Neutrino emissivities in quark matter

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Neutrino emissivities in quark matter"

Transcript

1 Neutrino emissivities in quark matter Jens Berdermann (University Rostock) David Blaschke (University Wrocław) WORKSHOP III OF THE VI,,DENSE HADRONIC MATTER & QCD PHASE TRANSITION Rathen Neutrino emissivities in quark matter p.1/26

2 Content Introduction Urca process (Iwamoto) Limitations Nambu-Gorkov formalism Results Summary/Outlook Neutrino emissivities in quark matter p.2/26

3 URCA-Process [Iwamoto Ann.Phys. 141(1982) 1] d W A p 2 p 4 p V 1 p 3 d u + e + ν e θ 13 p 3 p 1 u d ν e e u ε = 6 4Y Z i=1 d 3 p i (2π) 3 2E i E 2 W fi n(p 1 )[1 n(p 3 )][1 n(p 4 )] W fi = (2π) 4 δ (4) (p 1 p 2 p 3 p 4 ) M 2 M 2 1 X M fi 2 = 64 G 2 cos 2 θ c (p 1 p 2 ) (p 3 p 4 ) 2 θ 14 p 4 e θ 3 4 σ d,σ u,σ e = 64 G 2 cos 2 θ c E 1 E 2 E 3 E 4 (1 cos θ 34 ) µ i = p i F [1 + (2/3π)α s], i = u, d µ i p i F [ (m i/p i F )2 ], i = u, d, e p d F pu F pe F 1 2 pe F θ2 14, θ 14 θ 34 p d F pu F pe F p e F (2/3π)α s, α s = g 2 /4 2!! p d F pu F pe F pe 4 pd F m d F p e pu F F p e F p d F! m u p u F! 2! 3 m 2 e 5 p e F Neutrino emissivities in quark matter p.3/26

4 Emissivities (perturbative) ε α s (457/630) G 2 cos 2 θ c α s p d F pu F pe F T 6 ε m (457π/1680) G 2 cos 2 θ c m 2 d f pu F T 6, f 1 (m u /m d ) 2 (p d F /pu F ) (m e/m d ) 2 (p d F /pe F ) m u = 5 MeV, m d = 10 MeV ε [erg / m 3 s] DU (α s ) DU (mass) T [kev] Neutrino emissivities in quark matter p.4/26

5 QCD phase diagram 120 NQ 100 g2sc gcfl 80 gusc T [MeV] 60 2SC CFL M s =200 MeV µ [MeV] Figure F.Sandin [Blaschke et. al. Phys.Rev D 72, (2005)] Neutrino emissivities in quark matter p.5/26

6 Quark mass and diquark gap 2SC Ω (µb,µ Q,µ 8,T ) = φ2 u + φ 2 d 8 G G 2 1 π 2 Z 0 dp p 2 (T ln " 1 + exp E d,b (p) µ Q T " + T ln 1 + exp E+ d,b (p) 0.5 µ!# " Q +T ln 1 + exp E u,b (p) 0.5 µ! Q T T " + T ln 1 + exp E+ u,b (p) µ!# " Q +2T ln 1 + exp ξ d,r (p) µ! Q T T " + 2T ln 1 + exp ξ+ d,r (p) 0.5 µ!# "! Q +2T ln 1 + exp ξ u,r(p) 0.5 µ Q T T "!# T ln 1 + exp ξ+ u,r(p) µ Q + X 4E f (p) + X ) ξ j f,r T (p) 5 f=u,d j=+,!# q ξ f,r = [E f,r (p)]2 + g(p) 2 2, f = u, d E f,r (p) = E f (p) 1 µ B + 1 «3 2 µ Q 1 3 µ 8, E f,b (p) = E f (p) 1 3 q E f (p) = p 2 + Mf 2(p), M f (p) = m f + g(p)φ f µ B + 1 «2 µ Q ± 2 3 µ 8, Neutrino emissivities in quark matter p.6/26

7 Quark mass and diquark gap 2SC (sym. matter) Λ = GeV, G1 Λ 2 = 2.319, m u,d = 5.5MeV Ω φ f = 0 Ω φ f = Ω = T= 0 MeV M u, M d 300 T= 0 MeV η= 0.75 M u, M d, M [MeV] 200, M [MeV] µ q [MeV] µ q [MeV] Neutrino emissivities in quark matter p.7/26

8 Quark mass and diquark gap 2SC (β-equil.,charge cons.) T= 0 MeV η= 0.75 M u, M d M u M d 300 T= 0 MeV η= 1 M u, M d M u M d ud ud, M [MeV] 200, M [MeV] µ q [MeV] µ q [MeV] Neutrino emissivities in quark matter p.8/26

9 Quark mass and diquark gap (β-equil.,charge cons.) T= 50 MeV η= 0.75 M u, M d M u M d 300 T= 50 MeV η= 1 M u, M d M u M d ud ud, M [MeV] 200, M [MeV] µ q [MeV] µ q [MeV] Neutrino emissivities in quark matter p.9/26

10 Kinetic equation i µ x Tr[γ µg < ν (X, q 2)] = Tr[G > ν (X, q 2)Σ < ν (X, q 2) Σ > ν (X, q 2)G < ν (X, q 2)], X = (t, x) W ν + d u W + + ν e + Σ < ν (t, q 2 ) = G2 F 2 Σ > ν (t, q 2 ) = G2 F 2 Z d 4 q 1 (2π 4 ) γµ (1 γ 5 )(γ α q 1,α + µ e γ 0 )γ ν (1 γ 5 ) Π > µν(q 1 q 2 ) π q 1 f e (t, q 1 )δ(q µ e q 1 ), Z d 4 q 1 (2π 4 ) γµ (1 γ 5 )(γ α q 1,α + µ e γ 0 )γ ν (1 γ 5 ) Π < µν(q 1 q 2 ) π q 1 [1 f e (t, q 1 )]δ(q µ e q 1 ig < ν (t, q 2 ) = (γ β q 2,β + µ ν γ 0 ) π {f ν (t, q 2 )δ(p µ ν q 2 ) q 2 [1 f ν (t, q 2 )]δ(q2 0 + µ ν + q 2 )} ig > ν (t, q 2 ) = (γ β q 2,β + µ ν γ 0 ) π {[1 f ν (t, q 2 )]δ(q2 0 + µ ν q 2 ) q 2 f ν (t, q 2 )δ(q2 0 + µ ν + q 2 )} Neutrino emissivities in quark matter p.10/26

11 Kinetic equation t f ν(t, q 2 ) = i G2 F 16 Z d 3 q 1 (2π) 3 q 1 q 2 Lµν (q 1, q 2 ){[1 f ν (t, q 2 )]f e (t, q 1 )Π > µν(q) f ν (t, q 2 )[1 f e (t, q 1 )]Π < µν(q)} Z = G2 F d 3 q 1 8 (2π) 3 q 1 q 2 Lµν (q 1, q 2 ) n F ( q 1 µ e )n B ( q 2 + µ e q 1 )ImΠ R µν(q Π > (q) = 2i[1 + n B (q 0 )]ImΠ R (q) Π < (q) = 2i n B (q 0 )ImΠ R (q) n B (ω) 1/(e ω/t 1) (Bose) n F (ω) 1/(e ω/t + 1) (Fermi) L µν (q 1, q 2 ) = Tr[γ µ (1 γ 5 ) q 1 γ ν (1 γ 5 ) q 2 ] = 8[q µ 1 qν 2 g µν (q 1 q 2 ) + q ν 1 q µ 2 iɛµανβ q 1α q 2β ] Neutrino emissivities in quark matter p.11/26

12 Hadronic loop u u <ud> W W W d d W W W <du> Π µν (q) = i 2 Z d 4 p (2π) 4 Tr Z,D [Γ Z µ S p Γ Z ν S p+q ], u, d p, p + q ˆp, ˆk Γ Z i = Γ i 0 0 Γ + i 1 A Γ ± i = γ i (1±g A γ 5 ) i = µ, ν ; S j = G+ j F + j F j G j 1 A j = p, p+q. S 1 S = 1 ( [S 0 + ] 1 + [S0 ] 1 ) ( A C B D ) = ( ) Neutrino emissivities in quark matter p.12/26

13 Nambu-Gorkov propagators I : [S + 0 ] 1 A + C = 1 II : [S + 0 ] 1 B + D = 0 III : + A + [S 0 ] 1 C = 0 IV : + B + [S 0 ] 1 D = 1 A + = [(S0 ) 1 Σ + ] 1 = G + B = S + 0 G = F C = S 0 + G + = F + D = [(S 0 ) 1 Σ ] 1 = G S ± 0 (p 0, p) = γ 0 Λ p p 0 Ep + γ 0 Λ + p p 0 + E p ± h 1 S ± 0 (p 0, p)i = γ 0 (p 0 ± µ) γp m = γ 0 (p 0 Ep )Λ + p + γ 0 (p 0 + E p ± )Λ p E p = E p µ (particle/hole), E ± p = E p ± µ (antiparticle/antihole), E p = p p 2 + m 2 = i ε ik ɛ αβb γ 5, + = γ 0 ( ) γ 0 (diquark condensat) Σ ± = S 0 ± Neutrino emissivities in quark matter p.13/26

14 Nambu-Gorkov propagators G ± = [(S ± 0 ) 1 S 0 ± ] 1 = p 0 + E p p 2 0 (ξ p ) 2 γ 0 Λ p + F ± = S 0 ± G ± = ± p 2 0 (ξ± p ) 2 Λ+ p + ± p 2 0 (ξ p ) 2 Λ p Pole p0 = ±ξ p und p 0 = ξ + p mit (ξ ± p ) 2 = (E ± p ) p 0 E ± p p 2 0 (ξ± p ) 2 γ 0 Λ + p (Quasiparticle/Quasihole- and Quasiantiparticle/Quasiantihole excitation energies) Energy projectors Λ ± p = 1 2 (1 ± γ 0 S + p ) Λ ± p = 1 2 (1 ± γ 0 S p ) 9 = ; S± p = γ ˆp ± ˆm, ˆp = p E p ˆm = m E p Neutrino emissivities in quark matter p.14/26

15 Polarisation tensor Π µν (q) = i T 2 X Z n d 3 p (2π) 3 Tr Z,D [Γ Z µ S p Γ Z ν S p+q ] Tr D [Γ µ G + p Γ ν G + p+q + Γ+ µ G p Γ + ν G p+q + Γ µ F p Γ + ν F + p+q + Γ+ µ F + p Γ ν F p+q ] = (p 0 + E p )(p 0 + q 0 + E k ) [p 2 0 (ξ p ) 2 ][(p 0 + q 0 ) 2 (ξ k )2 ] {T + µν(ˆp, ˆk) + g 2 A e T + µν(ˆp, ˆk) g A [ f W + µν(ˆp, ˆk) + W + µν(ˆp, ˆk)]} + (p 0 E p )(p 0 + q 0 E k ) [p 2 0 (ξ p ) 2 ][(p 0 + q 0 ) 2 (ξ k )2 ] {T µν(ˆp, ˆk) + g 2 A e T µν(ˆp, ˆk) + g A [ f W µν(ˆp, ˆk) + W µν(ˆp, ˆk)]} 2 [p 2 0 (ξ p ) 2 ][(p 0 + q 0 ) 2 (ξ k )2 ] {[T µν (ˆp, ˆk) + T + µν (ˆp, ˆk)] + g 2 A [e T µν (ˆp, ˆk) + e T + µν (ˆp, ˆk)] g A [ f W + µν(ˆp, ˆk) + W + µν(ˆp, ˆk) f W µν(ˆp, ˆk) W µν(ˆp, ˆk)]} p0 = i(2n + 1)πT, q 0 = i2mπt fermionic and bosonic Matsubara frequencies T e ± µν (ˆp, ˆk) = Tr[γ 0 γ µ Λ e± p γ 0 γ ν Λ ± k ],f W µν(ˆp, ± ˆk) = Tr[γ 0 γ µ Λ e± p γ 0 γ ν Λ ± k γ 5], T µν(ˆp, ± ˆk) = Tr[γ 0 γ µ Λ ± p γ 0 γ ν Λ ± k ], W± µν(ˆp, ˆk) = Tr[γ 0 γ µ Λ ± p γ 0 γ ν Λ ± k γ 5] (hadronic tensors) Neutrino emissivities in quark matter p.15/26

16 Polarisation tensor Π µν (q 0, q) = i 2 Z d 3 p (2π) 3 A+ (E p, E k ){T µν + (ˆp, ˆk) + T e µν + (ˆp, ˆk) [ W f µν + (ˆp, ˆk) + W µν + (ˆp, ˆk)] + A (E p, E k ){Tµν (ˆp, ˆk) + T e µν (ˆp, ˆk) + [ W f µν (ˆp, ˆk) + Wµν (ˆp, ˆk)]} 2 B(E p, E k ){T µν(ˆp, ˆk) + T + µν(ˆp, ˆk) + e T µν(ˆp, ˆk) + e T + µν(ˆp, ˆk) [ f W + µν(ˆp, ˆk) + W + µν(ˆp, ˆk) f W µν(ˆp, ˆk) W µν(ˆp, ˆk)]} A ± (E p, E k ) = 1 2ξp 2ξ k B(E p, E k ) = 1 2ξp 2ξ k X s 1 s 2 =± X s 1 s 2 =± (ξp + s 1 Ep )(ξ k + s 2E k ) n F (±s 1 ξp )n F ( s 2 ξ k ) q 0 ± s 1 ξp s 2 ξ k n B (±s 1 ξp s 2 ξ k ) 1 n F (s 1 ξp )n F ( s 2 ξ k ) q 0 + s 1 ξp s 2 ξ k n B (s 1 ξp s 2 ξ k ) Neutrino emissivities in quark matter p.16/26

17 Neutrino emissivities ε ν t Z d 3 q 2 (2π) 3 q 2 [f ν (t, q 2 ) + f ν (t, q 2 )] = 2 t Z d 3 q 2 (2π) 3 p F,ν f ν (t, q 2 ) t f ν(t, q 2 ) = G2 F 8 Z d 3 q 1 (2π) 3 p F,e p F,ν L µν (q 1, q 2 ) n F (p F,e µ e )n B (p F,ν +µ e p F,e )ImΠ R µν(q) ε ν = π 8 G2 F cos2 θ c Z d 3 q 2 (2π) 3 p F,ν n B (p F,ν + µ e p F,e ) " X s 1 s 2 =± Z d 3 q 1 (2π) 3 p F,e p F,ν 2B s 1 p Bs 2 k Lµν (q 1, q 2 ) H (n) µν (ˆp, ˆk) 2 2ξ p 2ξ k δ(q 0 + s 1 ξ p s 2 ξ k ) n F (s 1 ξ p )n F ( s 2 ξ k ) n B (s 1 ξ p s 2 ξ k ). Z d 3 p (2π) 3 n F (p F,e µ e ) L µν (q 1, q 2 ) H (a) µν (ˆp, ˆk) L µν (q 1, q 2 )H (n) µν (ˆp, ˆk) = 64q 0 1q 0 2(1 ˆq 1 ˆp)(1 ˆq 2 ˆk) Neutrino emissivities in quark matter p.17/26

18 Emissivities (Quark mass effect) DU (α s ) DU (mass, b =0 MeV) η = 1 µ B = 1.2 GeV, α s, r,g = 0 MeV µ B = 1.2 GeV, M u/d = 74/20 MeV, r,g = 0 MeV µ B = 1.2 GeV,M u/d = 32/18 MeV, r,g = 205 MeV µ B = 1.3 GeV,M u/d = 22/14 MeV, r,g = 211 MeV µ B = 1.4 GeV,M u/d = 17/11 MeV, r,g = 214 MeV ε [erg / m 3 s] T [kev] Neutrino emissivities in quark matter p.18/26

19 Computation scheme T Start, µ B Computation scheme Ω grand canonical thermodynamic potential (EOS) Ω = Ω φ f = 0 Μ f, µ B, µ Q, µ 8 µ f,c, µ e c=r,g,b f=u,d microscopic calculation of kinetic parameters,cv ε = P T Ω Ω µ T µ P = Ω T Next cooling eq. ε ν,λ / L, t, T transport code, R m cooling curves pulsar kicks GRB Tolman TOV Oppenheimer Volkoff equation (star structure) Neutrino emissivities in quark matter p.19/26

20 Cooling t = T Z f T i X i,j C i v(t ) L j (T ) dt ; i = quark, e, γ, gluon, ν; j = ν, γ µ B =1200 MeV, η=1 µ B =1400 MeV, η=1 6,4 6,2 Crab α s α s, Gap mass mass, Gap Model IV 6,4 6,2 Crab α s α s, Gap mass mass, Gap Model IV log 10 (T s [K]) 6 5,8 5,6 3C58 Vela RX J1856 log 10 (T s [K]) 6 5,8 5,6 3C58 Vela RX J1856 5,4 5,4 5,2 5, log 10 (t[yr]) log 10 (t[yr]) Neutrino emissivities in quark matter p.20/26

21 Conclusion Iwamoto Nambu-Gorkov formalism Neutrino emissivities in quark matter p.21/26

22 Conclusion Iwamoto Nambu-Gorkov formalism (non-)perturbative regime (effective chiral quark model) Neutrino emissivities in quark matter p.21/26

23 Conclusion Iwamoto Nambu-Gorkov formalism (non-)perturbative regime (effective chiral quark model) Mass effect due to chiral phase transition Neutrino emissivities in quark matter p.21/26

24 Conclusion Iwamoto Nambu-Gorkov formalism (non-)perturbative regime (effective chiral quark model) Mass effect due to chiral phase transition Color-superconductivity (diquark gap) Neutrino emissivities in quark matter p.21/26

25 Conclusion Iwamoto Nambu-Gorkov formalism (non-)perturbative regime (effective chiral quark model) Mass effect due to chiral phase transition Color-superconductivity (diquark gap) Influence to the cooling of quark stars Neutrino emissivities in quark matter p.21/26

26 Outlook Cooling (color-superconductivity, regime chiral symmetry breaking) Neutrino emissivities in quark matter p.22/26

27 Outlook Cooling (color-superconductivity, regime chiral symmetry breaking) Influence of collective fields (vector mean fields sym/asym chem. pot. shift) Neutrino emissivities in quark matter p.22/26

28 Outlook Cooling (color-superconductivity, regime chiral symmetry breaking) Influence of collective fields (vector mean fields sym/asym chem. pot. shift) High temperatures (chiral/diquark gap change, neutrino trapping, mean free path) Neutrino emissivities in quark matter p.22/26

29 Outlook Cooling (color-superconductivity, regime chiral symmetry breaking) Influence of collective fields (vector mean fields sym/asym chem. pot. shift) High temperatures (chiral/diquark gap change, neutrino trapping, mean free path) Cooling with transport (diffusion equation) Neutrino emissivities in quark matter p.22/26

30 Outlook Cooling (color-superconductivity, regime chiral symmetry breaking) Influence of collective fields (vector mean fields sym/asym chem. pot. shift) High temperatures (chiral/diquark gap change, neutrino trapping, mean free path) Cooling with transport (diffusion equation) Phenomenology (Pulsar Kicks,Gamma-Ray-Bursts,Supernova) Neutrino emissivities in quark matter p.22/26

31 leptonic tensors L 00 (q 1, q 2 ) = 8(q1q q 1 q 2 ) L 0i (q 1, q 2 ) = 8[q1 0 qi 2 + qi 1 q0 2 iɛijk q 1j q 2k ] L i0 (q 1, q 2 ) = 8[q1q 0 2 i + q1q i iɛ ijk q 1j q 2k ] L ij (q 1, q 2 ) = 8[δ ij (q1q q 1 q 2 ) + q1q i j 2 + qj 1 qi 2 iɛ ijkl q 1k q 2l ] T ± 00 (ˆp, ˆk) = 1 + ˆp ˆk + ˆm u ˆm d T ± 0i (ˆp, ˆk) = ±(ˆp i + ˆk i ) T ± i0 (ˆp, ˆk) = ±(ˆp i + ˆk i ) T ± ij (ˆp, ˆk) = δ ij (1 ˆp ˆk ˆm u ˆm d ) + ˆp iˆkj + ˆk i ˆp j et ± 00 (ˆp, ˆk) = 1 + ˆp ˆk ˆm u ˆm d et ± 0i (ˆp, ˆk) = ±(ˆp i + ˆk i ) et ± i0 (ˆp, ˆk) = ±(ˆp i + ˆk i ) et ± ij (ˆp, ˆk) = δ ij (1 ˆp ˆk + ˆm u ˆm d ) + ˆp iˆkj + ˆk i ˆp j W ± 00 (ˆp, ˆk) = 0 W ± 0i (ˆp, ˆk) = iɛ ijk ˆp j ˆkk W ± i0 (ˆp, ˆk) = +iɛ ijk ˆp j ˆkk W ± ij (ˆp, ˆk) = iɛ ijk (ˆp k ˆk k ) + iɛ ijkl ˆp kˆk fw ± 00 (ˆp, ˆk) = 0 fw ± 0i (ˆp, ˆk) = iɛ ijk ˆp j ˆkk fw ± i0 (ˆp, ˆk) = +iɛ ijk ˆp j ˆkk fw ± ij (ˆp, ˆk) = iɛ ijk (ˆp k ˆk k ) + iɛ ijkl ˆp kˆk Neutrino emissivities in quark matter p.23/26

32 Projection operator Main- and transformation properties Λ ± p Λ ± p = Λ ± p Λ ± p Λ p = 0 Λ + p + Λ p = 1 and γ 0 Λ ± p γ 0 = Λ p γ 5 Λ ± p γ 5 = Λ ± p Neutrino emissivities in quark matter p.24/26

33 Polarisation tensor Π µν (q 0, q) = i 2 A ± 1 (E p, E k ) = 2ξp 2ξ k 1 B(E p, E k ) = 2ξp 2ξ k Z d 3 p (2π) 3 A+ (E p, E k ){T + µν(ˆp, ˆk) + e T + µν(ˆp, ˆk) [ f W + µν(ˆp, ˆk) + W + µν(ˆp, ˆk)]} + A (E p, E k ){T µν(ˆp, ˆk) + e T µν(ˆp, ˆk) + [ f W µν(ˆp, ˆk) + W µν(ˆp, ˆk)]} 2 B(E p, E k ){T µν(ˆp, ˆk) + T + µν(ˆp, ˆk) + e T µν(ˆp, ˆk) + e T + µν(ˆp, ˆk) [ f W + µν(ˆp, ˆk) + W + µν(ˆp, ˆk) f W µν(ˆp, ˆk) W µν(ˆp, ˆk)]} X s 1 s 2 =± X s 1 s 2 =± ImΠ µν (q 0, q) = π 2 cos2 θ c Z d 3 p (2π) 3 (ξ p + s 1 E p )(ξ k + s 2E k ) q 0 ± s 1 ξ p 1 q 0 + s 1 ξ p s 2 ξ k s 2 ξ k n F (±s 1 ξ p )n F ( s 2 ξ k ) n B (±s 1 ξ p s 2 ξ k ) n F (s 1 ξ p )n F ( s 2 ξ k ) n B (s 1 ξ p s 2 ξ k ) 2 A (E p, E k )H µν (n) 2 B (E p, E k )H µν (a)!, A (E p, E k ) = X s 1 s 2 =± B 1 (E p, E k ) = 2ξp 2ξ k ξ p X + s 1 E p 2ξ p s 1 s 2 =±! ξ k + s 2E k 2ξ k! δ(q 0 + s 1 ξ p s 2 ξ k ) n F (s 1 ξ p )n F ( n B (s 1 ξ p s 2 δ(q 0 + s 1 ξ p s 2 ξ k ) n F (s 1 ξ p )n F ( s 2 ξ k ) n B (s 1 ξ p s 2 ξ k ) Neutrino emissivities in quark matter p.25/26

34 derivatives Ω φ u = Ω φ d = φ u 1 4 G 1 π 2 + E u,r ξ u,r + E d,r ξ d,r φ d 1 4 G 1 π 2 Ω = 2 G 2 1 π ξ + u,r 1 ξ + d,r Z 0 dp p 2 g(p)m u(p) E u (p) ˆ1 2 nf (ξ u,r 0.5µ Q) + E+ u,r Z 0 dp p 2 g(p)m d(p) E d (p) ( h i 1 n F (E + u,b + 0.5µ Q) n F (E u,b 0.5µ Q) ξ + u,r h i 1 2 n F (ξ d,r + 0.5µ Q) + E+ d,r Z 0 dp p 2 g(p) 2 ( ˆ1 2 nf (ξ + u,r + 0.5µ Q) ) ( h i 1 n F (E d,b + 0.5µ Q) n F (E + d,b 0.5µ Q) 1 ξ u,r ˆ1 2 nf (ξ + u,r + 0.5µ Q ) + 1 h i ) 1 2 n F (ξ + d,r 0.5µ Q) ξ + d,r h i ) 1 2 n F (ξ + d,r 0.5µ Q) ˆ1 2 nf (ξ u,r 0.5µ Q ) ξ d,r h i 1 2 n F (ξ d,r + 0.5µ Q) Neutrino emissivities in quark matter p.26/26

UV fixed-point structure of the 3d Thirring model

UV fixed-point structure of the 3d Thirring model UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches

Διαβάστε περισσότερα

General equilibrium second-order hydrodynamic coefficients for stress-energy tensor and axial current

General equilibrium second-order hydrodynamic coefficients for stress-energy tensor and axial current General equilibrium second-order hydrodynamic coefficients for stress-energy tensor and axial current Matteo Buzzegoli Dipartimento di Fisica e Astronomia & INFN, Firenze March 29 217 Based on a work in

Διαβάστε περισσότερα

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28 L. F avart I.I.H.E. Université Libre de Bruxelles H Collaboration HERA at DESY CLAS Workshop Genova - 4-8 th of Feb. 9 CLAS workshop Feb. 9 - L.Favart p./8 e p Integrated luminosity 96- + 3-7 (high energy)

Διαβάστε περισσότερα

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,

Διαβάστε περισσότερα

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics Dmitry Bagrets Nucl. Phys. B 9, 9 (06) arxiv: 607.00694 Alexander Altland Univ. zu Köln Alex Kamenev Univ. of Minnesota PCS IBS Workshop, Daejeon,

Διαβάστε περισσότερα

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia http://arxiv.org/pd/0705.464 The Standard Mode Antonio Pich IFIC, CSIC Univ. Vaencia Gauge Invariance: QED, QCD Eectroweak Uniication: SU() Symmetry Breaking: Higgs Mechanism Eectroweak Phenomenoogy Favour

Διαβάστε περισσότερα

O(a 2 ) Corrections to the Propagator and Bilinears of Wilson / Clover Fermions

O(a 2 ) Corrections to the Propagator and Bilinears of Wilson / Clover Fermions O(a 2 Corrections to the ropagator and Bilinears of Wilson / Clover Fermions Martha Constantinou Haris anagopoulos Fotos Stylianou hysics Department, University of Cyprus In collaboration with members

Διαβάστε περισσότερα

D-term Dynamical SUSY Breaking

D-term Dynamical SUSY Breaking D-term Dynamical SUSY Breaking Nobuhito Maru (Keio University) with H. Itoyama (Osaka City University) arxiv: 1109.76 [hep-ph] 7/6/01 @Y ITP workshop on Field Theory & String Theory Introduction SUPERSYMMETRY

Διαβάστε περισσότερα

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM PHASE TRANSITIONS IN THROUGH THE SCHWINGER DYSON FORMALISM Spyridon Argyropoulos University of Athens Physics Department Division of Nuclear Physics and Elementary Particles Supervisor: C.N. Ktorides Athens

Διαβάστε περισσότερα

Color Superconductivity: CFL and 2SC phases

Color Superconductivity: CFL and 2SC phases Color Superconductivity: CFL and SC phases Introduction Hierarchies of effective lagrangians Effective theory at the Fermi surface (HDET) Symmetries of the superconductive phases 1 Introduction Ideas about

Διαβάστε περισσότερα

/T interactions and chiral symmetry

/T interactions and chiral symmetry /T interactions and chiral symmetry Emanuele Mereghetti Los Alamos National Lab January 3th, 015 ACFI Workshop, Amherst Introduction M T BSM probing CP with EDM entails physics at very different scales

Διαβάστε περισσότερα

Cosmological Space-Times

Cosmological Space-Times Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =

Διαβάστε περισσότερα

Moments of Structure Functions in Full QCD

Moments of Structure Functions in Full QCD Moments of Structure Functions in Full QCD John W. Negele Lattice 2000 Collaborators MIT Dmitri Dolgov Stefano Capitani Richard Brower Andrew Pochinsky Jefferson Lab Robert Edwards Wuppertal SESAM Klaus

Διαβάστε περισσότερα

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4 Homework 4 Solutions 4.1 - Weyl or Chiral representation for γ-matrices 4.1.1: Anti-commutation relations We can write out the γ µ matrices as where ( ) 0 σ γ µ µ = σ µ 0 σ µ = (1, σ), σ µ = (1 2, σ) The

Διαβάστε περισσότερα

Hadronic Tau Decays at BaBar

Hadronic Tau Decays at BaBar Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton

Διαβάστε περισσότερα

Quantum Electrodynamics

Quantum Electrodynamics Quantum Electrodynamics Ling-Fong Li Institute Slide_06 QED / 35 Quantum Electrodynamics Lagrangian density for QED, Equations of motion are Quantization Write L= L 0 + L int L = ψ x γ µ i µ ea µ ψ x mψ

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information rigin of the Regio- and Stereoselectivity of Allylic Substitution of rganocopper Reagents Naohiko Yoshikai, Song-Lin Zhang, and Eiichi Nakamura* Department of Chemistry, The University

Διαβάστε περισσότερα

Dark Matter and Neutrino Masses from a Scale-Invariant Multi-Higgs Portal

Dark Matter and Neutrino Masses from a Scale-Invariant Multi-Higgs Portal Dark Matter and Neutrino Masses from a Scale-Invariant Multi-Higgs Portal Alexandros Karam Theory Division Physics Department University of Ioannina AK and Kyriakos Tamvakis: 1508.03031 September 7, 015

Διαβάστε περισσότερα

AdS black disk model for small-x DIS

AdS black disk model for small-x DIS AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March

Διαβάστε περισσότερα

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 018.. 49.. 4.. 907Ä917 Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ.. ³μ, ˆ. ˆ. Ë μ μ,.. ³ ʲ μ ± Ë ²Ó Ò Ö Ò Í É Å μ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö μ ² Ìμ μé Ê Ö ±

Διαβάστε περισσότερα

difluoroboranyls derived from amides carrying donor group Supporting Information

difluoroboranyls derived from amides carrying donor group Supporting Information The influence of the π-conjugated spacer on photophysical properties of difluoroboranyls derived from amides carrying donor group Supporting Information Anna Maria Grabarz a Adèle D. Laurent b, Beata Jędrzejewska

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

Š ˆ Š ˆ ˆ ˆ ƒ ˆ Œ.. μ

Š ˆ Š ˆ ˆ ˆ ƒ ˆ Œ.. μ ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 017.. 48.... 145Ä193 Š ˆ Š ˆ ˆ ˆ ƒ ˆ Œ.. μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μë ± Ê É É, μë Ö ˆ 145 ˆ Ÿ Œ œ Œ ˆ - ˆ ˆ 148 Œ ˆŸ 154 Œ Œ Ÿ ( Š ˆ œ -) Š Œ 160 ˆ Œˆ Šˆ Œ ˆ ˆ ƒ ˆ 184 Š ˆ 189 ˆ Š ˆ 190

Διαβάστε περισσότερα

Constitutive Relations in Chiral Media

Constitutive Relations in Chiral Media Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization

Διαβάστε περισσότερα

Relativistic particle dynamics and deformed symmetry

Relativistic particle dynamics and deformed symmetry Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed

Διαβάστε περισσότερα

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling 1th AIAA/CEAS Aeroacoustics Conference, May 006 interactions Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Interaction M. Glesser 1, A. Billon 1, V. Valeau, and A. Sakout 1 mglesser@univ-lr.fr

Διαβάστε περισσότερα

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

SPONTANEOUS GENERATION OF GEOMETRY IN 4D SPONTANEOUS GENERATION OF GEOMETRY IN 4D Dani Puigdomènch Dual year Russia-Spain: Particle Physics, Nuclear Physics and Astroparticle Physics 10/11/11 Based on arxiv: 1004.3664 and wor on progress. by

Διαβάστε περισσότερα

TeSys contactors a.c. coils for 3-pole contactors LC1-D

TeSys contactors a.c. coils for 3-pole contactors LC1-D References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and

Διαβάστε περισσότερα

Geodesic paths for quantum many-body systems

Geodesic paths for quantum many-body systems Geodesic paths for quantum many-body systems Michael Tomka, Tiago Souza, Steve Rosenberg, and Anatoli Polkovnikov Department of Physics Boston University Group: Condensed Matter Theory June 6, 2016 Workshop:

Διαβάστε περισσότερα

Christian J. Bordé SYRTE & LPL.

Christian J. Bordé SYRTE & LPL. Relativisti atom optis and interferometry : a trip in the fifth dimension Christian J. Bordé SYRTE & LPL http://hristian..borde.free.fr/st1633.pdf 1 t Δ ENERGY E( p) M + p 4 hν db E(p) Ω atom slopev M

Διαβάστε περισσότερα

Dark matter from Dark Energy-Baryonic Matter Couplings

Dark matter from Dark Energy-Baryonic Matter Couplings Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010

Διαβάστε περισσότερα

- - - - RWC( %) PF PS = 100 PT PS (%) PF PS = 100 PF WC TW BW FW PF PS PS PD PS PS TW BW = = = C 7.12 A A 660 + 16. 8 = 642.5 µ logn = log N0 + a exp(

Διαβάστε περισσότερα

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data B. Renard, M. Lang, P. Bois To cite this version: B. Renard, M. Lang,

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

Wavelet based matrix compression for boundary integral equations on complex geometries

Wavelet based matrix compression for boundary integral equations on complex geometries 1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

Free Energy and Phase equilibria

Free Energy and Phase equilibria Free Energy and Phase equilibria Thermodynamic integration 7.1 Chemical potentials 7.2 Overlapping distributions 7.2 Umbrella sampling 7.4 Application: Phase diagram of Carbon Why free energies? Reaction

Διαβάστε περισσότερα

Effective weak Lagrangians in the Standard Model and B decays

Effective weak Lagrangians in the Standard Model and B decays Effective wea Lagrangians in the Standard Model and B decays Andrey Grozin A.G.Grozin@inp.ns.su Buder Institute of Nuclear Physics b s Dipole operator b q s Dipole operator b q s s L G a µνt a σ µν b Dipole

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

A NLO Calculation of pqcd: Total Cross Section of P P W + + X. C. P. Yuan. Michigan State University CTEQ Summer School, June 2002

A NLO Calculation of pqcd: Total Cross Section of P P W + + X. C. P. Yuan. Michigan State University CTEQ Summer School, June 2002 A NLO Calculation of pqcd: Total Cross Section of P P W X C. P. Yuan Michigan State University CTEQ Summer School, June Outline. Parton Model Born Cross Section. Factorization Theorem How to organize a

Διαβάστε περισσότερα

T fi = 2πiδ(E f E i ) [< f V i > + 1 E i E n. < f V n > E i H 0 164/389

T fi = 2πiδ(E f E i ) [< f V i > + 1 E i E n. < f V n > E i H 0 164/389 164/389 Ο διαδότης του ηλεκτρονίου Από την μη σχετικιστική θεωρία είχαμε δει T fi = 2πiδ(E f E i ) < f V i > + < f V n > n i 1 < n V i > +... E i E n όπου H 0 n >= E n n >. Φορμαλιστικά μπορούμε να γράψουμε

Διαβάστε περισσότερα

Introduction to the Standard Model of Particle Physics

Introduction to the Standard Model of Particle Physics Introduction to the Standard Model of Particle Physics February 3, 008 Contents Pre-requisits 3. Special Relativity........................... 3. Transition rates............................ 5 Quantum

Διαβάστε περισσότερα

f H f H ψ n( x) α = 0.01 n( x) α = 1 n( x) α = 3 n( x) α = 10 n( x) α = 30 ū i ( x) α = 1 ū i ( x) α = 3 ū i ( x) α = 10 ū i ( x) α = 30 δū ij ( x) α = 1 δū ij ( x) α = 3 δū ij ( x) α = 10 δū ij ( x)

Διαβάστε περισσότερα

On the Einstein-Euler Equations

On the Einstein-Euler Equations On the Einstein-Euler Equations Tetu Makino (Yamaguchi U, Japan) November 10, 2015 / Int l Workshop on the Multi-Phase Flow at Waseda U 1 1 Introduction. Einstein-Euler equations: (A. Einstein, Nov. 25,

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

Chapter 9 Ginzburg-Landau theory

Chapter 9 Ginzburg-Landau theory Chapter 9 Ginzburg-Landau theory The liit of London theory The London equation J µ λ The London theory is plausible when B 1. The penetration depth is the doinant length scale ean free path λ ξ coherent

Διαβάστε περισσότερα

Αστέρες Νετρονίων. Γαλαξιακή και Εξωγαλαξιακή Αστρονομία Γρηγόρης Κατσουλάκος Α.Μ: /2/2013 Καθ.: Δ. Χατζηδημητρίου

Αστέρες Νετρονίων. Γαλαξιακή και Εξωγαλαξιακή Αστρονομία Γρηγόρης Κατσουλάκος Α.Μ: /2/2013 Καθ.: Δ. Χατζηδημητρίου Αστέρες Νετρονίων Γαλαξιακή και Εξωγαλαξιακή Αστρονομία Γρηγόρης Κατσουλάκος Α.Μ:201231 14/2/2013 Καθ.: Δ. Χατζηδημητρίου Αστέρες Νετρονίων Περιεχόμενο της εργασίας Ιστορική Ανασκόπηση: Από την θεωρητική

Διαβάστε περισσότερα

Solar Neutrinos: Fluxes

Solar Neutrinos: Fluxes Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17

Διαβάστε περισσότερα

Some Microscopic Aspects of Double Beta Decay Nuclear Matrix Elements in IBM-2

Some Microscopic Aspects of Double Beta Decay Nuclear Matrix Elements in IBM-2 Some Microscopic Aspects of Double Beta Decay Nuclear Matrix Elements in IBM- J. Barea 1 J. Kotila,3 F. Iachello 3 1 Departamento de Física, Universidad de Concepción, Chile Department of Physics, University

Διαβάστε περισσότερα

Physics 554: HW#1 Solutions

Physics 554: HW#1 Solutions Physics 554: HW#1 Solutions Katrin Schenk 7 Feb 2001 Problem 1.Properties of linearized Riemann tensor: Part a: We want to show that the expression for the linearized Riemann tensor, given by R αβγδ =

Διαβάστε περισσότερα

Hartree-Fock Theory. Solving electronic structure problem on computers

Hartree-Fock Theory. Solving electronic structure problem on computers Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli

Διαβάστε περισσότερα

..,..,.. ! " # $ % #! & %

..,..,.. !  # $ % #! & % ..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,

Διαβάστε περισσότερα

3+1 Splitting of the Generalized Harmonic Equations

3+1 Splitting of the Generalized Harmonic Equations 3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime

Διαβάστε περισσότερα

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian Revisiting the S-matrix approach to the open superstring low energy eective lagrangian IX Simposio Latino Americano de Altas Energías Memorial da América Latina, São Paulo. Diciembre de 2012. L. A. Barreiro

Διαβάστε περισσότερα

Particle Physics: Introduction to the Standard Model

Particle Physics: Introduction to the Standard Model Particle Physics: Introduction to the Standard Model Electroweak theory (I) Frédéric Machefert frederic@cern.ch Laboratoire de l accélérateur linéaire (CNRS) Cours de l École Normale Supérieure 4, rue

Διαβάστε περισσότερα

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR Dieter Van den Bleeken arxiv.org/submit/1828684 Supported by Bog azic i University Research Fund Grant nr 17B03P1 SCGP 10th March 2017

Διαβάστε περισσότερα

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors BYU PHYS 73 Statistical Mechanics Chapter 7: Sethna Professor Manuel Berrondo Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids,

Διαβάστε περισσότερα

Thermodynamics of the motility-induced phase separation

Thermodynamics of the motility-induced phase separation 1/9 Thermodynamics of the motility-induced phase separation Alex Solon (MIT), Joakim Stenhammar (Lund U), Mike Cates (Cambridge U), Julien Tailleur (Paris Diderot U) July 21st 2016 STATPHYS Lyon Active

Διαβάστε περισσότερα

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity 1.- Introduction. 2.- Higgs physics 3.- hhh at one loop level in SM 4.- Littlest Higgs Model with T-parity 5.- hhh at one loop in LHM with T-parity 7.- Conclusions Higgs Decay modes at LHC Direct measurement

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

Dirac Matrices and Lorentz Spinors

Dirac Matrices and Lorentz Spinors Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ k, which obey both commutation

Διαβάστε περισσότερα

PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude

PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude PHY 396 K/L. Solutions for problem set #. Problem : Note the correct muon decay amplitude M(µ e ν µ ν e = G F ū(νµ ( γ 5 γ α u(µ ū(e ( γ 5 γ α v( ν e. ( The complex conjugate of this amplitude M = G F

Διαβάστε περισσότερα

Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20

Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20 Φαινόμενο Unruh Δημήτρης Μάγγος Εθνικό Μετσόβιο Πολυτεχνείο September 26, 2012 1 / 20 Δημήτρης Μάγγος Φαινόμενο Unruh 1/20 Outline Σχετικότητα Ειδική & Γενική Θεωρία Κβαντική Θεωρία Πεδίου Πεδία Στον Χωρόχρονο

Διαβάστε περισσότερα

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density 5..29 Radek Wojtak Nicolaus Copernicus Astronomical Center collaboration: Ewa Łokas, Gary Mamon, Stefan

Διαβάστε περισσότερα

The Θ + Photoproduction in a Regge Model

The Θ + Photoproduction in a Regge Model The Θ + Photoproduction in a Regge Model Herry Kwee College of illiam and Mary Cascade 5 Jefferson Lab December 3, 5 1 1. Introduction. Photoproduction γn Θ + K for spin-1/ Θ + γp Θ + K for spin-1/ Θ +

Διαβάστε περισσότερα

Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι

Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι I,S: SU() group I : SU() group ΠΡΟΤΥΠΟ ΤΩΝ ΑΔΡΟΝΙΩΝ ΜΕ ΣΤΑΤΙΚΑ QUARKS QUARK ATOMS Πλήθος Βαρυονίων & Μεσονίων ~ 96 - αρχικά οι κανονικότητες (patterns) των αδρονικών

Διαβάστε περισσότερα

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011 2.019 Design of Ocean Systems Lecture 6 Seakeeping (II) February 21, 2011 ω, λ,v p,v g Wave adiation Problem z ζ 3 (t) = ζ 3 cos(ωt) ζ 3 (t) = ω ζ 3 sin(ωt) ζ 3 (t) = ω 2 ζ3 cos(ωt) x 2a ~n Total: P (t)

Διαβάστε περισσότερα

Lectures on Quantum sine-gordon Models

Lectures on Quantum sine-gordon Models Lectures on Quantum sine-gordon Models Juan Mateos Guilarte 1,2 1 Departamento de Física Fundamental (Universidad de Salamanca) 2 IUFFyM (Universidad de Salamanca) Universidade Federal de Matto Grosso

Διαβάστε περισσότερα

Σχετικιστικές συμμετρίες και σωμάτια

Σχετικιστικές συμμετρίες και σωμάτια Κεφάλαιο 1 Σχετικιστικές συμμετρίες και σωμάτια 1.1 Η συμμετρία Πουανκαρέ 1.1.1 Βασικοί ορισμοί και ιδιότητες Η θεμελιώδης κινηματική συμμετρία για ένα φυσικό σύστημα είναι η συμμετρία των μετασχηματισμών

Διαβάστε περισσότερα

High Energy Break-Up of Few-Nucleon Systems Misak Sargsian Florida International University

High Energy Break-Up of Few-Nucleon Systems Misak Sargsian Florida International University High Energy Break-U of Few-Nucleon Systems Misak Sargsian Florida International University Exclusive Worksho, JLab May 2-24, 2007 Nuclear QCD Nuclear QCD - identyfy hard subrocess Nuclear QCD - identyfy

Διαβάστε περισσότερα

Markov chains model reduction

Markov chains model reduction Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /

Διαβάστε περισσότερα

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry 5th Titan Workshop at Kauai, Hawaii April 11-14, 2011 Seol Kim Outer Solar System Model Ices with

Διαβάστε περισσότερα

Dirac Matrices and Lorentz Spinors

Dirac Matrices and Lorentz Spinors Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 2 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ z, which obey both commutation

Διαβάστε περισσότερα

Paul Langacker. The Standard Model and Beyond, Second Edition Answers to Selected Problems

Paul Langacker. The Standard Model and Beyond, Second Edition Answers to Selected Problems Paul Langacker The Standard Model and Beyond, Second Edition Answers to Selected Problems Contents Chapter Review of Perturbative Field Theory 1.1 PROBLEMS 1 Chapter 3 Lie Groups, Lie Algebras, and Symmetries

Διαβάστε περισσότερα

Thermoelectrics: A theoretical approach to the search for better materials

Thermoelectrics: A theoretical approach to the search for better materials Thermoelectrics: A theoretical approach to the search for better materials Jorge O. Sofo Department of Physics, Department of Materials Science and Engineering, and Materials Research Institute Penn State

Διαβάστε περισσότερα

Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ

Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ Λεπτονικές διασπάσεις διανυσµατικών µεσονίων Παράδειγµα ουδέτερων διανυσµατικών µεσονιων V Q Q V " l l ( : e, µ ) l ( V : #,", ) l l, 0 0 0 6# " Q &( V % l l ' ) $

Διαβάστε περισσότερα

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000

Διαβάστε περισσότερα

MALMÖ UNIVERSITY HEALTH AND SOCIETY DISSERTATION 2014:3 ANTON FAGERSTRÖM EFFECTS OF SURFACTANT ADJUVANTS ON PLANT LEAF CUTICLE BARRIER PROPERTIES

MALMÖ UNIVERSITY HEALTH AND SOCIETY DISSERTATION 2014:3 ANTON FAGERSTRÖM EFFECTS OF SURFACTANT ADJUVANTS ON PLANT LEAF CUTICLE BARRIER PROPERTIES MALMÖ UNIVERSITY HEALTH AND SOCIETY DISSERTATION 2014:3 ANTON FAGERSTRÖM EFFECTS OF SURFACTANT ADJUVANTS ON PLANT LEAF CUTICLE BARRIER PROPERTIES 1 Malmö University Health and Society, Doctoral Dissertation

Διαβάστε περισσότερα

Ταχέα (μεγάλης ενέργειας) νετρόνια (fast neutrons): Τα ταχέα νετρόνια μπορούν να προκαλέσουν ελαστικές

Ταχέα (μεγάλης ενέργειας) νετρόνια (fast neutrons): Τα ταχέα νετρόνια μπορούν να προκαλέσουν ελαστικές Νετρόνια Τα νετρόνια (n) είναι αφόρτιστα σωματίδια, απαιτείται πυρηνική αλλ/ση ώστε να μεταφερθεί ενέργεια στο υλικό (απορροφητή). Η πιθανότητα αλλ/σης (ενεργός διατομή, σ) εξαρτάται σε μεγάλο βαθμό από

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

The Feynman-Vernon Influence Functional Approach in QED

The Feynman-Vernon Influence Functional Approach in QED The Feynman-Vernon Influence Functional Approach in QED Mark Shleenkov, Alexander Biryukov Samara State University General and Theoretical Physics Department The XXII International Workshop High Energy

Διαβάστε περισσότερα

ΣΧΑΣΗ. Τονετρόνιοκαιησχάση. Πείραµα Chadwick, 1930. Ανακάλυψη νετρονίου

ΣΧΑΣΗ. Τονετρόνιοκαιησχάση. Πείραµα Chadwick, 1930. Ανακάλυψη νετρονίου ΣΧΑΣΗ Τονετρόνιοκαιησχάση Πείραµα Chadwick, 1930 4 9 12 2 α+ 4 Be 6 C+ Ανακάλυψη νετρονίου 1 0 n Irène & Jean Frédéric Joliot-Curie 1934 (Nobel Prize) Σειράπειραµάτων: Βοµβαρδισµόςελαφρών στοιχείων µε

Διαβάστε περισσότερα

m 1, m 2 F 12, F 21 F12 = F 21

m 1, m 2 F 12, F 21 F12 = F 21 m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m

Διαβάστε περισσότερα

4.4 Superposition of Linear Plane Progressive Waves

4.4 Superposition of Linear Plane Progressive Waves .0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive

Διαβάστε περισσότερα

Large β 0 corrections to the energy levels and wave function at N 3 LO

Large β 0 corrections to the energy levels and wave function at N 3 LO Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March

Διαβάστε περισσότερα

11.4 Graphing in Polar Coordinates Polar Symmetries

11.4 Graphing in Polar Coordinates Polar Symmetries .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry y axis symmetry origin symmetry r, θ = r, θ r, θ = r, θ r, θ = r, + θ .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry

Διαβάστε περισσότερα

ITU-R P ITU-R P (ITU-R 204/3 ( )

ITU-R P ITU-R P (ITU-R 204/3 ( ) 1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55

Διαβάστε περισσότερα

Inflation and Reheating in Spontaneously Generated Gravity

Inflation and Reheating in Spontaneously Generated Gravity Univesità di Bologna Inflation and Reheating in Spontaneously Geneated Gavity (A. Ceioni, F. Finelli, A. Tonconi, G. Ventui) Phys.Rev.D81:123505,2010 Motivations Inflation (FTV Phys.Lett.B681:383-386,2009)

Διαβάστε περισσότερα

ITU-R P (2012/02) khz 150

ITU-R P (2012/02) khz 150 (0/0) khz 0 P ii (IPR) (ITU-T/ITU-R/ISO/IEC) ITU-R http://www.itu.int/itu-r/go/patents/en http://www.itu.int/publ/r-rec/en BO BR BS BT F M P RA RS S SA SF SM SNG TF V ITU-R 0 ITU 0 (ITU) khz 0 (0-009-00-003-00-994-990)

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ± Ó³ Ÿ. 2009.. 6, º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ Œ ˆ ˆ Œ ˆŒ ˆ ˆ ˆ ˆ ˆ Ÿ Œ ƒ ˆ ˆŠ ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ÿ. ʲ ±μ ± ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï Œ É ³ É Î ±μ ±μ³

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Εφαρμογές της Πυρηνικής Φυσικής στη μελέτη των αστέρων νετρονίων

Εφαρμογές της Πυρηνικής Φυσικής στη μελέτη των αστέρων νετρονίων Εφαρμογές της Πυρηνικής Φυσικής στη μελέτη των αστέρων νετρονίων Χ. Μουστακίδης Τομέας Πυρηνικής Φυσικής και Φυσικής Στοιχειωδών Σωματιδίων Θεσσαλονίκη, Τετάρτη 8 Απριλίου 2009 Πως γεννιέται ένας αστέρας

Διαβάστε περισσότερα

[Note] Geodesic equation for scalar, vector and tensor perturbations

[Note] Geodesic equation for scalar, vector and tensor perturbations [Note] Geodesic equation for scalar, vector and tensor perturbations Toshiya Namikawa 212 1 Curl mode induced by vector and tensor perturbation 1.1 Metric Perturbation and Affine Connection The line element

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï P15-2012-75.. Ò±,. Ï ± ˆ Œ ˆŸ ˆ, š Œ ˆ ˆŒˆ Š ƒ ˆŸ ˆ ˆ, Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ ² μ Ê ² Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï Ò±.., Ï ±. P15-2012-75 ˆ ³ Ö μ Ì μ É, μ Ñ ³ ÒÌ μ É Ì ³ Î ±μ μ μ É μ Íμ Ö ÕÐ

Διαβάστε περισσότερα

Structure constants of twist-2 light-ray operators in the triple Regge limit

Structure constants of twist-2 light-ray operators in the triple Regge limit Structure constants of twist- light-ray operators in the triple Regge limit I. Balitsky JLAB & ODU XV Non-perturbative QCD 13 June 018 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators

Διαβάστε περισσότερα