Kinetic Space Plasma Turbulence
|
|
- ÁἸσαάκ Ελευθερίου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Kinetic Space Plasma Turbulence PETER H. YOON 8the East-Asia School and Workshop on Laboratory, Space, and Astrophysical Plasmas July 30 (Mon) August 3 (Fri) 2018, Chungnam National University, Korea
2 Motivation Nonthermal charged particle distribution function in space Kappa f Max e v2 /vt 2 1 f kappa (1 + v 2 /κvt 2 )κ+1 Maxwell
3 Motivation Solar flare-generated radio bursts
4 Fundamentals of Plasma Kinetic Theory 1D, field-free electrostatic Vlasov-Poisson equation ( t + v x + e ) ae f a = 0, m a v E x = 4πˆn e a dv f a. a Separation into Average and Fluctuation f a (x, v, t) = F a (v, t) + δf a (x, v, t), E(x, t) = δe(x, t). Rewrite the equations ( t + e a δe ) ( F a + m a v t + v x + e a δe ) δf a = 0, m a v x δe = 4πˆn e a dv δf a. a
5 Random phase approximation < δf a >= 0, < δe >= 0. Stationary and homogeneous turbulence, < δf a (x, v, t) δf b (x, v, t ) >= g( x x, t t, v, v ).
6 ( t + e a δe ) ( F a + m a v t + v x + e a δe ) δf a = 0, m a v Upon averaging we have the formal particle kinetic equation F a t = e a m a v δf a δe. Inserting to the original equation, we obtain the equation for the perturbed distribution, ( t + v ) δf a = e a δe F a x m a v e a m a v (δf a δe < δf a δe >).
7 Fourier-Laplace transformation: δf a (x, v, t) = δf a kω(v, t) = δe(x, t) = δe kω (t) = dk 1 (2π) 2 dk 1 (2π) 2 L (slow time) dω δf a kω(v, t) e ikx iωt, dx 0 dt δf a (x, v, t) e ikx+iωt, dω δe kω (t) e ikx iωt, L dx dt δe(x, t) e ikx+iωt, where L = ( + iσ, + + iσ) (σ > 0 and σ 0: causality). 0
8 δe kω (t) = i 4πˆne a dv δf k kω(v, a t), a F a (v, t) = e a dk dω t m a v < δe k, ω(t) δfkω(v, a t) >, ( ω kv + i ) δf a t kω(v, t) = i e a δe kω (t) F a(v, t) m a v i e a dk dω [ δek ω m a v (t) δf k k a ω ω (v, t) < δe k ω (t) δf k k a,ω ω (v, t) >].
9 Absorb slow time into ω (short-cut trick), Short-hand notations: ω + i t ω. K = (k, ω), E K = δe kω, f K = δfkω, a F = F a, dk = dk dω, g K = i e a m a 1 ω kv + i0 v. Equation for the perturbed particle distribution: f K = g K F E K + dk g K (E K f K K < E K f K K >).
10 Iterative solution: f K = f (1) K + f (2) (n) K +, (f K En K). f (1) K = g K F E K, f (2) K = dk g K (E K f (1) K K < E K f (1) K K >) = dk g K g K K F (E K E K K < E K E K K >). More simplified notations: = dk 1 dk 2 δ(k 1 + K 2 K), 1+2=K E 1 = E K1, E 2 = E K2, g 1 = g K1, g 2 = g K2.
11 Iterative solution for f K f K = g K F E K + Symmetrized version f K = g K F E K + 1+2=K 1+2=K g K g 2 F (E 1 E 2 < E 1 E 2 >). 1 2 g 1+2 (g 1 + g 2 ) F (E 1 E 2 < E 1 E 2 >). Insert f K to Poisson equation, E K = i a 4πˆne a k dv f K.
12 Linear and nonlinear susceptibility response functions, ɛ(k) = 1 + i 4πe aˆn dv g K F, k a χ (2) a (1 2) = i 4πe aˆn dv g 1+2 (g 1 + g 2 ) F. 2 k 1 + k 2 or explicitly ɛ(k) = 1 + a χ (2) (1 2) = i 2 a [( v ωpa 2 F a / v dv k ω kv + i0, ωpa 2 1 dv k 1 + k 2 ω 1 + ω 2 (k 1 + k 2 ) v + i0 ) ] 1 ω 1 k 1 v + i0 + 1 Fa. ω 2 k 2 v + i0 v e a m a
13 0 = ɛ(k) E K + 1+2=K χ (2) (1 2) (E 1 E 2 < E 1 E 2 >). Multiply E K and take ensemble average 0 = ɛ(k) < E K E K > + χ (2) (1 2) < E 1 E 2 E K >. 1+2=K Homogeneous and stationary turbulence (and spectral representation), < E(x, t) E(x, t ) >=< E 2 > x x,t t, < E kω E k ω >= δ(k + k ) δ(ω + ω ) < E 2 > kω. 0 = ɛ(k) < E 2 > K + χ (2) (1 2) < E 1 E 2 E K >. 1+2=K
14 Closure of Hierarchy If E K is linear eigenmode, then ɛ(k) E K = 0, and < E 1 E 2 E K >= 0, but for nonlinear system we write E K = E (0) K + E(1) K, where ɛ(k) E(0) K = 0. Then E (1) K 1 ( ) dk χ (2) (K K K ) E (0) K ɛ(k) E(0) K K < E(0) K E(0) K K >. Three-body correlation, < E K E K K E K > < E (0) K E (0) K K E (0) K }{{ > } + < E(1) 0 K E (0) K K E (0) K > + < E (0) K E (1) K K E (0) K > + < E(0) K E (0) K K E (1) K >.
15 < E K E K K E K >= 1 dk χ (2) (K K K ) ɛ(k ) ( E K E K K E K K E K E K E K K E K K E K ) 1 dk χ (2) (K K K K ) ɛ(k K ) ( E K E K K K E K E K E K E K K K E K E K ) 1 dk χ (2) ( K K + K ) ɛ( K) ( E K E K K E K E K+K E K E K K E K E K+K ). where we dropped the superscript (0). To obtain < E 3 > one needs < E 4 >.
16 For homogeneous and stationary turbulence, < E K E K E K E K >= δ(k + K + K + K ) Useful symmetry relations: [ δ(k + K ) < E 2 > K < E 2 > K +δ(k + K ) < E 2 > K < E 2 > K + δ(k + K ) < E 2 > K < E 2 > K ] + < E 4 > K;K+K ;K+K +K. χ (2) ( 1 2) = χ (2) (1 2), χ (2) (1 2) = χ (2) (2 1), χ (2) (1 2) = χ (2) (2 1) = χ (2) ( ).
17 Three-body cumulants: < E K E K K E K > = 2χ(2) (K K K ) ɛ(k ) + 2χ(2) (K K K ) ɛ(k K ) 2χ(2) (K K K ) ɛ (K) < E 2 > K K < E 2 > K < E 2 > K < E 2 > K < E 2 > K < E 2 > K K.
18 Spectral balance equation 0 = ɛ(k) < E 2 > K ( {χ +2 dk (2) (K K K )} 2 ɛ(k < E 2 > K K < E 2 > K ) + {χ(2) (K K K )} 2 ɛ(k K ) χ(2) (K K K ) 2 ɛ (K) < E 2 > K < E 2 > K < E 2 > K < E 2 > K K ).
19 Formal Wave Kinetic Equation Reintroduce the slow time dependence, ω ω + i t. This leads to ( ɛ(k, ω) < E 2 > kω ɛ k, ω + i ) < E 2 > kω t ( ɛ(k, ω) + i ) ɛ(k, ω) < E 2 > kω. 2 ω t
20 0 = i ɛ(k, ω) 2 ω t < E2 > kω +ɛ(k, ω) < E 2 > kω ( + 2 dk dω {χ (2) (k, ω k k, ω ω )} 2 ɛ(k, ω ) E 2 k k,ω ω E 2 kω + {χ(2) (k, ω k k, ω ω )} 2 ɛ(k k, ω ω ) χ(2) (k, ω k k, ω ω ) 2 ɛ (k, ω) E 2 k ω E 2 kω E 2 k ω E 2 ) k k,ω ω Real part leads to the dispersion relation, and imaginary part leads to the wave kinetic equation..
21 Particle kinetic equation For particles, leading order perturbed distribution is sufficient, F a = e a dk t m a v < E K fk a >, where F a t = Re i e2 a m 2 a f K = f (1) K + f (2) K +. dk dω v < E2 > kω F a ω kv + i0 v.
22 Particle Kinetic Equation F a t = Re i e2 a m 2 a v dk dω < E2 > kω F a ω kv + i0 v. Dispersion Relation Re ɛ(k, ω) < E 2 > kω = 0. For dispersion relation nonlinear terms are ignored.
23 Wave Kinetic Equation t < 2 Im ɛ(k, ω) E2 > kω = Re ɛ(k, ω)/ ω < E2 > kω 4 Re ɛ(k, ω)/ ω Im dk dω [ ( < E {χ (2) (k, ω k k, ω ω )} 2 2 > k k,ω ω ɛ(k, ω ) + < ) E2 > k ω ɛ(k k, ω ω < E 2 > kω ) χ(2) (k, ω k k, ω ω ) 2 ] ɛ < E 2 > k (k, ω) ω < E2 > k k,ω ω.
24 Linear and Nonlinear Suceptibilities χ a (k, ω) = ω2 pa k χ (2) a dv F a / v ω kv + i0, (k 1, ω 1 k 2, ω 2 ) = i e a ω 2 pa 2 m a k 1 + k 2 1 ω 1 + ω 2 (k 1 + k 2 )v + i0 v ( Fa / v ω 2 k 2 v + i0 + F a / v ω 1 k 1 v + i0 dv ).
25 Partial integrations, χ a (k, ω) = ω 2 pa dv F a (ω kv + i0) 2. χ (2) a (k 1, ω 1 k 2, ω 2 ) = k 1 k 2 (k 1 + k 2 ) dv F a (ω 1 k 1 v)(ω 2 k 2 v) ( 1 k 1 ω 1 + ω 2 (k 1 + k 2 )v ω 1 k 1 v ), + k 2 ω 2 k 2 v + k 1 + k 2 ω 1 + ω 2 (k 1 + k 2 )v where the small positive imaginary parts +i0 are implicit in the resonance denominators.
26 Symmetry Relations χ (2) (k 2, ω 2 k 1, ω 1 ) = χ (2) (k 1, ω 1 k 2, ω 2 ). ɛ( k, ω) = ɛ (k, ω), χ (2) ( k 1, ω 1 k 2, ω 2 ) = χ (2) (k 1, ω 1 k 2, ω 2 ). χ (2) (k 1, ω 1 k 2, ω 2 ) = χ (2) (k 2, ω 2 k 1, ω 1 ) = χ (2) (k 1 + k 2, ω 1 + ω 2 k 2, ω 2 ).
27 Linear Dielectric Susceptibility For fast wave ω kv a th, χ a (0, ω) = ω 2 pa/ω 2. ( ) χ a (k, ω) = ω2 pa ω k2 T a m a ω 2 iπ ω2 pa k dv F a v δ(ω kv). For slow wave ω kv a th χ a (k, ω) = 2ω2 pa k 2 vth a2 iπ ω2 pa k dv F a v δ(ω kv).
28 Nonlinear Susceptibility χ (2) a (0, ω 1 0, ω 2 ) = 0, χ (2) a (k 1, 0 k 2, 0) = ie a T a Fast-Wave Approximation ω 2 pa k 1 k 2 k 1 + k 2 ω 1 k 1 v a th, ω 2 k 2 v a th, ω 1 + ω 2 k 1 + k 2 v a th, 1 v a2 th. χ (2) a (k 1, ω 1 k 2, ω 2 ) = i 2 ( k1 e a m a ω 1 + k 2 ω 2 + k 1 + k 2 ω 1 + ω 2 ω 2 pa ω 1 ω 2 (ω 1 + ω 2 ) ).
29 Two Fast Waves and a Slow Wave ω 1 is arbitrary and ω 2 k 2 v a th, ω 1 + ω 2 k 1 + k 2 v a th, a (k 1, ω 1 k 2, ω 2 ) = i e a ωpa 2 2 m a ω 2 (ω 1 + ω 2 ) [k 2 dv F a/ v ω 1 k 1 v ( k2 + k ) ] 1 + k 2 F a ω 2 ω 1 + ω dv 2 ω 1 k 1 v, χ (2) where we have used the identity F a dv (ω 1 k 1 v) 2 = 1 k 1 dv F a/ v ω 1 k 1 v.
30 χ (2) e a a (k 1, ω 1 k 2, ω 2 ) = i k 1 2 m a ω 2 (ω 1 + ω 2 ) χ a(k 1, ω 1 ) e a ω 2 pa i 2 m a ω 2 (ω 1 + ω 2 ) ( 2 k 1 vth a2 iπ dv F ) a v δ(ω 1 k 1 v).
31 Re ɛ(k, ω) < E 2 > kω = 0, F a = Re i e2 a t m 2 dk dω < E2 > kω F a a v ω kv + i0 v, t < 2 Im ɛ(k, ω) E2 > kω = Re ɛ(k, ω)/ ω < E2 > kω 4 Re ɛ(k, ω)/ ω Im dk dω [ ( < E {χ (2) (k, ω k k, ω ω )} 2 2 > k k,ω ω ɛ(k, ω ) + < ) E2 > k ω ɛ(k k, ω ω < E 2 > kω ) ] χ(2) (k, ω k k, ω ω ) 2 ɛ < E 2 > k (k, ω) ω < E2 > k k,ω ω.
32 Re ɛ(k, ω) < E 2 > kω = 0, ω = ωk α (α = L, S). < E 2 > kω = [ I +α k δ(ω ωk α ) + I α k δ(ω + ωk α ) ] α = Ik σα δ(ω σωk α ). σ=±1 α
33 Langmuir (α = L) and ion-sound wave (α = S) ωk L = ω pe (1 + 3 ) ( 2 k2 λ 2 De = ω pe k 2 v 2 ) T e 4 ωpe 2, ω k L = ωk L, ω S k = kc S (1 + 3T i /T e ) 1/2 (1 + k 2 λ 2 De )1/2, ω S k = ω S k. Particle kinetic equation, F a t D = πe2 a m 2 a ( D F a v = v σ=±1 α ), dk Ik σα δ(σωα k kv).
34 < E 2 > kω = σ=±1 α=l,s < E 2 > k ω = σ =±1 β=l,s < E 2 > k k,ω ω = I σα k δ(ω σω α k ), σ =±1 γ=l,s I σ β k δ(ω σ ω β k ), I σ γ k k δ(ω ω σ ω γ k k ). 1 ɛ(k, ω) = P 1 ɛ(k, ω) α=l,s σ=±1 1 ɛ (k, ω) = P 1 ɛ (k, ω) + α=l,s σ=±1 iπ δ(ω σωk α) Re ɛ(k, σωk α, )/ σωα k iπ δ(ω σωk α) Re ɛ(k, σωk α. )/ σωα k
35 Ik σα 2 Im ɛ(k, σωk α ) = t Re ɛ(k, σωk α)/ σωα k 4 Im dk Re ɛ(k, σωk α)/ σωα k + σ =±1 σ =±1 β γ I σα k P {χ(2) (k, σω α k σ ω γ k k k k, σ ω γ k k )} 2 ɛ(k, σω α k σ ω γ k k ) P {χ(2) (k, σ ω β k k k, σω α k σ ω β k )} 2 ɛ(k k, σω α k σ ω β k ) I σ β k ] Ik σα I σ γ k k I σα k
36 4π + Re ɛ(k, σωk α)/ σωα k σ,σ =±1 β,γ [ Im dk {χ (2) (k, σ ω β k k k, σ ω γ k k )} 2 ( I σ γ k k I σα k Re ɛ(k, σ ω β k )/ σ ω β + k + χ(2) (k, σ ω β k k k, σ ω γ k k ) 2 Re ɛ(k, σω α k )/ σωα k δ(σω α k σ ω β k σ ω γ k k ). I σ β k I σα k Re ɛ(k k, σ ω γ k k )/ σ ω γ k k ] I σ β k I σ γ k k )
37 Ik σl = 2 Im ɛ(k, σωl k ) t ɛ (k, σωk L) 4 ɛ (k, σωk L) Im 8π + ɛ (k, σωk L) σ =±1 σ,σ =±1 I σl k ( I σ L k Iσ S S k k ɛ (k, σωk L) Iσ k k IσL k ɛ (k, σ ω L k ) δ(σω L k σ ω L k σ ω S k k ) ], [ ] dk A σ,σ L,L (k, k ) I σ L k + Aσ,σ L,S (k, k ) I σ S k Ik σl dk [ χ (2) (k, σ ω L k k k, σω L k σ ω L k ) 2 I σ L k IσL k ɛ (k k, σ ω S k k ) )
38 I σs k t = 2 Im ɛ(k, σωs k ) ɛ (k, σωk S) 4 ɛ (k, σωk S) Im + 4π ɛ (k, σω S k ) σ =±1 σ,σ =±1 I σs k ( I σ L k Iσ L L k k ɛ (k, σωk S) Iσ k k IσS k ɛ (k, σ ω L k ) δ(σω S k σ ω L k σ ω L k k ) ], [ ] dk A σ,σ S,L (k, k ) I σ L k + Aσ,σ S,S (k, k ) I σ S k Ik σs dk [ χ (2) (k, σ ω L k k k, σω S k σ ω L k ) 2 I σ L k IσS k ɛ (k k, σ ω L k k ) ) A σ,σ α,β (k, k ) = 2 {χ (2) (k, σ ω β k k k, σω α k σ ω β k )} 2 P 1 ɛ(k k, σω α k σ ω β k ).
39 See the following references for details: P. H. Yoon, Generalized weak turbulence theory, POP, 7, 4858 (2000) L. F. Ziebell, R. Gaelzer, and P. H. Yoon, Nonlinear development of weak beam-plasma instability, POP, 8, 3982 (2001) P. H. Yoon, Effects of spontaneous fluctuations on the generalized weak turbulence theory, POP, 12, (2005) P. H. Yoon, T. Rhee, and C.-M. Ryu, Effects of spontaneous thermal fluctuations on nonlinear beam-plasma interaction, POP, 12, (2005)
40 Induced Emission: Linear Wave-Particle Resonance Ik σl t = π σωk L ind. emiss. Ik σs t = π µ k σωk L ind. emiss. µ k µ k = k 3 λ 3 De ω 2 pe k ω 2 pe k ( F e + me me dv δ(σω L k kv) Fe F i m i m i k, v IσL dv δ(σω S k kv) v ) I σs k µ k, 1 + 3Ti T e.
41 Decay/Coalescence: Nonlinear Three-Wave Resonance I σl k t [ = π decay 2 σω L k I σ L k e 2 σω L Te 2 k σ,σ =±1 I σ S k k µ k k ( σ ω L k δ(σω L k σ ω L k σ ω S k k ), dk µ k k (k k ) 2 I σ ) S k k + σ ω L L k k µ Iσ k Ik σl k k Ik σs t = π e 2 σω S decay µ k 4 Te 2 k dk µ k k 2 σ,σ =±1 [ ( σωk L I σ L L k Iσ k k σ ω L L k Iσ k k + σ ω L L k k Iσ k δ(σω S k σ ω L k σ ω L k k ). ) ] I σs k µ k ]
42 Induced Scattering: Nonlinear Wave-Particle Resonance I σl k t = σωk L scatt. π ω 2 pe e 2 m e m i σ =±1 dk (k k ) F i v δ[σωl k σ ωk L (k k ) v] Ik σ dv L IσL k.
43 Adding effects of spontaneous thermal fluctuation This tutorial is too short to discuss in detail but in general, induced processes must be balanced by spontaneous processes. F e t A i = = ( ) F e A i F e + D ij, v i v j e 2 dk k i 4πm e k 2 σωk L δ(σωk L k v), D ij = πe2 m 2 e dk k i k j k 2 σ=±1 σ=±1 δ(σω L k k v) I σl k.
44 Langmuir Wave Kinetic Equation I σl k t + 2 = πω2 pe k 2 σ,σ =±1 σω L k ˆn e2 dv δ(σωk L k v) π Fe }{{} dk π e 2 4 Te 2 spont. emission µ k k (k k ) 2 k 2 k 2 k k 2 + σωk L Ik σl }{{} δ(σωk L σ ω L k σ ω S k k ( ) ) σωk L I σ L S k Iσ k k }{{} σ ω L S k Iσ k k IσL k σ ω L L k k Iσ k IσL k }{{} spont. decay induced decay k Fe v induced emission
45 πe2 m 2 e ωpe 2 σ =±1 dk dv (k k ) 2 k 2 k 2 δ[σω L k σ ω L k (k k ) v] ˆn e2 σω L ( πωpe 2 k σ ω L k IσL k σωk L I σ L) k (Fe + F i) }{{} spontaneous scattering ( ) + I σ L k IσL k (k k ) (σωk L σ ω L me k ) Fe (σωk L ) F i. v m i }{{} induced scattering
46 Forward/backward-Ion-sound Wave Kinetic Equation I σs k t = πµ kω 2 pe k 2 ˆn e2 dv δ(σω S k k v) ( k (Fe + Fi) + σωk L Ik σs F i } π {{} v m i }{{} spont. emission σ,σ =±1 σω L k induced emission )( F e + me ) dk π e 2 µ k [k (k k )] 2 δ(σω S 4 Te 2 k 2 k 2 k k 2 k σ ω L k σ ω L k k ) ) ( σωk L I σ L L k Iσ k k }{{} σ ω L L k Iσ k k IσS k σ ω L L k k Iσ k IσS k }{{} spont. decay induced decay.
47 Beam-Plasma Instability and Langmuir Turbulence Quasi-stationary ions F i = e v2 /v 2 T i π 1/2 v T i. Initial beam plus background electron distribution F e (v, 0) = (1 δ) e v2 /v 2 T e π 1/2 v T e + δ e (v v0)2/v2 T e π 1/2 v T e.
48 Beam-Plasma Instability and Langmuir Turbulence
49 Beam-Plasma Instability and Langmuir Turbulence
50 Beam-Plasma Instability and Langmuir Turbulence
51 Beam-Plasma Instability and Langmuir Turbulence
52 Beam-Plasma Instability and Langmuir Turbulence
53 Beam-Plasma Instability and Langmuir Turbulence
54 Beam-Plasma Instability and Langmuir Turbulence f kappa 1 (1 + v 2 /κvt 2, κ = 2.25 )κ+1
55 Quiet Time Solar Wind Electrons f kappa 1 (1 + v 2 /κv 2 T )κ+1, FAST WIND e L SUN SLOW WIND EARTH As solar wind expands, f e approaches f κ with κ approaching κ 2.25.
56 Turbulent Equilibrium and Kappa Distribution
57 Turbulent Equilibrium and Kappa Distribution [ v 2 ] κ 1 f e (v) 1 + ( ) κ 3, 2 v 2 T e ( ) I(k) = T e κ 3 ω 2 pe 2 4π ( ) κ + 1 κ 3. 2 (kvt e ) 2 T e T i κ 3/2 κ + 1, and κ = 9 4 = 2.25.
58 Quiet Time Solar Wind Electron Distribution f(v) (s 3 m -6 ) f(v) (s 3 m -6 ) STEREO B ~v ~v v (m/s) Jan 9 T=9.81 ev (Core) 2007 Nov 30 STEREO A STEREO A ~v WIND EESA-L STEREO B ~v v (m/s) WIND EESA-H Kappa=7.02 (Halo) Theory: f e (v) 1 v 2κ+2 ~ v 6.5. Observa/on: (Super Halo) f e (v) v 5.5 v 7.5
59 Conclusion QUiet-time solar wind electrons feature inverse power-law tail population f(v) v α, where α is close to 6.5. This is explained by kappa distribution with index κ = 2.25, which corresponds to an asymptotic state of Langmuir turbulence. Kinetic plasma turbulence theory successfully explains a long standing problem of the physical origin of nonthermal electron velocity distribution.
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
4.4 Superposition of Linear Plane Progressive Waves
.0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog
Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Low Frequency Plasma Conductivity in the Average-Atom Approximation
Low Frequency Plasma Conductivity in the Average-Atom Approximation Walter Johnson & Michael Kuchiev Physical Review E 78, 026401 (2008) 1. Review of Average-Atom Linear Response Theory 2. Demonstration
3+1 Splitting of the Generalized Harmonic Equations
3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Oscillatory Gap Damping
Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Local Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing
University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
linear motions: surge, sway, and heave rotations: roll, pitch, and yaw
heave yaw when the ship is treated as a rigid body, it has six degrees of freedom: three linear motions and three rotations as indicated in the figure at the left: body-fixed axes pitch, v roll, u sway
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
What happens when two or more waves overlap in a certain region of space at the same time?
Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields
ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
1 (a) The kinetic energy of the rolling cylinder is. a(θ φ)
NATURAL SCIENCES TRIPOS Part II Wednesday 3 January 200 0.30am to 2.30pm THEORETICAL PHYSICS I Answers (a) The kinetic energy of the rolling cylinder is T c = 2 ma2 θ2 + 2 I c θ 2 where I c = ma 2 /2 is
Note: Please use the actual date you accessed this material in your citation.
MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices
Lanzos and iorthogonalization methods for eigenvalues and eigenvetors of matries rolem formulation Many prolems are redued to solving the following system: x x where is an unknown numer А a matrix n n
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors
BYU PHYS 73 Statistical Mechanics Chapter 7: Sethna Professor Manuel Berrondo Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids,
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
[Note] Geodesic equation for scalar, vector and tensor perturbations
[Note] Geodesic equation for scalar, vector and tensor perturbations Toshiya Namikawa 212 1 Curl mode induced by vector and tensor perturbation 1.1 Metric Perturbation and Affine Connection The line element
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Part 4 RAYLEIGH AND LAMB WAVES
Part 4 RAYLEIGH AND LAMB WAVES Rayleigh Surfae Wave x x 1 x 3 urfae wave x 1 x 3 Partial Wave Deompoition Diplaement potential: u = ϕ + ψ Wave equation: 1 ϕ 1 ψ ϕ = = k ϕ an ψ = = k t t ψ Wave veloitie:
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Haddow s Experiment:
schematic drawing of Haddow's experimental set-up moving piston non-contacting motion sensor beams of spring steel m position varies to adjust frequencies blocks of solid steel m shaker Haddow s Experiment:
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Optical Feedback Cooling in Optomechanical Systems
Optical Feedback Cooling in Optomechanical Systems A brief introduction to input-output formalism C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum Stochastic differential
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy