Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ"

Transcript

1 ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ

2 7-segment display 7-segment display

3 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder)

4 Κύκλωμα αποκωδικοποίησης του στοιχείου a Ημιαθροιστής (half-adder)

5 Πλήρης αθροιστής (full-adder) Αθροιστής 4-bit (4-bit adder)

6 Αθροιστής n-bit (n-bit adder) Αθροιστής/Αφαιρέτης 4-bit (4-bit adder/subtractor)

7 Αθροιστής/Αφαιρέτης n-bit (n-bit adder/subtractor) ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΗΣ 2 ΓΡΑΜΜΩΝ ΣΕ 4 (2-to-4 decoder)

8 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΗΣ 3 ΓΡΑΜΜΩΝ ΣΕ 8 (3-to-8 decoder) ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΗΣ 4 ΓΡΑΜΜΩΝ ΣΕ 16: Ένα παράδειγμα

9 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΗΣ 4 ΓΡΑΜΜΩΝ ΣΕ 16 (ΜΕ ΧΡΗΣΗ ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΩΝ 2-ΣΕ-4) Κωδικοποιητής πληκτρολογίου (Keyboard encoder)

10 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΗΣ BCD (BCD decoder) ΠΟΛΥΠΛΕΚΤΗΣ 2 ΓΡΑΜΜΩΝ ΣΕ 1 (2-to-1 MUX)

11 ΠΟΛΥΠΛΕΚΤΗΣ 4 ΓΡΑΜΜΩΝ ΣΕ 1 (4-to-1 MUX) ΠΟΛΥΠΛΕΚΤΗΣ 4 ΓΡΑΜΜΩΝ ΣΕ 1 (4-to-1 MUX)

12 ΠΟΛΥΠΛΕΚΤΗΣ 8 ΓΡΑΜΜΩΝ ΣΕ 1 (8-to-1 MUX) ΠΟΛΥΠΛΕΚΤΗΣ 8 ΓΡΑΜΜΩΝ ΣΕ 1 (8-to-1 MUX)

13 ΠΟΛΥΠΛΕΚΤΗΣ 16 ΓΡΑΜΜΩΝ ΣΕ 1 (κατασκευασμένος με δύο πολυπλέκτες 8-σε-1) (16-to-1 MUX)

14 ΑΠΟΠΛΕΚΤΗΣ 1 ΓΡΑΜΜΗΣ ΣΕ 4 (1-to-4 DEMUX) ΑΠΟΠΛΕΚΤΗΣ 1 ΓΡΑΜΜΗΣ ΣΕ 4 (1-to-4 DEMUX)

15 ΑΠΟΠΛΕΚΤΗΣ 1 ΓΡΑΜΜΗΣ ΣΕ 4 (1-to-4 DEMUX) ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΗΣ 2 ΣΕ 4 (2-to-4 DECODER) Στην ουσία ο αποπλέκτης δεν είναι τίποτε άλλο παρά ένας αποκωδικοποιητής με είσοδο ελέγχου!!! ΑΠΟΠΛΕΚΤΗΣ 1 ΓΡΑΜΜΗΣ ΣΕ 16 (1-to-16 DEMUX)

16 Μια Εφαρμογή χρήσης ενός αποπλέκτη 1-σε-4 Μια Εφαρμογή χρήσης πολυπλέκτη & αποπλέκτη

17 ΗΠΟΛΥ ΕΝΔΙΑΦΕΡΟΣΑ ΔΙΑΛΕΞΗ ΣΥΝΕΧΙΖΕΤΑΙ.. ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ FLIP-FLOPS ΤΟ ΒΑΣΙΚΟ FLIP-FLOP ΧΡΟΝΙΖΟΜΕΝΑ FF ΤΥΠΟΥ SR FF ΤΥΠΟΥ D JK FLIP-FLOP Τ FLIP-FLOP ΠΥΡΟΔΟΤΗΣΗ ΤΩΝ FLIP-FLOPS ΚΥΡΙΟ - ΕΞΑΡΤΗΜΕΝΟ JK FLIP-FLOP ΑΚΜΟΠΥΡΟΔΟΤΟΥΜΕΝΑ FLIP-FLOPS ΚΥΚΛΩΜΑΤΑ ΑΝΙΧΝΕΥΣΗΣ ΑΚΜΩΝ ΑΣΥΓΧΡΟΝΟΙ ΕΙΣΟΔΟΙ ΤΩΝ FLIP-FLOPS

18 Στα συνδυαστικά κυκλώματα οι έξοδοι σε κάθε χρονική στιγμή εξαρτώνται αποκλειστικά και μόνο από τις εισόδους οι οποίες εφαρμόζονται την συγκεκριμένη εκείνη στιγμή. Δεν εξαρτώνται ούτε από την σειρά με την οποία αυτές οι είσοδοι εφαρμόσθηκαν, ούτε από την κατάσταση του κυκλώματος πριν αυτές εφαρμοσθούν. ΠΡΟΒΛΗΜΑ: Να σχεδιασθεί ψηφιακό σύστημα το οποίο να επιτρέπει την εκκίνηση της μηχανής του αυτοκινήτου μόνον εφόσον ο οδηγός καθίσει και δέσει την ζώνη ασφαλείας του καθίσματός του. Τα κυκλώματα του παρόντος κεφαλαίου ονομάζονται ακολουθιακά (sequential). Στα ακολουθιακά κυκλώματα οι έξοδοι σε κάθε χρονική στιγμή εξαρτώνται όχι μόνον από τις τιμές των εισόδων τη χρονική εκείνη στιγμή, αλλά και από τις τιμές των εξόδων των στοιχείων μνήμης του κυκλώματος την προηγούμενη χρονική στιγμή. Τα ακολουθιακά κυκλώματα χωρίζονται σε δύο μεγάλες κατηγορίες, στα σύγχρονα (synchronous) και στα ασύγχρονα (asynchronous), ανάλογα με το εάν αυτά επηρεάζονται σε συγκεκριμένες χρονικές στιγμές ή όχι. Αυτό σημαίνει ότι τα σύγχρονα ακολουθιακά κυκλώματα λειτουργούν σύμφωνα με κάποιο παλμό χρονισμού (ρολόι, clock).

19 SR μανταλωτής με πύλες NOR SR μανταλωτής με πύλες NOR: (α) λογικό διάγραμμα, (β) πίνακας αλήθειας, (γ) σύμβολο Παράδειγμα: Να σχεδιαστεί η κυματομορφή της εξόδου ενός SR μανταλωτή με πύλες NOR S R t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

20 Flip-flop με πύλες NAND SR μανταλωτής με πύλες NAND: λογικό διάγραμμα, (β) πίνακας αλήθειας, (γ) σύμβολο ΧΡΟΝΙΖΟΜΕΝΑ FF ΤΥΠΟΥ SR R RESET S SET S SET ' R RESET ' (α) (β) t S R t απροσδιόριστη απροσδιόριστη S R t t απροσδιόριστη S R ' (γ) (δ) (ε)

21 Παράδειγμα: Να σχεδιασθεί η κυματομορφή της εξόδου ενός χρονιζόμενου SR FF (μανταλωτή) για τις παρακάτω κυματομορφές εισόδου. S R t1 t2 t3 t4 t5 t6 t7t8 t9t10 FF ΤΥΠΟΥ D D G S R ' D t D G ' (α) (β) (γ) FF τύπου D (μανταλωτής D): (α) λογικό κύκλωμα, (β) πίνακας λειτουργίας, (γ) σύμβολο

22 Παράδειγμα: Σχεδιάστε την κυματομορφή της εξόδου για τις εισόδους D και G του Σχήματος G D t1 t2 t3 t4 t5 Η έξοδος κρατά την τιμή που είχε η είσοδος D πριν "πέσει" ο ωρολογιακός παλμός H έξοδος παρακολουθεί την είσοδο D μέχρι να "πέσει" ο ωρολογιακός παλμός, οπότε και "μανταλώνει" στην τελευταία τιμή Κατά τη διάρκεια που ο ωρολογιακός παλμός είναι στο λογικό 1, η έξοδος παρακολουθεί την είσοδο D JK FLIP-FLOP K J 1 2 RESET SET ' J K t t t (β) J K ' (γ) (α) Τ FLIP-FLOP T RESET T t+1 0 t 1 t T ' SET ' (β) (γ) (α)

23 Παράδειγμα: Να μετατρέψετε ένα JK FF σε D FF D J K ' ΠΥΡΟΔΟΤΗΣΗ ΤΩΝ FLIP-FLOPS Πρόβλημα: Το JK FF, όπως και το Τ FF, που αναλύσαμε στην προηγούμενη ενότητα παρουσιάζει την εξής αδυναμία: Όταν =1 και J=K=1 (ή Τ=1), τότε αυτό αλλάζει κατάσταση. Παρατηρείστε ότι λόγω της ανατροφοδότησης που υπάρχει, αυτό θα συνεχίζει να αλλάζει καταστάσεις για όσο χρονικό διάστημα ο παλμός του ρολογιού βρίσκεται στο 1. Πόσο συχνά αλλάζει καταστάσεις; Όση είναι η καθυστέρηση διάδοσης του σήματος μέσα από το FF. Λύσεις: Το πρόβλημα αυτό μπορεί να αντιμετωπισθεί με δύο διαφορετικούς τρόπους: (α) με JK FFs τύπου κύριο - εξαρτημένο (master - slave) και (β) με FFs τα οποία ενεργοποιούνται κατά την άνοδο ή κάθοδο του παλμού του ρολογιού (ακμοπυροδοτούμενα, edge-triggered) και όχι κατά την διάρκεια του παλμού.

24 ΚΥΡΙΟ - ΕΞΑΡΤΗΜΕΝΟ JK FLIP-FLOP J 1 Κύριο S1 1 R1 '1 3 Εξαρτημένο S2 2 R2 '2 ' J K ' K 2 4 (β) (α) Κυματομορφές της εισόδου και των εξόδων του κύριου και του εξαρτημένου FF για J=K=1 1 κύριο 2= εξαρτημένο Πρόβλημα! J K Εσφαλμένη κατάσταση

25 ΑΚΜΟΠΥΡΟΔΟΤΟΥΜΕΝΑ FLIP-FLOPS (α) (β) ' ' (γ) (δ) Λογικό κύκλωμα και συμβολισμός ενός ακμοπυροδοτούμενου JK FF Ανιχνευτής Ακμών K J RESET SET ' Ανιχνευτής Ακμών ' ' '

26 Παράδειγμα: Σχεδιάστε την κυματομορφή της εξόδου ενός αρνητικά ακμοπυροδοτούμενου JK FF για τις κυματομορφές εισόδου του Σχήματος. Θεωρείστε ότι αρχικά είχαμε =0. J K t1 t2 t3 t4 t5 t6 Πίνακες λειτουργίας ή χαρακτηριστικοί πίνακες (function tables) των flip-flops SR flip-flop JK flip-flop S R t t απροσδιόριστη J K t t t D flip-flop T flip-flop D t T t+1 0 t 1 t

27 Παράδειγμα: Σχεδιάστε την κυματομορφή εξόδου ενός αρνητικά ακμοπυροδοτούμενου D FF, όταν στις εισόδους του και D εφαρμόζονται οι κυματομορφές του Σχήματος του Παραδείγματος 3. Συγκρίνετε την κυματομορφή που σχεδιάσατε με την αντίστοιχη του μανταλωτή D (D-latch) του Παραδείγματος 3. Θεωρείστε ότι αρχικά είχαμε =0. D D flip-flop D latch ΚΥΚΛΩΜΑΤΑ ΑΝΙΧΝΕΥΣΗΣ ΑΚΜΩΝ Ανίχνευση ακμών μέσω ενός απλού RC κυκλώματος διαφόρισης C R '

28 Κυκλώματα ανίχνευσης (α) των θετικών και (β) των αρνητικών ακμών για την πυροδότηση των FFs Cp C'p Cp C'p Cp Cp C'p C'p Είσοδος (α) Οι είσοδοι ενός ακμοπυροδοτούμενου FF πρέπει να είναι σταθερές για χρόνο t S πριν την εφαρμογή της ενεργού ακμής, καθώς και για χρόνο t H μετά την εφαρμογή αυτής. (β) ts Χρόνος Προετοιμασίας (Setup time) th Χρόνος Παραμονής (Hold time) ΑΣΥΓΧΡΟΝΟΙ ΕΙΣΟΔΟΙ ΤΩΝ FLIP-FLOPS Αρνητικά ακμοπυροδοτούμενα JK FF με ασύγχρονες εισόδους PRESET J K ' CLEAR PRESET CLEAR Λειτουργία FF 0 0 Δεν χρησιμοποιείται 0 1 =1 1 0 =0 1 1 Κανονική σύγχρονη Λειτουργία

29 Παράδειγμα: Για ένα αρνητικά ακμοπυροδοτούμενο JK FF να σχεδιάσετε την κυματομορφή εξόδου, όταν στις ασύγχρονες εισόδους του εφαρμόζονται οι παλμοί του Σχήματος και οι είσοδοι J, K είναι μόνιμα συνδεδεμένες στην τάση τροφοδοσίας V cc. Θεωρείστε ότι αρχικά η έξοδος του FF ήταν =1. J K PRESET CLEAR t1 t2 t3 t4 t5 t6 t7 Η απάντηση στο πρόβλημα της ζώνης ασφαλείας: A B D CLEAR ' Καταλαβαίνουμε ότι η είσοδος Α αντιστοιχεί στο γεγονός ότι "ο οδηγός είναι καθισμένος" και η είσοδος Β στο ότι "η ζώνη ασφαλείας είναι προσδεδεμένη".

30 Έπεται και συνέχεια... ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ Σύγχρονο ακολουθιακό κύκλωμα είναι εκείνο του οποίου όλα τα FFs χρονίζονταιμετοίδιο ρολόι (clock). Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Σχεδίαση Σύγχρονων Ακολουθιακών Κυκλωμάτων

31 Παράδειγμα 1 ΑΝΑΛΥΣΗ ΣΥΓΧΡΟΝΩΝ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Σύγχρονα ακολουθιακά κυκλώματα χωρίς εξωτερικές εισόδους και εξόδους J J V cc K ' V cc K ' (α) J 0 FF0 0 J 1 FF1 1 V cc K 0 ' 0 V cc K 1 ' 1 ( β ) Βήμα Α1: Γράφουμε τις λογικές συναρτήσεις των εισόδων των FFs. J 0 = 1 J 1 = 0 Κ 0 = 1 Κ 1 = 1 Βήμα Α2: Καταστρώνουμε τον πίνακα καταστάσεων

32 Βήμα Α3: Σχεδιάζουμε το διάγραμμα καταστάσεων mod-3 up Παρατηρήσεις Παρατηρούμε ότι οι ωρολογιακοί παλμοί δεν δείχνονται στον πίνακα και στο διάγραμμα καταστάσεων. Εννοείται ότι από την παρούσα κατάσταση μεταβαίνουμε στην επόμενη κατάσταση με την έλευση της ενεργού ακμής πυροδότησης του ωρολογιακού παλμού. Για την κατάστρωση του πίνακα βασιζόμαστε εκτός από την παρούσα κατάσταση και τις τιμές των εισόδων, και στον πίνακα λειτουργίας του FF. Με άλλα λόγια, οι πίνακες λειτουργίας των FFs είναι απαραίτητοι για την ανάλυση ενός ακολουθιακού κυκλώματος. Παράδειγμα 2 Βήμα Α1: Γράφουμε τις λογικές συναρτήσεις των εισόδων των FFs. Τ 0 = T 1 = 0 + 1

33 Βήμα Α2: Καταστρώνουμε τον πίνακα καταστάσεων Βήμα Α3: Σχεδιάζουμε το διάγραμμα καταστάσεων mod-3 down Παράδειγμα 3 Βήμα Α1: Γράφουμε τις λογικές συναρτήσεις των εισόδων των FFs. J 0 = K 0 = ( 1 2 ) J 1 = 0 J 2 = 0 1 K 1 = K 2 = = ( ) 1

34 Βήμα Α2: Καταστρώνουμε τον πίνακα καταστάσεων Βήμα Α3: Σχεδιάζουμε το διάγραμμα καταστάσεων mod-7 Παράδειγμα 4 Σύγχρονα ακολουθιακά κυκλώματα με εξωτερικές εισόδους Βήμα Α1: Γράφουμε τις λογικές συναρτήσεις των εισόδων των FFs. J 1 = K 1 = X 0 J 0 = K 0 = 1

35 Βήμα Α2: Καταστρώνουμε τον πίνακα καταστάσεων Βήμα Α3: Σχεδιάζουμε το διάγραμμα καταστάσεων Παράδειγμα 5 Σύγχρονα ακολουθιακά κυκλώματα με εξωτερικές εισόδους και εξόδους Βήμα Α1: Γράφουμε τις λογικές συναρτήσεις των εισόδων των FFs. T 1 = 0 Τ 0 = Χ 1 Y= X 1 0

36 Βήμα Α2: Καταστρώνουμε τον πίνακα καταστάσεων Βήμα Α3: Σχεδιάζουμε το διάγραμμα καταστάσεων Παράδειγμα 6 Βήμα Α1: Γράφουμε τις λογικές συναρτήσεις των εισόδων των FFs.

37 Βήμα Α2: Καταστρώνουμε τον πίνακα καταστάσεων Βήμα Α3: Σχεδιάζουμε το διάγραμμα καταστάσεων / /0 /0 /0 /0 010 /1 /0 /0 110 Y Άσκηση 1 η : Να αναλυθούν τα κυκλώματα

38 Άσκηση 2 η : Να αναλυθούν τα κυκλώματα Άσκηση 3 η : Να αναλυθεί το κύκλωμα

39 ΣΧΕΔΙΑΣΗ ΣΥΓΧΡΟΝΩΝ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Βήμα Σ1: Σχεδιάζουμε το διάγραμμα καταστάσεων του κυκλώματος και από αυτό καταστρώνουμε τον πίνακα καταστάσεων. Βήμα Σ2: Προσδιορίζουμε τις απλοποιημένες συναρτήσεις εισόδου των FFs. Βήμα Σ3: Σχεδιάζουμε το λογικό κύκλωμα. Παράδειγμα 7: Με FFs τύπου JK αρνητικής ακμής πυροδότησης, να σχεδιασθεί ΣΑΚ το οποίο να "περνά" διαδοχικά από τις καταστάσεις 0, 1, 3, 2 (δηλαδή να απαριθμεί σύμφωνα με τον κώδικα Gray). Βήμα Σ1: Σχεδιάζουμε το διάγραμμα καταστάσεων του κυκλώματος και από αυτό καταστρώνουμε τον πίνακα καταστάσεων.

40 Βήμα Σ2: Προσδιορίζουμε τις απλοποιημένες συναρτήσεις εισόδου των FFs. Βήμα Σ3: Σχεδιάζουμε το λογικό κύκλωμα. Παράδειγμα 8: Με την χρήση FFs τύπου JK θετικής ακμής πυροδότησης να σχεδιαστεί ΣΑΚ το οποίο να "περνά" από τις καταστάσεις 0, 1, 2, 3 (κανονική απαρίθμηση) ή 0, 1, 3, 2 (απαρίθμηση σύμφωνα με τον κώδικα Gray) ανάλογα με το αν η είσοδος X είναι 0 ή 1 αντίστοιχα. Βήμα Σ1: Σχεδιάζουμε το διάγραμμα καταστάσεων του κυκλώματος και από αυτό καταστρώνουμε τον πίνακα καταστάσεων.

41 Βήμα Σ2: Προσδιορίζουμε τις απλοποιημένες συναρτήσεις εισόδου των FFs. Βήμα Σ3: Σχεδιάζουμε το λογικό κύκλωμα.

42 Παράδειγμα 9: Με την χρήση FFs τύπου D θετικής ακμής πυροδότησης να σχεδιαστεί ΣΑΚ το οποίο να "περνά" από τις καταστάσεις 0, 1, 2, 3 (κανονική απαρίθμηση) ή 0, 1, 3, 2 (απαρίθμηση σύμφωνα με τον κώδικα Gray) ανάλογα με το αν η είσοδος X είναι 0 ή 1 αντίστοιχα. Βήμα Σ1: Σχεδιάζουμε το διάγραμμα καταστάσεων του κυκλώματος και από αυτό καταστρώνουμε τον πίνακα καταστάσεων. Βήμα Σ2: Προσδιορίζουμε τις απλοποιημένες συναρτήσεις εισόδου των FFs.

43 Βήμα Σ3: Σχεδιάζουμε το λογικό κύκλωμα. Σύγχρονα ακολουθιακά κυκλώματα με αδιάφορες καταστάσεις Παράδειγμα 10: Με FF τύπου JK αρνητικής ακμής πυροδότησης να σχεδιάσετε ΣΑΚ το οποίο να διατρέχει τις τιμές 0 μέχρι και 9. Βήμα Σ1: Σχεδιάζουμε το διάγραμμα καταστάσεων του κυκλώματος και από αυτό καταστρώνουμε τον πίνακα καταστάσεων.

44 Βήμα Σ2: Προσδιορίζουμε τις απλοποιημένες συναρτήσεις εισόδου των FFs.

45 Βήμα Σ3: Σχεδιάζουμε το λογικό κύκλωμα. Βήμα Σ4: Έλεγχος ορθής λειτουργίας του κυκλώματος. Βήμα Α1: Γράφουμε τις συναρτήσεις εισόδου των FFs. J 3 = J 2 = K 2 = 1 0 J 1 = K 1 = 3 0 J 0 = K 0 = 1 K 3 = 0 Βήμα Α2: Καταστρώνουμε τον πίνακα καταστάσεων.

46 Βήμα Α3: Σχεδιάζουμε το διάγραμμα καταστάσεων. αυτόματη εκκίνηση (self-starting) / αυτόματη διόρθωση (self-correcting) Παράδειγμα 11: Σχεδιάστε ΣΑΚ το οποίο να διατρέχει διαδοχικά τους αριθμούς 1, 3, 5, 7. Προσοχή! 3 FFs απαιτούνται και όχι 2, όπως αρχικά μπορεί κάποιος να σκεφτεί βλέποντας τις 4 καταστάσεις! Βήμα Σ1: Σχεδιάζουμε το διάγραμμα καταστάσεων του κυκλώματος και από αυτό καταστρώνουμε τον πίνακα καταστάσεων.

47 Βήμα Σ2: Προσδιορίζουμε τις απλοποιημένες συναρτήσεις εισόδου των FFs. Από το τμήμα των εισόδων του πίνακα καταστάσεων και με αξιοποίηση των συνθηκών αδιαφορίας, εξάγεται άμεσα ότι Τ 0 =0, Τ 1 =1 Βήμα Σ3: Σχεδιάζουμε το λογικό κύκλωμα.

48 Βήμα Σ4: Έλεγχος ορθής λειτουργίας του κυκλώματος. Βήμα Α1: Βήμα Α2: Γράφουμε τις συναρτήσεις εισόδου των FFs. Τ 2 = 1 T 1 =1 T 0 =0 Καταστρώνουμε τον πίνακα καταστάσεων. Βήμα Α3: Σχεδιάζουμε το διάγραμμα καταστάσεων. Προβλημα! Αν βρεθεί σε μία από τις μη έγκυρες καταστάσεις 0 ή 2 ή 4 ή 6, τότε εγκλωβίζεται στον κύκλο 0, 2, 4, 6, 0, 2, 4, 6, 0, 2,...

49 Λύση: Αναγκάζουμε το κύκλωμα μετά την κατάσταση 0 να μεταβεί στην κατάσταση 1. Με αυτό τον τρόπο "σπάμε" τον μη έγκυρο κύκλο 0, 2, 4, 6, 0, 2,... Ακολούθως, επαναλαμβάνουμε την διαδικασία της σχεδίασης από την αρχή. Βήμα Σ1: Σχεδιάζουμε το διάγραμμα καταστάσεων του κυκλώματος και από αυτό καταστρώνουμε τον πίνακα καταστάσεων. Βήμα Σ2: Προσδιορίζουμε τις απλοποιημένες συναρτήσεις εισόδου των FFs. Βήμα Σ3: Σχεδιάζουμε το λογικό κύκλωμα.

50 ΛΟΓΙΚΟ ΚΥΚΛΩΜΑ Α Ν Α Λ Υ Σ Η ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΟΔΟΥ ΠΙΝΑΚΑΣ ΚΑΤΑΣΤΑΣΕΩΝ Σ Χ Ε Δ Ι Α Σ Η ΔΙΑΓΡΑΜΜΑ ΚΑΤΑΣΤΑΣΕΩΝ ΠΕΡΙΓΡΑΦΗ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΝΟΨΗ ΚΕΦΑΛΑΙΟΥ Οι πίνακες λειτουργίας των FFs είναι απαραίτητοι για την ανάλυση των ΣΑΚ, ενώ οι πίνακες διέγερσης των FFs απαιτούνται για την σχεδίαση αυτών. Ο πίνακας καταστάσεων ενός ΣΑΚ αποτελείται από 2 n+m γραμμές (δυνατές περιπτώσεις), όπου n το πλήθος των FFs του κυκλώματος και m ο αριθμός των εξωτερικών εισόδων αυτού. ΟτύποςπυροδότησηςτωνFFs δεν παίζει ρόλο στην ανάλυση ή σχεδίαση ενός ΣΑΚ.

51 ΚΑΤΑΧΩΡΗΤΕΣ ΣΕΙΡΙΑΚΟΙ ΚΑΙ ΠΑΡΑΛΛΗΛΟΙ ΚΑΤΑΧΩΡΗΤΕΣ Καταχωρητές σειριακής-εισόδου-σειριακής-εξόδου Καταχωρητές σειριακής-εισόδου-παράλληλης-εξόδου Καταχωρητές παράλληλης-εισόδου-παράλληληςεξόδου Καταχωρητές παράλληλης-εισόδου-σειριακής-εξόδου ΚΥΚΛΙΚΟΙ ΚΑΤΑΧΩΡΗΤΕΣ Απαριθμητές δακτυλίου Απαριθμητές Johnson

52 Τύποι καταχωρητών Τύποι καταχωρητών: (α) σειριακής-εισόδου-σειριακής-εξόδου, (β) σειριακήςεισόδου-παράλληλης-εξόδου, (γ) παράλληλης-εισόδου-παράλληλης-εξόδου, (δ) παράλληλης-εισόδου-σειριακής-εξόδου. ΣΕΙΡΙΑΚΟΙ ΚΑΙ ΠΑΡΑΛΛΗΛΟΙ ΚΑΤΑΧΩΡΗΤΕΣ Καταχωρητές σειριακής-εισόδου-σειριακής-εξόδου Σειριακή Είσοδος D0 0 D1 1 D2 2 D3 3 FF0 FF1 FF2 FF3 Σειριακή Έξοδος (α) Σειριακή Είσοδος D0=1 0 Σειριακή Είσοδος J0 0 J1 1 J2 2 J3 3 Σειριακή Έξοδος 1 '0 '1 '2 '3 K0 K1 K2 K3 (β) Σειριακή Έξοδος 2 3 (δ) Σειριακή Είσοδος S0 0 S1 1 S2 2 S3 3 Σειριακή Έξοδος '0 '1 '2 '3 R0 R1 R2 R3 (γ)

53 Παράδειγμα: Υποθέστε ότι σ' έναν καταχωρητή ΣΕΣΕ των 4 bits με FFs τύπου D αρνητικής ακμής πυροδότησης είναι αποθηκευμένη η δυαδική λέξη Σχεδιάστε τις κυματομορφές εξόδου καθενός FF. Θεωρείστε ότι η σειριακή είσοδος βρίσκεται στο λογικό 0 Αρχικά 1ος 2ος 3ος 4ος Αρχικά 1ος παλμός Σειριακή Είσοδος ος παλμός ος παλμός ος παλμός Σειριακή Έξοδος 3 0 (α) (β) Παράδειγμα: Λογικό διάγραμμα σειριακού αθροιστή Επιλογή Εισόδου Σειριακή είσοδος Α Ολίσθηση δεξιά Καταχωρητής ολίσ θησης Α Σειριακή Έξοδος x y z FA S C Σειριακή είσοδος Β Καταχωρητής ολίσ θησης Β Σειριακή Έξοδος D Μηδενισμός

54 Αμφίδρομος καταχωρητής ολίσθησης των 4 bits Καταχωρητές σειριακής-εισόδου-παράλληλης-εξόδου Παράλληλη Έξοδος Σειριακή Είσο δος D0 0 D1 1 D2 2 FF0 FF1 FF2 D3 FF3 3 Παράδειγμα: Σχεδιάστε τις κυματομορφές εισόδου-εξόδου ενός καταχωρητή ολίσθησης ΣΕΠΕ των 4 bits, του οποίου η είσοδος γίνεται "στιγμιαία" 0 πριν τον 1ο ωρολογιακό παλμό και αμέσως μετά τον 3ο ωρολογιακό παλμό, ενώ η σειριακή είσοδος παραμένει μόνιμα στο λογικό 1. Σειριακή Είσοδος D0 CLEAR

55 Καταχωρητές παράλληλης-εισόδου-παράλληλης-εξόδου Παράλληλη Έξοδος D0 0 D1 1 D2 2 D3 3 FF0 FF1 FF2 FF3 D0 D1 D2 D3 Παράλληλη Είσοδος (α) Ε clock (β) Καταχωρητής παράλληλης-εισόδου-παράλληληςεξόδου των 4 bits με FFs τύπου SR. E I0 S G 0 S0 0 0 R G 0 FF0 R0 I1 S1 FF1 1 1 R1 I2 S2 FF2 2 2 R2 I3 S3 FF3 3 3 R3 CLEAR

56 Καταχωρητής παράλληλης-εισόδου-παράλληλης-εξόδου των 4 bits με FFs τύπου D L Ii S G i R G i G i Di FFi i E I0 S G 0 R G 0 G 0 D0 0 D1 1 (β) CLEAR I2 D2 2 I3 D3 3 CLEAR (α) Καταχωρητές παράλληλης-εισόδου-σειριακής-εξόδου Παράλληλη Είσοδος D0 D1 D2 D3 Ε Σειριακή Εί σοδος Σειριακή Έξοδος S0 0 S1 1 S2 2 S3 3 FF0 FF1 FF1 FF1 R0 R1 R2 R Παράλληλη 'Εξοδος Καταχωρητής των 8 bits κατασκευασμένος από δύο καταχωρητές των 4 bits Παράλληλη Είσοδος Σειριακή Είσοδος E Καταχωρητής 4- bits Σειρ. Έξοδος Σειρ. Είσοδος Καταχωρητής 4- bits Σειριακή Έξοδος Παράλληλη Έξοδος

57 Αμφίδρομος καταχωρητής ΠΕΠΕ, με δυνατότητα σειριακής ολίσθησης προς τα δεξιά και προς τα αριστερά ΚΥΚΛΙΚΟΙ ΚΑΤΑΧΩΡΗΤΕΣ Απαριθμητές δακτυλίου D3 3 D2 2 D1 1 D (α) J3 3 J2 2 J1 1 J K3 '3 K2 '2 K1 '1 K0 '0 (β) ( ) (γ)

58 Συνδυασμός απαριθμητή και αποκωδικοποιητή για την δημιουργία των ίδιων σημάτων χρονισμού ( ) (γ) Α'1Α'0 Α'1Α0 Α1Α'0 Α1Α0 (γ) Αποκωδικοποιητής 2-σε-4 Α0 Α1 Απαριθμητής mod-4 Α0 Α1 (α) (β) D3 3 D2 2 D1 1 D '0 (α) J3 3 J2 2 J1 1 J K3 '3 K2 '2 K1 '1 K0 '0 Απαριθμητές Johnson (β) ( ) (γ) Πύλη AND για την αποκωδικοποίηση X 1 X 1 = 3 0 X 2 X 2 = 3 2 X 3 X 3 = 2 1 X 4 X 4 = 1 0 X 5 X 5 = 30 X 6 X 6 = 32 X 7 X 7 = 21 X 8 X 8 = 1 0

59 (α) Κυματομορφές εξόδου του απαριθμητή Johnson όταν βρεθεί σε μία από τις μη επιτρεπτές καταστάσεις, (β) κύκλωμα για την αποφυγή των μη επιτρεπτών καταστάσεων ( ) (α) '0 '1 '2 Προς τις εισόδους των FF2, FF3 PRESET (β) Απαριθμητής Johnson για την δημιουργία 6 σημάτων χρονισμού Απαριθμητής Johnson για την δημιουργία 5 σημάτων χρονισμού J2 2 J1 1 J0 0 J2 2 J1 1 J0 0 K2 '2 K1 '1 K0 '0 K2 '2 K1 '1 K0 '0 (α) (α) (β) (β)

60 Τέλος χρόνου ΖΗΤΩ!!!!! ΚΑΛΑ ΧΡΙΣΤΟΥΓΕΝΝΑ & ΕΥΤΥΧΙΣΜΕΝΟ ΤΟ 2009!!!

ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ Σύγχρονο ακολουθιακό κύκλωμα είναι εκείνο του οποίου όλα τα FFs χρονίζονταιμετοίδιο ρολόι (clock). Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Σχεδίαση Σύγχρονων Ακολουθιακών

Διαβάστε περισσότερα

Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα

Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα 6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από

Διαβάστε περισσότερα

7.1 Θεωρητική εισαγωγή

7.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 FLIP - FLOP

ΑΣΚΗΣΗ 7 FLIP - FLOP ΑΣΚΗΣΗ 7 FLIP - FLOP Αντικείμενο της άσκησης: Η κατανόηση της δομής και λειτουργίας των Flip Flop. Flip - Flop Τα Flip Flop είναι δισταθή λογικά κυκλώματα με χαρακτηριστικά μνήμης και είναι τα πλέον βασικά

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα K24 Ψηφιακά Ηλεκτρονικά : TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 2 3 Γενικά Όπως είδαμε και σε προηγούμενα μαθήματα, ένα ψηφιακό κύκλωμα ονομάζεται

Διαβάστε περισσότερα

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 )

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 ) ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΥΑ ΙΚΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των απαριθµητών. Υλοποίηση ασύγχρονου απαριθµητή 4-bit µε χρήση JK Flip-Flop. Κατανόηση της αλλαγής του υπολοίπου

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008 ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops και Μετρητές Ριπής Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

βαθµίδων µε D FLIP-FLOP. Μονάδες 5

βαθµίδων µε D FLIP-FLOP. Μονάδες 5 Κεφάλαιιο: 6 ο Τίίτλος Κεφαλαίίου:: Μανταλωτές & Flip Flop (Ιούνιος 2004 ΤΕΕ Ηµερήσιο) Να σχεδιάσετε καταχωρητή δεξιάς ολίσθησης τεσσάρων βαθµίδων µε D FLIP-FLOP. Μονάδες 5 (Ιούνιος 2005 ΤΕΕ Ηµερήσιο)

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 14. ΑΠΑΡΙΘΜΗΤΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΑΠΑΡΙΘΜΗΤΕΣ ΤΡΟΠΟΣ ΥΛΟΠΟΙΗΣΗΣ KAI ΡΟΗ ΑΠΑΡΙΘΜΗΣΗΣ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ ΥΑ ΙΚΟΥ ΑΠΑΡΙΘΜΗΤΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009.

Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009. ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα: Μαρία Κ. Μιχαήλ Ακολουθιακά Κυκλώματα Συνδυαστική Λογική: Η τιμή σε μία έξοδο εξαρτάται

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 1-1 Σχηµατισµός Μηνύµατος 1 1-2 Βάση Αρίθµησης 2 1-3 Παράσταση Αριθµών στο εκαδικό Σύστηµα 2 Μετατροπή υαδικού σε εκαδικό 3 Μετατροπή εκαδικού σε υαδικό 4

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Γενικές Γραμμές Δυαδικοί Αριθμοί έναντι Δυαδικών Κωδίκων Δυαδικοί Αποκωδικοποιητές Υλοποίηση Συνδυαστικής Λογικής με Δυαδικό Αποκωδικοποιητή

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων Ψηφιακή Σχεδίαση Κεφάλαιο 5: Σύγχρονη Ακολουθιακή Λογική Σύγχρονα Ακολουθιακά Κυκλώµατα Είσοδοι Συνδυαστικό κύκλωµα

Διαβάστε περισσότερα

Ακολουθιακά Κυκλώματα Flip-Flops

Ακολουθιακά Κυκλώματα Flip-Flops Ακολουθιακά Κυκλώματα Flip-Flops . Συνδυαστικα κυκλωματα Ακολουθιακα κυκλωματα x x 2 x n Συνδυαστικο κυκλωμα z z 2 z m z i =f i (x,x 2,,x n ) i =,2,,m 2. Ακολουθιακα κυκλωματα: x n Συνδυαστικο m z y κυκλωμα

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός Μετρητής

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ 22 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: Τεχνολογία Αναλογικών και Ψηφιακών Ηλεκτρονικών Τεχνολογία Τεχνικών Σχολών

Διαβάστε περισσότερα

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Βασικές αρχές Σχεδίαση Latches και flip-flops Γιώργος Δημητρακόπουλος Δημοκρίτειο Πανεπιστήμιο Θράκης Φθινόπωρο 2013 Ψηφιακά ολοκληρωμένα κυκλώματα 1 Ακολουθιακή

Διαβάστε περισσότερα

3 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

3 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 8 ΙΟΥΝΙΟΥ 215 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων

Διαβάστε περισσότερα

ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ

ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Εργαστήριο Λογικής Σχεδίασης Ψηφιακών Συστημάτων ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμήμα Πληροφορικής - Πανεπιστήμιο Πειραιώς i ΠΕΡΙΕΧΟΜΕΝΑ ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/

Διαβάστε περισσότερα

15 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

15 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 18 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Παράσταση ενός φυσικού αριθμού 1 1.2 Δεκαδικό σύστημα 1 1.3 Δυαδικό σύστημα 2 1.4 Οκταδικό σύστηνα 2 1.5 Δεκαεξαδικό σύστημα 2 1.6 Μετατροπές από ένα

Διαβάστε περισσότερα

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης 5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI υαδικός Αθροιστής & Αφαιρέτης A i B i FA S i C i C i+1 D Σειριακός Αθροιστής Σειριακός Αθροιστής: απαιτεί 1 πλήρη αθροιστή, 1 στοιχείο µνήµης και παράγει

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Ανάλυση Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Ανάλυση Ακολουθιακών Κυκλωμάτων Ανάλυση: Ο καθορισμός μιας κατάλληλης περιγραφής η οποία επιδεικνύει

Διαβάστε περισσότερα

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21 Περιεχόµενα Πρόλογος 11 Σκοπός αυτού του βιβλίου 11 Σε ποιους απευθύνεται αυτό το βιβλίο 12 Βασικά χαρακτηριστικά του βιβλίου 12 Κάλυψη συστηµάτων CAD 14 Εργαστηριακή υποστήριξη 14 Συνοπτική παρουσίαση

Διαβάστε περισσότερα

Ενότητα ΚΑΤΑΧΩΡΗΤΕΣ ΜΕΤΡΗΤΕΣ ΜΝΗΜΕΣ RAM

Ενότητα ΚΑΤΑΧΩΡΗΤΕΣ ΜΕΤΡΗΤΕΣ ΜΝΗΜΕΣ RAM 2 Ενότητα ΚΑΤΑΧΩΡΗΤΕΣ ΜΕΤΡΗΤΕΣ ΜΝΗΜΕΣ RAM Γενικές Γραμμές Παράλληλα και Σειριακά Δεδομένα Παράλληλοι λ Καταχωρητές Σήματα Ενεργοποίησης Διαβάσματος & Γραψίματος - Εισόδου & Εξόδου Υπολογισμός Περιόδου

Διαβάστε περισσότερα

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΥΓΧΡΟΝΟ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

Κεφάλαιο 7 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ακολουθιακή Λογική 2

Κεφάλαιο 7 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ακολουθιακή Λογική 2 ΚΥΚΛΩΜΑΤΑ VLSI Ακολουθιακή Λογική Κεφάλαιο 7 ο Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Δισταθή κυκλώματα Μεταστάθεια 2. Μανδαλωτές 3. Flip Flops Flops 4. Δομές διοχέτευσης 5. Διανομή ρολογιού 6. Συγχρονισμός

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΛΗ 2: Ψηφιακά Συστήµατα Ακαδηµαϊκό Έτος 24 25 Ηµεροµηνία Εξέτασης 29.6.25 Χρόνος Εξέτασης

Διαβάστε περισσότερα

12. ΚΑΤΑΧΩΡΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

12. ΚΑΤΑΧΩΡΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 12. ΚΑΤΑΧΩΡΗΤΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΚΑΤΑΧΩΡΗΤΕΣ Ο ΚΑΤΑΧΩΡΗΤΗΣ ΩΣ ΣΤΟΙΧΕΙΟ ΜΝΗΜΗΣ ΕΙ Η ΚΑΤΑΧΩΡΗΤΩΝ ΣΤΑΤΙΚΟΣ ΚΑΤΑΧΩΡΗΤΗΣ ΚΑΤΑΧΩΡΗΤΗΣ ΟΛΙΣΘΗΣΗΣ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY

EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY ΠANEΠIΣTHMIO ΠATPΩN TMHMA MHX H/ Y & ΠΛHPOΦOPIKHΣ TOMEAΣ YΛIKOY KAI APXITEKTONIKHΣ YΠOΛOΓIΣTΩN Εργαστήριο Θεωρίας Κυκλωμάτων, Ηλεκτρονικών & Λογικού Σχεδιασμού EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY

Διαβάστε περισσότερα

ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι

ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι Ι.Μ. ΚΟΝΤΟΛΕΩΝ S k k k S k k k 00 ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι ΑΣΚΗΣΗ ΣΧΕ ΙΑΣΗ ΜΕ ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΘΕΩΡΗΤΙΚΗ ΠΡΟΕΤΟΙΜΑΣΙΑ Ψηφιακά Κυκλώµατα, κεφ.,

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Σύνθετα Συνδυαστικά Κυκλώµατα Πύλες AND Πύλες OR Πύλες NAND Τυχαία Λογική Πύλες NOR Πύλες XNOR Η ολοκληρωµένη

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

Ψηφιακά Συστήματα. Σημείωση

Ψηφιακά Συστήματα. Σημείωση Το έργο υλοποιείται στο πλαίσιο του υποέργου 2 με τίτλο «Ανάπτυξη έντυπου εκπαιδευτικού υλικού για τα νέα Προγράμματα Σπουδών» της Πράξης «Ελληνικό Ανοικτό Πανεπιστήμιο» η οποία έχει ενταχθεί στο Επιχειρησιακό

Διαβάστε περισσότερα

Κυκλώματα αποθήκευσης με ρολόι

Κυκλώματα αποθήκευσης με ρολόι Κυκλώματα αποθήκευσης με ρολόι Latches και Flip-Flops Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης 1 Γιατί χρειαζόμαστε τα ρολόγια Συνδιαστική λογική Η έξοδος εξαρτάται μόνο

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032

Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 9 ης εργαστηριακής άσκησης: Μετρητής Ριπής ΑΦΡΟΔΙΤΗ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

Παράρτηµα Γ. Τα Βασικά της Λογικής Σχεδίασης. Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση

Παράρτηµα Γ. Τα Βασικά της Λογικής Σχεδίασης. Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Παράρτηµα Γ Τα Βασικά της Λογικής Σχεδίασης ιαφάνειες διδασκαλίας του πρωτότυπου βιβλίου µεταφρασµένες στα ελληνικά και εµπλουτισµένες

Διαβάστε περισσότερα

6.1 Θεωρητική εισαγωγή

6.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΗΦΙΑΚΟ ΣΥΣΤΗΜΑ A ΥΤΟΜΑ ΤΗΣ ΗΑΗΡΩΣΗΣ ΜΗΟΥΚΑΑΙΩΝ ΜΕ ΧΑΠΙΑ ΣΕ ΦΑΡΜΑΚΕΥΤΙΚΗ ΒΙΟΜΗΧΑΝΙΑ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΗΦΙΑΚΟ ΣΥΣΤΗΜΑ A ΥΤΟΜΑ ΤΗΣ ΗΑΗΡΩΣΗΣ ΜΗΟΥΚΑΑΙΩΝ ΜΕ ΧΑΠΙΑ ΣΕ ΦΑΡΜΑΚΕΥΤΙΚΗ ΒΙΟΜΗΧΑΝΙΑ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ Σ.Τ.ΕΦ. ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ Τ.Ε.Ι. ΚΑΒΑΛ/» ΤΜΗΜΑ ΗΛΕΚΤΡβ^ΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΗΦΙΑΚΟ ΣΥΣΤΗΜΑ A ΥΤΟΜΑ ΤΗΣ ΗΑΗΡΩΣΗΣ ΜΗΟΥΚΑΑΙΩΝ ΜΕ ΧΑΠΙΑ ΣΕ ΦΑΡΜΑΚΕΥΤΙΚΗ ΒΙΟΜΗΧΑΝΙΑ i i.1^-1 ' CiJ ^

Διαβάστε περισσότερα

Εργαστήριο 8: Μετρητής μέσω Αθροιστή & Καταχωρητή, Ακμοπυροδότηση

Εργαστήριο 8: Μετρητής μέσω Αθροιστή & Καταχωρητή, Ακμοπυροδότηση ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2011 Τμ. Επ. Υπολογιστών Πανεπιστήμιο Κρήτης Εργαστήριο 8: Μετρητής μέσω Αθροιστή & Καταχωρητή, Ακμοπυροδότηση 29 Νοεμβρίου - 2 Δεκεμβρίου 2011 Διαλέξεις βδομάδας 8:

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΑΠΑΝΤΗΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 Μάθημα : Μικροϋπολογιστές Τεχνολογία Τ.Σ. Ι, Θεωρητικής κατεύθυνσης Ημερομηνία

Διαβάστε περισσότερα

Βιβλιογραϕικές σηµειώσεις 59. Ασκήσεις 19

Βιβλιογραϕικές σηµειώσεις 59. Ασκήσεις 19 ΠΕΡΙΕΧΟΜΕΝΑ Μέρος I Εισαγωγή 1 Η ψηφιακή αφαίρεση 3 1.1 Ψηϕιακά σήµατα 4 1.2 Τα ψηϕιακά σήµατα είναι ανεκτικά στον θόρυβο 5 1.3 Τα ψηϕιακά σήµατα αναπαριστούν σύνθετα δεδοµένα 9 1.3.1 Αναπαράσταση της

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΑΠΑΝΤΗΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Μικροϋπολογιστές Τεχνολογία Τ.Σ. Ι, Θεωρητικής κατεύθυνσης Ημερομηνία

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 Τεχνολογία Ι Θεωρητικής Κατεύθυνσης Τεχνικών Σχολών Μάθημα : Μικροϋπολογιστές

Διαβάστε περισσότερα

ΥΛΗ ΚΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016. Μάθημα Προγραμματισμός Ι.

ΥΛΗ ΚΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016. Μάθημα Προγραμματισμός Ι. ΥΛΗ ΚΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016 Μάθημα Προγραμματισμός Ι. 1) Προπαρασκευαστική Εισαγωγή, Εισαγωγή στον προγραμματισμό, (Κεφ, 1.2, 1.3,

Διαβάστε περισσότερα

Καταχωρητες (Registers) Μετρητες (Counters)

Καταχωρητες (Registers) Μετρητες (Counters) Καταχωρητες (Registers) Μετρητες (Counters) Καταχωρητής (register) Ομαδα από flip-flops μαζί με συνδυαστικο κυκλωμα για εκτελεση διαφορων λειτουργιων όπως μεταφορα, αποθηκευση και επεξεργασια πληροφοριων.

Διαβάστε περισσότερα

Ψηφιακά Κυκλώματα (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Ψηφιακά Κυκλώματα (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Ψηφιακά Κυκλώματα (2 ο μέρος) ΜΥΥ-6 Εισαγωγή στους Η/Υ και στην Πληροφορική Ακολουθιακά κυκλώματα είσοδοι.. ακολουθιακή λογική.. έξοδοι. ανάδραση Η λειτουργία μνήμης στηρίζεται στη ανάδραση (feedback):

Διαβάστε περισσότερα

Εργαστηριακές ασκήσεις λογικών κυκλωμάτων 11 A/D-D/A

Εργαστηριακές ασκήσεις λογικών κυκλωμάτων 11 A/D-D/A 11.1 Θεωρητικό μέρος 11 A/D-D/A 11.1.1 Μετατροπέας αναλογικού σε ψηφιακό σήμα (A/D converter) με δυαδικό μετρητή Σχ.1 Μετατροπέας A/D με δυαδικό μετρητή Στο σχήμα 1 απεικονίζεται σε block diagram ένας

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ Η/Υ

ΕΡΓΑΣΤΗΡΙΟ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ Η/Υ ΕΡΓΑΣΤΗΡΙΟ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ Η/Υ 4 ο Εξάμηνο Μαδεμλής Ιωάννης ΛΟΓΙΚΕΣ ΠΡΑΞΕΙΣ Οι λογικές πράξεις που υποστηρίζει η Assembly του 8088 είναι : Πράξη AND Πράξη OR Πράξη NOT Πράξη XOR Με τις λογικές πράξεις μπορούμε

Διαβάστε περισσότερα

Μνήμες RAM. Διάλεξη 12

Μνήμες RAM. Διάλεξη 12 Μνήμες RAM Διάλεξη 12 Δομή της διάλεξης Εισαγωγή Κύτταρα Στατικής Μνήμης Κύτταρα Δυναμικής Μνήμης Αισθητήριοι Ενισχυτές Αποκωδικοποιητές Διευθύνσεων Ασκήσεις 2 Μνήμες RAM Εισαγωγή 3 Μνήμες RAM RAM: μνήμη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α)

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α) ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α) Αντικείμενο της άσκησης: Η χρήση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων (ΟΚ), η συνδεσμολόγησή τους στην κάρτα εργασίας (bread-board) και η κατανόηση της λογικής συμπεριφοράς των

Διαβάστε περισσότερα

Έχοντας κατανοήσει την ύλη του 1ου μαθήματος ( Εισαγωγή στην Αρχιτεκτονική Η/Υ ) θα πρέπει να μπορείτε να απαντήσετε στις παρακάτω ερωτήσεις:

Έχοντας κατανοήσει την ύλη του 1ου μαθήματος ( Εισαγωγή στην Αρχιτεκτονική Η/Υ ) θα πρέπει να μπορείτε να απαντήσετε στις παρακάτω ερωτήσεις: Ερωτήσεις αυτοαξιολόγησης 1 ου μαθήματος Έχοντας κατανοήσει την ύλη του 1ου μαθήματος ( Εισαγωγή στην Αρχιτεκτονική Η/Υ ) θα πρέπει να μπορείτε να απαντήσετε στις παρακάτω ερωτήσεις: 1. Ποια η σχέση της

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων

Διαβάστε περισσότερα

Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΠΜΣ στις Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών Διδάσκων : Παρασκευάς Κίτσος Επίκουρος Καθηγητής pkitsos@teimes.gr 1 Τμήμα των διαλέξεων

Διαβάστε περισσότερα

4 η Θεµατική Ενότητα : Καταχωρητές και Μετρητές. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

4 η Θεµατική Ενότητα : Καταχωρητές και Μετρητές. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 4 η Θεµατική Ενότητα : Καταχωρητές και Μετρητές Επιµέλεια διαφανειών: Χρ. Καβουσιανός Εισαγωγή Καταχωρητής: οµάδα από δυαδικά κύτταρα αποθήκευσης και λογικές πύλες που αποθηκεύουν και µεταφέρουν πληροφορίες.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΛΥΣΕΙΣ 2 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ ΠΑΤΡΑ 2006 6.

Διαβάστε περισσότερα

5 η Θεµατική Ενότητα : Μνήµη & Προγραµµατιζόµενη Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

5 η Θεµατική Ενότητα : Μνήµη & Προγραµµατιζόµενη Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 5 η Θεµατική Ενότητα : Μνήµη & Προγραµµατιζόµενη Λογική Επιµέλεια διαφανειών: Χρ. Καβουσιανός Μνήµη Η µνήµη καταλαµβάνει το µεγαλύτερο µέρος ενός υπολογιστικού συστήµατος Δύο τύποι: ROM - RAM RΟΜs CPU

Διαβάστε περισσότερα

Σχεδίαση κυκλωμάτων ημιαγωγικών μνημών

Σχεδίαση κυκλωμάτων ημιαγωγικών μνημών 2 0 ^ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Παρθένα Μποχώρη Σχεδίαση κυκλωμάτων ημιαγωγικών μνημών ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επιβλέπων: Ιωάννης

Διαβάστε περισσότερα

ΠΡΟΗΓΜΕΝΑ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤ ΕΞΑΜΗΝΟ

ΠΡΟΗΓΜΕΝΑ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤ ΕΞΑΜΗΝΟ ΤΕΙ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤ ΕΞΑΜΗΝΟ Έκδοση

Διαβάστε περισσότερα

Χρονισμός ψηφιακών κυκλωμάτων

Χρονισμός ψηφιακών κυκλωμάτων Χρονισμός ψηφιακών κυκλωμάτων Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Γ. Δημητρακόπουλος HY422 1 Tρόποι χρονισμού Πως μπορούμε να συνδέσουμε τα στοιχεία αποθήκευσης με τη

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Μικροϋπολογιστές

Διαβάστε περισσότερα

ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων

ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων Γιώργος Δημητρακόπουλος Μονάδες επεξεργασίας δεδομένων και ο έλεγχος τους Δόμηση σύνθετων κυκλωμάτων 1. Γενική περιγραφή

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ I: ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ I: ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ I: ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ 1.1 ΕΙΣΑΓΩΓΗ ΣΤΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ 1 1.1.1 Αναλογικά σήματα 1 1.1.2 Οι αντιστάσεις 3 1.1.3 Οι πυκνωτές 7 1.1.4 Τα πηνία 11 1.1.5 Οι δίοδοι 13 1.1.6

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 1 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Πρόσθεση/Αφαίρεση. Εφαρµογές της πράξης, υλοποίηση και βελτιστοποιήσεις. Γκέκας Γεώργιος: 2423 Μαραγκός Παναγιώτης: 2472

Πρόσθεση/Αφαίρεση. Εφαρµογές της πράξης, υλοποίηση και βελτιστοποιήσεις. Γκέκας Γεώργιος: 2423 Μαραγκός Παναγιώτης: 2472 Πρόσθεση/Αφαίρεση Γκέκας Γεώργιος: 2423 Μαραγκός Παναγιώτης: 2472 Εφαρµογές της πράξης, υλοποίηση και βελτιστοποιήσεις Που χρησιµοποιείται Όχι µόνο στις αµιγείς αριθµητικές πράξεις της πρόσθεσης και αφαίρεσης

Διαβάστε περισσότερα

Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων

Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων Γιώργος Δημητρακόπουλος 1 Αποκωδικοποιητής κώδικα Huffman συμπίεση δεδομένων Ξέρουμε ότι με n bits μπορούμε να κωδικοποιήσουμε 2 n διαφορετικά

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Καθυστέρηση στατικών πυλών CMOS

Καθυστέρηση στατικών πυλών CMOS Καθυστέρηση στατικών πυλών CMOS Πρόχειρες σημειώσεις Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Άνοιξη 2008 Παρόλο που οι εξισώσεις των ρευμάτων των MOS τρανζίστορ μας δίνουν

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΥΛΟΠΟΙΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ «ΗΛΕΚΤΡΟΝΙΚΟΣ» ΓΙΑ ΤΙΣ ΑΝΑΓΚΕΣ ΤΗΣ ΤΕΧΝΙΚΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ.

ΣΧΕΔΙΑΣΗ ΥΛΟΠΟΙΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ «ΗΛΕΚΤΡΟΝΙΚΟΣ» ΓΙΑ ΤΙΣ ΑΝΑΓΚΕΣ ΤΗΣ ΤΕΧΝΙΚΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ. 478 ΣΧΕΔΙΑΣΗ ΥΛΟΠΟΙΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ «ΗΛΕΚΤΡΟΝΙΚΟΣ» ΓΙΑ ΤΙΣ ΑΝΑΓΚΕΣ ΤΗΣ ΤΕΧΝΙΚΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ. Γλάρος Ιωάννης ΤΕ 01 Ηλεκτρονικός Εκπαιδευτικός Δ.Ε http://3tee-rodou.dod.sch.gr

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΧΝΟΛΟΓΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ (2 η Έκδοση) Παναγιώτης Ε. Φουληράς Διδάκτωρ Πληροφορικής Παν/μίου Λονδίνου ΘΕΣΣΑΛΟΝΙΚΗ 1996 Παναγιώτης

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος Α) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

WDT και Power Up timer

WDT και Power Up timer Ο ΜΙΚΡΟΕΛΕΓΚΤΗΣ PIC O μικροελεγκτής PIC κατασκευάζεται από την εταιρεία Microchip. Περιλαμβάνει τις τρεις βασικές κατηγορίες ως προς το εύρος του δίαυλου δεδομένων (Data Bus): 8 bit (σειρές PIC10, PIC12,

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών II 16-2-2012. Ενδεικτικές απαντήσεις στα θέματα των εξετάσεων

Αρχιτεκτονική Υπολογιστών II 16-2-2012. Ενδεικτικές απαντήσεις στα θέματα των εξετάσεων Αρχιτεκτονική Υπολογιστών II 6 --0 Ενδεικτικές απαντήσεις στα θέματα των εξετάσεων Θέμα. Τι γνωρίζετε για την τοπικότητα των αναφορών και ποιών μονάδων του υπολογιστή ή τεχνικών η απόδοση εξαρτάται από

Διαβάστε περισσότερα

Ι ΑΣΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΚΑΘΗΓΗΤΗΣ ΕΦΑΡΜΟΓΩΝ. ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ d.fotiadis@kastoria.teikoz.gr

Ι ΑΣΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΚΑΘΗΓΗΤΗΣ ΕΦΑΡΜΟΓΩΝ. ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ d.fotiadis@kastoria.teikoz.gr Ι ΑΣΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΦΩΤΙΑ ΗΣ Α. ΗΜΗΤΡΗΣ M.Sc. ΚΑΘΗΓΗΤΗΣ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ d.fotiadis@kastoria.teikoz.gr Ασύγχρονη σειριακή

Διαβάστε περισσότερα

Ψηφιακή Λογική και Σχεδίαση

Ψηφιακή Λογική και Σχεδίαση Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Ψηφιακή Λογική και Σχεδίαση (στοιχεία και μέθοδοι χρονισμού) http://di.ionio.gr/~mistral/tp/comparch/ Μ.Στεφανιδάκης Πέρα από τη συνδυαστική

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Κεφάλαιο 4 ο. Ο Προσωπικός Υπολογιστής

Κεφάλαιο 4 ο. Ο Προσωπικός Υπολογιστής Κεφάλαιο 4 ο Ο Προσωπικός Υπολογιστής Μάθημα 4.3 Ο Επεξεργαστής - Εισαγωγή - Συχνότητα λειτουργίας - Εύρος διαδρόμου δεδομένων - Εύρος διαδρόμου διευθύνσεων - Εύρος καταχωρητών Όταν ολοκληρώσεις το μάθημα

Διαβάστε περισσότερα

Ύλη Λογικού Σχεδιασµού Ι

Ύλη Λογικού Σχεδιασµού Ι 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Ύλη Λογικού Σχεδιασµού Ι Κεφ 2 Κεφ 3 Κεφ 4 Κεφ 6 Συνδυαστική Λογική 2 Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά:

Διαβάστε περισσότερα