Structure-Activity Relationship for the Oxadiazole Class of Antibiotics. Supporting Information
|
|
- Ελευθέριος Αυγερινός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Structure-Activity Relationship for the xadiazole Class of Antibiotics Edward Spink, Derong Ding, Zhihong Peng, Marc A. Boudreau, Erika Leemans, Elena Lastochkin, Wei Song, Katerina Lichtenwalter, Peter I. Daniel, Sebastian A. Testero, Hualiang Pi, Valerie A. Schroeder, William R. Wolter, uno T. Antunes, Mark A. Suckow, Sergei Vakulenko, Mayland Chang *, Shahriar Mobashery * Department of Chemistry and Biochemistry, University of otre Dame, otre Dame, I 46556, USA. Freimann Life Sciences Center and Department of Biological Sciences, University of Authors contributed equally to this work otre Dame, otre Dame, I 46556, USA Supporting Information Contents Experimental Procedures... 2 Table S1. Spectral data of final compounds... 3 Table S2. Minimal Inhibitory concentrations (MICs)... 29
2 Experimental Procedures General procedure for synthesis of benzoyl chlorides This has been previously described. 1 General procedure for synthesis of heteroaryl acyl chlorides The carboxylic acid (1.0 equiv) was dissolved in thionyl chloride (25.0 equiv), and the mixture was heated to reflux for 2.5 h. The excess thionyl chloride was removed in vacuo, and the resulting solid was used without further purification. General procedure for synthesis of diphenyl ethers, Method A (nucleophilic aromatic substitution) A 4-fluorobenzonitrile derivative (1.0 equiv.), a phenol derivative (1.0 equiv.), and K 2 C 3 (2.0 equiv.) were dissolved in either DMS or DMF, and the mixture was stirred at 100 o C for 16 h. The mixture was cooled to room temperature and was diluted with water (2x volume of DMS or DMF used), then it was extracted with ethyl acetate (3x). The combined organic layer was washed with water (3x), then once with brine, and dried (anhydrous a 2 S 4 ). After being concentrated in vacuo, the crude material was purified by column chromatography on silica gel. General procedure for synthesis of diphenyl ethers, Method B (Ullmann coupling) This has been previously described. 1 General procedure for nitro reduction using Fe/HCl This has been previously described. 1 General procedure for nitro reduction using SnCl 2 H 2 Using an adaptation of a literature procedure, 2 the starting material (1.0 equiv.) was dissolved in ethanol (6.0 ml/mmol starting material), and SnCl 2 2H 2 (5.0 equiv.) was added. The mixture was stirred at 70 o C for 4 h, then cooled to room temperature and poured onto ice. The ph was adjusted to ~7-8 with saturated ahc 3, and the aqueous layer was extracted 3x with ethyl
3 acetate. The combined organic layers were dried (anhydrous a 2 S 4 ), and the solvent was removed in vacuo. The crude product was purified by column chromatography on silica gel. General procedure for synthesis of -hydroxybenzimidamides This was previously described. 1 General procedure for synthesis of allyl-protected phenols Allyl-protected phenols 9, 3 12, 4 13, 5 and 20, 6 are known compounds, and were synthesized using previously described procedures. 3 Compounds 52, 14, and 15 were synthesized using previously described procedures. 1,7 Table S1. Spectral data of final compounds Compound umber 57a Structure and data 57b Lit. 1 57c Lit F MR (500 MHz, DMS-d 6 ) δ 6.99 (d, J = 8.6 Hz, 2H), 7.14 (d, J = 8.6 Hz, 2H), (m, 2H), (m, 2H), 8.02 (d, J = 8.6 Hz, 2H), 8.06 (d, J = 8.6 Hz, 2H). (125 MHz, DMS-d 6 ) δ 114.1, 116.3, (d, J CF = 23.3 Hz), 117.8, 121.0, (d, J CF = 8.6 Hz), 129.2, 130.1, 151.3, (d, J CF = Hz), 160.1, 162.1, 167.5, (282 MHz, DMS-d 6 ) δ calcd for C 21 H 14 F , found [MH] +
4 58 58a (600 MHz, CDCl 3 ) δ 4.13 (s, 2H), 6.71 (d, J = 8.5 Hz, 2H), (m, 6H), 8.00 (d, J = 8.5 Hz, 2H), 8.11 (d, J = 8.5 Hz, 2H). (125 MHz, DMS-d 6 ) δ 114.0, 114.5, 116.6, 117.8, 121.3, 122.0, 129.3, 130.0, 150.6, 151.9, 158.3, 160.2, 168.1, calcd for C 20 H 15 F , found [MH] + 58b (600 MHz, acetone-d 6 ) δ 5.63 (br s, 2H), 6.84 (d, J = 8.8 Hz, 2H), 7.13 (d, J = 7.5 Hz, 2H), 7.14 (d, J = 8.8 Hz, 2H), 7.22 (t, J = 7.5 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.92 (d, J = 8.8 Hz, 2H), 8.13 (d, J = 8.8 Hz, 2H). (150 MHz, acetone-d 6 ) δ 112.4, 114.8, 119.2, 120.6, 123.2, 125.2, 130.0, 130.7, 131.1, 154.2, 157.2, 161.0, 168.7, calcd for C 20 H , found [MH] + 58c Lit F MR 59b (600 MHz, CDCl 3 ) δ 4.13 (s, 2H), 6.71 (d, J = 8.5 Hz, 2H), (m, 6H), 8.00 (d, J = 8.5 Hz, 2H), 8.11 (d, J = 8.5 Hz, 2H). (125 MHz, DMS-d 6 ) δ 114.0, 114.5, 116.6, 117.8, 121.3, 122.0, 129.3, 130.0, 150.6, 151.9, 158.3, 160.2, 168.1, (282 MHz, CDCl 3 ) δ calcd for C 20 H 15 F , found [MH] + ClH 3 CF 3
5 60a 60b 60c 61a (400 MHz, DMS-d 6 ) δ 5.90 (br s, 3H), 6.81 (d, J = 8.6 Hz, 2H), 7.28 (d, J = 9.0 Hz, 2H), 7.29 (d, J = 8.6 Hz, 2H), 7.79 (d, J = 8.6 Hz, 2H), 7.88 (d, J = 8.6 Hz, 2H), 8.11 (d, J = 9.0 Hz, 2H). (100 MHz, DMS-d 6 ) δ 110.7, 114.5, 119.1, 119.8, (q, J CF = Hz), (q, J CF = 32.5 Hz), (q, J CF = 3.8 Hz), 129.3, 129.6, 157.9, 159.3, 167.2, calcd for C 21 H 14 F , found [MH] + H (400 MHz, DMS-d 6 ) δ (m, 4H), 7.26 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 8.11 (d, J = 8.4 Hz, 1H), 8.39 (s, 1H), (s, 1H). (100 MHz, DMS-d 6 ) δ 110.3, 118.3, 119.7, 120.6, 124.5, 129.3, (2C), 133.5, 155.4, 159.8, 167.5, calcd for C 17 H 11 Cl , found [MH] + H (400 MHz, CDCl 3 ) δ (m, 4H), 7.66 (d, J = 8.8 Hz, 2H), 8.02 (s, 1H), (m, 2H), (br s, 1H). (100 MHz, DMS-d 6 ) δ 110.8, 119.8, 120.6, 122.6, 124.8, 125.1, (q, J CF = 3.6 Hz), 130.1, 130.9, 134.1, 158.8, 159.9, 168.0, calcd for C 18 H 11 ClF , found [MH] + H Cl Cl Cl (400 MHz, CDCl 3 ) δ (m, 6H), 7.91 (s, 1H), 8.16 (d, J = 9.2 Hz, 2H). (100 MHz, DMS-d 6 ) δ 110.1, 116.8, 117.0, 117.9, 120.6, 121.8, 121.9, 129.3, 130.3, 133.5, 151.2, 151.3, 157.6, 160.0, 160.2, 167.4, calcd for C 17 H 11 ClF , found [MH] + CF 3 F
6 61b (400 MHz, CDCl 3 ) δ (m, 4H), (m, 1H), (m, 2H), 7.97 (s, 1H), (m, 2H). (100 MHz, DMS-d 6 ) δ 94.1, 117.9, 118.4, 119.7, 120.6, 124.5, 129.3, 130.0, 130.3, 132.7, 155.4, 159.8, calcd for C 17 H 12 Br , found [MH] + 62a (400 MHz, DMS-d 6 ) δ (m, 4H), 7.80 (d, J = 8.8 Hz, 2H), (m, 2H), 8.38 (s, 1H). (100 MHz, DMS-d 6 ) δ 94.2, 119.1, 120.0, 122.0, 124.1, 124.4, (q, J CF = 3.6), 129.5, 132.7, 135.1, 158.2, 159.2, 167.4, calcd for C 18 H 11 BrF , found [MH] + 62b 63a (400 MHz, CDCl 3 ) δ (m, 4H), (m, 1H), (m, 2H), 8.05 (s, 1H), (m, 2H). (100 MHz, DMS-d 6 ) δ 60.7, 119.0, 120.3, 121.2, 125.3, 129.9, 131.0, 138.2, 138.9, 156.0, 160.5, 168.1, calcd for C 17 H 12 I , found [MH] + H I (400 MHz, DMS-d 6 ) δ (m, 4H), 7.80 (d, J = 8.8 Hz, 2H), 8.16 (d, J = 8.4 Hz, 2H), 8.31 (s, 1H). (100 MHz, DMS-d 6 ) δ 60.4, 119.1, 120.0, 122.1, 122.8, 124.1, 124.4, 125.5, (q, J CF = 3.5 Hz), 129.4, 137.4, 138.3, 158.1, 159.2, 167.3, calcd for C 18 H 11 F 3 I , found [MH] + 2 CF 3 H
7 63c (400 MHz, CD 3 D) δ (m, 4H), (m, 1H), (m, 2H), (m, 2H), 8.82(s, 1H). (100 MHz, DMS-d 6 ) δ 119.0, 120.5, 120.8, 125.3, 130.0, 131.0, 133.0, 134.8, 155.9, 160.8, 168.4, calcd for C 17 H , found a 64c (500 MHz, DMS-d 6 ) δ (m, 6H), 8.08 (t, J = 8.8 Hz, 2H), 9.2 (s, 1H). (100 MHz, DMS-d 6 ) δ 116.8, 117.0, 117.9, 120.1, 122.0, 129.3, 132.5, 134.1, 151.2, 157.7, 160.1, 160.4, 167.7, calcd for C 17 H 11 F , found [MH] + H H 2 (400 MHz, CDCl 3 ) δ 4.31 (br s, 2H), (m, 4H), (m, 1H), (m, 3H), (m, 2H). (100 MHz, DMS-d 6 ) δ 115.1, 118.3, 119.7, 121.0, 124.3, 124.5, 129.3, 130.3, 133.8, 155.5, 159.7, 166.8, calcd for C 17 H [M+H] , found a (400 MHz, CDCl 3 ) δ 6.79 (d, J = 8.8 Hz, 2H), (m, 4H), 7.21 (s, 1H), 7.76 (d, J = 8.8 Hz, 2H). (400 MHz, CDCl 3 ) δ 116.7, 116.9, 117.5, 118.1, 121.0, 121.6, 121.7, 124.1, 129.3, 132.3, 151.6, 151.7, 158.3, 160.4, 160.7, 167.4, calcd for C 17 H 13 F , found [MH] + H H
8 67b (400 MHz, CDCl 3 ) δ 1.32 (s, 3H), 1.33 (s, 3H), (m, 1H), (m, 4H), (m, 1H), (m, 2H), 7.49 (s, 1H), (m, 2H) (100 MHz, CDCl 3 ) δ 23.2, 47.8, 115.9, 118.4, 120.0, 121.5, 123.0, 124.4, 129.5, 130.1, 135.5, 156.2, 160.5, 167.8, calcd for C 20 H [M+H] , found b (400 MHz, CDCl 3 ) δ (m, 4H), (m, 2H), (m, 2H), 8.33 (s, 1H). (100 MHz, DMS-d 6 ) δ 95.4, 111.4, 119.3, 119.8, 121.7, 126.1, 126.4, (q, J CF = 4 Hz), 130.0, 137.4, 139.4, 159.3, 159.5, 167.9, calcd for C 19 H 11 F , found [MH] + 69c (400 MHz, DMS-d 6 ) δ 6.96 (d, J = 8.4 Hz, 1H), (m, 2H), (m, 2H), (m, 2H), (m, 2H), (m, 2H). (100 MHz, DMS-d 6 ) δ 114.9, 115.4, 117.0, 119.8, 120.5, 121.2, 123.2, 123.5, 124.8, 125.1, 126.2, 126.3(q, J = 3.6 Hz), 130.0, 146.6, 151.4, 158.7, 160.0, 168.1, calcd for C 21 H 13 F , found [MH] + 70a (400 MHz, DMS-d 6 ) δ 6.95 (d, J = 8.4 Hz, 1H), (m, 2H), (m, 2H), (m, 2H), (m, 2H), (m, 2H), 9.68 (br s, 1H), (br s, 1H). (100 MHz, DMS-d 6 ) δ 114.3, 114.7, 116.3, 116.8, 117.0, 117.8, 120.5, 121.1, 121.8, 121.9, 129.2, 146.0, 150.7, 151.3, 151.4, 157.6, 160.0, 167.5, calcd for C 20 H 14 F , found [MH] +
9 70c (500 MHz, CDCl 3 ) δ (m, 3H), 7.14 (t, J = 8.5 Hz, 1H), 7.18 (t, J = 7.4 Hz, 1H), (m, 3H), (m, 2H), 8.11 (d, J = 8.8 Hz, 2H). calcd for C 20 H 14 F , found [MH] + 19 F MR 71c (500 MHz, CD 3 D) δ 7.03 (d, J = 9.0 Hz, 2H), (m, 3H), (m, 2H), (m, 2H), 8.04 (d, J = 9.0 Hz, 2H). (125 MHz, DMS-d 6 ) δ 116.0, 117.0, 117.7, 118.9, 119.6, 122.8, 122.9, 126.5, 130.4, 151.4, 152.9, 153.4, 161.0, 162.2, 169.6, (282 MHz, CD 3 D) δ , calcd for C 20 H 13 F , found [MH] + 19 F MR 72a (500 MHz, CD 3 D) δ 7.09 (d, J = 8.5 Hz, 2H), (m, 4H), 7.78 (d, J = 8.5 Hz, 2H), 8.10 (d, J = 9.0 Hz, 2H). (125 MHz, CD 3 D) δ 113.1, (t, J CF = 9.6 Hz), (d, J CF = 23.8 Hz), 119.0, 122.6, (d, J CF = 8.3 Hz), 130.5, 140.6, (dd, J CF = 242.8, 7.0 Hz), (d, J CF = 2.5 Hz), (d, J CF = Hz), 162.3, 169.8, (282 MHz, CD 3 D) δ , calcd for C 20 H 12 F , found [MH] + 19 F MR (500 MHz, CDCl 3 ) δ 4.23 (br s, 2H), 6.85 (t, J = 8.6 Hz, 1H), (m, 4H), 7.17 (t, J = 7.4 Hz, 1H), 7.38 (dd, J = 8.6, 7.6 Hz, 2H), (m, 2H), 8.10 (d, J = 9.0 Hz, 2H). (125 MHz, CDCl 3 ) δ (d, J CF = 8.2 Hz), (d, J CF = 20.6 Hz), (d, J CF = 3.3 Hz), 118.5, 119.9, 121.9, 124.3, (d, J CF = 3.3 Hz), 129.4, 130.1, (d, J CF = 12.3 Hz), (d, J CF = Hz), 156.3, 160.2, 168.4, (282 MHz, CDCl 3 ) δ (dd, J = 11.0, 8.6 Hz).
10 calcd for C 20 H 15 F , found [MH] + 72b 19 F MR 73b 74a 75a (500 MHz, CDCl 3 ) δ 4.25 (br s, 2H), 6.85 (t, J = 8.6 Hz, 1H), (m, 4H), 7.62 (d, J = 8.6 Hz, 2H), (m, 2H), 8.16 (d, J = 8.8 Hz, 2H). (125 MHz, CDCl 3 ) δ (d, J CF = 8.2 Hz), (d, J CF = 21.4 Hz), (d, J CF = 4.1 Hz), 118.9, 119.7, 123.3, (q, J CF = Hz), (d, J CF = 2.5 Hz), (q, J CF = 32.9 Hz), 129.7, (d, J CF = 12.3 Hz), (d, J CF = Hz), 158.6, (d, J CF = 1.6 Hz), 168.3, (d, J CF = 2.5 Hz). (282 MHz, CDCl 3 ) δ (dd, 1F, J = 12.2, 8.6 Hz), (s, 3F). H F (400 MHz, CDCl 3 ) δ (m, 4H), 7.64 (d, J = 8.5 Hz, 2H), 7.78 (dd, J = 6.7, 1.5 Hz, 2H), 8.16 (d, J = 9.0 Hz, 2H). (100 MHz, CDCl 3 ) δ (m), 119.0, 119.7, 122.8, 124.8, (q, J CF = 32.9 Hz) (q, J CF = 3.8 Hz), 129.7, 138.2, (d, J CF = 15.8 Hz), 148.1, (dd, J CF = 244.4, 6.8 Hz), 158.9, calcd for C 21 H 11 F , found [MH] + H F (400 MHz, CDCl 3 ) δ 4.18 (s, 2H), 6.36 (s, 1H), 6.74 (d, J = 8.6 Hz, 2H), (m, 4H), (m, 3H), 7.36 (m, 2H), 8.00 (d, 2H). (100 MHz, CDCl 3 ) δ 32.4, 116.1, 118.5, 120.0, 121.1, 124.4, 125.3, 129.4, 130.2, 130.4, 155.6, 156.1, 160.5, 168.0, calcd for C 21 H , found [MH] + CF 3 H
11 75b 19 F MR 75c 76c (400 MHz, DMS-d 6 ) δ 6.68 (m, 1H), (m, 4H), 7.24 (tt, J = 7.5, 1.2 Hz), 7.47 (m, 2H), 7.55 (t, J = 2.8 Hz, 1H), 7.63 (d, J = 8.5 Hz, 1H), 7.91 (dd J = 8.5, 1.7 Hz), 8.11 (d, J = 8.9 Hz), 8.46 (m, 1H), (s, 1H). (100 MHz, DMS-d 6 ) δ 102.7, 112.5, 114.2, 118.3, 119.7, 120.6, 121.2, 121.2, 124.5, 127.8, 129.2, 130.3, 138.4, 155.4, 159.7, 167.6, 170.9, calcd for C 22 H , found [MH] + H (400 MHz, CDCl 3 ) δ 6.71 (m, 1H), 7.13 (d, J = 8.7 Hz, 2H), 7.16 (d, J = 8.9 Hz, 2H), 7.32 (d, J = 8.7 Hz, 2H), 7.52 (d, J = 8.6 Hz, 1H), 7.63 (d, J = 8.9 Hz, 2H), 8.06 (d,d, J = 8.6, 1.61 Hz, 1H), 8.22 (d, J = 8.9 Hz, 2H), 8.52 (s, 1H), 8.57 (t, J = 0.8 Hz, 1H). (100 MHz, CDCl 3 ) δ 104.3, 119.9, 116.3, 118.9, 119.8, 122.2, 122.4, 123.5, (q, J CF = Hz), (q, J CF = 33.2 Hz), 126.2, (q, J CF = 3.8 Hz), 128.2, 129.7, 138.3, 158.5, 159.8, 168.3, (376 MHz, CDCl 3 ) δ (s, 3F). calcd for C 23 H 14 F , found [MH] + H (400 MHz, DMS-d 6 ) δ 6.68 (m, 1H), 7.15 (d, J =8.8 Hz, 2H), (m, 2H), (m, 2H), 7.55 (t, J = 2.8 Hz, 1H), 7.66 (d, J = 8.5 Hz, 1H), 7.91 (dd J = 8.5, 1.6 Hz), 8.10 (d, J = 8.8 Hz, 2H), 8.46 (m, 1H), (s, 1H). (100 MHz, DMS-d 6 ) δ 102.7, 112.5, 114.1, 116.8, 117.0, 117.9, 120.5, 121.1, 121.2, (d, J CF = 8.6 Hz), 127.8, 129.2, 138.4, 151.4, 160.0, 167.5, calcd for C 22 H 14 F , found [MH] + CF 3 F
12 77b (400 MHz, DMS-d 6 ) δ (m, 2H), (m, 2H), (m, 2H), 7.98 (s, 1H), (m, 2H), 8.23 (s, 1H), (s, 1H). (100 MHz, DMS-d 6 ) δ 116.8, 117.0, 117.8, 121.0, 121.8, 121.9, 122.8, 125.9, 129.2, 138.2, 151.3, 151.4, 157.7, 160.0, 167.3, calcd for C 17 H 12 F , found [MH] + 77c (400 MHz, DMS-d 6 ) δ (m, 4H), 7.81 (d, J = 8.8 Hz, 2H), 8.13 (d, J = 8.8 Hz, 2H), 8.78 (d, J = 2.4 Hz, 1H), 8.90 (d, J =2.4 Hz, 1H), (br s, 1H); (100 MHz, DMS-d 6 ) δ 101.3, 119.3, 119.8, 121.7, 124.2, 124.5, (q, J CF = 4.0 Hz), 129.5, 136.9, 138.0, 145.0, 154.1, 158.3, 159.1, 167.5, calcd for C 20 H 12 F , found [MH] + 78b (400 MHz, DMS-d 6 ) δ (m, 6H), (m, 2H), (m, 2H), (br s, 1H). (100 MHz, DMS-d 6 ) δ 101.9, 117.5, 117.7, 118.4, 121.0, 122.6, 122.7, 129.9, 137.5, 138.6, 145.6, 151.8, 151.9, 154.8, 158.3, 160.7, 161.0, 168.2, calcd for C 19 H 12 F , found [MH] + 78c (400 MHz, CDCl 3 ) δ (m, 4H), (m, 3H), (m, 1H), (m, 2H), 9.66 (br, 1H). (100 MHz, DMS-d 6 ) δ 109.8, 117.6, 120.0, 120.4, 122.4, 123.5, 124.9, 125.3, 126.1, 126.2, 128.3(q, J CF = 3.6 Hz), 130.1, 138.3, 159.0, 159.8, 168.1, calcd for C 19 H 11 F , found [MH] +
13 79a (400 MHz, CDCl 3 ) δ (m, 6H), (m, 1H), (m, 1H), (m, 2H), 9.66 (br, 1H). (100 MHz, DMS-d 6 ) δ 109.7, 117.4, 117.6(2C), 118.4, 121.1, 122.5, 122.6, 126.0, 129.8, 138.2, 151.8, 151.9, 158.3, 160.7, 160.9, 168.1, calcd for C 20 H 11 F 4 4 a , found [Ma] + 80a (600 MHz, CDCl 3 ) δ 4.12 (br s, 2H), (m, 2H), 5.36 (ddd, J = 10.9, 3.2, 1.8 Hz, 1H), 5.72 (ddd, J = 17.3, 3.5, 1.8 Hz, 1H), 6.12 (ddd, J = 17.3, 10.9, 4.7 Hz, 1H), 6.27 (d, J = 2.2 Hz, 1H), 6.37 (dd, J = 8.5, 2.2 Hz, 1H), (m, 4H), 7.17 (dt, J = 7.5, 1.2 Hz, 1H), (m, 2H), 8.00 (d, J = 8.5 Hz, 1H), 8.13 (d, J = 8.8 Hz, 2H). (150 MHz, CDCl 3 ) δ 69.4, 98.9, 104.1, 107.7, 117.6, 118.5, 119.9, 122.5, 124.2, 129.4, 130.1, 132.6, 133.4, 152.2, 156.5, 159.5, 159.9, 167.7, calcd for C 23 H 19 3 a , found [Ma] + 80b (600 MHz, acetone-d 6 ) δ (m, 2H), 7.15 (d, J = 9.0 Hz, 2H), 7.23 (tt, J = 7.4, 1.0 Hz, 1H), (m, 4H), 8.14 (d, J = 9.0 Hz, 2H), 8.29 (dd, J = 8.8, 5.3 Hz, 2H). (125 MHz, acetone-d 6 ) δ (d, J CF = 22.4 Hz), 119.2, 120.7, (d, J CF = 2.8 Hz), 122.4, 125.3, 130.1, 131.1, (d, J CF = 9.5 Hz), 157.0, 161.4, (d, J CF = Hz), 169.2, calcd for C 20 H 14 F , found [MH] + 81b Lit. 1
14 81c 83b (600 MHz, acetone-d 6 ) δ (m, 4H), 7.79 (d, J = 8.2 Hz, 2H), 7.86 (d, J = 8.2 Hz, 2H), 8.15 (d, J = 8.8 Hz, 2H), 8.20 (d, J = 8.8 Hz, 2H). (150 MHz, acetone-d 6 ) δ 120.1, 120.7, 123.7, 124.2, (q, J CF = 271.0), 126.0, 128.3, (q, J CF = 3.9 Hz), 130.4, 130.7, 133.6, 159.7, 160.7, 169.2, calcd for C 21 H 13 BrF , found [MH] + Br (400 MHz, CDCl 3 ) δ (m, 6H), 7.65 (d, J = 8.4 Hz, 2H), (m, 4H). (100 MHz, CDCl 3 ) δ 116.7, 116.9, 118.0, 121.5, 121.6, 121.7, 123.4, 127.9, 129.6, 129.8, 132.7, (2C), 158.4, 160.9, 168.7, calcd for C 20 H 12 BrF , found [MH] + F 85c (600 MHz, acetone-d 6 ) δ 2.15 (s, 3H, CH 3 ), (m, 4H, ArH), calcd for C 23 H 17 F , found [MH] + 86b (400 MHz, CDCl 3 ) δ 1.35 (t, J = 7.2 Hz, 6H), (m, 4H), (m, 6H), (m, 2H), (m, 2H), (m, 2H). (100 MHz, CDCl 3 ) δ 16.2, 16.3, 62.4, 62.5, 116.4, 116.7, 117.7, 121.1, 121.3, 121.4, 127.4, 127.8, 129.3, 132.2, 132.3, 132.4, 134.1, 151.6, 158.1, 160.5, 160.6, 168.5, calcd for C 24 H 23 F 2 5 P , found [MH] + (600 MHz, CDCl 3 ) δ 3.14 (s, 3H), 6.76 (s, 1H), 7.14 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.8 Hz, 2H), 7.37 (d, J = 8.8 Hz, 2H), 7.64 (d, J = 8.5 Hz, 2H), 8.18 (d, J = 8.8 Hz, 2H), 8.22 (d, J = 8.8 Hz, 2H). calcd for C 22 H 17 F S , found [MH] +
15 87b 87c (400 MHz, DMS-d 6 ) δ (m, 4H), 7.66 (s, 2H), 7.82 (d, J = 9.2 Hz, 2H), 8.08 (d, J = 8.4 Hz, 2H), (m, 2H), 8.40 (d, J = 8.0 Hz, 2H). (100 MHz, DMS-d 6 ) δ 120.0, 120.5, 122.5, 124.9, 126.2, 126.7, 127.5, (q, J CF = 4.0 Hz), 129.5, 130.2, 148.6, 159.0, 159.8, 168.6, calcd for C 21 H 15 F S , found [MH] + 88c (400 MHz, CD 3 D) δ (m, 6H), (m, 4H), 8.35 (d, J = 6.8 Hz, 2H). (100 MHz, DMS-d 6 ) δ 116.9, 117.1, 117.9, 120.5, 122.0, 122.1, 126.1, 126.9, 128.8, 129.4, 147.9, 151.3, 151.3, 157.8, 160.2, 160.4, 168.0, calcd for C 20 H 15 F 3 4 S , found [MH] + 89c (500 MHz, DMS-d 6 ) δ 6.41 (s, 2H), 7.16 (d, J = 8.8 Hz, 2H), (m, 2H), (m, 2H), (m, 4H), 8.26 (d, J = 8.2 Hz, 2H). (125 MHz, DMS-d 6 ) δ (d, J CF = 23.9 Hz), 117.9, 120.5, (d, J CF = 8.2 Hz), 125.5, 127.9, 128.6, 129.3, 138.3, (d, J CF = 2.5 Hz), (d, J CF = 241.1), 160.3, 166.8, 167.9, calcd for C 21 H 15 F , found [MH] + 19 F MR (500 MHz, DMS-d 6 ) δ 7.15 (d, J = 9.0 Hz, 2H), 7.13 (dd, J = 8.9, 4.5 Hz, 2H), 7.31 (t, J = 8.9 Hz, 2H), 8.10 (d, J = 9.0 Hz, 2H), 8.18 (d, J = 8.8 Hz, 2H), 8.30 (d, J = 8.8 Hz, 2H). (125 MHz, DMS-d 6 ) δ 116.9, 117.9, 120.5, 121.9, 126.8, 128.2, 129.3, 130.3, 134.7, 151.2, 158.9, 160.3, 166.4, 167.9, (282 MHz, DMS-d 6 ): δ
16 calcd for C 21 H 12 F 2 a , found [MH] + 90c 19 F MR 91c (500 MHz, CDCl 3 ) δ 3.98 (s, 3H), (m, 6H), 8.14 (d, J = 9.0 Hz, 2H), 8.22 (d, J = 8.4 Hz, 2H), 8.29 (d, J = 8.4 Hz, 2H). (125 MHz, DMS-d 6 ) δ 52.5, 116.6, 117.8, 121.2, 121.4, 127.9, 128.1, 129.4, 130.2, 133.7, 151.7, 159.3, 160.6, 166.0, 168.6, (282 MHz, CDCl 3 ): δ calcd for C 22 H 16 F , found [MH] + 92c (400 MHz, CDCl 3 ) δ (m, 6H), (m, 1H), (m, 2H), (m, 1H), (m, 1H), (s, 1H). (100 ΜHz, DMS-d 6 ) δ 114.9, 117.4, 117.7, 118.5, 121.0, 121.2, 122.5, 122.6, 126.1, 129.9, 134.5, 138.0, 152.0, 156.4, 158.3, 160.7, 160.8, 168.4, calcd for C 20 H 13 F , found [MH] + 94a (400 MHz, DMS-d 6 ) δ 5.02 (br, 2H), 6.84 (d, J = 8.4 Hz, 1H), (m, 2H), (m, 2H), (m, 3H), 7.42 (d, J = 2.0 Hz, 1H), (m, 2H). (100 MHz, DMS-d 6 ) δ 113.3, 115.1(2C), 117.4, 117.7, 118.0, 118.5, 121.8, 122.5, 122.6, 129.8, 138.3, 149.5, (2C), 158.3, (2C), 168.1, calcd for C 20 H 15 F , found [MH] +
17 95a (600 MHz, DMS-d 6 ) δ 3.98 (s, 3H), 4.30 (s, 2H), 6.77 (d, J = 8.2 Hz, 1H), (m, 4H), 7.17 (tt, J = 7.5, 1.0 Hz, 1H), 7.39 (dd, J = 7.5, 1.0 Hz, 2H), 7.58 (d, J = 1.8 Hz, 1H), 7.70 (dd, J = 8.2, 1.8 Hz, 1H), 8.12 (d, J = 9.1 Hz, 2H). (150 MHz, DMS-d 6 ) δ 56.0, 109.8, 113.8, 114.0, 118.6, 119.8, 122.2, 122.8, 124.2, 129.5, 130.1, 141.2, 146.8, 156.4, 160.1, 168.4, calcd for C 21 H , found [MH] + 96a 97a H (400 MHz, DMS-d 6 ) δ 7.12 (m, 1H) (m, 4H), 7.25 (tt, J = 7.5, 1.1 Hz, 1H), (m, 3H), 7.56 (m, 1H), 7.62 (m, 1H), 8.09 (d, J = 8.9 Hz), (s, H). (100 MHz, DMS-d 6 ) δ 114.1, 118.3, 118.6, 119.8, 120.5, 120.8, 124.4, 124.6, 129.2, 130.4, 130.9, 155.4, 158.0, 160.0, 167.8, calcd for C 20 H , found [MH] + I H (400 MHz, DMS-d 6 ) δ (m, 4H), 7.25 (t, d, J = 7.3, 0.8 Hz, 1H), 7.38 (dd, J = 8.2, 1.9 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 7.64 (d, J = 1.9 Hz, 1H), 7.98 (td, J = 8.2 Hz, 1H), 8.08 (d, J = 8.8 Hz, 2H). (400 MHz, DMS-d 6 ) δ 91.8, 113.0, 118.3, 119.8, 119.9, 120.6, , 124.3, 124.6, 129.2, 130.4, 140.3, 159.9, calcd for C 20 H 13 I , found [MH] + (400 MHz, CDCl 3 ) δ 7.05 (m, 1H), (m, 4H), 7.15 (m, 1H), 7.20 (tt, J = 7.4, 1.1 Hz, 1H), (m, 2H), 7.53 (m, 1H), 8.00 (dd, J = 8.0, 1.7 Hz, 1H), 8.09 (d, J = 9.0 Hz), (s, 1H). (100 MHz, CDCl 3 ) δ 108.4, 118.0, 118.6, 120.2, 120.4, 122.5, 124.6, 128.1, 129.6, 130.3, 135.5, 156.1, 158.4, 160.9, 166.9, calcd for C 20 H , found [MH] + H
18 98a 99a (600 MHz, CDCl 3 ) δ 4.17 (s, 2H), (m, 2H), (m, 4H), 7.19 (t, J = 7.4 Hz, 1H), 7.40 (dd, J = 7.4, 1.2 Hz, 2H), 7.76 (d, J = 8.8 Hz, 1H), 8.06 (d, J = 8.8 Hz, 2H), (s, 1H). (150 MHz, CDCl 3 ) δ 99.3, 101.3, 108.1, 118.5, 120.0, 120.9, 124.5, 129.5, 129.7, 130.2, 153.2, 156.2, 160.3, 160.6, 166.4, calcd for C 20 H , found [MH] + 99b (500 MHz, CDCl3) δ 4.08 (s, 3H), (m, 2H), 7.10 (d, J = 9.0 Hz, 2H), 7.19 (tt, J = 7.5, 1.1 Hz, 1H), 7.27 (d, J = 8.8 Hz, 1H), 7.40 (dd, J = 7.4, 1.1 Hz, 2H), 8.12 (d, J = 9.0 Hz, 2H), 8.37 (dd, J = 8.8, 2.2 Hz, 1H), 8.71 (d, J = 2.2 Hz, 1H). (150 MHz, CDCl3) δ 57.2, 105.2, 114.3, 117.1, 118.5, 120.0, 121.2, 121.3, 124.5, 126.0, 129.5, 130.2, 133.7, 156.0, 160.6, 168.8, calcd for C 21 H , found [MH] + (400 MHz, CDCl 3 ) δ 4.09 (s, 3H), (m, 4H), (m, 1H), (m, 2H), (m, 2H), 8.38 (dd, J = 2.0 Hz, 1H), 8.72 (d, J = 2.4 Hz, 1H). 99c (100 MHz, CDCl 3 ) δ 57.2, 114.3, 117.0, 119.1, 119.7, 122.7, 122.9, 125.6, 126.0, 126.3, (q, J = 3.6 Hz), 129.8, 133.7, 140.2, 156.1, 159.0, 159.6, 168.7, calcd for C 22 H 15 F , found [MH] + (400 MHz, CDCl 3 ) δ 4.13 (s, 3H), (m, 5H), (m, 2H), (m, 2H), (m, 1H), 8.76 (d, J = 2.0 Hz, 1H). (100 MHz, CDCl 3 ) δ 57.2, 114.3, 116.7, 116.9, 117.1, 118.1, 121.4, 121.6, 121.7, 125.9, 129.6, 133.6, 140.2, 151.9, 152.0, 156.0, 158.4,
19 100a 160.8, 160.9, 168.8, calcd for C 21 H 14 F 3 a , found [Ma] + 101b (600 MHz, DMS-d 6 ) δ 3.88 (s, 3H), 7.02 (d, J = 8.5 Hz, 1H), (m, 4H), 7.24 (tt, J = 7.4, 1.1 Hz, 1H), (m, 1H), (m, 3H), 8.06 (d, 2H, J = 8.8 Hz). (150 MHz, DMS-d 6 ) δ 55.6, 110.6, 111.7, 115.8, 116.8, 118.2, 119.8, 121.1, 124.5, 129.1, 130.3, 138.6, 150.2, 155.4, 160.0, 167.5, calcd for C 21 H , found [MH] + 101c (400 MHz, CDCl 3 ) δ 3.99 (s, 3H), 4.03 (s, 3H), 7.02 (d, J = 8.8 Hz, 1H), (m, 4H), (m, 2H), 7.70 (d, J = 2.0 Hz, 1H), 7.85 (dd, J = 2.0 Hz, 1H), (m, 2H). (100 MHz, CDCl 3 ) δ 56.3, 56.4, 110.8, 111.4, 117.1, 118.9, 119.7, 122.3, 122.9, 123.3, 125.7, 125.8, 126.1, (q, J = 3.8 Hz), 129.7, 149.6, 153.2, 158.6, 159.7, 168.4, calcd for C 23 H 18 F , found [MH] + 102b (400 MHz, CDCl 3 ) δ 3.96 (s, 3H), 3.99 (s, 3H), 6.98 (d, J = 8.4 Hz, 1H), (m, 5H), 7.67 (d, J = 2.0 Hz, 1H), 7.82 (dd, J = 2.0 Hz, 1H), (m, 2H). (100 MHz, CDCl 3 ) δ 56.3, 56.4, 110.7, 111.3, 116.7, 116.9, 117.1, 118.1, 121.5, 121.6, 121.9, 122.3, 129.5, 149.5, 152.0, 152.1, 153.1, 158.3, 160.6, 160.7, 168.5, calcd for C 22 H 18 F , found [MH] + CF 3 H
20 102c 103b (400 MHz, CDCl 3 ) δ (m, 5H), 7.65 (d, J = 8.8, 2H), 8.04 (d, J = 2.4 Hz, 1H), (m, 2H). (100 MHz, CDCl 3 ) δ 107.5, 119.2, 119.7, 122.7, 126.0, 126.3, (q, J CF = 3.0 Hz), 129.8, 131.8, 137.6, 159.0, 159.5, 168.5, calcd for C 18 H 12 F , found [MH] + H (400 MHz, CD 3 D) δ (m, 7H), 7.90 (s, 1H), (m, 2H). (100 MHz, DMS-d 6 ) δ 106.8, 116.8, 117.0, 117.8, 120.7, 121.9, 122.0, 129.2, 131.1, 136.8, 151.3, 157.6, 160.0, 160.2, 167.5, calcd for C 17 H 12 F , found [MH] + F 104b (400 MHz, DMS-d 6 ) δ 4.37 (d, J = 6.0 Hz, 2H), 5.38 (t, J = 6.0 Hz, 1H), (m, 4H), 7.81 (d, J = 8.4 Hz, 2H), 8.16 (d, J =8.4 Hz, 2H), 8.37 (s, 1H). (100 MHz, DMS-d 6 ) δ 49.6, 73.9, 93.7, 103.5, 119.3, 119.8, 122.1, 124.2, 124.5, (q, J CF = 3.5 Hz), 129.5, 134.6, , 159.2, 167.4, calcd for C 21 H 14 F , found [MH] + (400 MHz, CDCl 3 ) δ (m, 3H), (m, 2H), (m, 2H), 3.20 (t, J = 8.0 Hz, 2H), 4.81 (br s, 1H), (m, 4H), 7.43 (s, 1H), 7.64 (d, J =8.0 Hz, 2H), (m, 2H). (100 MHz, CDCl 3 ) δ 14.1, 20.5, 31.9, 46.6, 119.1, 119.2, 119.6, 122.9, 125.9, 126.2, (q, J CF = 3.6 Hz), 129.8, 136.9, 158.8, 159.5, 159.6, 167.6, calcd for C 22 H 21 F , found [MH] +
21 105b 106b (400 MHz, CDCl 3 ) δ 1.02 (t, J = 7.2 Hz, 3H), 1.29 (d, J = 6.4 Hz, 4H), (m, 2H), (m, 1H), (m, 4H), 7.45 (s, 1H), 7.64 (d, J = 8.4 Hz, 2H), (m, 2H). (100 MHz, CDCl 3 ) δ 10.4, 20.5, 29.8, 53.5, 116.3, 119.1, 119.7, 122.5, 122.9, 125.6, 125.9, 126.2, (q, J CF = 3.6 Hz), 129.8, 135.9, 158.9, 159.5, 167.6, calcd for C 22 H 21 F , found [MH] + 107b (400 MHz, CDCl 3 ) δ (m, 5H), (m, 3H), 2.10 (d, J = 10.4 Hz, 2H), 3.18 (br s, 1H), 4.90 (d, J = 3.2 Hz, 1H), (m, 3H), 7.37 (s, 1H), (m, 2H), (m, 2H). (150 MHz, CDCl 3 ) δ 24.8, 26.1, 33.4, 54.9, 115.9, 119.1, 119.6, 122.9, 125.6, 125.9, 126.2, (q, J CF = 3.6 Hz), 129.7, 135.6, 158.9, 159.5, 167.6, calcd for C 24 H 23 F , found [MH] + 110b (400 MHz, CDCl 3 ) δ (m, 4H), (m, 2H), (m, 2H), (m, 1H), (m, 1H), (m, 3H), 7.36 (d, J = 1.2 Hz, 1H), 7.64 (d, J = 8.8 Hz, 2H), (m, 2H). (100 MHz, CDCl 3 ) δ 24.3, 33.7, 57.7, 116.4, 119.1, 119.6, 122.8, 125.6, 125.9, 126.2, (q, J CF = 3.7 Hz), 129.8, 136.2, 158.9, 159.5, 167.6, calcd for C 23 H 21 F , found [MH] +
22 111b (400 MHz, CDCl 3 ) δ (m, 2H), 1.47 (s, 9H), (m, 2H), (m, 2H), (m, 1H), 4.03 (br, 2H), (m, 4H), 7.40 (s, 1H), (m, 2H), (m, 2H). (100 MHz, CDCl 3 ) δ 28.7, 32.4, 53.2, 80.0, 119.1, 119.2, 119.6, 122.6, 122.7, 122.9, 125.6, 126.0, 126.4, (q, J = 4.4 Hz), 129.7, 134.9, 155.0, 159.0, 159.5, 167.6, calcd for C 28 H 30 F , found [MH] + 112a 113b (400 MHz, CDCl 3 ) δ (m, 6H), (m, 4H), (m, 4H), 7.60 (d, J = 8.4, 2H), (m, 3H). (100 MHz, CDCl 3 ) δ 16.5, 16.6, 63.2, 63.3, 108.1, 110.3, 119.2, 119.7, 122.5, 122.9, 125.6, 126.0, 126.3, (q, J CF = 3.6 Hz), 129.8, 138.8, 139.0, 159.0, 159.5, 168.4, calcd for C 22 H 21 F P , found [MH] + H (400 MHz, DMS-d 6 ) δ (m, 4H), 7.25 (tt, J = 7.4, 1.1 Hz, 1H), (m, 2H), 7.82 (d, J = 8.8 Hz, 2H), (s, 1H). (100 MHz, DMS-d 6 ) δ 117.7, 118.2, 119.8, 124.7, 128.2, 130.4, 155.1, 156.9, 160.0, calcd for C 14 H , found [MH] + (600 MHz, acetone-d 6 ) δ 2.66 (s, 3H), 7.25 (d, J = 8.8 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H), 7.78 (d, J = 8.5 Hz, 2H), 8.11 (d, J = 8.8 Hz, 2H). (150 MHz, acetone-d 6 ) δ 12.3, 120.0, 120.7, 124.1, (q, J CF = Hz), (q, J CF = 32.5 Hz), (q, J CF = 3.7 Hz), 130.2, 159.4, (q, J CF = 1.5 Hz), 168.5, calcd for C 16 H 12 F , found [MH] +
23 114a 115a 116b (400 MHz, CDCl 3 ) δ (m, 4H), 7.20 (t, J = 7.5 Hz, 1H), (m, 2H), 8.06 (d, J = 6.1 Hz, 2H), 8.13 (m, 2H), 8.89 (d, J = 6.1 Hz, 2H). (100 MHz, CDCl 3 ) δ 118.6, 120.1, 121.0, 121.7, 124.5, 129.6, 130.2, 148.8, (2C), 156.1, 160.8, calcd for C 19 H , found [MH] + (400 MHz, DMS-d 6 ) δ (m, 5H), (m, 2H), (m, 4H), 8.43 (m, 2H). (100 MHz, DMS-d 6 ) δ 118.3, 119.8, 120.3, 124.5, 125.2, 129.2, 130.3, 140.0, 151.1, 155.2, 160.0, 168.0, calcd for C 19 H , found [MH] + 117b (400 MHz, DMS-d 6 ) δ 7.09 (d, J = 7.2 Hz, 4H), 7.54 (d, J = 7.2 Hz, 2H), 7.71 (d, J = 6.8 Hz, 2H), 8.77 (s, 1H). (100 MHz, DMS-d 6 ) δ 117.8, 120.6, 120.7, 121.5, 123.4, 123.6, 123.9, 126.1, (q, J CF = 3.1 Hz), 137.4, 149.7, 153.3, calcd for C 17 H 11 F , found [MH] + 119c (400 MHz, DMS-d 6 ) δ (m, 4H), 7.81 (d, J = 8.8 Hz. 2H), (m, 2H), 8.99 (d, J = 7.2, 1H). (100 MHz, DMS-d 6 ) δ 120.0, 120.4, 122.5, 124.9, 125.2, 126.2, (q, J CF = 3.6), 130.1, 159.0, 159.8, 159.8, 168.2, calcd for C 11 H 11 F , found [MH] +
24 120b (400 MHz, CDCl 3 ) δ 1.37 (s, 3H), 1.39 (s, 3H), (m, 1H), 6.82 (s, 1H), (m, 5H), (m, 2H), (br s, 1H). (100 MHz, DMS-d 6 ) δ 103.7, 116.7, 116.9, 117.9, 121.4, 121.6, 121.7, 129.5, 151.8, 151.9, 153.1, 158.3, 160.6, 160.7, 168.3, calcd for C 20 H 18 F , found [MH] + 120c (400 MHz, DMS-d 6 ) δ 6.54 (d, J = 9.6 Hz, 1H), (m, 4H), 7.80 (d, J = 8.4 Hz, 2H), (m, 1H), (m, 2H), 8.35 (d, J = 2.8 Hz, 1H), (s, 1H). (100 MHz, DMS-d 6 ) δ 102.6, 119.2, 119.8, 120.7, 122.1, 124.1, 124.5, (q, J CF = 4.0 Hz), 129.4, 138.0, 139.4, 158.1, 159.2, 162.0, 167.3, calcd for C 20 H 13 F , found [MH] + 121b (400 MHz, DMS-d 6 ) δ (m, 1H), (m, 2H), (m, 2H), (m, 2H), (m, 3H), 8.34 (d, J = 2.0 Hz, 1H), (s, 1H). (100 MHz, DMS-d 6 ) δ 102.6, 116.8, 117.0, 117.8, 120.7, 121.8, 121.9, 129.2, 138.0, 139.3, 151.2, 151.3, 157.6, 160.0, 160.1, 162.0, 167.4, calcd for C 19 H 13 F , found [MH] + (400 MHz, DMS-d 6 ) δ 5.56 (s, 2H), 7.02 (d, J = 2.4 Hz, 1H), (m, 4H), 7.64 (d, J = 1.6 Hz, 1H), 7.80 (d, J = 8.4 Hz, 2H), (m, 2H), (s, 1H). (100 MHz, DMS-d 6 ) δ 104.7, 106.3, 119.9, 120.4, 123.0,123.5, 124.5, 124.8, 125.2, 126.2, 128.3(q, J CF = 3.8 Hz), 130.0, 139.9, 158.5, 158.8, 159.9, 167.9, calcd for C 20 H 14 F , found [MH] +
25 121c 122b (400 MHz, DMS-d 6 ) δ 5.55 (s, 2H), 7.01 (d, J = 2.4 Hz, 1H), (m, 2H), (m, 2H), (m, 2H), 7.62 (d, J = 2.0 Hz, 1H), (m, 2H). (100 MHz, DMS-d 6 ) δ 104.0, 105.6, 116.8, 117.0, 117.8, 120.6, 121.8, 121.9, 139.2, 151.2, 151.3, 157.6, 157.8, 160.0, 160.1, 167.3, calcd for C 19 H 14 F , found [MH] + 122c (400 MHz, CDCl 3 ) δ 4.01 (br, 2H), (m, 4H), (m, 2H), (m, 1H), (m, 2H), 8.31 (d, J = 2.4 Hz, 1H), 8.83 (d, J = 1.6 Hz, 1H). (100 MHz, CDCl 3 ) δ 119.1, 119.7, 120.8, 122.7, 125.6, 125.9, (q, J CF = 3.0 Hz), 129.8, 139.1, 141.1, 142.8, 158.9, 159.5, 168.5, calcd for C 20 H 14 F , found [MH] + 123b (400 MHz, CDCl 3 ) δ 3.99 (br, 2H), (m, 6H), (m, 1H), (m, 2H), 8.30 (d, J = 2.4 Hz, 1H), 8.82 (d, J = 1.6 Hz, 1H). (100 MHz, DMS-d 6 ) δ 116.7, 117.0, 118.0, 119.7, 120.9, 121.4, 121.6, 121.7, 129.6, 139.2, 141.1, 142.8, 151.9, 160.8, 160.9, 168.7, calcd for C 19 H 14 F , found [MH] + (400 MHz, DMS-d 6 ) δ (m, 4H), (m, 1H), (m, 1H), (m, 3H), (m, 2H), 8.34 (d, J = 8.4 Hz, 1H). (100 MHz, DMS-d 6 ) δ 111.4, 119.1, 119.9, 120.5, 121.4, 122.2, 123.4, 124.1, 124.4, 127.4, (q, J CF = 3.6 Hz), 129.5, 129.8, 141.0, 158.1, 159.2, 159.3, 167.4, calcd for C 22 H 14 F , found [MH] +
26 123c 124a 125b (400 MHz, DMS-d 6 ) δ (m, 4H), (m, 2H), (m, 1H), (m, 1H), 7.77 (d, J = 8.4 Hz, 1H), (m, 2H), 8.33 (d, J = 8.4 Hz, 1H). (100 MHz, DMS-d 6 ) δ 111.4, 116.8, 117.0, 117.9, 120.5, 120.8, 121.4, 121.7, 121.8, 123.4, 127.4, 129.3, 129.9, 141.0, 151.3, 151.4, 157.6, 160.0, 160.1, 167.5, calcd for C 21 H 14 F , found [MH] + H (400 MHz, CDCl 3 ) δ (m, 4H), 7.19 (tt, J = 7.4, 1.1 Hz, 1H), 7.40 (dd, J = 8.6, 8.4 Hz, 2H), 7.66 (d, J = 8.8 Hz, 1H), 8.16 (d, J = 8.8 Hz, 2H), (m, 2H), 8.72 (s, 1H). (100 MHz, CDCl 3 ) δ 110.8, 118.0, 118.6, 120.0, 121.8, 122.9, 123.6, 124.4, 126.7, 129.5, 130.2, 136.7, 141.7, 156.4, 160.4, 168.7, calcd for C 21 H , found [Ma] + 125c (400 MHz, CDCl 3 ) δ (m, 4H), (m, 1H), 7.65 (d, J = 8.4 Hz, 2H), (m, 2H), 8.35 (s, 1H), (m, 1H), (m, 1H). (100 MHz, DMS-d 6 ) δ 98.7, 116.9, 118.1, 119.1, 119.9, 122.6, 124.0, 124.4, (q, J CF = 3.0 Hz), 128.7, 129.4, 131.4, 144.7, 148.8, 157.9, 159.4, 167.1, calcd for C 22 H 14 F , found [MH] +
27 126c (400 MHz, DMS-d 6 ) δ (m, 2H), (m, 2H), (m, 2H), (m, 1H), 8.11 (d, J = 2.4 Hz, 1H), 8.14 (s, 1H), (m, 1H), 8.55 (d, J = 8.0 Hz, 1H), 8.60 (d, J = 2.4 Hz, 1H), (s, 1H). (100 MHz, DMS-d 6 ) δ 98.7, 116.7, 116.8, 117.0, 117.9, 118.0, 121.2, 121.7, 121.8, 128.6, 129.2, 131.3, 144.7, 148.8, (2C), 157.6, 159.9, 160.0, 167.2, calcd for C 21 H 14 F , found [MH] + 127c (400 MHz, CDCl 3 ) δ 3.21 (br s, 2H), 6.61 (s, 1H), 6.69 (s, 1H), (m, 6H), (m, 2H), 9.01(s, 1H). (100 MHz, CDCl 3 ) δ 106.1, 111.1, 115.6, 116.7, 116.9, 118.0, 121.5, 121.6, 121.7, 129.3, 129.4, 133.8, 151.9, 158.4, 160.6, 160.7, 167.8, calcd for C 18 H 14 F , found [MH] + 128a (400 MHz, CDCl 3 ) δ (m, 1H), (m, 7H), (m, 2H), 9.34 (br s, 1H). (100 MHz, CDCl 3 ) δ 111.6, 114.9, 116.7, 116.9, 117.3, 118.0, 121.5, 121.6, 121.7, 123.8, 129.5, 151.9, 152.0, 158.3, 160.6, 160.7, 167.9, calcd for C 18 H 13 F , found [MH] + ClH H (400 MHz, DMS-d 6 ) δ (m, 4H), (m, 4H), 3.51 (m, 1H), (m, 4H), 7.24 (tt, J = 7.4, 1.1 Hz), 7.47 (m, 2H), 8.01 (d, J = 8.9 Hz), 9.06 (m, 2H). (100 MHz, DMS-d 6 ) δ 25.55, 31.19, 41.97, , , , , , , , , , calcd for C 19 H , found [MH] +
28 131a 132a 133b (400 MHz, CDCl 3 ) δ (m, 4H), 3.25 (m, 1H), 3.58 (m, 2H), 4.07 (m, 2H), (m, 4H), 7.18 (tt, J = 7.4, 1.1 Hz, 1H), 7.39 (m, 2H), 8.04 (d, J = 8.9 Hz, 2H). (100 MHz, CDCl 3 ) δ 29.6, 33.8, 67.1, 118.6, 119.9, 121.6, 124.4, 129.4, 130.2, 156.3, 160.3, 168.0, calcd for C 19 H , found [MH] + (400 MHz, DMS-d 6 ) δ 2.22 (s, 2H), 2.44 (s, 1H), 2.58 (s, 1H), 3.65 (m, 2H), 5.18, (s, 1H), (m, 4H), 7.17 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 7.8 Hz, 2H), 8.00 (d, J = 8.3 Hz, 2H), (s, 1H), (s, 1H). (100 MHz, DMS-d 6 ) δ 23.7, 30.1, 46.1, 54.0, 118.5, 120.0, 120.4, 124.5, 129.7, 130.2, 156.1, 160.7, 168.2, calcd for C 18 H , found [MH] + H HCl 134b (500 MHz, CDCl 3 ) δ (m, 2H), (m, 1H), (m, 1H), (m, 1H), 6.83 (s, 1H), 7.12 (d, J = 8.5 Hz, 4H), 7.62 (d, J = 8.5 Hz, 2H), 8.07 (d, J = 8.5 Hz, 2H). (125 MHz, CDCl 3 ) δ 26.4, 29.1, 50.4, 119.1, 119.7, 122.2, 126.0, 126.3, (q, J CF = 3.6 Hz), 129.8, 159.1, 159.4, 168.1, 178.0, b (500 MHz, CDCl 3 ) δ (m, 2H), (m, 1H), (m, 1H), (m, 1H), 7.11 (d, J = 8.5 Hz, 4H), 7.62 (d, J = 8.5 Hz, 2H), 8.06 (d, J = 8.5 Hz, 2H). (125 MHz, CDCl 3 ) δ 26.4, 29.2, 50.5, 119.1, 119.7, 122.3, 125.3, 126.0, 126.3, (q, J CF = 3.5 Hz), 129.8, 159.1, 159.4, 168.1, 178.3,
29 136a (400 MHz, DMS-d 6 ) δ 6.40 (d, J = 1.6 Hz, 1H), (m, 4H), 7.81 (d, J = 8.8 Hz, 2H), (m, 2H), (s, 1H), (s, 1H). calcd for C 19 H 11 F , found [MH] + 137a ClH H 2 (400 MHz, DMS-d 6 ) δ (m, 1H), (m, 1H), (m, 1H), (m, 4H), (m, 6H), 7.47 (t, J = 8.3 Hz, 2H), 7.99 (d, J = 8.6 Hz, 2H), 9.34 (s, 3H). (100 MHz, DMS-d 6 ) δ 37.3, 48.0, 118.3, 119.9, 124.6, 127.4, 128.6, 129.2, 129.3, 130.3, 134.2, 155.1, 160.1, 167.1, calcd for C 22 H , found [MH] + (600 MHz, DMS-d 6 ) δ 1.49 (quint, J = 7.4 Hz, 2H), 1.81 (quint, J = 7.4 Hz, 2H), 2.63 (t, J = 7.4 Hz, 2H), 3.00 (t, J = 7.4 Hz, 2H), (m, 4H), 7.24 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.4 Hz, 2H), 8.00 (d, J = 8.8 Hz, 2H). (150 MHz, DMS-d 6 ) δ 23.3, 25.6, 30.5, 40.1, 118.3, 119.7, 120.9, 124.5, 129.1, 130.3, 155.3, 159.7, 167.0, calcd for C 18 H , found [MH] + Table S2. Minimal-Inhibitory concentrations (MICs) Compound umber E. faecium CTC 7171 S. aureus ATCC MIC (µg/ml) MIC (µg/ml) 57a b c a 2 4
30 58b c >128 >128 59b a > c b a b > a b a b c a b c a > b > b > b > b b c a 4 4
31 70b c b c a >32 >128 72b a b a a b c b c 128 >128 77b c b c 128 >128 79a > a - >128 80b - >128 81b - >128 81c >128 >128 82a >32 >32
32 82b - >128 83b c 32 >128 85c >128 >128 86b 32 >128 87b 128 >128 87c >128 >128 88c 64 >128 89c 128 >128 90c >128 >128 91c >128 >128 92c 128 >128 93b >128 >128 94a >128 >128 95a >128 >128 96a 32 >128 97a >128 >128 98a >128 >128 99a 128 >128 99b >128 >128 99c >128 > a >128 > b >128 > c >128 >128
33 102b 64 > c 32 > b >128 > b >128 > b 128 > b 128 > b >128 > b 16 > b >128 > b >128 > b >128 > a >128 > a - > a 64 > a 64 > b >128 > b > c >128 > c 64 > b 32 > c 64 > b 64 > c 128 > b >128 >128
34 122c 128 > b >128 > c 16 > a 64 > b 32 > c 64 > c c >128 > a a >128 > c >128 > c >128 > a >128 > a b >128 > b >128 > b >128 > a >128 > a References 1. Daniel, P. I.; Peng, Z.; Pi, H.; Testero, S. A.; Ding, D.; Spink, E.; Leemans, E.; Boudreau, M. A.; Yamaguchi, T.; Schroeder, V. A.; Wolter, W. R.; Llarrull, L. I.; Song, W.; Lastochkin, E.; Kumarasiri, M.; Antunes,. T.; Espahbodi, M.; Lichtenwalter, K.; Suckow, M. A.; Vakulenko, S.; Mobashery, S.; Chang, M. Discovery of a new class of non-β-lactam inhibitors of penicillin-binding proteins with gram-positive antibacterial activity. J. Am. Chem. Soc. 2014, 136,
35 2. Bellamy, F. D.; u, K. Selective reduction of aromatic nitro compounds with stannous chloride in non acidic and non aqueous medium. Tetrahedron Lett. 1984, 25, Yi, B.; Long, S.; González-Cestari, T. F.; Henderson, B. J.; Pavlovicz, R. E.; Werbovetz, K.; Li, C.; McKay, D. B. Discovery of benzamide analogs as negative allosteric modulators of human neuronal nicotinic receptors: Pharmacophore modeling and structure-activity relationship studies. Bioorg. Med. Chem. 2013, 21, Wilson, S. C.; Howard, P. W.; Thurston, D. E. Design and synthesis of a novel epoxidecontaining pyrrolo[2,1-c][1,4]benzodiazepine (PBD) via a new cyclization procedure. Tetrahedron Lett. 1995, 36, Liu, K-C.; Fang, J.-M.; Jan, J.-T.; Cheng, T.-J. R.; Wang, S.-Y.; Yang, S.-T.; Cheng, Y.-S. E.; Wong, C.-H. Enhanced anti-influenza agents conjugated with anti-inflammatory activity. J. Med. Chem. 2012, 55, Coppola, G. M.; Kukkola, P. J.; Stanton, J. L.; eubert, A. D.; Marcopulos,.; Bilci,. A.; Wang, H.; Tomaselli, H. C.; Tan, J.; Aicher, T. D.; Knorr, D. C.; Jeng, A. Y.; Dardik, B.; Chatelain, R. E. Perhydroquinolylbenzamides as novel inhibitors of 11β-hydroxysteroid dehydrogenase type 1. J. Med. Chem. 2005, 48, Perez, M.; Lamothe, M.; Maraval, C.; Mirabel, E.; Loubat, C.; Planty, B.; Horn, C.; Michaux, J.; Marrot, S.; Letienne, R.; Pignier, C.; Bocquet, A.; adal-wollbold, F.; Cussac, D.; de Vries, L.; Le Grand, B. Discovery of novel protease activated receptors 1 antagonists with potent antithrombotic activity in vivo. J. Med. Chem. 2009, 52,
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic
Supplementary information
Electronic Supplementary Material (ESI) for MedChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary information Synthesis of carboxyimidamide-substituted benzo[c][1,2,5]oxadiazoles
Divergent synthesis of various iminocyclitols from D-ribose
Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 205 Divergent synthesis of various iminocyclitols from D-ribose Ramu Petakamsetty,
Supporting Information
Supporting Information Copper/Silver Cocatalyzed Oxidative Coupling of Vinylarenes with ICH 2 CF 3 or ICH 2 CHF 2 Leading to β-cf 3 /CHF 2 -Substituted Ketones Niannian Yi, Hao Zhang, Chonghui Xu, Wei
Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran
1 Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran Munawar Hussain, a Rasheed Ahmad Khera, a Nguyen Thai Hung, a Peter Langer* a,b a Institut für Chemie, Universität Rostock,
A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes
Supporting Information
Supporting Information for AgOTf-catalyzed one-pot reactions of 2-alkynylbenzaldoximes with α,β-unsaturated carbonyl compounds Qiuping Ding 1, Dan Wang 1, Puying Luo* 2, Meiling Liu 1, Shouzhi Pu* 3 and
Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones
Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2016 Supporting information Copper-Catalyzed Oxidative Dehydrogenative - Bond Formation
Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Enantioselective Organocatalytic Michael Addition of Isorhodanines to α,
Synthesis and evaluation of novel aza-caged Garcinia xanthones
Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry Synthesis and evaluation of novel aza-caged Garcinia xanthones Xiaojin Zhang, a,1 Xiang Li, a,1 Haopeng Sun, * b Zhengyu Jiang,
Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.
Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%. S1 Supplementary Figure S2. Single X-ray structure 5a at probability ellipsoids of 20%. S2 H 15 Ph Ac Ac I AcH Ph Ac
Supporting information
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting information Copper-catalysed intramolecular O-arylation: a simple
Supporting Information
Supporting Information for Lewis acid-catalyzed redox-neutral amination of 2-(3-pyrroline-1-yl)benzaldehydes via intramolecular [1,5]-hydride shift/isomerization reaction Chun-Huan Jiang, Xiantao Lei,
Electronic Supplementary Information
Electronic Supplementary Information Unprecedented Carbon-Carbon Bond Cleavage in Nucleophilic Aziridine Ring Opening Reaction, Efficient Ring Transformation of Aziridines to Imidazolidin-4-ones Jin-Yuan
Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors
Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors Andrea Trabocchi a, icolino Pala b, Ilga Krimmelbein c, Gloria Menchi a, Antonio Guarna a, Mario Sechi b, Tobias Dreker c, Andrea Scozzafava
Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled
Supporting Information for: Room Temperature Highly Diastereoselective Zn-Mediated Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled Stereoselectivity Reversal
Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information for Metal-free Oxidative Coupling of Amines with Sodium Sulfinates:
and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol
FeCl 3 6H 2 O-Catalyzed Disproportionation of Allylic Alcohols and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol Jialiang Wang, Wen Huang, Zhengxing Zhang, Xu
Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006
Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 Silver-Catalyzed Asymmetric Synthesis of 2,3-Dihydrobenzofurans: A New Chiral Synthesis of Pterocarpans Leticia Jiménez-González, Sergio
Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines
Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A new Entry to N-Carbamate Protected Arylamines Bing Zhou,* Juanjuan Du, Yaxi Yang,* Huijin Feng, Yuanchao Li Shanghai Institute of Materia Medica,
Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3
Supporting Information Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3 Shohei Shimokawa, Yuhsuke Kawagoe, Katsuhiko Moriyama, Hideo Togo* Graduate
Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines
Direct Palladium-Catalyzed Arylations of Aryl Bromides with 2/9-Substituted Pyrimido[5,4-b]indolizines Min Jiang, Ting Li, Linghua Meng, Chunhao Yang,* Yuyuan Xie*, and Jian Ding State Key Laboratory of
Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination
Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Supporting Information Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine
First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of
Supporting Information File 1 for First DMAP-mediated direct conversion of Morita Baylis Hillman alcohols into γ-ketoallylphosphonates: Synthesis of γ-aminoallylphosphonates Marwa Ayadi 1,2, Haitham Elleuch
Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction
Supporting Information ne-pot Approach to Chiral Chromenes via Enantioselective rganocatalytic Domino xa-michael-aldol Reaction Hao Li, Jian Wang, Timiyin E-Nunu, Liansuo Zu, Wei Jiang, Shaohua Wei, *
Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL
Photoredox-Catalyzed Intramolecular Difluoromethylation of -Benzylacrylamides Coupled with a Dearomatizing Spirocyclization: Access to CF2H Containing 2- Azaspiro[4.5]deca-6,9-diene-3,8-diones. Zuxiao
Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic
Supporting Information Asymmetric Binary-acid Catalysis with Chiral Phosphoric Acid and MgF 2 : Catalytic Enantioselective Friedel-Crafts Reactions of β,γ- Unsaturated-α-Ketoesters Jian Lv, Xin Li, Long
Supporting Information for
Supporting Information for An atom-economic route to densely functionalized thiophenes via base-catalyzed rearrangement of 5-propargyl-2H-thiopyran-4(3H)-ones Chunlin Tang a, Jian Qin b, Xingqi Li *a a
Supporting Information
S1 Supporting Information Synthesis of 2-Arylated Hydroxytyrosol Derivatives via Suzuki-Myaura Cross-Coupling Roberta Bernini, a Sandro Cacchi, b* Giancarlo Fabrizi, b* Eleonora Filisti b a Dipartimento
Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary information Copper-Catalyzed xidative Coupling of Acids with Alkanes Involving Dehydrogenation:
Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors
Supporting Information Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors Xiao-Peng He, abd Cui Li, d Xiao-Ping Jin, b Zhuo Song, b Hai-Lin Zhang,
Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information Synthesis of novel 1,2,3-triazolyl derivatives of
Supporting Information
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Synthesis of 3-omosubstituted Pyrroles via Palladium- Catalyzed Intermolecular Oxidative Cyclization
Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.
Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone. Won-Suk Kim, Hyung-Jin Kim and Cheon-Gyu Cho Department of Chemistry, Hanyang University, Seoul 133-791, Korea Experimental Section
Supporting Information
Supporting Information An Approach to 3,6-Disubstituted 2,5-Dioxybenzoquinones via Two Sequential Suzuki Couplings. Three-step Synthesis of Leucomelone Xianwen Gan, Wei Jiang, Wei Wang,,,* Lihong Hu,,*
Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;
Supplementary Data Synthesis, Chemo-selective Properties of Substituted 9-Aryl-9H-fluorenes from Triarylcarbinols and Enantiomerical Kinetics of Chiral 9-Methoxy-11-(naphthalen-1-yl)-11H-benzo[a]fluorene
Supporting Information For
Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information For ne-pot synthesis of 2,3-difunctionalized indoles
Supporting Information
Supporting Information Wiley-VC 007 9 Weinheim, Germany ew ear Infrared Dyes and Fluorophores Based on Diketopyrrolopyrroles Dipl.-Chem. Georg M. Fischer, Dipl.-Chem. Andreas P. Ehlers, Prof. Dr. Andreas
Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process
Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process Jincan Zhao 1, Hong Fang 1, Jianlin Han* 1,2 and Yi Pan* 1
Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes
1 Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes Gonzalo Blay, Isabel Fernández, Alícia Marco-Aleixandre, and José R. Pedro Departament de Química Orgànica, Facultat de Química,
Supporting Information for
Supporting Information for Palladium-Catalyzed C-H Bond Functionalization of C6-Arylpurines Hai-Ming Guo,* Wei-Hao Rao, Hong-Ying iu, Li-Li Jiang, Ge ng, Jia-Jia Jin, Xi-ing Yang, and Gui-Rong Qu* College
Supplementary Material
Supplementary Material Control experiments S2 Characterization data for the products S2-S7 References S8 MR spectra for the products S9-S28 S1 Control experiments 2a (99.5 mg, 0.5 mmol), I 2 (50.8 mg,
Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles
Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde hydrazones leading
Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information
Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans Liang Yun, Shi Tang, Xu-Dong Zhang, Li-Qiu Mao, Ye-Xiang Xie and Jin-Heng Li* Key Laboratory
Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 205 Vilsmeier aack reagent-promoted formyloxylation of α-chloro-arylacetamides by formamide Jiann-Jyh
Supporting Information. Synthesis and biological evaluation of nojirimycin- and
Supporting Information for Synthesis and biological evaluation of nojirimycin- and pyrrolidine-based trehalase inhibitors Davide Bini 1, Francesca Cardona 2, Matilde Forcella 1, Camilla Parmeggiani 2,3,
Supporting Information
Electronic Supplementary Material (ESI) for rganic Chemistry Frontiers. This journal is the Partner rganisations 2018 Palladium-catalyzed direct approach to α-cf 3 aryl ketones from arylboronic acids Bo
Supporting Information
Supporting Information Lewis Acid Mediated [2,3]-Sigmatropic Rearrangement of Allylic α-amino Amides. Jan Blid, Peter Brandt, Peter Somfai*, Department of Chemistry, rganic Chemistry, Royal Institute of
Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl
Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl Philippe Pierrat, Philippe Gros* and Yves Fort Synthèse Organométallique
Aminofluorination of Fluorinated Alkenes
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Synthesis of ɑ CF 3 and ɑ CF 2 H Amines via Aminofluorination of Fluorinated Alkenes Ling Yang,
Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2
Free Radical Initiated Coupling Reaction of Alcohols and Alkynes: not C-O but C-C Bond Formation Zhongquan Liu,* Liang Sun, Jianguo Wang, Jie Han, Yankai Zhao, Bo Zhou Institute of Organic Chemistry, Gannan
Supporting Information
Supporting Information Ceric Ammonium Nitrate (CAN) catalyzed efficient one-pot three component aza-diels-alder reactions for a facile synthesis of tetrahydropyranoquinoline derivatives Ravinder Goud Puligoundla
The Free Internet Journal for Organic Chemistry
The Free Internet Journal for Organic Chemistry Paper Archive for Organic Chemistry Arkivoc 2018, part iii, S1-S6 Synthesis of dihydropyranones and dihydropyrano[2,3- d][1,3]dioxine-diones by cyclization
Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds
Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2017 Laboratoire de Méthodologie et ynthèse de Produit aturels. Université du Québec
Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*
Facile construction of the functionalized 4H-chromene via tandem benzylation and cyclization Jinmin Fan and Zhiyong Wang* Hefei National Laboratory for Physical Science at Microscale, Joint- Lab of Green
Supporting Information
Supporting Information Gold-catalyzed Cycloisomerization of 1,6-Diyne-4-en-3-ols to form Naphthyl Ketone Derivatives. Jian-Jou Lian and Rai-Shung Liu* Department of Chemistry, National Tsing-Hua University,
Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides
Supporting Information for Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds in Aromatic Amides Feifan Wang, Qiyan Hu, Chao Shu, Zhiyang Lin, Dewen Min, Tianchao Shi and Wu Zhang* Key Laboratory
Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds
Supporting Information for Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds Zhongxue Fang, a Yongquan Ning, a Pengbing Mi, a Peiqiu Liao, a Xihe Bi* a,b a Department of Chemistry,
The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.
Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2018 The,-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H Carbonylation using
Diastereoselective Access to Trans-2-Substituted Cyclopentylamines
Supporting Information Diastereoselective Access to Trans-2-Substituted Cyclopentylamines Antoine Joosten, Emilie Lambert, Jean-Luc Vasse, Jan Szymoniak jean-luc.vasse@univ-reims.fr jan.szymoniak@univ-reims.fr
Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006
Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 1 A Facile Way to Synthesize 2H-Chromenes: Reconsideration of the Reaction Mechanism between Salicylic Aldehyde and
Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions
Supplementary Information for Phosphorus xychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions u Chen,* a,b Xunfu Xu, a Liu Liu, a Guo Tang,* a
Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)
Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2014 Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using
Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION
Eur. J. Inorg. Chem. 2007 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ISSN 1434 1948 SUPPORTING INFORMATION Title: Synthesis of Cyclic Carbonates from Atmospheric Pressure Carbon Dioxide Using
ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.
ESI for A simple and efficient protocol for the palladium-catalyzed ligand-free Suzuki reaction at room temperature in aqueous DMF Chun Liu,* Qijian i, Fanying Bao and Jieshan Qiu State Key Laboratory
Supporting Information
Supporting Information Wiley-VCH 2011 69451 Weinheim, Germany Ruthenium-Catalyzed xidative Annulation by Cleavage of C H/ H Bonds** Lutz Ackermann,* Alexander V. Lygin, and ora Hofmann anie_201101943_sm_miscellaneous_information.pdf
Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors
Supporting Information Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors Frédéric Pin, a Frédéric Buron, a Fabienne Saab, a Lionel Colliandre,
Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate
upporting Information Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate Jing-Yu Wu, Zhi-Bin Luo, Li-Xin Dai and Xue-Long Hou* a tate Key Laboratory of Organometallic
Supporting Information
Supporting Information Montmorillonite KSF-Catalyzed One-pot, Three-component, Aza-Diels- Alder Reactions of Methylenecyclopropanes With Arylaldehydes and Aromatic Amines Li-Xiong Shao and Min Shi* General
Supporting Information
Electronic upplementary Material (EI) for Green Chemistry. This journal is The Royal ociety of Chemistry 204 upporting Information ynthesis of sulfonamides via I 2 -mediated reaction of sodium sulfinates
Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes
Supporting Information for Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes Changkun Li and Jianbo Wang* Beijing National Laboratory
Supporting Information
Supporting Information Lewis acid catalyzed ring-opening reactions of methylenecyclopropanes with diphenylphosphine oxide in the presence of sulfur or selenium Min Shi,* Min Jiang and Le-Ping Liu State
Supporting Information
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Modular Synthesis of Propargylamine Modified Cyclodextrins by a Gold(III)-catalyzed Three Component
Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles
Supporting Information for Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles Angélica de Fátima S. Barreto*, Veronica Alves dos Santos, and Carlos
Electronic Supporting Information. Synthesis and Reactivity of 18 F-Labeled α,α-difluoro-α-aryloxyacetic Acids
Electronic Supporting Information Synthesis and Reactivity of 18 F-Labeled α,α-difluoro-α-aryloxyacetic Acids Tanatorn Khotavivattana,, Samuel Calderwood,, Stefan Verhoog, Lukas Pfeifer, Sean Preshlock,
Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008
Palladium(0)-catalyzed direct cross-coupling reaction of allylic alcohols with aryland alkenylboronic acids Hirokazu Tsukamoto, Tomomi Uchiyama, Takamichi Suzuki and Yoshinori Kondo Graduate School of
Supporting Information
Supporting Information Transition-metal-free Ring Expansion Reactions of Indene-1,3-dione: Synthesis of Functionalized Benzoannulated Seven-Membered Ring Compounds Qiyi Yao, Lingkai Kong, Mengdan Wang,
Selective mono reduction of bisphosphine
Griffith Research Online https://research-repository.griffith.edu.au Selective mono reduction of bisphosphine oxides under mild conditions Author etersson, Maria, Loughlin, Wendy, Jenkins, Ian ublished
Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction
Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 SUPPRTIG IFRMATI Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst-
Supporting information
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting information TFA-promoted Direct C H Sulfenylation at the C2 position of non-protected
Supporting Information
1 upporting Information Rhodium(III)-Catalyzed rtho Halogenations of N-Acylsulfoximines and ynthetic Applications toward Functionalized ulfoximine Derivatives Ying Cheng, Wanrong Dong, Kanniyappan Parthasarathy,
Supporting Information
Supporting Information 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Convenient and General Zinc-Catalyzed Borylation of Aryl Diazonium Salts and Aryltriazenes under Mild Conditions
Supporting Information. Experimental section
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Anhydrous solvents were transferred by
Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces
Highly enantioselective cascade synthesis of spiropyrazolones Alex Zea a, Andrea-Nekane R. Alba a, Andrea Mazzanti b, Albert Moyano a and Ramon Rios a,c * Supporting Information NMR spectra and HPLC traces
Supporting information
Electronic upplementary Material (EI) for New Journal of Chemistry. This journal is The Royal ociety of Chemistry and the Centre National de la Recherche cientifique 7 upporting information Lipase catalyzed,-addition
Supporting Information
Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Supporting Information for Catalytic Enantioselective Conjugate Reduction of β,β- Disubstituted α,β-unsaturated sulfones Tomás Llamas, Ramón
Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation
This journal is The Royal Society of Chemistry 212 Supporting Information for Synthesis of Fused -Heterocycles via Tandem C-H Activation Ge Meng, Hong-Ying iu, Gui-Rong Qu, John S. Fossey, Jian-Ping Li,*
Supporting Information. Design and Synthesis of 2-Arylbenzimidazoles and. Evaluation of Their Inhibitory Effect against. Chlamydia pneumoniae
Supporting Information Design and Synthesis of 2-Arylbenzimidazoles and Evaluation of Their Inhibitory Effect against Chlamydia pneumoniae Leena Keurulainen,, Olli Salin,, Antti Siiskonen,, Jan Marco Kern,
Supporting Information
Supporting Information Metal-Free Direct Intramolecular Carbotrifluoromethylation of Alkenes to Functionalized Trifluoromethyl Azaheterocycles Lei Li, Min Deng, Sheng-Cai Zheng, Ya-Ping Xiong, Li-Jiao
Electronic Supplementary Information (ESI)
Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry Electronic Supplementary Information (ESI) For Iron-Catalysed xidative Amidation of Alcohols with Amines Silvia Gaspa, a Andrea
Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007
Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 6945 Weinheim, 2007 A New Method for Constructing Quaternary Carbon Centres: Tandem Rhodium-Catalysed,4-Addition/Intramolecular Cyclization.
Supporting Information. Experimental section
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Proton nuclear magnetic resonance ( 1
Aluminium-mediated Aromatic C F Bond Activation: Regioswitchable Construction of Benzene-fused Triphenylene. Frameworks
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Aluminium-mediated Aromatic C Bond Activation: Regioswitchable Construction of Benzene-fused Triphenylene
Synthesis of spiropyrazoline oxindoles by a formal [4+1] annulation reaction between 3-bromooxindoles and in situ-derived 1,2-diaza-1,3- dienes
Electronic Supplementary Material (ESI) for rganic Chemistry Frontiers. This journal is the Partner rganisations 2017 Supporting Information for Synthesis of spiropyrazoline oxindoles by a formal [4+1]
Supporting Materials
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Carbonylative Coupling of Aryl Tosylates/triflates with Arylboronic Acids under CO Atmosphere
Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes
Supporting Information for Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes Yibiao Li* 1, Liang Cheng 1, Xiaohang Liu
Supporting Information
Supporting Information Selective Synthesis of xygen-containing Heterocycles via Tandem Reactions of 1,2-Allenic Ketones with Ethyl 4-Chloroacetoacetate Qiang Wang, a, b Zhouqing Xu b and Xuesen Fan a *
KOtBu-Mediated Stereoselective Addition of Quinazolines to. Alkynes under Mild Conditions
KOtBu-Mediated Stereoselective Addition of Quinazolines to Alkynes under Mild Conditions Dan Zhao, Qi Shen, Yu-Ren Zhou, and Jian-Xin Li* State Key lab of Analytical Chemistry for Life Science, School
Supporting Information
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information A Convenient and Efficient Synthesis of Glycals by Zinc Nanoparticles
Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group
Supporting Information Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group Changsheng Kuai, Lianhui Wang, Bobin Li, Zhenhui Yang, Xiuling Cui* Engineering