος Επίκουρος Καθηγητής pkitsos@teimes.gr 1 Τμήμα των διαλέξεων

Διαβάστε περισσότερα

Ενότητα ΚΑΤΑΧΩΡΗΤΕΣ ΜΕΤΡΗΤΕΣ ΜΝΗΜΕΣ RAM

Ενότητα ΚΑΤΑΧΩΡΗΤΕΣ ΜΕΤΡΗΤΕΣ ΜΝΗΜΕΣ RAM 2 Ενότητα ΚΑΤΑΧΩΡΗΤΕΣ ΜΕΤΡΗΤΕΣ ΜΝΗΜΕΣ RAM Γενικές Γραμμές Παράλληλα και Σειριακά Δεδομένα Παράλληλοι λ Καταχωρητές Σήματα Ενεργοποίησης Διαβάσματος & Γραψίματος - Εισόδου & Εξόδου Υπολογισμός Περιόδου

Διαβάστε περισσότερα

Αποκωδικοποιητές Μνημών

Αποκωδικοποιητές Μνημών Αποκωδικοποιητές Μνημών Φθινόπωρο 2008 Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Γ. Δημητρακόπουλος ΗΥ422 1 Η χρήση των αποκωδικοποιητών Η δομή της μνήμης (για λόγους πυκνότητας)

Διαβάστε περισσότερα

4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα

4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα ΚΕΦΑΛΑΙΟ 4 ΤΕΧΝΟΛΟΓΙΕΣ ΥΛΟΠΟΙΗΣΗΣ 4.1 Εισαγωγή Για την υλοποίηση των λογικών πυλών χρησιμοποιήθηκαν αρχικά ηλεκτρονικές λυχνίες κενού και στη συνέχεια κρυσταλλοδίοδοι και διπολικά τρανζίστορ. Τα ολοκληρωμένα

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Λογικές πύλες Περιεχόμενα 1 Λογικές πύλες

Διαβάστε περισσότερα

ΚΑΣΣΙΑΝΟΣ ΜΕΛΑΝΙΤΗΣ. Αποκωδικοποιητής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 8 ης εργαστηριακής άσκησης: Α.Μ.: 202420110008

ΚΑΣΣΙΑΝΟΣ ΜΕΛΑΝΙΤΗΣ. Αποκωδικοποιητής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 8 ης εργαστηριακής άσκησης: Α.Μ.: 202420110008 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 8 ης εργαστηριακής άσκησης: Αποκωδικοποιητής ΚΑΣΣΙΑΝΟΣ

Διαβάστε περισσότερα

ΠΡΟΫΠΗΡΕΣΙΑΚΗ ΚΑΤΑΡΤΙΣΗ ΠΡΥ 017 ΤΕΧΝΟΛΟΓΙΑ Διαλέξεις 8 και 9 ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΡΟΫΠΗΡΕΣΙΑΚΗ ΚΑΤΑΡΤΙΣΗ ΠΡΥ 017 ΤΕΧΝΟΛΟΓΙΑ Διαλέξεις 8 και 9 ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗ ΚΑΤΑΡΤΙΣΗ ΠΡΥ 7 ΤΕΧΝΟΛΟΓΙΑ Διαλέξεις 8 και 9 ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Δρ. Ηλίας Κυριακίδης ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Αναλογικά

Διαβάστε περισσότερα

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Παράσταση ενός φυσικού αριθμού 1 1.2 Δεκαδικό σύστημα 1 1.3 Δυαδικό σύστημα 2 1.4 Οκταδικό σύστηνα 2 1.5 Δεκαεξαδικό σύστημα 2 1.6 Μετατροπές από ένα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά Όγδοης Εργαστηριακής Άσκησης: Αποκωδικοποιητής

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ 6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΥΟ ΕΙΣΟ ΩΝ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΠΕ ΩΝ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΗΦΙΑΚΟ ΣΥΣΤΗΜΑ A ΥΤΟΜΑ ΤΗΣ ΗΑΗΡΩΣΗΣ ΜΗΟΥΚΑΑΙΩΝ ΜΕ ΧΑΠΙΑ ΣΕ ΦΑΡΜΑΚΕΥΤΙΚΗ ΒΙΟΜΗΧΑΝΙΑ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΗΦΙΑΚΟ ΣΥΣΤΗΜΑ A ΥΤΟΜΑ ΤΗΣ ΗΑΗΡΩΣΗΣ ΜΗΟΥΚΑΑΙΩΝ ΜΕ ΧΑΠΙΑ ΣΕ ΦΑΡΜΑΚΕΥΤΙΚΗ ΒΙΟΜΗΧΑΝΙΑ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ Σ.Τ.ΕΦ. ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ Τ.Ε.Ι. ΚΑΒΑΛ/» ΤΜΗΜΑ ΗΛΕΚΤΡβ^ΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΗΦΙΑΚΟ ΣΥΣΤΗΜΑ A ΥΤΟΜΑ ΤΗΣ ΗΑΗΡΩΣΗΣ ΜΗΟΥΚΑΑΙΩΝ ΜΕ ΧΑΠΙΑ ΣΕ ΦΑΡΜΑΚΕΥΤΙΚΗ ΒΙΟΜΗΧΑΝΙΑ i i.1^-1 ' CiJ ^

Διαβάστε περισσότερα

Ύλη Λογικού Σχεδιασµού Ι

Ύλη Λογικού Σχεδιασµού Ι 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Ύλη Λογικού Σχεδιασµού Ι Κεφ 2 Κεφ 3 Κεφ 4 Κεφ 6 Συνδυαστική Λογική 2 Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά:

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

ΥΛΗ ΚΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016. Μάθημα Προγραμματισμός Ι.

ΥΛΗ ΚΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016. Μάθημα Προγραμματισμός Ι. ΥΛΗ ΚΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016 Μάθημα Προγραμματισμός Ι. 1) Προπαρασκευαστική Εισαγωγή, Εισαγωγή στον προγραμματισμό, (Κεφ, 1.2, 1.3,

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Εισαγωγή στα Ψηφιακά Συστήματα

Εισαγωγή στα Ψηφιακά Συστήματα Εισαγωγή στα Ψηφιακά Συστήματα Ασημόπουλος Νικόλαος Πατουλίδης Γεώργιος Παλιανόπουλος Ιωάννης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας

Διαβάστε περισσότερα

Ψηφιακά Συστήματα. Σημείωση

Ψηφιακά Συστήματα. Σημείωση Το έργο υλοποιείται στο πλαίσιο του υποέργου 2 με τίτλο «Ανάπτυξη έντυπου εκπαιδευτικού υλικού για τα νέα Προγράμματα Σπουδών» της Πράξης «Ελληνικό Ανοικτό Πανεπιστήμιο» η οποία έχει ενταχθεί στο Επιχειρησιακό

Διαβάστε περισσότερα

74HC573 D7 D6 D5 D4 D3 D2 D1 D0 LE OE A0 A1 A2 A3 A4 A5 A6 A7 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 A8 A9 A10 A11 A12 A13 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

74HC573 D7 D6 D5 D4 D3 D2 D1 D0 LE OE A0 A1 A2 A3 A4 A5 A6 A7 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 A8 A9 A10 A11 A12 A13 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 ΜΑΘΗΜΑ: ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΕΣ ΘΕΜΑΤΑ ΙΟΥΝΙΟΥ 2012 Καθηγητής: Νικολαΐδης Νικ. Ημ/νία εξέτασης: 28-6-2012 ΘΕΜΑ 1 (3,5 μονάδες) Σχεδιάστε το απλούστερο κύκλωμα για συνδεθεί μία ROM 16 ΚΒ σε έναν 8051: α) ως μνήμη

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος Α) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΥΓΧΡΟΝΟ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

Γιάννης Λιαπέρδος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ. Κριτική Ανάγνωση: Αγγελική Αραπογιάννη. Επιμέλεια πολυμεσικού διαδραστικού υλικού: Γιώργος Θεοφάνους

Γιάννης Λιαπέρδος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ. Κριτική Ανάγνωση: Αγγελική Αραπογιάννη. Επιμέλεια πολυμεσικού διαδραστικού υλικού: Γιώργος Θεοφάνους Γιάννης Λιαπέρδος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ Κριτική Ανάγνωση: Αγγελική Αραπογιάννη Επιμέλεια πολυμεσικού διαδραστικού υλικού: Γιώργος Θεοφάνους Copyright ΣΕΑΒ, 215 Το παρόν έργο αδειοδοτείται υπό τους

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 1: Εισαγωγή

K15 Ψηφιακή Λογική Σχεδίαση 1: Εισαγωγή K15 Ψηφιακή Λογική Σχεδίαση 1: Εισαγωγή Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Πληροφορίες για το μάθημα Περιεχόμενα 1 Πληροφορίες για το μάθημα

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ Πύλες - Άλγεβρα Boole 1 ΕΙΣΑΓΩΓΗ Α)Ηλεκτρονικά κυκλώµατα Αναλογικά κυκλώµατα Ψηφιακά κυκλώµατα ( δίτιµα ) V V 2 1 V 1 0 t t Θετική λογική: Ο V 1 µε V 1 =

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός Μετρητής

Διαβάστε περισσότερα

14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 14. ΑΠΑΡΙΘΜΗΤΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΑΠΑΡΙΘΜΗΤΕΣ ΤΡΟΠΟΣ ΥΛΟΠΟΙΗΣΗΣ KAI ΡΟΗ ΑΠΑΡΙΘΜΗΣΗΣ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ ΥΑ ΙΚΟΥ ΑΠΑΡΙΘΜΗΤΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 2. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ...30

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 2. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ...30 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 1.1 Τι είναι Πληροφορική;...11 1.1.1 Τι είναι η Πληροφορική;...12 1.1.2 Τι είναι ο Υπολογιστής;...14 1.1.3 Τι είναι το Υλικό και το

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 )

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 ) ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΥΑ ΙΚΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των απαριθµητών. Υλοποίηση ασύγχρονου απαριθµητή 4-bit µε χρήση JK Flip-Flop. Κατανόηση της αλλαγής του υπολοίπου

Διαβάστε περισσότερα

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης ΟΜΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ Ένας υπολογιστής αποτελείται από την Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ), τη µνήµη, τις µονάδες εισόδου/εξόδου και το σύστηµα διασύνδεσης

Διαβάστε περισσότερα

Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης

Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης Τι θα μάθουμε σήμερα: Να αναφέρουμε τον τρόπο αναπαράστασης των δεδομένων (δυαδικό σύστημα) Να αναγνωρίζουμε πώς γράμματα και σύμβολα από

Διαβάστε περισσότερα

Βασικές Έννοιες Πληροφορικής

Βασικές Έννοιες Πληροφορικής Βασικές Έννοιες Πληροφορικής 1. Τι είναι ο Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι οποιαδήποτε συσκευή μεγάλη ή μικρή που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με

Διαβάστε περισσότερα

5 η Θεµατική Ενότητα : Μνήµη & Προγραµµατιζόµενη Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

5 η Θεµατική Ενότητα : Μνήµη & Προγραµµατιζόµενη Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 5 η Θεµατική Ενότητα : Μνήµη & Προγραµµατιζόµενη Λογική Επιµέλεια διαφανειών: Χρ. Καβουσιανός Μνήµη Η µνήµη καταλαµβάνει το µεγαλύτερο µέρος ενός υπολογιστικού συστήµατος Δύο τύποι: ROM - RAM RΟΜs CPU

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR Σκοπός: Να επαληθευτούν πειραµατικά οι πίνακες αληθείας των λογικών πυλών OR, NOR, XOR. Να δειχτεί ότι η πύλη NOR είναι οικουµενική.

Διαβάστε περισσότερα

Βιβλιογραϕικές σηµειώσεις 59. Ασκήσεις 19

Βιβλιογραϕικές σηµειώσεις 59. Ασκήσεις 19 ΠΕΡΙΕΧΟΜΕΝΑ Μέρος I Εισαγωγή 1 Η ψηφιακή αφαίρεση 3 1.1 Ψηϕιακά σήµατα 4 1.2 Τα ψηϕιακά σήµατα είναι ανεκτικά στον θόρυβο 5 1.3 Τα ψηϕιακά σήµατα αναπαριστούν σύνθετα δεδοµένα 9 1.3.1 Αναπαράσταση της

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης.

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Κεφάλαιο 5 -ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αφαίρεση δυαδικών Περίληψη

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Τεχνολογικο Εκπαιδευτικο Ιδρυµα Πελοποννησου Σχολη Τεχνολογικων Εφαρµογων Τµηµα Μηχανικων Πληροφορικης τ.ε. ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Εξάµηνο: Α ιδάσκων: Γιάννης Λιαπέρδος ιάρκεια

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α)

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α) ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α) Αντικείμενο της άσκησης: Η χρήση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων (ΟΚ), η συνδεσμολόγησή τους στην κάρτα εργασίας (bread-board) και η κατανόηση της λογικής συμπεριφοράς των

Διαβάστε περισσότερα

EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY

EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY ΠANEΠIΣTHMIO ΠATPΩN TMHMA MHX H/ Y & ΠΛHPOΦOPIKHΣ TOMEAΣ YΛIKOY KAI APXITEKTONIKHΣ YΠOΛOΓIΣTΩN Εργαστήριο Θεωρίας Κυκλωμάτων, Ηλεκτρονικών & Λογικού Σχεδιασμού EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων

Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων Γιώργος Δημητρακόπουλος 1 Αποκωδικοποιητής κώδικα Huffman συμπίεση δεδομένων Ξέρουμε ότι με n bits μπορούμε να κωδικοποιήσουμε 2 n διαφορετικά

Διαβάστε περισσότερα

Τεχνολογία μνημών Ημιαγωγικές μνήμες Μνήμες που προσπελαύνονται με διευθύνσεις:

Τεχνολογία μνημών Ημιαγωγικές μνήμες Μνήμες που προσπελαύνονται με διευθύνσεις: Σύστημα μνήμης Ο κύριος σκοπός στο σχεδιασμό ενός συστήματος μνήμης είναι να προσφέρουμε επαρκή χωρητικότητα αποθήκευσης διατηρώντας ένα αποδεκτό επίπεδο μέσης απόδοσης και επίσης χαμηλό μέσο κόστος ανά

Διαβάστε περισσότερα

1.1 Θεωρητική εισαγωγή

1.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΛΟΓΙΚΕΣ ΠΥΛΕΣ NOT, AND, NAND Σκοπός: Να εξοικειωθούν οι φοιτητές µε τα ολοκληρωµένα κυκλώµατα της σειράς 7400 για τη σχεδίαση και υλοποίηση απλών λογικών συναρτήσεων.

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΑΠΑΝΤΗΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 Μάθημα : Μικροϋπολογιστές Τεχνολογία Τ.Σ. Ι, Θεωρητικής κατεύθυνσης Ημερομηνία

Διαβάστε περισσότερα

2. ΛΟΓΙΚΕΣ ΠΥΛΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

2. ΛΟΓΙΚΕΣ ΠΥΛΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 2. ΛΟΓΙΚΕΣ ΠΥΛΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΟΙ ΛΟΓΙΚΕΣ ΠΥΛΕΣ NOT, AND ΚΑΙ OR Οι βασικές πράξεις της Άλγεβρας Boole είναι οι πράξεις NOT, ANDκαι OR. Στα ψηφιακά

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 2

ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 2 ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Ο κύκλος της πληροφορίας Η σηµασία της πληροφορίας Ο υπολογιστής (επεξεργασία-αποθήκευση) 2 Παράσταση δεδοµένων Αριθµητικά συστήµατα εκαδικό σύστηµα 3 υαδικό

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα