ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 1"

Transcript

1 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Συναρτήσεις και συναρτησιακές (λειτουργικές) μονάδες Στοιχειώδης λογικές συναρτήσεις υαδικοί Αποκωδικοποιητές Λειτουργία, Επέκταση, Υλοποίηση κυκλώματος υαδικοί Κωδικοποιητές Λειτουργία, Επέκταση, Κωδικοποιητές Προτεραιότητας Πολυπλέκτες (Multiplexers -- s) Λειτουργία Παράλληλοι (Dual, Quad, κτλ) ως οικουμενική πύλη Υλοποίηση κυκλωμάτων με s MKM - 2 Συναρτήσεις και Συναρτησιακές (Λειτουργικές) Μονάδες Εξετάζουμε βασικές συναρτήσεις που χρησιμεύουν στο σχεδιασμό ψηφιακών κυκλωμάτων Σε κάθε συνάρτηση αντιστοιχεί μια υλοποίηση συνδυαστικού κυκλώματος που αναφέρετε ως λειτουργική μονάδα Στο παρελθόν, πολλές λειτουργικές μονάδες υλοποιούνταν ως κυκλώματα τεχνολογίας I, MI, and LI Σήμερα, συχνά, είναι μέρος (κομμάτια) των κυκλωμάτων τεχνολογίας VLI Στοιχειώδης Λογικές Συναρτήσεις Μεταφορά / Συμπλήρωση Αμετάβλητες τιμές (value fixing) ίαυλοι (busses) Ενεργοποίηση (enabling / gating) MKM - 3 MKM - Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα

2 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Στοιχειώδης Λογικές Συναρτήσεις Συναρτήσεις μίας εισόδου (X) Χρησιμοποιούνται στις εισόδους των λειτουργικών μονάδων για να μετατρέψουν τη προτιθέμενη λειτουργία τους F= F= V or V DD TBLE - Functions of One Variable X F = F = X F = X F = Αυγ-3 (a) Βασικές Συνδυαστικές Συναρτήσεις (b) και Κυκλώματα (d) MKM - 5 F= F= X X (c) F=X F=X Στοιχειώδης Συναρτήσεις Πολλαπλών bit ( ίαυλος/bus) Παραδείγματα πολλαπλών bit: F 3 F 2 F F (a) 2 3 F 2: F (c) 2 F(2:) 3 (b) 3,: F(3), F(:) F Η κίτρινη γραμμή αναπαριστά ένα δίαυλο (d) (bus), ο οποίος είναι ένα διάνυσμα σημάτων Στο παράδειγμα (b), F(3 (3: :) = (F 3, F 2, F, F ) είναι ένας δίαυλος Ένας δίαυλος μπορεί να διασπαστεί σε ξεχωριστά bits, όπως φαίνετε στο (b) Σύνολα από bits μπορούν να διασπαστούν από ένα δίαυλο, όπως φαίνετε στο (c) για τα bits 2 και του F Τα σύνολα των διασπασμένων bits δεν είναι ανάγκη να είναι συνεχόμενα, όπως φαίνετε στο (d) για τα bits 3,, και του F MKM - 6 Value-fixing Value-fixing (Παράδειγμα ) Y = I B + I B + I 2 B + I 3 B ίνοντας σταθερές τιμές ( ή ) στις εισόδους I -- I 3 μπορούμε να υλοποιήσουμε οποιαδήποτε συνάρτηση F(,B) πχ F(,B) = + B MKM - 7 Y = B + B + B + B = B+B +B = +B ίνοντας σταθερές τιμές ( ή ) στις εισόδους I -- I 3 μπορούμε να υλοποιήσουμε οποιαδήποτε συνάρτηση F(,B) πχ F(,B) = + B MKM - 8 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 2

3 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Value-fixing (Παράδειγμα 2) Value-fixing (Παράδειγμα 3) Y = B + B + B + B = B+B = B ίνοντας σταθερές τιμές ( ή ) στις εισόδους I -- I 3 μπορούμε να υλοποιήσουμε οποιαδήποτε συνάρτηση F(,B) πχ F(,B) = B = B + B MKM - 9 Y = B + B + B + I 3 B = B + I 3 B ίνοντας σταθερές τιμές ( ή ) στις εισόδους I -- I 3 μπορούμε να υλοποιήσουμε οποιαδήποτε συνάρτηση F(,B) πχ F(,B) = B + B + I 3 ΑΒ (I 3 = Α Β, I 3 = Α+Β) MKM - Συνάρτηση Ενεργοποίησης (Enabling Function / Gating) Ενεργοποίηση: επιτρέπει ένα σήμα εισόδου να περάσει στην έξοδο Απενεργοποίηση: εμποδίζει ένα σήμα εισόδου να περάσει στην έξοδο, αντικαθιστώντας το με μια σταθερή τιμή Η τιμή μιας απενεργοποιημένης εξόδου μπορεί να είναι Hi-Z (όπως σε tri-state buffers και πύλες μετάδοσης),, ή, αναλόγως της σύμβασης Όταν ΕΝ=,, F= X EN Όταν ΕΝ=, F= (a) F υαδικοί Αποκωδικοποιητές (Binary Decoders) Συνδυαστικό κύκλωμα για μετατροπή δυαδικών δεδομένων από n κωδικοποιημένες εισόδους σε 2 n κωδικοποιημένες εξόδους ποκωδικοποιητής (Binary Decoder) n-to- 2 n Αποκωδικοποιητής (ode onverter) n-σε-m, m 2 n Παραδείγματα: : BD-σε-7-segment και BD-σε σε- Εxcess-3, όπου n= και m= EN X F MKM - (b) MKM - 2 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 3

4 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Αποκωδικοποιητές (συν) Αποκωδικοποιητής 2-σε- Σχεδιάστε ένα αποκωδικοποιητή -σε-2 MKM - 3 MKM - Αποκωδικοποιητής 2-σε-, ενεργός με χαμηλή τάση (active low) Αποκωδικοποιητής 3-σε-8 δεδομένα διεύθυνση MKM - 5 MKM - 6 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα

5 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Αποκωδικοποιητής 3-σε-8 (συν) Αποκωδικοποιητής 3-σε-8, με ιεραρχικό σχεδιασμό Τρεις είσοδοι,,,, 2, αποκωδικοποιούνται σε οκτώ εξόδους,, D έως D 7 Κάθε έξοδος D i αντιπροσωπεύει έναν από τους ελαχιστόρους των 3ων μεταβλητών εισόδου D i = όταν ο δυαδικός αριθμός 2 = i Συντομογραφία: D i = m i Οι τιμές στις εξόδους έχουν αμοιβαία αποκλειστικότητα (mutually exclusive),, δηλ ΜΟΝΟ μία έξοδος μπορεί να έχει την τιμή ανά πάσα στιγμή, και οι υπόλοιπες έχουν την τιμή MKM - 7 MKM - 8 Υλοποίηση δυαδικών συναρτήσεων με χρήση αποκωδικοποιητών Οποιοδήποτε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί χρησιμοποιώντας μόνο ένα αποκωδικοποιητή και πύλες OR! Γιατί; Παράδειγμα: Υλοποιήστε ένα πλήρη αθροιστή με ένα αποκωδικοποιητή και 2 πύλες OR Θεωρήστε X, Y, και Z για εισόδους, και για εξόδους: (X,Y,Z) = X+Y+Z = Σm(,2,,7) (X,Y,Z) = Σm(3, 5, 6, 7) Αφού υπάρχουν 3 είσοδοι και άρα 8 συνολικοί ελαχιστόροι, χρειαζόμαστε ένα αποκωδικοποιητή 3-σε-8 Υλοποίηση υαδικού Αθροιστή με χρήση Αποκωδικοποιητή (X,Y,Z) = Σm(,2,,7) (X,Y,Z) = Σm(3567) Σm(3,5,6,7) MKM - 9 MKM - 2 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 5

6 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Επέκταση Αποκωδικοποιητή Αποκωδικοποιητής 3-σε-8 με δύο αποκωδικοποιητές 2-σε- Μπορούμε να κατασκευάσουμε ένα μεγαλύτερο αποκωδικοποιητή χρησιμοποιώντας ένα αριθμό από μικρότερους ΙΕΡΑΡΧΙΚΟΣ σχεδιασμός! Παράδειγμα: Ένας αποκωδικοποιητής κοπο 6-σε σε-6 μπορεί να σχεδιαστεί με τέσσερις -σε-6 και ένα 2-σε- Πως; (Υπόδειξη: Χρησιμοποιήστε τον 2-σε- για να παράγει το σήμα ενεργοποίησης των τεσσάρων -σε-6) MKM - 2 MKM - 22 ένδρο αποκωδικοποιητή με εισόδους Αποκωδικοποιητής με Enable MKM - 23 MKM - 2 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 6

7 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Κωδικοποιητές Κωδικοποιητές (συν) Συνδυαστικό κύκλωμα που διεκπεραιώνει ει την αντίστροφη λειτουργία από αυτή του αποκωδικοποιητή Έχει 2 n εισόδους και n εξόδους ΜΟΝΟ είσοδος μπορεί να έχει την τιμή ανά πάσα στιγμή (αντιστοιχεί σε από τους 2 n ελαχιστόρους) ) Οι έξοδοι παράγουν το δυαδικό ισοδύναμο της εισόδου με τιμή MKM - 25 MKM - 26 Κωδικοποιητές -- Παράδειγμα Παράδειγμα: δυαδικός κωδικοποιητής 8-σε-3 Παράδειγμα (συν συν) = D + D 3 + D 5 + D 7 = D 2 + D 3 + D 6 + D 7 2 = D + D 5 + D 6 + D 7 MKM - 27 MKM - 28 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 7

8 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Θέματα Σχεδιασμού Κωδικοποιητών Υπάρχουν 2 αοριστίες που συσχετίζονται με τον σχεδιασμό ενός απλού κωδικοποιητή: ΜΟΝΟ μία είσοδος μπορεί να είναι ενεργή (active ή High), ανά πάσα στιγμή Αν ενεργοποιηθούν δύο μαζί, οι τιμές στις εξόδους είναι ακαθόριστες (πχ πχ, αν D 3 και D 6 είναι μαζί, το αποτέλεσμα στις εξόδους είναι ) 2 Αποτέλεσμα με όλο μπορεί να παραχθεί όταν όλες οι είσοδοι είναι, ή όταν το D είναι Κωδικοποιητές Προτεραιότητας Επιλύουν τις αοριστίες που προαναφέρθηκαν Περισσότερες από μία είσοδοι μπορούν να πάρουν την τιμή Όμως, μία έχει προτεραιότητα από όλες τις άλλες Ρητή ένδειξη όταν καμία από τις εισόδους δεν είναι MKM - 29 MKM - 3 Κωδικοποιητής Προτεραιότητας -σε-2 Πίνακας Αληθείας (συμπυκνωμένος) Ποια είναι η σειρά προτεραιότητας; Κωδικοποιητής Προτεραιότητας -σε-2 (συν συν) Λειτουργία: Εάν δύο ή περισσότερες είσοδοι είναι συγχρόνως, η είσοδος με τον πιο ψηλό αριθμοδείκτη παίρνει προτεραιότητα Ο έγκυρος δείκτης εξόδου (valid output indicator, ορισμένος ως V στην προηγούμενη διαφάνεια), παίρνει την τιμή μόνο όταν μία ή περισσότερες από τις εισόδους έχουν την τιμή V = D 3 + D 2 + D + D MKM - 3 MKM - 32 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 8

9 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Κωδικοποιητής Προτεραιότητας -σε-2 K-χάρτες Κωδικοποιητής Προτεραιότητας -σε-2 Λογικό ιάγραμμα MKM - 33 MKM - 3 Κωδικοποιητής Προτεραιότητας 8-σε-3 Χρήσεις υαδικού Κωδικοποιητή υαδική κωδικοποίηση κατεύθυνσης ανέμου MKM - 35 MKM - 36 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 9

10 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Χρήσεις υαδικού Κωδικοποιητή (συν) Επίλυση αιτημάτων διακοπών (interrupt requests) με χρήση κωδικοποιητή MKM - 37 Πολυπλέκτες (Multiplexers) Κύκλωμα που «επιλέγει» δυαδική πληροφορία από μία από τις εισόδους και την κατευθύνει στη μοναδική έξοδο Επίσης γνωστό ως «επιλογέας» (selection circuit) Η επιλογή ελέγχετε από ένα σύνολο εισόδων, ο αριθμός των οποίων εξαρτάτε από τον # των εισόδων δεδομένων Για ένα πολυπλέκτη 2 n -σε-, υπάρχουν 2 n + n είσοδοι: 2 n είσοδοι δεδομένων και n είσοδοι επιλογής, έτσι ώστε ο συνδυασμός των bit τους να καθορίζει την είσοδο δεδομένων που θα επιλεγεί MKM - 38 Πολυπλέκτες (συν) 2-σε- είσοδοι δδ δεδομένων έξοδος Αφού υπάρχουν 2 είσοδοι δεδομένων, 2 = 2 n = Υπάρχει μια είσοδος επιλογής : = επιλέγει την είσοδο I = επιλέγει την είσοδο I Υλοποιεί την συνάρτηση: Y = I + I Το λογικό Decoder δά διάγραμμα: Ι Ι Enabling ircuits 2-to- Υ είσοδοι επιλογής I I Y MKM - 39 MKM - Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα

11 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 2-σε- (συν) Παράδειγμα: : -σε- Προσέξετε ότι τα διάφορα μέρη του πολυπλέκτη δείχνουν: Ένα -σε-2 Αποκωδικοποιητή ύο κυκλώματα ενεργοποίησης (enable circuits) Μια πύλη OR 2-εισόδων Τα πιο πάνω συνδυάζονται για να μας δώσουν τον πολυπλέκτη,, τα κυκλώματα ενεργοποίησης και η πύλη OR 2-εισόδων δίνουν ένα κύκλωμα 2 2 ND-OR, όπου οι είσοδοι του προέρχονται από τις 2 εισόδους δεδομένων και τις 2 εισόδους του αποκωδικοποιητή: 2 είσοδοι δεδομένων -σε-2 αποκωδικοποιητή (παράγουν τους ελαχιστόρους) 2 2 ND-OR Decoder Decoder I I I ND-OR Y Y Γενικά, για έναν πολυπλέκτη 2 n -σε-: 2 n είσοδοι δεδομένων,, n εισόδους επιλογής n-σε-2 n αποκωδικοποιητή 2 n 2 ND-OR I 3 MKM - MKM - 2 Παράδειγμα: : -σε- (συν) Παράδειγμα: : -σε- : Βελτιστοποίηση Decoder δηλώνει επενεργοποίηση Decoder I I I ND-OR Y Ι 2 I 3 Ι 2 Y D D D 2 D 3 MKM - 3 MKM - Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα

12 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Παράδειγμα: σε με Πύλες Μετάβασης (Transmission Gates) Πολυπλέκτες (συν) Μέχρι στιγμής, έχουμε εξετάσει επιλογή δυαδικής πληροφορίας ρ ενός-bit από Τι γίνετε αν θέλουμε να επιλέξουμε πληροφορία των m-bit (data/words)? Συνδυάζουμε κυκλώματα παράλληλα,, με κοινές εισόδους επιλογής και ενεργοποίησης Παράδειγμα: Βρείτε το λογικό διάγραμμα ενός πολυπλέκτη που επιλέγει μεταξύ 2 συνόλων από εισόδους -bit Τετραπλός 2-σε- πολυπλέκτης (Quad 2-to to- ) Quad 2-to-? MKM - 5 MKM - 6 Παράδειγμα: Τετραπλό (Quad) 2-σε- Παράδειγμα: Τετραπλό (Quad) 2-σε- Χρησιμοποιεί τέσσερις 2-σε-, με κοινή είσοδο επιλογής () και κοινή είσοδο ενεργοποίησης (E) Χρησιμοποιεί τέσσερις 2-σε-, με κοινή είσοδο επιλογής () και κοινή είσοδο ενεργοποίησης (E) Η είσοδος επιλογής επιλέγει μεταξύ των s i και B s i και στέλνει στα αντίστοιχα Y s i Το σήμα ενεργοποίησης E αφήνει τα επιλεγμένα δεδομένα εισόδου να φτάσουν στις εξόδους (E= για ενεργή λειτουργία) ή όλοι οι έξοδοι μένουν σταθεροί σε (E= E= για απενεργοποίηση) Η είσοδος επιλογής επιλέγει μεταξύ των s i και B s i και στέλνει στα αντίστοιχα Y s i Το σήμα ενεργοποίησης E αφήνει τα επιλεγμένα δεδομένα εισόδου να φτάσουν στις εξόδους (E= για ενεργή λειτουργία) ή όλοι οι έξοδοι μένουν σταθεροί σε (E= E= για απενεργοποίηση) MKM - 7 MKM - 8 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 2

13 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Παράδειγμα: Τετραπλό (Quad) 2-σε- Παράδειγμα: Τετραπλό (Quad) 2-σε- Χρησιμοποιεί τέσσερις 2-σε-, με κοινή είσοδο B επιλογής () και κοινή B είσοδο ενεργοποίησης (E) Η είσοδος επιλογής B 2 επιλέγει μεταξύ των s i και B s i και στέλνει στα B 3 αντίστοιχα Y s i Το σήμα ενεργοποίησης E αφήνει τα επιλεγμένα δεδομένα εισόδου να φτάσουν στις εξόδους (E= για ενεργή λειτουργία) ή όλοι οι έξοδοι μένουν σταθεροί σε (E= E= για απενεργοποίηση) B B B 2 B 3 Χρησιμοποιεί τέσσερις 2-σε-, με κοινή είσοδο επιλογής () και κοινή είσοδο ενεργοποίησης (E) Η είσοδος επιλογής επιλέγει μεταξύ των s i και B s i και στέλνει στα αντίστοιχα Y s i Το σήμα ενεργοποίησης E αφήνει τα επιλεγμένα δεδομένα εισόδου να φτάσουν στις εξόδους (E= για ενεργή λειτουργία) ή όλοι οι έξοδοι μένουν σταθεροί σε (E= E= για απενεργοποίηση) X X X MKM - 9 MKM - 5 Παράδειγμα: Τετραπλό (Quad) 2-σε- Άλλη Όψη Χρησιμοποιεί τέσσερις 2-σε-, με κοινή είσοδο επιλογής () Η είσοδος επιλογής επιλέγει μεταξύ των s i και B s i και στέλνει στα αντίστοιχα Y s i B B B B2 F F F B B B 2-to- 2-to- 2-to- Quad F2 2 2-to- F2 2-to- B2 2 B3 F3 3 2-to- F3 3 B3 MKM - 5 F F F bit 2-to- Άλλα Παραδείγματα: 8-bit 2-to- 8 2-to- B B 2-to- 2 2-to- B2 3 B3 2-to- F F F2 2-to- B 5 B5 2-to- 6 2-to- B6 MKM - 52 F3 7 B7 2-to- F F5 F6 F7 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 3

14 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Άλλα Παραδείγματα: Quad (-bit) -to- Παράδειγμα: : Quad -σε- Επίσης μια άλλη όψη 3 2 ND-OR 2 B D B D 2 -to- F F B D B D 2 B2 2 D2 3 B3 3 D3 -to- -to- -to- -to- F F F2 F3 2 Quad -to- 2 Quad -to- 2 D 2-to--Line decoder D 3 I, Y I 3, I, 3 2 ND-OR I 3, I,2 3 2 ND-OR I 3,2 I,3 I 3,3 Y 3 2 ND-OR Y 2 Y 3 MKM - 53 MKM - 5 Παράδειγμα: : Quad -σε- Επίσης μια άλλη όψη 3 2 ND-OR I, I, Y Quad -to- 2 2-to--Line decoder D 3 I 3, 3 2 ND-OR I D, I, I 3 2 ND-OR 3, I,2 I,2 Y I 3 2 ND-OR 3,2 I,3 I,3 Y 2 Y 3 Υλοποίηση συναρτήσεων Boole με πολυπλέκτες Οποιαδήποτε συνάρτηση Boole n μεταβλητών μπορεί να υλοποιηθεί χρησιμοποιώντας ένα πολυπλέκτη μεγέθους 2 n- -σε- και μια πύλη NOT Αναμενόμενο, αφού ένας πολυπλέκτης αποτελείται από έναν αποκωδικοποιητή, με τις εξόδους του να καταλήγουν σε μια πύλη OR Τα σήματα ΕΠΙΛΟΓΗΣ παράγουν τους ελαχιστόρους της συνάρτησης Τα σήματα Ε ΟΜΕΝΩΝ καθορίζουν τους ελαχιστόρους που οδηγούν στην πύλη OR MKM - 55 I 3,3 MKM - 56 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα

15 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Παράδειγμα F(X,Y,Z) = X Y Z + X YZ + XYZ + XYZ = Σm(,2,6,7) Υπάρχουν n=3 είσοδοι, άρα, χρειαζόμαστε ένα 2 2 -to- Οι πρώτες n- (=2) είσοδοι υπηρετούν ως είσοδοι επιλογής MKM - 57 Συστηματική Μέθοδος για υλοποίηση συναρτήσεων με Για μία συνάρτηση n-μεταβλητών (π χ, f(,b,,d)): Χρειάζεται ένας 2 n- -to-, με n- εισόδους επιλογής 2 Υπολογίζουμε τον πίνακα αληθείας της συνάρτησης, με τη σειρά μεταβλητών Α>Β>>D (Α είναι το MB και D το LB) 3 Ορίζουμε τις πιο σημαντικές n- μεταβλητές στις n- εισόδους επιλογής (π χ,,b,) Εξετάζουμε ζεύγη γειτονικών γραμμών στον πίνακα (μόνο το LB διαφέρει, πχ,, D= and D=) ) 5 Καθορίζουμε κατά πόσο η τιμή της συνάρτησης (έξοδος) για το συνδυασμό (,B,,) και (,B,,) είναι (,), (,), (,), or (,) 6 Για κάθε συνδυασμό (,B,),, ορίζουμε, D, D, ή στην είσοδο δεδομένων που αντιστοιχεί στο (,B,) MKM - 58 Άλλο Παράδειγμα Άλλο Παράδειγμα (συν) Θεωρήστε F(,B,) = m(,3,5,6) Μπορούμε να υλοποιήσουμε τη συνάρτηση με ένα -σε- Η σειρά μεταβλητών είναι >B> Τότε, τα σήματα επιλογής ορίζονται ως =Α και =B Βρείτε τον πίνακα αληθείας Όταν =B=, F= Όταν =, B=, F= Όταν =, B=, F= Όταν =B=, F= B F MKM - 59 MKM - 6 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 5

16 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Άλλο Παράδειγμα (συν) Υλοποίηση F(,B,) = m(,3,5,6) με Μεγαλύτερο Παράδειγμα B F MKM - 6 MKM - 62 Παράδειγμα με πολλαπλές εξόδους: : Gray σε Binary Σχεδιάστε το κύκλωμα Gray Binary που μετατρέπει από 3-bit B x y z Gray στο δυαδικό κώδικα Ο πίνακας αληθείας δίνεται στα δεξιά Είναι φανερό ότι, X = ενώ οι συναρτήσεις Y και Z είναι πιο πολύπλοκες Gray to Binary η λύση Gray Binary Αναδιατάξτε τον πίνακα, έτσι B x y z ώστε οι διάφοροι συνδυασμοί εισόδων να είναι σε σειρά (,,, ) Οι συναρτήσεις y και z μπορούν να υλοποιηθούν με ένα διπλό (2-bit) 8-σε σε- : Οι, B και ενώνονται στις εισόδους επιλογής Οι έξοδοι του ΜUX ορίζονται ως η y και η z Οι είσοδοι δεδομένων παίρνουν τις αντίστοιχες σταθερές τιμές από τον πίνακα αληθείας (value fixing) MKM - 63 MKM - 6 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 6

17 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Gray to Binary η λύση (συν) D D D D D2 D2 D3 D3 D D Out Y D5 D5 Out D6 D6 D7 D to- 8-to- B B Βασικά, ένας 2-bit 8-to to- με σταθερές τιμές είναι πανομοιότυπος με μια ROM με διευθύνσεις 3ων-bit (είσοδοι) και δεδομένα εξόδου 2-bit! --> 2 3 x2 ROM MKM - 65 Z Gray σε Binary 2 η λύση Αναδιατάξτε τον πίνακα, έτσι ώστε οι διάφοροι συνδυασμοί εισόδων να είναι σε σειρά (,,, ) Gray B Binary x y z Στοιχειώδης συνάρτηση του για y F = F = F = F = Στοιχειώδης συνάρτηση του για z F = F = F = F = MKM - 66 Gray σε Binary 2 η λύση (συν συν) B D D D2 D3 Out 8-to- Y B D D D2 D3 Out 8-to- Z ως οικουμενική πύλη Μπορούμε να παράγουμε τις λειτουργίες OR, ND, και NOT μόνο με 2-σε- Άρα, η 2- to- είναι οικουμενική πύλη OR NOT ND Η 2 η λύση μειώνει το κόστος σχεδόν στο μισό της ης Η 2 η λύση δεν μοιάζει με ROM x z = x + x x = x x + x x + x x = x + x z = x + x = x z = x x + x = x x MKM - 67 MKM - 68 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 7

18 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 Demultiplexers (De) Εκτελεί το αντίστροφο της λειτουργίας του πολυπλέκτη: έχεται δεδομένα από μία είσοδο και τα μεταβιβάζει σε συγκεκριμένη έξοδο, από τις 2 n πιθανές που υπάρχουν Η επιλογή εξόδου γίνετε από τις n εισόδους επιλογής Βασικά, είναι ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ!! Για παράδειγμα, ένας 2-σε- De είναι ένας αποκωδικοποιητής 2-σε-, με είσοδο ενεργοποίησης (ενώνετε στην είσοδο δεδομένων) MKM - 69 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 8

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Μαρ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 4 -i: Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώµατα Περίληψη Συναρτήσεις και συναρτησιακές (λειτουργικές)

Διαβάστε περισσότερα

6.1 Θεωρητική εισαγωγή

6.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός Μετρητής

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

Εκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς

Εκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 24-5 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης ; Ποιες κατηγορίες

Διαβάστε περισσότερα

Μοντέλα Αρχιτεκτονικής στην Σύνθεση

Μοντέλα Αρχιτεκτονικής στην Σύνθεση Μοντέλα Αρχιτεκτονικής στην Σύνθεση Σχεδιαστικά Στυλ & Αρχιτεκτονική Ο σχεδιαστής επιλέγει Σχεδιαστικό στυλ prioritized interrupt instruction buffer bus-oriented datapath serial I/O direct memory access

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR Σκοπός: Να επαληθευτούν πειραµατικά οι πίνακες αληθείας των λογικών πυλών OR, NOR, XOR. Να δειχτεί ότι η πύλη NOR είναι οικουµενική.

Διαβάστε περισσότερα

Παράρτηµα Γ. Τα Βασικά της Λογικής Σχεδίασης. Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση

Παράρτηµα Γ. Τα Βασικά της Λογικής Σχεδίασης. Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Παράρτηµα Γ Τα Βασικά της Λογικής Σχεδίασης ιαφάνειες διδασκαλίας του πρωτότυπου βιβλίου µεταφρασµένες στα ελληνικά και εµπλουτισµένες

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Μικροϋπολογιστές

Διαβάστε περισσότερα

Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009.

Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009. ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα: Μαρία Κ. Μιχαήλ Ακολουθιακά Κυκλώματα Συνδυαστική Λογική: Η τιμή σε μία έξοδο εξαρτάται

Διαβάστε περισσότερα

Ύλη Λογικού Σχεδιασµού Ι

Ύλη Λογικού Σχεδιασµού Ι 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Ύλη Λογικού Σχεδιασµού Ι Κεφ 2 Κεφ 3 Κεφ 4 Κεφ 6 Συνδυαστική Λογική 2 Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά:

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΑΠΑΝΤΗΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 Μάθημα : Μικροϋπολογιστές Τεχνολογία Τ.Σ. Ι, Θεωρητικής κατεύθυνσης Ημερομηνία

Διαβάστε περισσότερα

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ 6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΥΟ ΕΙΣΟ ΩΝ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΠΕ ΩΝ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

2. ΛΟΓΙΚΕΣ ΠΥΛΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

2. ΛΟΓΙΚΕΣ ΠΥΛΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 2. ΛΟΓΙΚΕΣ ΠΥΛΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΟΙ ΛΟΓΙΚΕΣ ΠΥΛΕΣ NOT, AND ΚΑΙ OR Οι βασικές πράξεις της Άλγεβρας Boole είναι οι πράξεις NOT, ANDκαι OR. Στα ψηφιακά

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΑΠΑΝΤΗΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Μικροϋπολογιστές Τεχνολογία Τ.Σ. Ι, Θεωρητικής κατεύθυνσης Ημερομηνία

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Μικροϋπολογιστές

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

υαδικό Σύστημα 192.168.0.0-11000000.10101000.00000000.00000000

υαδικό Σύστημα 192.168.0.0-11000000.10101000.00000000.00000000 υαδικό Σύστημα Για να μπορέσουμε να καταλάβουμε πως γίνεται το Subnetting, πρέπει πρώτα να γνωρίζουμε καλά το δυαδικό σύστημα, τις Classes των δικτύων και τι ακριβώς γίνεται στην καθεμία. Όπως γνωρίζουμε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 4 ο ΟΡΓΑΝΩΣΗ ΤΗΣ ΜΝΗΜΗΣ ΠΕΡΙΦΕΡΕΙΑΚΗ ΜΝΗΜΗ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 4 ο ΟΡΓΑΝΩΣΗ ΤΗΣ ΜΝΗΜΗΣ ΠΕΡΙΦΕΡΕΙΑΚΗ ΜΝΗΜΗ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 4 ο ΟΡΓΑΝΩΣΗ ΤΗΣ ΜΝΗΜΗΣ ΠΕΡΙΦΕΡΕΙΑΚΗ ΜΝΗΜΗ ΧΕΙΜΩΝΑΣ 2009 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Γενική οργάνωση του υπολογιστή Ο καταχωρητής δεδομένων της μνήμης (memory data register

Διαβάστε περισσότερα

ΑΠΟ ΤΗ ΛΟΓΙΚΗ ΣΤΗΝ ΑΛΓΕΒΡΑ BOOLE ΚΑΙ ΑΠΟ ΤΗΝ ΑΛΓΕΒΡΑ BOOLE ΣΤΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΑΠΟ ΤΗ ΛΟΓΙΚΗ ΣΤΗΝ ΑΛΓΕΒΡΑ BOOLE ΚΑΙ ΑΠΟ ΤΗΝ ΑΛΓΕΒΡΑ BOOLE ΣΤΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΑΠΟ ΤΗ ΛΟΓΙΚΗ ΣΤΗΝ ΑΛΓΕΒΡΑ BOOLE ΚΑΙ ΑΠΟ ΤΗΝ ΑΛΓΕΒΡΑ BOOLE ΣΤΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Θεματική Ενότητα: Πολλαπλές Ερμηνευτικές Προσεγγίσεις Βασίλειος Τσακανίκας Γεώργιος Τσαπακίδης vasilistsakanikas@yahoo.gr

Διαβάστε περισσότερα

1.1 Θεωρητική εισαγωγή

1.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΛΟΓΙΚΕΣ ΠΥΛΕΣ NOT, AND, NAND Σκοπός: Να εξοικειωθούν οι φοιτητές µε τα ολοκληρωµένα κυκλώµατα της σειράς 7400 για τη σχεδίαση και υλοποίηση απλών λογικών συναρτήσεων.

Διαβάστε περισσότερα

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΥΓΧΡΟΝΟ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ

Διαβάστε περισσότερα

Ψηφιακά Συστήματα. Σημείωση

Ψηφιακά Συστήματα. Σημείωση Το έργο υλοποιείται στο πλαίσιο του υποέργου 2 με τίτλο «Ανάπτυξη έντυπου εκπαιδευτικού υλικού για τα νέα Προγράμματα Σπουδών» της Πράξης «Ελληνικό Ανοικτό Πανεπιστήμιο» η οποία έχει ενταχθεί στο Επιχειρησιακό

Διαβάστε περισσότερα

ΥΛΗ ΚΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016. Μάθημα Προγραμματισμός Ι.

ΥΛΗ ΚΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016. Μάθημα Προγραμματισμός Ι. ΥΛΗ ΚΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016 Μάθημα Προγραμματισμός Ι. 1) Προπαρασκευαστική Εισαγωγή, Εισαγωγή στον προγραμματισμό, (Κεφ, 1.2, 1.3,

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 2. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ...30

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 2. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ...30 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 1.1 Τι είναι Πληροφορική;...11 1.1.1 Τι είναι η Πληροφορική;...12 1.1.2 Τι είναι ο Υπολογιστής;...14 1.1.3 Τι είναι το Υλικό και το

Διαβάστε περισσότερα

4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα

4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα ΚΕΦΑΛΑΙΟ 4 ΤΕΧΝΟΛΟΓΙΕΣ ΥΛΟΠΟΙΗΣΗΣ 4.1 Εισαγωγή Για την υλοποίηση των λογικών πυλών χρησιμοποιήθηκαν αρχικά ηλεκτρονικές λυχνίες κενού και στη συνέχεια κρυσταλλοδίοδοι και διπολικά τρανζίστορ. Τα ολοκληρωμένα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΛΗ 2: Ψηφιακά Συστήµατα Ακαδηµαϊκό Έτος 24 25 Ηµεροµηνία Εξέτασης 29.6.25 Χρόνος Εξέτασης

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α Α1. Για τις ημιτελείς προτάσεις Α1.1 και Α1. να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 10 Μετάδοση και Αποδιαμόρφωση Ραδιοφωνικών Σημάτων Λευκωσία, 2010 Εργαστήριο 10

Διαβάστε περισσότερα

Μνήμες RAM. Διάλεξη 12

Μνήμες RAM. Διάλεξη 12 Μνήμες RAM Διάλεξη 12 Δομή της διάλεξης Εισαγωγή Κύτταρα Στατικής Μνήμης Κύτταρα Δυναμικής Μνήμης Αισθητήριοι Ενισχυτές Αποκωδικοποιητές Διευθύνσεων Ασκήσεις 2 Μνήμες RAM Εισαγωγή 3 Μνήμες RAM RAM: μνήμη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΘΕΜΑΤΑ ΨΗΦΙΑΚΗΣ ΣΧΕΔΙΑΣΗΣ

ΚΕΦΑΛΑΙΟ 3 ΘΕΜΑΤΑ ΨΗΦΙΑΚΗΣ ΣΧΕΔΙΑΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΘΕΜΑΤΑ ΨΗΦΙΑΚΗΣ ΣΧΕΔΙΑΣΗΣ Στόχος αυτού του Κεφαλαίου είναι η γνωριμία με τον τρόπο με τον οποίο εκτελούνται οι πράξεις στο εσωτερικό του Υπολογιστή. Όπως ήδη έχει αναφερθεί, η Κεντρική Μονάδα

Διαβάστε περισσότερα

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Βασικές αρχές Σχεδίαση Latches και flip-flops Γιώργος Δημητρακόπουλος Δημοκρίτειο Πανεπιστήμιο Θράκης Φθινόπωρο 2013 Ψηφιακά ολοκληρωμένα κυκλώματα 1 Ακολουθιακή

Διαβάστε περισσότερα

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Η κατάταξη πτυχιούχων ΑΕΙ & ΤΕΙ στη Σχολή ΗΜΜΥ, για το ακαδημαϊκό έτος 2010-11, θα γίνει με κατατακτήριες

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Μικροϋπολογιστές

Διαβάστε περισσότερα

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Παράσταση ενός φυσικού αριθμού 1 1.2 Δεκαδικό σύστημα 1 1.3 Δυαδικό σύστημα 2 1.4 Οκταδικό σύστηνα 2 1.5 Δεκαεξαδικό σύστημα 2 1.6 Μετατροπές από ένα

Διαβάστε περισσότερα

VHDL Introduction. Subtitle

VHDL Introduction. Subtitle VHDL Introduction Subtitle Getting Started VHDL means Very Hard Difficult Language That s a lie!!! τα αρχικά VHDL είναι συντομογραφία του VHSIC Hardware Description Language, ενώ το VHSIC αντιπροσωπεύει

Διαβάστε περισσότερα

Γ. Τσιατούχας. Βασικές Αρχές Κυκλωµάτων

Γ. Τσιατούχας. Βασικές Αρχές Κυκλωµάτων ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ & ΚΑΝΟΝΙΣΜΟΣ ΕΡΓΑΣΤΗΡΙΟΥ Γ. Τσιατούχας Αντικείμενο Μαθήματος Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Μοντέλο κυκλώματος Αναπαράσταση σήματος Δίκτυα αντιστάσεων Νόμοι

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 201 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Μικροϋπολογιστές

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι

ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι Ι.Μ. ΚΟΝΤΟΛΕΩΝ S k k k S k k k 00 ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι ΑΣΚΗΣΗ ΣΧΕ ΙΑΣΗ ΜΕ ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΘΕΩΡΗΤΙΚΗ ΠΡΟΕΤΟΙΜΑΣΙΑ Ψηφιακά Κυκλώµατα, κεφ.,

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Τεχνών Ήχου και Εικόνας. Ακαδημαϊκό Έτος 2006-2007

Ιόνιο Πανεπιστήμιο Τμήμα Τεχνών Ήχου και Εικόνας. Ακαδημαϊκό Έτος 2006-2007 Ιόνιο Πανεπιστήμιο Τμήμα Τεχνών Ήχου και Εικόνας Ακαδημαϊκό Έτος 2006-2007 ΠΑΡΑΔΟΤΕΟ: Έκθεση Προόδου Υλοποίησης του Μαθήματος Διδάσκων: Φλώρος Ανδρέας Περιεχόμενα 1 Περιγραφή

Διαβάστε περισσότερα

Το «κλειστό» σύστημα. Ανοικτές επικοινωνίες... Εισαγωγή στην Τεχνολογία της Πληροφορικής. Εισαγωγή στην τεχνολογία της πληροφορικής

Το «κλειστό» σύστημα. Ανοικτές επικοινωνίες... Εισαγωγή στην Τεχνολογία της Πληροφορικής. Εισαγωγή στην τεχνολογία της πληροφορικής ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Εισαγωγή στην Τεχνολογία της Πληροφορικής ΓΙΩΡΓΟΣ Ν. ΓΙΑΝΝΟΠΟΥΛΟΣ Λέκτορας στο Πανεπιστήμιο Αθηνών gyannop@law.uoa.gr Το «κλειστό» σύστημα ΕΙΣΟΔΟΣ ΕΠΕΞΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

Στοιχεία αρχιτεκτονικής μικροεπεξεργαστή

Στοιχεία αρχιτεκτονικής μικροεπεξεργαστή Στοιχεία αρχιτεκτονικής μικροεπεξεργαστή Αριθμός bit δίαυλου δεδομένων (Data Bus) Αριθμός bit δίαυλου διευθύνσεων (Address Bus) Μέγιστη συχνότητα λειτουργίας (Clock Frequency) Τύποι εντολών Αριθμητική

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών II 16-2-2012. Ενδεικτικές απαντήσεις στα θέματα των εξετάσεων

Αρχιτεκτονική Υπολογιστών II 16-2-2012. Ενδεικτικές απαντήσεις στα θέματα των εξετάσεων Αρχιτεκτονική Υπολογιστών II 6 --0 Ενδεικτικές απαντήσεις στα θέματα των εξετάσεων Θέμα. Τι γνωρίζετε για την τοπικότητα των αναφορών και ποιών μονάδων του υπολογιστή ή τεχνικών η απόδοση εξαρτάται από

Διαβάστε περισσότερα

Ι ΑΣΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΚΑΘΗΓΗΤΗΣ ΕΦΑΡΜΟΓΩΝ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ

Ι ΑΣΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΚΑΘΗΓΗΤΗΣ ΕΦΑΡΜΟΓΩΝ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ Ι ΑΣΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΦΩΤΙΑ ΗΣ Α. ΗΜΗΤΡΗΣ M.Sc. ΚΑΘΗΓΗΤΗΣ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΙΑΚΟΠΕΣ (INTERRUPTS) ΟΙ ΙΑΚΟΠΕΣ ΕΙΝΑΙ «ΣΥΜΒΑΝΤΑ», ΕΣΩΤΕΡΙΚΑ

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6 Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας MY. Μέρος Α. Υλικό.

Ερωτήσεις θεωρίας MY. Μέρος Α. Υλικό. Ερωτήσεις θεωρίας MY Μέρος Α. Υλικό. 1. Η μνήμη ROM είναι συνδυαστικό ή ακολουθιακό κύκλωμα; 2. α) Να σχεδιαστεί μία μνήμη ROM που να δίνει στις εξόδους της το πλήθος των ημερών του μήνα, ο αριθμός του

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν 1. Εισαγωγικά στοιχεία ηλεκτρονικών - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 1. ΘΕΜΕΛΙΩ ΕΙΣ ΕΝΝΟΙΕΣ ΚΑΙ ΕΙΣΑΓΩΓΙΚΑ ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ηλεκτρικό στοιχείο: Κάθε στοιχείο που προσφέρει, αποθηκεύει και καταναλώνει

Διαβάστε περισσότερα

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά 5η Δραστηριότητα Λύσε το γρίφο Η Θεωρία της Πληροφορίας Περίληψη Πόση πληροφορία περιέχεται σε ένα βιβλίο των 1000 σελίδων; Υπάρχει περισσότερη πληροφορία σε έναν τηλεφωνικό κατάλογο των 1000 σελίδων ή

Διαβάστε περισσότερα

Αρχιτεκτονική Eckert-von Neumann. Πως λειτουργεί η ΚΜΕ; Κεντρική μονάδα επεξεργασίας [3] ΕΠΛ 031: ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Αρχιτεκτονική Eckert-von Neumann. Πως λειτουργεί η ΚΜΕ; Κεντρική μονάδα επεξεργασίας [3] ΕΠΛ 031: ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Αρχιτεκτονική Eckert-von Neumann εισόδου μεταφορά δεδομένων από έξω προς τον Η/Υ εξόδου μεταφορά δεδομένων από τον Η/Υ προς τα έξω ΕΠΛ 031: ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Κύκλος Μηχανής κεντρικός έλεγχος/πράξεις

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ΠΡΟΗΓΜΕΝΑ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤ ΕΞΑΜΗΝΟ

ΠΡΟΗΓΜΕΝΑ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤ ΕΞΑΜΗΝΟ ΤΕΙ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤ ΕΞΑΜΗΝΟ Έκδοση

Διαβάστε περισσότερα

Σχεδίαση στατικών μνημών RAM

Σχεδίαση στατικών μνημών RAM Σχεδίαση στατικών μνημών RAM Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Φθινόπωρο 2008 ΗΥ422 1 Περιεχόμενα μαθήματος Οργάνωση μνημών τυχαίας προσπέλασης (Random Access Memories

Διαβάστε περισσότερα

14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 14. ΑΠΑΡΙΘΜΗΤΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΑΠΑΡΙΘΜΗΤΕΣ ΤΡΟΠΟΣ ΥΛΟΠΟΙΗΣΗΣ KAI ΡΟΗ ΑΠΑΡΙΘΜΗΣΗΣ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ ΥΑ ΙΚΟΥ ΑΠΑΡΙΘΜΗΤΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Δραστηριότητα 8 ης εβδομάδας ΟΜΑΔΑΣ Α: Γ. Πολυμέρης, Χ. Ηλιούδη, Ν. Μαλλιαρός και Δ. Θεοτόκης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Περιγραφή Η συγκεκριμένη δραστηριότητα αποτελεί μια πρόταση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

7.6.3. Υποδίκτυα και Μάσκα Υποδικτύου

7.6.3. Υποδίκτυα και Μάσκα Υποδικτύου Κεφάλαιο 7 7.6.3. Υποδίκτυα και Μάσκα Υποδικτύου Σελ. 251-254 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative Commons License 3.0 Share-Alike Υποδίκτυα - Κλάσεις

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία Ηλεκτρονικών

Διαβάστε περισσότερα

ΣΤΑΤΙΚΕΣ ΚΑΙ ΔΥΝΑΜΙΚΕΣ ΜΝΗΜΕΣ ΤΥΧΑΙΑΣ ΠΡΟΣΠΕΛΑΣΗΣ (Static and Dynamic RAMs). ΔΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ

ΣΤΑΤΙΚΕΣ ΚΑΙ ΔΥΝΑΜΙΚΕΣ ΜΝΗΜΕΣ ΤΥΧΑΙΑΣ ΠΡΟΣΠΕΛΑΣΗΣ (Static and Dynamic RAMs). ΔΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΣΤΑΤΙΚΕΣ ΚΑΙ ΔΥΝΑΜΙΚΕΣ ΜΝΗΜΕΣ ΤΥΧΑΙΑΣ ΠΡΟΣΠΕΛΑΣΗΣ (Static and Dynamic RAMs). ΔΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΗΜΙΑΓΩΓΙΚΩΝ ΜΝΗΜΩΝ. ΒΑΣΙΚΗ ΛΕΙΤΟΥΡΓΙΑ RAM CMOS. ΤΥΠΟΙ ΚΥΤΤΑΡΩΝ ΑΡΧΕΣ

Διαβάστε περισσότερα

Αναπαράσταση Μη Αριθμητικών Δεδομένων

Αναπαράσταση Μη Αριθμητικών Δεδομένων Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2014-15 Αναπαράσταση Μη Αριθμητικών Δεδομένων (κείμενο, ήχος και εικόνα στον υπολογιστή) http://di.ionio.gr/~mistral/tp/csintro/

Διαβάστε περισσότερα

Ζωγραφίζοντας με τους αριθμούς - Η αναπαράσταση των εικόνων

Ζωγραφίζοντας με τους αριθμούς - Η αναπαράσταση των εικόνων 2η Δραστηριότητα Ζωγραφίζοντας με τους αριθμούς - Η αναπαράσταση των εικόνων Περίληψη Οι υπολογιστές απομνημονεύουν τα σχέδια, τις φωτογραφίες και άλλα σχήματα, χρησιμοποιώντας μόνον αριθμούς. Με την επόμενη

Διαβάστε περισσότερα

Διάλεξη 6: Δείκτες και Πίνακες

Διάλεξη 6: Δείκτες και Πίνακες Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 6: Δείκτες και Πίνακες (Κεφάλαιο 12, KNK-2ED) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 6-1 Περιεχόμενο

Διαβάστε περισσότερα

Μικροεπεξεργαστές - Μικροελεγκτές Ψηφιακά Συστήματα

Μικροεπεξεργαστές - Μικροελεγκτές Ψηφιακά Συστήματα Μικροεπεξεργαστές - Μικροελεγκτές Ψηφιακά Συστήματα 1. Ποια είναι η σχέση της έννοιας του μικροεπεξεργαστή με αυτή του μικροελεγκτή; Α. Ο μικροεπεξεργαστής εμπεριέχει τουλάχιστο έναν μικροελεγκτή. Β. Ο

Διαβάστε περισσότερα

7.1.1 Επίπεδο δικτύου Γενικές Αρχές

7.1.1 Επίπεδο δικτύου Γενικές Αρχές Κεφάλαιο 7 3 κατώτερα επίπεδα OSI 7.1.1 Επίπεδο δικτύου Γενικές Αρχές Σελ. 220-224 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr ΕΣΠΕΡΙΝΟ ΕΠΑΛ Κομοτηνής http://diktya-epal-g.ggia.info/ Επικοινωνία σταθμών

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1 Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1.1 Ηλεκτρικά και Ηλεκτρονικά Συστήµατα Μετρήσεων Στο παρελθόν χρησιµοποιήθηκαν µέθοδοι µετρήσεων που στηριζόταν στις αρχές της µηχανικής, της οπτικής ή της θερµοδυναµικής.

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης Κωδικοποίηση Πηγής Coder Decoder Μεταξύ πομπού και καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας της πηγής με εναλλακτικά σύμβολα ή λέξεις. Κωδικοποίηση

Διαβάστε περισσότερα

Φροντιστήριο Ψηφιακών Ηλεκτρονικών

Φροντιστήριο Ψηφιακών Ηλεκτρονικών Φροντιστήριο Ψηφιακών Ηλεκτρονικών Άσκηση 1 Μία TTL πύλη εγγυάται να τραβάει 10 ma χωρίς να ξεπεράσει το δυναμικό εξόδου VOL(max) = 0.4 Volt και να μπορεί να δώσει 5 ma χωρίς να πέσει το δυναμικό εξόδου

Διαβάστε περισσότερα

ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ

ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ ΟΡΓΑΝΑ ΕΡΓΑΣΤΗΡΙΟΥ 1 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ Εισαγωγή στις Τηλεπικοινωνίες ΟΡΓΑΝΑ ΕΡΓΑΣΤΗΡΙΟΥ ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ 2 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μάθημα 8. 1 Στέργιος Παλαμάς

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μάθημα 8. 1 Στέργιος Παλαμάς ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Τμήμα Λογιστικής Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Μάθημα 8 Κεντρική Μονάδα Επεξεργασίας και Μνήμη 1 Αρχιτεκτονική του Ηλεκτρονικού Υπολογιστή Μονάδες Εισόδου Κεντρική

Διαβάστε περισσότερα

WDT και Power Up timer

WDT και Power Up timer Ο ΜΙΚΡΟΕΛΕΓΚΤΗΣ PIC O μικροελεγκτής PIC κατασκευάζεται από την εταιρεία Microchip. Περιλαμβάνει τις τρεις βασικές κατηγορίες ως προς το εύρος του δίαυλου δεδομένων (Data Bus): 8 bit (σειρές PIC10, PIC12,

Διαβάστε περισσότερα

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης ΟΜΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ Ένας υπολογιστής αποτελείται από την Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ), τη µνήµη, τις µονάδες εισόδου/εξόδου και το σύστηµα διασύνδεσης

Διαβάστε περισσότερα

Έχοντας κατανοήσει την ύλη του 1ου μαθήματος ( Εισαγωγή στην Αρχιτεκτονική Η/Υ ) θα πρέπει να μπορείτε να απαντήσετε στις παρακάτω ερωτήσεις:

Έχοντας κατανοήσει την ύλη του 1ου μαθήματος ( Εισαγωγή στην Αρχιτεκτονική Η/Υ ) θα πρέπει να μπορείτε να απαντήσετε στις παρακάτω ερωτήσεις: Ερωτήσεις αυτοαξιολόγησης 1 ου μαθήματος Έχοντας κατανοήσει την ύλη του 1ου μαθήματος ( Εισαγωγή στην Αρχιτεκτονική Η/Υ ) θα πρέπει να μπορείτε να απαντήσετε στις παρακάτω ερωτήσεις: 1. Ποια η σχέση της

Διαβάστε περισσότερα

Εργαστήριο 9: Τρικατάστατοι Οδηγητές, Λεωφόροι, Μνήμες SRAM

Εργαστήριο 9: Τρικατάστατοι Οδηγητές, Λεωφόροι, Μνήμες SRAM ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2011 Τμ. Επ. Υπολογιστών Πανεπιστήμιο Κρήτης Εργαστήριο 9: Τρικατάστατοι Οδηγητές, Λεωφόροι, Μνήμες SRAM 6-9 Δεκεμβρίου 2011 Διαλέξεις εβδομάδας 9: Δε. 28/11 - κανονική

Διαβάστε περισσότερα

Άσκηση 8. Προγραμματιζόμενοι Λογικοί Ελεγκτές (PLC)

Άσκηση 8. Προγραμματιζόμενοι Λογικοί Ελεγκτές (PLC) Άσκηση 8 Προγραμματιζόμενοι Λογικοί Ελεγκτές (PLC) ΠΡΟΛΟΓΟΣ 1.1 Η εξέλιξη των αυτοματισμών και οι προγραμματιζόμενοι λογικοί ελεγκτές (PLC) Η εξέλιξη των αυτοματισμών ακολούθησε την εξέλιξη της τεχνολογίας.

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής. Ακαδημαϊκό Έτος 2007-2008

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής. Ακαδημαϊκό Έτος 2007-2008 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ακαδημαϊκό Έτος 2007-2008 ΠΑΡΑΔΟΤΕΟ: Έκθεση Προόδου Υλοποίησης του Μαθήματος Εισαγωγή στην Επιστήμη των Υπολογιστών Διδάσκοντες: Θ.Ανδρόνικος - Μ.Στεφανιδάκης Περιεχόμενα

Διαβάστε περισσότερα

ΕΠΙΚΟΙΝΩΝΙΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ INTERNET

ΕΠΙΚΟΙΝΩΝΙΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ INTERNET ΕΠΙΚΟΙΝΩΝΙΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ INTERNET Κεφάλαιο 7: Digital Subscriber Line/DSL(Θ) Ψηφιακή Γραμμή Συνδρομητή (Digital Subscriber Line, DSL) Χρήση απλού τηλεφωνικού καλωδίου (χαλκός, CAT3) Έως 2,3

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Επίγεια ψηφιακή τηλεόραση

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Επίγεια ψηφιακή τηλεόραση ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 5 Επίγεια ψηφιακή τηλεόραση Επίγεια τηλεόραση: Η ασύρματη εκπομπή και λήψη του τηλεοπτικού σήματος αποκλειστικά από επίγειους

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 1 ο Εξάμηνο Σπουδών Χειμερινό Εξάμηνο 2012/13 Τμήμα Εφαρμοσμένων Μαθηματικών, Πανεπιστήμιο Κρήτης Διδάσκων: Χαρμανδάρης Ευάγγελος, email: vagelis@tem.uoc.gr, Ιστοσελίδα

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

Αυτοματισμός PLC. Ειδικά Συστήματα Ελέγχου Πλοίου 2012 Κεφ. 2: Αυτοματισμός. Γ. Παπαλάμπρου

Αυτοματισμός PLC. Ειδικά Συστήματα Ελέγχου Πλοίου 2012 Κεφ. 2: Αυτοματισμός. Γ. Παπαλάμπρου Αυτοματισμός PLC Ειδικά Συστήματα Ελέγχου Πλοίου 2012 Κεφ. 2: Αυτοματισμός Γ. Παπαλάμπρου Άσκηση 3. Τυπικό διάγραμμα συστήματος συναγερμού με οπτικο-ακουστικό σήμα* Το σύστημα παρουσιάζεται σε κανονική

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΟΣ ΜΕΤΡΗΣΗΣ ΑΤΜΟΣΦΑΙΡΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΔΙΕΝΕΡΓΕΙΑ ΑΣΤΡΟΝΟΜΙΚΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ ΚΑΙ ΜΕΤΡΗΣΕΩΝ.

ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΟΣ ΜΕΤΡΗΣΗΣ ΑΤΜΟΣΦΑΙΡΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΔΙΕΝΕΡΓΕΙΑ ΑΣΤΡΟΝΟΜΙΚΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ ΚΑΙ ΜΕΤΡΗΣΕΩΝ. Ερασιτεχνικής Αστρονομίας ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΟΣ ΜΕΤΡΗΣΗΣ ΑΤΜΟΣΦΑΙΡΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΔΙΕΝΕΡΓΕΙΑ ΑΣΤΡΟΝΟΜΙΚΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ ΚΑΙ ΜΕΤΡΗΣΕΩΝ. Κυριάκος Πανίτσας Διπλ. Ηλεκτρολόγος Μηχανικός-Εκπαιδευτικός

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Αυτοματισμοί και

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να:

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να: ΒΑΣΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Τίτλος Μαθήματος Μεθοδολογίες και Συστήματα Βιομηχανικής Αυτοματοποίησης Κωδικός Μαθήματος Μ3 Θεωρία / Εργαστήριο Θεωρία + Εργαστήριο Πιστωτικές μονάδες 4 Ώρες Διδασκαλίας 2Θ+1Ε Τρόπος/Μέθοδοι

Διαβάστε περισσότερα

Σειριακό Τερματικό Serial Terminal (Dumb Terminal)

Σειριακό Τερματικό Serial Terminal (Dumb Terminal) Σειριακό Τερματικό Serial Terminal (Dumb Terminal) Ένα σειριακό τερματικό είναι ο απλούστερος τρόπος για να συνδέσουμε πολλαπλές μονάδες εξόδου (οθόνες) και εισόδου (πληκτρολόγια) σε ένα μηχάνημα UNIX

Διαβάστε περισσότερα

Α3. Ποια είναι τα πλεονεκτήματα του Δομημένου προγραμματισμού; (Μονάδες 10)

Α3. Ποια είναι τα πλεονεκτήματα του Δομημένου προγραμματισμού; (Μονάδες 10) ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08 / 02 / 2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι. ΜΙΧΑΛΕΑΚΟΣ Γ.ΝΙΤΟΔΑΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα