Zero-Mode Anomalies and Related Physics in Graphene
|
|
- Θεοδώρα Ἥβη Βαρουξής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 MODANETALK.OHP (September 9, ) Zero-Mode Anomalies and Related Physics in Graphene. Introduction Weyl s equation for neutrino Berry s phase and topological anomaly. Zero-mode anomalies Diamagnetic response Conductivity 3. Time reversal and symmetry crossover Special vs real time reversal Symmetry crossover 4. Bilayer and multi-layer graphene Interlayer interaction Hamiltonian decomposition 5. Summary Aussois, September (Tues) GDR 46, Physique Quantique Meśoscopique Centre Paul Langevin, Aussois, France September 3, [5:45 6:3 (35+)] Tsuneya ANDO Collaborators M. Koshino (TITech) M. Noro (TITech) H. Suzuura (Hokkaido Univ) Page
2 MODANETALK.OHP (September 9, ) Effective-Mass Description: Neutrino or Massless Dirac Electron Graphene (Triangular antidot lattice) η a=.46 Å Weyl s equation for neutrino (K) γ(σ ˆk)F (r)=εf(r) Energy (units of γ) K Γ M K γ(σ xˆkx +σ yˆky )F (r)=εf(r) ( )( ) ( ) γ(ˆk x iˆk y ) F A (r) F Wave Vector γ(ˆk x +iˆk y ) F B = ε A (r) (r) F B (r) ˆk = i Massless (Dirac) v F c/3 (γ 3eV) Velocity: v F =γ/ h Constant velocity ( light, cannot stop) K : σ σ Topological anomaly γ = 3γ a/ (γ : Hopping integral) Page M Γ K K E F ε(k)=±γ k x +k y ε n ± n B
3 MODANETALK.OHP (September 9, ) Topological Anomaly and Berry s Phase ( e iθ/ ) Weyl s equation : Neutrino Helicity (σ k) R(θ)= e iθ/ γ(σ ˆk) F sk (r) =ε s (k) F sk (r) F sk (r) = eiϕ k exp(ik r) L R [θ(sk)] ) s R(θ±π)= R(θ) R( π)= R(+π) ε s (k)=sγ k s=± ψ(t )=e iζ ψ() Pseudo spin Berry s phase ( ) T ζ = i dt sk(t) d s θ sk(t) = π e iθ ζ dt Landau levels at ε= [J.W. McClure, PR 4, ζ π 666 (956)] χ= g vg s γ ( e ) ( f(ε) ) δ(ε) dε 6π c h ε ε Absence of backscattering Metallic CN with scatterers Perfect conductor T. Ando & T. Nakanishi, JPSJ 67, 74 (998) Backscattering Page 3
4 MODANETALK.OHP (September 9, ) Band-Gap Effect [M. Koshino & T. Ando, PRB 8, 9543 ()] Susceptibility (units of -gvgse γ /6πc h Δ) Susceptibility Density of States Δ= Energy (units of Δ) Graphene with a gap ( ) Δ γˆk χ(ε)= g vg s e γ γˆk + Δ 6πc γ 3 Density of States (units of g v g s Δ/πγ ) δ(ε) n θ(δ ε ) Δ K K n Hamiltonian at band edge H= hˆk m ± e h m c B m = h Δ ( γ e h ) D(ε) χ P (ε) =+ Pauli m c χ L (ε) = ( e h ) D(ε) Landau 3 m c D(ε) = g sg v m π h Page 4
5 MODANETALK.OHP (September 9, ) Diamagnetic Susceptibility: Disorder Effects Singular diamagnetism J.W. McClure, Phys. Rev. 4, 666 (956) S.A. Safran & F.J. DiSalvo, PRB, 4889 (979) χ= g sg v γ ( e ) δ(εf ) 6π c h Constant broadening Γ H. Fukuyama, JPSJ 76, 437 (7) Γ δ(ε F ) π(ε F +Γ ) Self-consistent Born approximation M. Koshino and T. Ando, PRB 75, (7) Susceptibility [(gvgsγ /6πε)(e/ch) ] [ πε ( ε F <ɛ ) δ(ε F ) W ε F Cutoff energy: ε =Wε c e /W ].5..5 W -... W= ε c /ε = 5. χ(ε) D(ε) Energy (units of ε ) Sharp peak and long tail ε F Page 5 Density of States [gvgsε/πγ ]
6 Density of states: D(ε) = Zero-Mode Anomaly in Conductivity Boltzmann conductivity σ(ε F )=e D D(ε F )= e π h 4W Einstein relation D =vf τ = γ h τ W = n iu 4πγ τ = π h n iu D(ε F ) πw ε F / h τ D(ε F ) u Impurity strength n i Impurity density Independent of ε F (Metal!) σ() for D()= ( e /π h) MODANETALK.OHP (September 9, ) ε Zero-gap semiconductor πγ W (n s,ε F ) ε Singularity at the Dirac point (ε F =) Fermi energy scaling ) ( hωb σ xx (B) =σ xx hω e ε F ( hω ) B = γ/l (ω =) ) σ(ω) =σ = π hw ( hωb ε σ xy (B) =σ F xy e ε ( hω/ε F ) F Dynamical conductivity 4 h Magnetoconductivity Page 6
7 Density of States (units of gvgsε/πγ )..5 MODANETALK.OHP (September 9, ) Self-Consistent Born Approximation [N.H. Shon and T. Ando, J. Phys. Soc. Jpn. 67, 4 (998)] W = n iu 4πγ W Density of states ε ε c /ε =5. SCBA Boltzmann ε =Wε c e /W. - - Energy (units of ε ) Conductivity (units of g v g s e /π h) ε : Arbitrary energy ε c : Cutoff energy (width of π band) Conductivity Long-Range Scatterers W σ = g vg s e π h (ε F =) - - Energy (units of ε ) ε c /ε =5. SCBA Boltzmann Page 7
8 Density of States (units of g s g v ε c /πγ ) Conductivity (units of g s g v e /π h) Density of states Conductivity dk c5 W=.5 dk c5 W=.5 SCBA Ideal SCBA Energy (units of ε c ) Boltzmann MODANETALK.OHP (September 9, ) Scatterers with Gaussian Potential (Self-Consistent Born Approx.) [M. Noro, M. Koshino & T. Ando JPSJ 79, 9473 ()] Conductivity (units of gsgve /π h) Conductivity at Dirac point dk c k c π a v i (r)= u πd exp ( r d ) W σ = g sg v e π h W = n iu 4πγ Page 8
9 MODANETALK.OHP (September 9, ) Charged Impurities (Self-Consistent Born Approximation) [M. Noro, M. Koshino & T. Ando, J. Phys. Soc. Jpn. 79, 9473 ()] Density of States (units of g s g v ε c /πγ ) Density of states Thomas-Fermi screening n i...5 σ = g sg v e π h SCBA Ideal Energy (units of ε c ) Conductivity (units of g s g v e /π h) σ min > σ n i...5 Conductivity vs n s n c = ε c 4πγ SCBA Boltzmann Electron Concentration (units of n c ) Page 9
10 MODANETALK.OHP (September 9, ) Special Time Reversal Symmetry and Universality Class Real time reversal (K K ): T FK T = σ zfk F K T = σ z FK T = Special time reversal (within K and K ): S ( ) F S = KF K = iσ y = K = Time reversal of P S = P S =K t PK (Fα S,P S Fβ S)=(F β,pf α ) Time reversal Symmetry Matrix α Real T =+Orthogonal Real α Special S = Symplectic Quaternion β None Unitary Complex β Reflection coefficient: r βα =(F β,tf α )=(Fβ S,TF α) rᾱβ Tmatrix: T = V +V E H +i V +V E H +i V E H +i V + Real : rᾱβ =(Fα T,TF β )=(Fβ T,T(F α T ) T )=+(Fβ T,TF α)=+ r βα Special: rᾱβ =(Fα S,TF β )=(Fβ S,T(F α S ) S )= (Fβ S,TF α)= r βα Absence of backward scattering: rᾱα = ( Berry s phase) Presence of perfect channel (Odd channel numbers) Page
11 MODANETALK.OHP (September 9, ) Metallic Nanotubes: Perfect Channel without Backscattering T. Ando and H. Suzuura, J. Phys. Soc. Jpn. 7, 753 () Time reversal processes: Reflection matrix det(r)= Perfect channel β Δθ β α π Δθ α ε πγ πγ πγ α β β ᾱ r βα = rᾱβ Conductance (units of e /πh) Mean Free Path εl/πγ..5.9]..5.9 W - =. u/γl = Odd channel number n c = Absence of backscattering Length (units of L) ] 3 5 Channel number n c W = n iu 4πγ Page
12 MODANETALK.OHP (September 9, ) Symmetry Breaking Effects: Symplectic Unitary [H. Ajiki & T. Ando, JPSJ 65, 55 (996)] Trigonal warping (S) H =α γa ( 4 (ˆk x +iˆk y ) 3 (ˆk x iˆk y ) ) [H. Suzuura & T. Ando, aky/π..5. Lattice distortion PRB 65, 354 ()] H = g (u xx +u yy ) -.5 +g [(u xx u yy )σ x u xy σ y ] -. Deformation potential : g 6 ev Bond-length (b) change: g βγ /4 -.5 β = d ln γ d ln b, γ= 3γ a 3a, b = u xx = u x x + u z R u yy = u y y u xy = ( ux φ Curvature: = a [( φ 4 γ (CN) 3R γ Optical phonon: H = βγ b σ [u A u B ] α < β < 4 ak /π y + u y x )e 3iη + γ 8γ e 3iη] ak x /π ) η: Chiral angle R: Radius 3 γ = V ppa π 3 γ = (V pp V σ pp)a π [T. Ando, JPSJ 69, 757 ()] [K. Ishikawa & T. Ando, JPSJ 75, 8473 (6)] K Page
13 MODANETALK.OHP (September 9, ) Symmetry Breaking Effects: Symplectic Orthogonal Intervalley: K K Short-range scatterers (d/a<) Zone-boundary phonon H. Suzuura and T. Ando JPSJ 77, 4473 (8) Metallic nanotubes Absence of backscattering: Robust Perfect channel : Fragile Quantum corrections H. Suzuura & T. Ando, JPSJ75, 473 (6) Numerical study Localization length Fluctuations (UCF) ε επγ Inverse Localization Length (units of WL - ) - - W - =. u/γl =. φ ε(πγ/l) Magnetic Flux (units of φ ) T. Ando, JPSJ 73, 73 (4) Figure T. Ando and K. Akimoto, JPSJ 73, 895 (4) K. Akimoto and T. Ando, JPSJ 73, 94 (4) T. Ando, JPSJ 75, 547 (6) Page 3
14 MODANETALK.OHP (September 9, ) Quantum Correction, Localization, and Conductance Fluctuations Symmetry Quantum correction Magnetoresistance UCF(α) Orthogonal Δσ< (weak localization) Negative Symplectic Δσ> (anti localization) Positive / Unitary Δσ = No / ΔG αe /h Theory H. Suzuura & T. Ando, PRL 8, 6663 () (6) D.V. Khveshchenko, PRL 97, 368 E. McCann et al., PRL 97, 4685 (6) Experiments S.V. Morozov et al., PRL 97, 68 (6) X.-S. Wu et al., PRL 98, 368 (7) F.V. Tikhonenko et al., PRL, 568 (8) D.-K. Kietal., PRB78, 549 (8) F.V. Tikhonenko et al., PRL 3, 68 (9) Page 4
15 Bilayer Graphene MODANETALK.OHP (September 9, ) Quantum Hall effect in bilayer graphene K.S. Novoselov et al., Nature 438, 97 (5) K.S. Novoselov et al., Nat. Phys., 77 (6) ARPES [T. Ohta et al., PRL 98, 68 (7)] Effective Hamiltonian in bilayer graphene A B A B γˆk γˆk + Δ H= Δ γˆk γˆk + ( ) H h ˆk m ˆk + m = h Δ γ ˆk ± = ˆk x ±iˆk y Δ=γ.4eV γ γ γ γ γ E. McCann and V.I. Falko, PRL 96, 8685 (6) M. Koshino and T. Ando, PRB 73, 4543 (6) ε ε Tight-binding models S. Latil and L. Henrard, ε n =± hω c n(n+) (n=,,...) PRL 97, 3683 (6) ε F. Guinea et al., Two Landau levels at ε= Susceptibility χ(ε)= g vg s e γ 4π c h ln Δ PRB 73, 4546 (6), [S.A. Safran, PRB 3, 4 (984)] ε Page 5
16 MODANETALK.OHP (September 9, ) Energy Dispersion and Density of States of Bilayer Graphene T. Ando, J. Phys. Soc. Jpn. 76, 47 (7) Energy (units of Δ) - Δ Δ Monolayer Density of States (units of gvgsδ/πγ ) 4 3 Density of States Electron Density Δ.4eV hω.ev n s = g vg s Δ πγ (.5 3 cm ) 4 3 Electron Density (units of g v g s Δ /πγ ) Wave Vector (units of Δ/γ) Energy (units of Δ) Page 6
17 MODANETALK.OHP (September 9, ) Multi-Layer Graphene [M. Koshino & T. Ando, PRB 76, 8545 (7)] Exact decomposition of effective Hamiltonian M + Layers = Monolayer + M Bilayers M Layers = Monolayer + M Bilayers Three parameters: γ,γ, γ 3 (trigonal warping) Diamagnetic susceptibility Page 7
18 MODANETALK.OHP (September 9, ) Dynamical Conductivity of Multi-Layer Graphene (Average ) M. Koshino and T. Ando, Phys. Rev. B 77, 533 (8).9.8 Δ B / γ =. (B ~.T) Re σ xx (units of g v g s e /h) (units of g v g s e /h) Re σ xx Δ B / γ =. (B ~ 4.5T) Δ B / γ =.3 (B ~ T) Γ / Δ.. hω / Δ Δ B / Δ Δ B / Δ κ = (L, L) κ = π/ κ = π/3 (L, H) κ = π/4 (L, H) κ = (L, H) hω / Δ Page B(T) B(T)
19 Δ B / Δ.4. DOS difference (units of g v g s γ /πh v ) - 5 B(T) MODANETALK.OHP (September 9, ) Local Density of States of Multi-Layer Graphene (Average ) M. Koshino and T. Ando, Phys. Rev. B 77, 533 (8) Δ B / Δ Δ B / Δ ε / Δ LDOS difference (units of g v g s γ /πh v ) -.. κ = π/ κ = π/3 κ = ε / Δ 5 5 DOS (units of g v g s γ /πh v ) B(T) B(T) LDOS (units of g v g s γ /πh v ) 5.5 (κ = ) 5L+ 4L+ 3L+ L+ L+ + DOS + 3+ LDOS (Top layer) (κ = π/). 4+ Γ / Δ. Δ B / Δ =.3 (B ~ T) ε / Δ Page 9
20 MODANETALK.OHP (September 9, ) Summary: Zero-Mode Anomalies and Related Physics in Graphene. Introduction Weyl s equation for neutrino Berry s phase and topological anomaly. Zero-mode anomalies Diamagnetic response Conductivity 3. Time reversal and symmetry crossover Special vs real time reversal Symmetry crossover 4. Bilayer and multi-layer graphene Interlayer interaction Hamiltonian decomposition 5. Summary Aussois, September (Tues) GDR 46, Physique Quantique Meśoscopique Centre Paul Langevin, Aussois, France September 3, [5:45 6:3 (35+)] Tsuneya ANDO Collaborators M. Koshino (TITech) M. Noro (TITech) H. Suzuura (Hokkaido Univ) Page
Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics
Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics Dmitry Bagrets Nucl. Phys. B 9, 9 (06) arxiv: 607.00694 Alexander Altland Univ. zu Köln Alex Kamenev Univ. of Minnesota PCS IBS Workshop, Daejeon,
Martti M. Salomaa (Helsinki Univ. of Tech.)
Martti M. Salomaa (Helsinki Univ. of Tech.) 1. 2. 3. Phase Phase contrast contrast images images (in (in situ) situ) Time Time of of flight flight (TOF) (TOF) images images BEC = Trapped atomic gases Neutral
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Low Frequency Plasma Conductivity in the Average-Atom Approximation
Low Frequency Plasma Conductivity in the Average-Atom Approximation Walter Johnson & Michael Kuchiev Physical Review E 78, 026401 (2008) 1. Review of Average-Atom Linear Response Theory 2. Demonstration
Thermoelectrics: A theoretical approach to the search for better materials
Thermoelectrics: A theoretical approach to the search for better materials Jorge O. Sofo Department of Physics, Department of Materials Science and Engineering, and Materials Research Institute Penn State
Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = 12.566 370 614... 10 7 N A 2 exact electric constant 1/µ 0 c 2 ɛ 0 8.854 187 817... 10 12 F m 1 exact
Three coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status
Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors
BYU PHYS 73 Statistical Mechanics Chapter 7: Sethna Professor Manuel Berrondo Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids,
UV fixed-point structure of the 3d Thirring model
UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM
PHASE TRANSITIONS IN THROUGH THE SCHWINGER DYSON FORMALISM Spyridon Argyropoulos University of Athens Physics Department Division of Nuclear Physics and Elementary Particles Supervisor: C.N. Ktorides Athens
Geodesic paths for quantum many-body systems
Geodesic paths for quantum many-body systems Michael Tomka, Tiago Souza, Steve Rosenberg, and Anatoli Polkovnikov Department of Physics Boston University Group: Condensed Matter Theory June 6, 2016 Workshop:
Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = 12.566 370 614... 10 7 N A 2 exact electric constant 1/µ 0 c 2 ɛ 0 8.854 187 817... 10 12 F m 1 exact
Chapter 9 Ginzburg-Landau theory
Chapter 9 Ginzburg-Landau theory The liit of London theory The London equation J µ λ The London theory is plausible when B 1. The penetration depth is the doinant length scale ean free path λ ξ coherent
Quantum shot noise: From Schottky to Bell
Quantum shot noise: From Schottky to Bell Markus Büttiker University of Geneva Peter Samuelsson Eugene V. Sukhorukov Vanessa Chung Valentin Rytchkov Micheal Polianski Micheal Moskalets Niels Bohr Summer
Fundamental Physical Constants Complete Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 (exact) magnetic constant µ 0 4π 10 7 NA 2 = 12.566 370614... 10 7 NA 2 (exact) electric constant 1/µ 0 c 2 ε 0 8.854 187 817... 10 12 Fm 1 (exact)
Large β 0 corrections to the energy levels and wave function at N 3 LO
Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March
The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia
http://arxiv.org/pd/0705.464 The Standard Mode Antonio Pich IFIC, CSIC Univ. Vaencia Gauge Invariance: QED, QCD Eectroweak Uniication: SU() Symmetry Breaking: Higgs Mechanism Eectroweak Phenomenoogy Favour
Kinetic Space Plasma Turbulence
Kinetic Space Plasma Turbulence PETER H. YOON 8the East-Asia School and Workshop on Laboratory, Space, and Astrophysical Plasmas July 30 (Mon) 2018 - August 3 (Fri) 2018, Chungnam National University,
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
of the methanol-dimethylamine complex
Electronic Supplementary Information for: Fundamental and overtone virational spectroscopy, enthalpy of hydrogen ond formation and equilirium constant determination of the methanol-dimethylamine complex
4.4 Superposition of Linear Plane Progressive Waves
.0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1
207 : msjmeeting-207sep-07i00 ( ) Abstract 989 Korotyaev Schrödinger Gérard Laba Multiparticle quantum scattering in constant magnetic fields - propagator ( ). ( ) 20 Sigal-Soffer [22] 987 Gérard- Laba
CT Correlation (2B) Young Won Lim 8/15/14
CT Correlation (2B) 8/5/4 Copyright (c) 2-24 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any
An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 An experimental and theoretical study of the gas phase kinetics of atomic chlorine
Oscillatory Gap Damping
Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-
5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59- , κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv.
LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e
LEPTONS e J = 1 2 Mass m = (548.5799110 ± 0.0000012) 10 6 u Mass m = 0.510998902 ± 0.000000021 MeV me + m e /m < 8 10 9, CL = 90% qe + + q / e e < 4 10 8 Magnetic moment µ =1.001159652187 ± 0.000000000004
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
1.8 Paul Mother Wavelet Real Part Imaginary Part Magnitude.6.4 Amplitude.2.2.4.6.8 1 8 6 4 2 2 4 6 8 1 t .8.6 Real Part of Three Scaled Wavelets a = 1 a = 5 a = 1 1.2 1 Imaginary Part of Three Scaled Wavelets
Non-Gaussianity from Lifshitz Scalar
COSMO/CosPA 200 September 27, 200 Non-Gaussianity from Lifshitz Scalar Takeshi Kobayashi (Tokyo U.) based on: arxiv:008.406 with Keisuke Izumi, Shinji Mukohyama Lifshitz scalars with z=3 obtain super-horizon,
Supporting Information
Supporting Information rigin of the Regio- and Stereoselectivity of Allylic Substitution of rganocopper Reagents Naohiko Yoshikai, Song-Lin Zhang, and Eiichi Nakamura* Department of Chemistry, The University
100x W=0.1 W=
1 2 abstract: 1 [1] 1970 Furstenberg [2] 1 [3] 1979 Anderson [4] 1 2 1 H = NX n=1 jn >V n < nj); fv n g HjΨ >= EΨ > (ffi n =), ffi n+1 + ffi n 1 + V n ffi n = Effi n,
Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow
4 D-5 Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow,, 3--, E-mail tsuboi@ab.eng.isas.ac.jp, 7-3-, E-mail ymats@mech.t.u-tokyo.ac.jp Nobuyuki Tsuboi, Institute of Space and Astronautical
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
ELECTRONIC SUPPORTING INFORMATION
ELECTRONIC SUPPORTING INFORMATION Spectroscopic signatures of the carbon buckyonions C 60 @C 180 and C 60 @C 240 : a dispersion-corrected DFT study. Girolamo Casella, a Alessandro Bagno a and Giacomo Saielli*
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
Dynamics of cold molecules in external electromagnetic fields. Roman Krems University of British Columbia
Dynamics of cold molecules in external electromagnetic fields Roman Krems University of British Columbia UBC group: Zhiying Li Timur Tscherbul Erik Abrahamsson Sergey Alyabishev Chris Hemming Collaborations:
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase
Markov chains model reduction
Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /
The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density
The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density 5..29 Radek Wojtak Nicolaus Copernicus Astronomical Center collaboration: Ewa Łokas, Gary Mamon, Stefan
Κβαντικούς Υπολογιστές
QUANTUM QUANTUM HALL HALL EFFECT EFFECT Από Από τον τον Von Von Klitzing Klitzing στους στους Κβαντικούς Κβαντικούς Υπολογιστές Υπολογιστές V.C. Karavolas Physics Department, Solid State Section, University
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
Table of Contents 1 Supplementary Data MCD
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Supporting Information for Magnetic circular dichroism and density functional theory
Hartree-Fock Theory. Solving electronic structure problem on computers
Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli
Fused Bis-Benzothiadiazoles as Electron Acceptors
Fused Bis-Benzothiadiazoles as Electron Acceptors Debin Xia, a,b Xiao-Ye Wang, b Xin Guo, c Martin Baumgarten,*,b Mengmeng Li, b and Klaus Müllen*,b a MIIT Key Laboratory of ritical Materials Technology
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
1 (a) The kinetic energy of the rolling cylinder is. a(θ φ)
NATURAL SCIENCES TRIPOS Part II Wednesday 3 January 200 0.30am to 2.30pm THEORETICAL PHYSICS I Answers (a) The kinetic energy of the rolling cylinder is T c = 2 ma2 θ2 + 2 I c θ 2 where I c = ma 2 /2 is
LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 MS No.: CP-ART-03-2016-002134.R1 Optical Response and Gas Sequestration Properties
Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling
1th AIAA/CEAS Aeroacoustics Conference, May 006 interactions Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Interaction M. Glesser 1, A. Billon 1, V. Valeau, and A. Sakout 1 mglesser@univ-lr.fr
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Δυναμική του χρέους και του ελλείμματος Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling
Supporting Information To Microhydration of caesium compounds: Cs, CsOH, CsI and Cs 2 I 2 complexes with one to three H 2 O molecules of nuclear safety interest Journal of Molecular Modeling Mária Sudolská
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Electronic Supplementary Information
Electronic Supplementary Information Cucurbit[7]uril host-guest complexes of the histamine H 2 -receptor antagonist ranitidine Ruibing Wang and Donal H. Macartney* Department of Chemistry, Queen s University,
Approximation of dynamic boundary condition: The Allen Cahn equation
1 Approximation of dynamic boundary condition: The Allen Cahn equation Matthias Liero I.M.A.T.I. Pavia and Humboldt-Universität zu Berlin 6 th Singular Days 2010 Berlin Introduction Interfacial dynamics
What happens when two or more waves overlap in a certain region of space at the same time?
Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields
ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές
ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές 1. Patsis, P. A. & Zachilas, L.: 1990, Complex Instability Of Simple Periodic-Orbits In A Realistic 2-Component Galactic Potential, Astron. & Astroph., 227, 37 (ISI,
Higher spin gauge theories and their CFT duals
Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)
Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.
The Early Life of a Peptide Cation-Radical. Ground and Excited-State Trajectories of Electron-Based Peptide Dissociations During the First 330 Femtoseconds Christopher L. Moss, Wenkel Liang, Xiaosong Li,*
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2016 KPb 2 (PO 3 ) 5 : A Novel Nonlinear Optical Lead Polyphosphate with Short
Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond
Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond Ken-ichi Yamashita, Kei-ichi Sato, Masaki Kawano and Makoto Fujita* Contents; Figure S1.
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
Computer No.53 (1992) IBM 650. Bacon TSS JRR-2.[1] free inductin decay IBM 7044 FACOM
Computer No.53 (1992) 49-60 1 30 33 10 IBM 650 32 4 Bacon IBM 650 TSS JRR-2.[1] 2 43 IBM FACOM Abragam CaF 2 free inductin decay IBM 7044 FACOM 230-60 1 S34-47 [2-5] FACOM 230-60 S48-52 [6-8] FACOM 230-60
Optical Feedback Cooling in Optomechanical Systems
Optical Feedback Cooling in Optomechanical Systems A brief introduction to input-output formalism C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum Stochastic differential
for fracture orientation and fracture density on physical model data
AVAZ inversion for fracture orientation and fracture density on physical model data Faranak Mahmoudian Gary Margrave CREWES Tech talk, February 0 th, 0 Objective Inversion of prestack PP amplitudes (different
Exercises in Electromagnetic Field
DR. GYURCSEK ISTVÁN Exercises in Electromagnetic Field Sources and additional materials (recommended) Gyurcsek I. Elmer Gy.: Theories in Electric Circuits, Globe Edit 206, ISBN:97833307343 Simonyi K.:
Monolithic Crystal Filters (M.C.F.)
Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Table 1: Bond lengths (in Å) of rare-gas dimers without counterpoise correction for BSSE. a Method He 2 Ne 2 Ar 2 Kr 2 HeNe HeAr HeKr NeAr NeKr ArKr MSE MUE Reference 2.97 b 3.09 b 3.76 b 4.01 b 3.03 c
Gaussian related distributions
Gaussian related distributions Santiago Aja-Fernández June 19, 009 1 Gaussian related distributions 1. Gaussian: ormal PDF: MGF: Main moments:. Rayleigh: PDF: MGF: Raw moments: Main moments: px = 1 σ π
PETROSKILLS COPYRIGHT
Contents Dew Point... 2 SI Conversions... 2 Output... 2 Input... 2 Solution Condensate-Oil Ratio... 3 SI Conversions... 3 Output... 3 Input... 3 Gas Density... 4 SI Conversions... 5 Output... 5 Input...
Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Quantum Electrodynamics
Quantum Electrodynamics Ling-Fong Li Institute Slide_06 QED / 35 Quantum Electrodynamics Lagrangian density for QED, Equations of motion are Quantization Write L= L 0 + L int L = ψ x γ µ i µ ea µ ψ x mψ
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
D-term Dynamical SUSY Breaking
D-term Dynamical SUSY Breaking Nobuhito Maru (Keio University) with H. Itoyama (Osaka City University) arxiv: 1109.76 [hep-ph] 7/6/01 @Y ITP workshop on Field Theory & String Theory Introduction SUPERSYMMETRY
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 653Ä664 ˆ Œ ˆ ˆ e + e K + K nπ (n =1, 2, 3) Š Œ ŠŒ -3 Š - ˆ Œ Š -2000 ƒ.. μéμ Î 1,2, μé ³ ±μ²² μ Í ŠŒ -3: A.. ß ±μ 1,2,. Œ. ʲÓÎ ±μ 1,2,.. ̳ ÉÏ 1,2,.. μ 1,.. ÏÉμ μ 1,.
Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles Sandeep Kumar,
The Spiral of Theodorus, Numerical Analysis, and Special Functions
Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6
Fundamentals of Signals, Systems and Filtering
Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness
X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION
X-Y COUPLING GENERATION WITH AC/PULSED SEW QUADRUPOLE AND ITS APPLICATION # Takeshi Nakamura # Japan Synchrotron Radiation Research Institute / SPring-8 Abstract The new method of x-y coupling generation
Evolution of Novel Studies on Thermofluid Dynamics with Combustion
MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 * Evolution of Novel Studies on Thermofluid Dynamics with Combustion Hiroyuki SATO* This paper mentions the recent development of combustion
Neutrino emissivities in quark matter
Neutrino emissivities in quark matter Jens Berdermann (University Rostock) David Blaschke (University Wrocław) WORKSHOP III OF THE VI,,DENSE HADRONIC MATTER & QCD PHASE TRANSITION 16.10.2006 Rathen Neutrino
Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts
/ / σ/σ σ/σ θ θ θ θ y 1 0.75 0.5 0.25 0 0 0.5 1 1.5 2 θ θ θ x θ θ Φ θ Φ θ Φ π θ /Φ γφ /θ σ θ π θ Φ θ θ Φ θ θ θ θ σ θ / Φ θ θ / Φ / θ / θ Normalized import share: (Xni / Xn) / (XII / XI) 1 0.1 0.01 0.001
2DEG under microwaves: Oscillatory photoresistivity and zero-resistance states. Alexander D. Mirlin
2DEG under microwaves: Oscillatory photoresistivity and zero-resistance states Alexander D. Mirlin Forschungszentrum Karlsruhe & Universität Karlsruhe, Germany I.A. Dmitriev, D.G. Polyakov (FZ Karlsruhe)
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Wilson ratio: universal nature of quantum fluids
Wilson ratio: universal nature of quantum fluids Xi-Wen Guan key collaborators: Yi-Cong Yu, Yang-Yang Chen, Hai-Qing Lin Washington University, April 205 Giamarchi, Quantum Physics in one dimension,
CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS
FEATURE Operating Temperature: -55 ~ +155 C 3 Watts power rating in 1 Watt size, 1225 package High purity alumina substrate for high power dissipation Long side terminations with higher power rating PART
Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.
Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1 Zn(1) O(1) 1.969(2) Zn(1) O(5) 1.989(3) Zn(1) O(6) 1.930(3) Zn(1) O(4) a 1.954(4) Zn(1) O(3) a 2.519(25) O(6) Zn(1) O(4) a
Temperature Correction Schemes
Temperature Correction Schemes Motiation Up to now: Radiation transfer in a gien atmospheric structure No coupling between radiation field and temperature included Including radiatie equilibrium into solution
Θεωρητική Επιστήμη Υλικών
Θεωρητική Επιστήμη Υλικών 1ο διαγώνισμα, 6/10/015. Find the eigenvalues and the eigenvectors of the matrix: 1 0 i 0 1 1 i 1 0 Make sure that eigenvectors are normalized i.e ψ ψ = 1. Bonus: check if eigenvectors