Kummer s Formula for Multiple Gamma Functions

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Kummer s Formula for Multiple Gamma Functions"

Transcript

1 Kummer s Formula for Multiple Gamma Fuctios Shi-ya Koyama Keio Uiversity Nobushige Kurokawa Tokyo Istitute of Techology Ruig title Kummer s Formula Abstract We geeralize Kummer s formula o a expressio of the gamma fuctio to that of multiple gamma fuctios usig the fuctioal equatio for multiple Hurwitz zeta fuctios 000 Mathematics Subject Classificatio: 11M06 1 Itroductio Kummer s formula for the usual gamma fuctio Γx is the followig idetity: log Γx = 1 π log siπx + logπ + γ π siπx + 1 cosπx + 1 logπ 11 for 0 < x < 1, which was discovered by Kummer [9] 187 A spectacular applicatio is give by lettig x be a ratioal umber: we have formulas for special values of Dirichlet L-fuctios usig the gamma fuctio For example, whe x = 1/ we get L 1, χ = π log Γ due to Malmsté [0] 189, where 1 Ls, χ = :odd + π γ + 3 log π + log 1 1 s is the Dirichlet L-fuctio for the o-trivial character χ modulo This result is equivaletly writte as 1 L 0, χ = log Γ 3 log log π Preseted at the coferece o Zetas ad Trace Formulas i Okiawa, November 00 1

2 via the fuctioal equatio We remark that L0, χ = 1/ ad L1, χ = π/, so Malmsté s result gives the difficult secod term of the Taylor expasio for Ls, χ at s = 0 ad s = 1 Marmsté s study motivated the followig excellet formula of Lerch [18] 189, where log Γx = ζ 0, x + 1 logπ 1 ζs, x = + x s =0 is the Hurwitz zeta fuctio [8] ad the differetiatio is i the first variable s Combiig this with Kroecker s limit formula Lerch [19] 1897 obtaied the formula λ=1 D λ log Γ = h log h log π log a + λ 3 3 a,b,c a,b,c logϑ 10 αϑ 10 β, 13 where ϑ 1 is the usual otatio of theta fuctio so ϑ 1 is essetially η 3, Q D is a imagiary quadratic field of discrimiat D ad class umber h, a, b, c rus over h quadratic forms correspodig to the ideal classes, ad = D It would be coveiet to look at the formula 163 of Ladau [17] I recet years this formula is called Chowla-Selberg formula after the 70 years late paper of Chowla-Selberg [] 1967 with o metio to Lerch [19] ufortuately Cocerig the history aroud Kummer s formula 11 ad the above two Lerch s formulae 1, 13 we refer to the excellet survey [17] writte by Ladau, which is the famous first paper o the prime ideal theorem geeralizig the usual prime umber theorem to algebraic umber fields The purpose of this paper is to preset a geeralizatio of Kummer s formula i the case of the multiple gamma fuctio Γ r x This multiple gamma fuctio origiates from Bares [1] ad it is defied as Γ r x = expζ r0, x where ζ r s, x = = 1,, r = r + x s + r 1 + x s r 1 =0 is the multiple Hurwitz zeta fuctio We have may applicatios of Γ r x i Sarak [3], Voros [5], Shitai [] ad our previous papers [10] - [15] From Γ 1 x = Γx/ π, we

3 ca write Kummer s formula as follows: log Γ 1 x = ζ 0, x = 1 log siπx π + logπ + γ siπx π Our result is a geeralizatio of this formula: Theorem 1 Let 0 < x < 1 The we have 1 log Γ x = 1 π log Γ 3 x = 1 π log cosπx logπ + γ 1 π + 1 π cosπx 1 siπx log siπx logπ + γ 3 3 8π 3 1 8π cosπx x cosπx log Γ x + 1 x log Γ 1 x siπx 3 x 1 log Γ 1 x I the text we show some applicatios We otice that our method is quite simple to obtai ζ r0, x usig the fuctioal equatio ζ r s, x = ξ r r s, x where ξ r s, x is a Dirichlet series itimately related to ζ r s, x: log Γ r x = ξ rr, x This atural method was discovered by Hardy [] to reprove the origial Kummer s formula I [5, 6], Hardy studied the case of the double gamma fuctio, but he did ot obtai the geeralizatio of Kummer s formula Ackowledgemet This paper was preseted at the symposium Zetas ad Trace Formulas i Okiawa from November 7 to 9 of 00 The authors would like to express their hearty thaks to all the participats of Okiawa symposium We also thak Lagua Garde Hotel ad Okiawa Covesio Ceter for supplyig the excellet atmosphere with blue sky ad sea 3

4 Multiple Gamma Fuctios We prepare o the multiple gamma fuctio Γ r x We refer to Bares[1] for the geeral theory First we kow that the fuctio Γ r x is a meromorphic fuctio of order r Γ r x 1 beig a etire fuctio of order r, ad it has a simple pole at x = 0: Γ r x 1 ρ r x as x 0 We remark that Bares [1] used Γ B r x ormalized as Γ B r x = ρ r Γ r x 1 x as x 0 For later use we calculate ρ r for r = 1,, 3 here Theorem 1 ρ 1 = π ρ = πe ζ 1 = exp ζ π + 7 logπ + γ Proof From we have ρ 3 = πe 3 ζ 1 1 ζ3 ζ = exp 8π 3ζ + 5 logπ + γ 1 π 8 Hece lettig x 0 we get ζ r s, x + 1 = ζ r s, x ζ r 1 s, x Γ r x + 1 = Γ r xγ r 1 x 1 Γ r 1 = ρ r 1 ρ r Here we uderstad that ζ 0 s, x = x s, Γ 0 x = x 1 ad ρ 0 = 1 The first result ρ 1 = π follows from Lerch s formula Γ 1 x = Γx π 1 πx as x 0 Now we calculate ad ρ = ρ 1 Γ 1 1 = πγ 1 1 ρ 3 = ρ Γ = πγ 1 1 Γ 3 1 1

5 Sice ζ s, x = = = x s =0 + x + 1 x + x s =0 + x s x + x s =0 = ζs 1, x + 1 xζs, x =0 ad we obtai ζ 3 s, x = + x s =0 = 1 + x + 3 x + x + x 1x + x s = 1 =0 3 x ζs, x + ζs 1, x + ζ 0, x = ζ 1, x + 1 xζ 0, x x 1x ζs, x, ad ζ 30, x = 1 ζ, x + 3 x ζ x 1x 1, x + ζ 0, x Hece, lettig x = 1 ad remarkig ζs, 1 = ζs, we have Γ 1 = expζ 0, 1 = expζ 1 ad Thus we have ad 1 Γ 3 1 = expζ 30, 1 = exp ζ + 1 ζ 1 ρ = π exp ζ 1 ρ 3 = π exp 3 ζ 1 1 ζ Now we use the fuctioal equatio for ζs: ζ1 s = π s Γs cos 5 πs ζs

6 By differetiatig both sides of this fuctioal equatio at s =, we have ζ 1 = π Γcos πζ + π logπγcos πζ +π Γ cos πζ = ζ π + logπ 1 γ 1 1, where we used ζ = π /6 ad Γ = 1 γ Hece ρ = π exp = exp ζ π + logπ 1 ζ π + 7 logπ + γ 1 1 Next, from the fuctioal equatio for ζs we have ζ = π 3 Γ3 π si 3π 1 γ 1 ζ3 Hece Thus logπ ρ 3 = exp = exp ζ = ζ3 π ζ π logπ + γ ζ3 8π 3ζ + 5 logπ + γ 1 π 8 1 ζ3 π 3 Geeralized Kummer s Formula To prove Theorem 1 we show Theorem 3 Let k 1 be a iteger 1 Whe k is odd, ζ k, x = k+1 1 k! π k+1 + { log cosπx logπ + γ k k 6 cosπx k+1 π } siπx k+1

7 Whe k is eve, { ζ k, x = 1 k k! log siπx π k+1 k+1 + logπ + γ k siπx k+1 + π } cosπx k+1 Proof We have the followig fuctioal equatio for ζs, x proved by Hurwitz [8]: πs ζs, x = π s 1 cosπx πs siπx Γ1 s si + cos 1 s 1 s Hece we obtai ζ k, x = π k 1 logπ k! Γ 1 + k πk cosπx si + cos k+1 πk +π k 1 k! si + cos πk + π cos πk + π si πk log siπx k+1 cosπx k+1 siπx k+1 πk log cosπx k+1 Thus, usig Γ Γ k + 1 = k γ we get 1 ad Proof of Theorem 1 From the proof of Theorem we see the relatios siπx k+1 log Γ x = ζ 0, x = ζ 1, x + 1 xζ 0, x = ζ 1, x + 1 x log Γ 1 x 7

8 ad log Γ 3 x = ζ 30, x = 1 ζ, x + 3 x ζ x 1x 1, x + ζ 0, x = 1 3 ζ, x + x ζ 0, x 1 x ζ 0, x = 1 3 ζ, x + x x 1 log Γ x log Γ 1 x Hece we have Theorem 1 from Theorem 3 Applicatios As the first applicatio of our geeralizatio of Kummer s formula we calculate some special values Γ r x for r = ad 3 Before this we explai our method i the simple case r = 1: lettig x = 1/ i Kummer s formula 1 for Γ 1 x we have Γ 1 = exp = exp 1 log = 1 ad Γ B = ρ 1 Γ 1 = 1 π = π Actually i this case r = 1 these results are also direct from Γ 1 x = Γx/ π ad Γ B 1 x = Γx usig the well-kow Γ1/ = π Theorem 1 Γ 1 = exp ζ π + log π + γ 1 log Γ B 1 = exp 3ζ + 5 log π + γ 1 + log π 8 3 8

9 3 Γ 3 1 3ζ3 = exp 3π ζ π + log π + γ 1 3 log 16 Γ B 3 1 7ζ3 = exp 3π ζ + log π + γ log π 6 16 Proof 1 Let x = 1/ i Theorem 11 The we have log Γ 1 We otice = 1 π log cosπ logπ + γ 1 π cosπ s = 1 1 s = 1 s ζs = 1 s 1ζs cosπ ad its differetiatio log cosπ s = log 1 s ζs 1 s 1ζ s Hece ad Thus log Γ 1 cosπ = 1 ζ = π 1 log cosπ = log ζ + 1 ζ = π log 1 + ζ = log ζ π + logπ + γ 1 log = ζ π + log π + γ 1 log log Γ 1 1

10 This gives 1 Sice Γ B 1/ = ρ Γ 1/, follows from 1 ad the formula for ρ i Theorem 3 Set x = 1/ i Theorem 1 The where we used log Γ 3 1 = 1 8π = 3ζ3 3π + log Γ cosπ 3 cosπ + log Γ log 16, log Γ 1 = 1 3 1ζ3 = 3 ζ3 1 ad Γ 1 1/ = 1/ Hece we obtai 3 from 1 Sice Γ B 3 1/ = ρ 3 Γ 3 1/, follows from 3 ad the fomula for ρ 3 i Theorem Values of Γ r x at ratioal umbers are also expressed via special values of Dirichlet L-fuctios besides ζs through the geeralized Kummer s formula Here we report the followig typical example Theorem 5 1 Γ L, χ = exp 3L 1, χ π π ζ 19 log π + 19γ + log 1 +, 16π 96 where Ls, χ is the Dirichlet L-fuctio for the o-trivial character χ modulo Proof Let x = 1/ i Theorem 11 The we have log Γ 1 We otice = 1 π cos π s = log cos π logπ + γ 1 π 1 s + 1 π cos π si π + 3 log Γ 1 = s 1 s 1ζs = 1 s s ζs ad its differetiatio log cos π = 1 s s ζ s + s s log ζs s 10 1

11 Hece ad Usig we have cos π si π s = = ζ 8 = π 8 log cos π = ζ 8 :odd 1 1 = Ls, χ s 1 Γ Thus we obtai Theorem 5 from the result of Malmsté [0] 1 log Γ 1 = L 1, χ π = ζ 16π + logπ + γ 1 + L, χ π log Γ 1 + log π + γ, 1 which is obtaied by settig x = 1/ i Kummer s formula 1: 1 log Γ 1 = 1 log si π π + logπ + γ si π + 1 cos π π = 1 π L 1, χ + logπ + γ L1, χ π 1 = 1 π L 1, χ + log π + γ, 3 where we used L1, χ = π/ ad 1 1 = log Now let S r x = Γ r x 1 Γ r r x 1r be the multiple sie fuctio studied i [13] As the secod applicatio of the geeralized Kummer s formula we prove basic properties of S r x for r = ad 3 This geeralizes the usual sie fuctio: We otice that S 1 x = Γ 1 x 1 Γ 1 1 x 1 = S 1 x = exp π ΓxΓ1 x = siπx for 0 < x < 1 from Kummer s formula for Γ 1 x 11 cosπx

12 Theorem 6 1 S x = exp 1 siπx + x 1 π = exp 1 siπx S π 1 x 1 x for 0 < x < 1 cosπx 3 S S x = πx 1 cotπx 1 S = 5 Proof Sice ad we have S x = πxe x S x = exp π Hece, from 1 of Theorem 1 we have log S x = 1 π ad 1 + x 1+ 1 x 1 e x x 1 S x = Γ x 1 Γ x 0 t cotπtdt Γ x = Γ 1 xγ 1 1 x 1, S x = Γ x 1 Γ 1 xγ 1 1 x 1 siπx S S x = x 1 S 1 S 1 x = x 1 S 1 S 1 x = x 1π cotπx, 1 x 1 log S 1 x cosπx log S 1 x

13 where we used log S 1 x = log Γ 1 x log Γ 1 1 x = cosπx Thus 1 ad are proved We have 3 by settig x = 1/ i 1 For the proof of let S z = e z followig Hölder [7] The we easily obtai 1 z 1 + z e z S S x = πx cotπx ad S 1/ = [7, 13] Hece it is sufficiet to show that S x = S x 1 S 1 x We kow S 1/ = ad S 1 1/ = Thus the both sides are at x = 1/, ad the differetiatios of the both sides tur out to be x 1 cotπx Hece we get Lastly 5 follows from sice both sides are 1 at x = 1 Remark 1 These results have further applicatios cotaiig expressios of the difficult special values of Dirichlet L-fuctios [13] Especially 5 gives the calculatio of the gamma factor of the Selberg zeta fuctio for a Riema surface Sarak [3] ad Voros [5] The situatio is similar i the higher dimesioal case, where we use the multiple sie fuctio S r x with r beig the dimesio [13] Theorem S 3 x = exp π 1 = exp π for 0 < x < 1 cosπx x 3 3 π cosπx 3 S x 3 x S 1 x x 1 siπx x 1x cosπx S 3 x = π x 1x cotπx S 3 13

14 3 S 3 1 = 38 exp 3 16π ζ3 S 3 x = πe ζ xe x 3 x Proof Usig Γ r x = Γ r x 1Γ r 1 x 1 1 we have S 3 x = Γ 3 x 1 Γ 3 3 x 1 = Γ 3 x 1 Γ 3 xγ x 1 1 Hece, from Theorem 1, for 0 < x < x x 1 e x 3x = Γ 3 x 1 Γ 3 1 xγ 1 x 1 Γ 1 x 1 Γ 1 1 x 1 = Γ 3 x 1 Γ 3 1 x 1 Γ 1 x Γ 1 1 x 1 log S 3 x = 1 cosπx 3 π 3 x x 1 log Γ x + log Γ 1 x 1 + x log Γ 1 x + x log Γ 11 x + log Γ 1 x log Γ 1 1 x = 1 cosπx 3 + π 3 x logγ 1 xγ x 1 x 1 x + log Γ 1 x + 1 log Γ 1 1 x = 1 cosπx 3 + π 3 x logs xγ 1 1 x x 1 x + log Γ 1 x + 1 log Γ 1 1 x = 1 cosπx 3 + π 3 x x 1 log S x log S 1 x, where we used that ad Γ 1 xγ x 1 = S xγ 1 1 x Γ 1 x 1 Γ 1 1 x 1 = S 1 x 1

15 From 1 we have S 3 x = 1 siπx S 3 π 3 S + x x S log S x + x 1 log S 1 x x 1 S 1 x S 1 Hece, usig the previous formulas for log S r x ad S rx/s r x r = 1,, we obtai S 3 x = 1 S 3 π +π siπx + 1 π x 1 x 3 = π x 1x cotπx siπx x 1 cotπx 3 From 1 1 S 3 Here 1 1 cosπx = exp S π 3 S 1 = exp π = 3 3 = 1 3 ζ3 Hece we obtai 3 Let We prove that S 3 x = e x = 3 ζ3 1 x e x S 3 x = C S 3 x S x 3 S 1 x with C = e ζ The we get usig the product expressios for S 3 x, S x ad S 1 x First, we see S 3 S 3 x = πx cotπx 15

16 from [1, 13, 1] ad S 3 x 3 S x + S 1 x S 3 S S 1 = x 1x π + 3x cotπx = πx cotπx Hece, it is sufficiet to show that C = S 3 1 S 3 1 We calculated the value S 3 1 i [16] [13] as S 3 1 S S 1 = 1 exp 7 8π ζ3, which is equivalet to the followig result of Euler [3]: We kow ζ3 = π 7 log S 3 1 π 0 x logsi xdx = 38 exp 3 16π ζ3 as above Thus we have S 3 S 3 S S 1 = 1 exp 7 8π ζ3 38 exp 3 16π ζ3 3 1 = exp ζ3 π = expζ = C, where we used ζ3 = π ζ comig from the fuctioal equatio for ζs Remark For aother approach to Theorems 6 ad 7 we refer to [13], where we use multiplicatio formulas for multiple sie fuctios ad the argumet is more elaborate The above proofs are quite direct because of our Kummer s formula for multiple gamma fuctios 16

17 5 Geeralizatios ad Problems Our ivestigatio aturally leads to the case of Γ r x for r This is treated similarly as r = ad 3 by usig r 1 1 ζ r s, x = r 1! ζs r + 1, x + b r,k xζ k s, x where b r,k x is a polyomial i x determied by + r 1 = r 1 for all itegers 0 For example + xr 1 r 1! k=1 r 1 + k 1 + b r,k x k 1 k=1 The we have b r,1 x = x 1r 1 r 1! Γ r x = exp ζ r0, x 1 = exp r 1! ζ 1 r, x r 1 Γ k x br,kx Hece our Theorem 3 gives the Kummer s formula for Γ r x iductively Beyod this we have a more geeral problem for Γ r x; ω 1,, ω r with geeral periods ω 1,, ω r defied by where k=1 Γ r x; ω 1,, ω r = exp ζ r0, x, ω 1,, ω r, ζ r s, x, ω 1,, ω r = 1,, r =0 1 ω r ω r + x s is the multiple Hurwitz zeta fuctio for geeral parameters We have see the case ω 1,, ω r = 1,, 1 above First, whe ω 1,, ω r is reduced to the ratioal parameters the situatio is quite similar to the case 1,, 1 For example, if ω 1, ω = 1,, the ζ s, x, 1, = s ζ s, x + ζ s, x + 1 ad ζ 0, x, 1, = ζ 0, x + ζ 0, x + 1 log ζ 0, x + ζ 0, x

18 see [15] Sice ζ 0, x + ζ 0, x + 1 = ζ, 0, x, 1, = 1 x 3x + 11, 6 we have log Γ x, 1, = log Γ x x log Γ log x 3x Hece we obtai Kummer s formula for Γ x, 1, from our Theorem 11 The o-ratioal or o-commesurable parameter case, we face the problem to have the fuctioal equatio for ζ r s, x, ω 1,, ω r of the form ζ r s, x, ω 1,, ω r = ξ r r s, x, ω 1,, ω r by usig the residue calculatio as i Riema [] ad Hurwitz [8] This problem is i geeral highly o-trivial delicate covergece as ivestigated by Hardy [5, 6] After that we would have the desired Kummer s type formula: log Γ r x; ω 1,, ω r = ξ rr, x, ω 1,, ω r We postpoe the detailed ivestigatio to the ext opportuity Refereces [1] EW Bares: O the theory of the multiple gamma fuctio Tras Cambridge Philos Soc, [] S Chowla ad A Selberg O Epstei s zeta-fuctio J reie agew Math Crelle s J [3] L Euler: Exercitatioes aalyticae Novi Commetarii Academiae Scietiarum Petropolitaae, Opera Omia I-15, pp [] GH Hardy O Kummer s series for log Γa Quarterly J Math Collected Papers: Vol IV, pp 8-3 [5] GH Hardy The expressio of the double zeta-fuctio ad double gamma-fuctio i terms of elliptic fuctios Tras Cambridge Phil Soc Collected Papers: Vol IV, pp

19 [6] GH Hardy O double Fourier series, ad especially those which represet the double zeta-fuctio with real ad icommesurable parameters Quarterly J Math Collected Papers: Vol IV, pp [7] O Hölder: Ueber eie trascedete Fuctio Göttige Nachrichte 1886, Nr 16 pp 51-5 [8] A Hurwitz Eiige Eigeschafte der Dirichlet sche Fuktioe F s = D 1 s, die bei der Bestimmug der Klasseazahle biärer quadratischer Forme auftrete Zeitschrift für Mathematik ud Physik Werke Vol I, pp 7-88 [9] E Kummer Beitrag zur Theorie der Fuctio Γx = 0 e v v x 1 dv J reie agew Math Crelle s J Collected Papers Vol II, pp35-38 [10] N Kurokawa: Multiple sie fuctios ad Selberg zeta fuctios Proc Japa Acad 67A [11] N Kurokawa: Gamma factors ad Placherel measures Proc Japa Acad 68A [1] N Kurokawa: Multiple zeta fuctios: a example I Zeta Fuctios i Geometry, volume 1 of Advaced Studies i Pure Math, pages 19-6, Kiokuiya, Tokyo 199 [13] N Kurokawa ad S Koyama: Multiple sie fuctios Forum Math i press [1] S Koyama ad N Kurokawa: Multiple zeta fuctios I Composit Math i press [15] S Koyama ad N Kurokawa: Normalized double sie fuctios Proc Japa Acad [16] N Kurokawa ad M Wakayama: O ζ3 J Ramauja Math Soc [17] E Ladau Über die zu eiem algebraische Zahlkörper gehörige Zetafuctio ud die Ausdehug der Tschebyschefsche Primzahltheorie auf das Problem der Verteilug der Primideale J reie agew Math Crelle s J Collected Works Vol I, pp [18] M Lerch Dalši studie v oboru Malmstéovských řad Rozpravy České Akad o 8, pp 1-61 [19] M Lerch Sur quelques formules relatives du ombre des classes Bull Sci Math

20 [0] CJ Malmsté De itegralibus quibusdam defiitis, seriebusque ifiitis J reie agew Math Crelle s J [1] Yu I Mai: Lectures o zeta fuctios ad motives accordig to Deiger ad Kurokawa Asterisque [] B Riema: Ueber die Azahl der Primzahle uter eier gegebee Grösse Moatsberichte der Berlier Akademie, November 1859, pp Gesammelte Mathematische Werke, pp [3] P Sarak: Determiats of Laplacias Comm Math Phys [] T Shitai: O a Kroecker limit formula for real quadratic fields J Fac Sci Uiv Tokyo, [5] A Voros: Spectral fuctios, special fuctios ad Selberg trace formula Comm Math Phys Shi-ya Koyama: Departmet of Mathemartics, Keio Uiversity, 3-1-1, Hiyoshi, Kohokuku, Kaagawa 3-85, Japa koyama@mathkeioacjp Nobushige Kurokawa: Departmet of Mathematics, Tokyo Istitute of Techology, -1-1, Oh-okayama, Meguro-ku, Tokyo , Japa kurokawa@mathtitechacjp 0

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1. Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Certain Sequences Involving Product of k-bessel Function

Certain Sequences Involving Product of k-bessel Function It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Fourier Series. Fourier Series

Fourier Series. Fourier Series ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1 Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Mellin transforms and asymptotics: Harmonic sums

Mellin transforms and asymptotics: Harmonic sums Mellin tranform and aymptotic: Harmonic um Phillipe Flajolet, Xavier Gourdon, Philippe Duma Die Theorie der reziproen Funtionen und Integrale it ein centrale Gebiet, welche manche anderen Gebiete der Analyi

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

arxiv: v1 [math.nt] 17 Sep 2016

arxiv: v1 [math.nt] 17 Sep 2016 arxiv:609.057v [math.nt] 7 Sep 06 Covolutio idetities for Tetraacci umbers Ruse Li School of Mathematics ad Statistics Wuha Uiversity Wuha 43007 Chia limajiashe@whu.edu.c Abstract We give covolutio idetities

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα