Financial Economic Theory and Engineering Formula Sheet

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Financial Economic Theory and Engineering Formula Sheet"

Transcript

1 Financial Economic heory and Engineering Formula Sheet 2010 Morning and afternoon exam booklets will include a formula package identical to the one attached to this study note. he exam committee felt that by providing many key formulas, candidates would be able to focus more of their exam preparation time on the application of the formulas and concepts to demonstrate their understanding of the syllabus material and less time on the memorization of the formulas. he formula sheet was developed sequentially by reviewing the syllabus material for each major syllabus topic. Candidates should be able to follow the flow of the formula package easily. We recommend that candidates use the formula package concurrently with the syllabus material. Not every formula in the syllabus is in the formula package. Candidates are responsible for all formulas on the syllabus, including those not on the formula sheet. Candidates should carefully observe the sometimes subtle differences in formulas and their application to slightly different situations. For example, there are several versions of the Black-Scholes-Merton option pricing formula to differentiate between instruments paying dividends, tied to an index, etc. Candidates will be expected to recognize the correct formula to apply in a specific situation of an exam question. Candidates will note that the formula package does not generally provide names or definitions of the formula or symbols used in the formula. With the wide variety of references and authors of the syllabus, candidates should recognize that the letter conventions and use of symbols may vary from one part of the syllabus to another and thus from one formula to another. We trust that you will find the inclusion of the formula package to be a valuable study aide that will allow for more of your preparation time to be spent on mastering the learning objectives and learning outcomes. 1

2 General Formulas Lognormal distribution: { 1 fx = xσ 2π exp 1 } lnx µ 2 2 σ 2 EX = e µ+σ2 /2 VX = e 2µ+σ2 e σ2 1 lnx µ PrX x = Φ σ x > 0 Normal distribution: fx = 1 { σ 2π exp 1 } x µ 2 2 σ 2 Capital Asset Pricing Model: ER i = R f + β i ER m R f where β i = CovR i, R m VarR m Weighted Average Cost of Capital: B WACC = 1 τ c k b B + S + k S s B + S where k b =return on debt, k s =return in equity. GARCH1,1 Model Y t = µ + σ t ɛ t σ 2 t = α 0 + α 1 Y t 1 µ 2 + βσ 2 t 1 RSLN-2 Model Y t ρ t N µ ρt, σ 2 ρ t where {ρt }, t = 1, 2,..., is a Markov process with 2-states. p ij = Prρ t+1 = j ρ t = i Conditional ail Expectation For loss L, continuous at V α = F 1 L α: CE α L = E L L > V α L If there is a probability mass at V α, define β = max{β : V α = V β }, then CE α L = 1 β E X X > V α + β αv α 1 α 2

3 Vasicek Model Bt; rt dr = ab rdt + dz P t; = At; e a t 1 e h Bt; + t a 2 b 2 =2 2 Bt; 2 i Bt; = At; = exp a a 2 4a Cox Ingersoll Ross Model Bt; rt dr = ab rdt + p rdz P t; = At; e 2e t 1 2e a+ t=2 Bt; = At; = + ae t ae t Ho-Lee Model dr = tdt + dz t = F t 0; t + 2 t P t; = At; e rt t ln At; = ln P 0; P 0; t + tf 0; t t t 2 Hull-White Extended Vasicek Model 2ab= 2 dr = t ardt + dz t = F t 0; t + af 0; t + 2 2a 1 Bt; rt P t; = At; e a t 1 e Bt; = a ln At; = ln P 0; P 0; t + Bt; F 0; t 1 4a 3 2 e a e at 2 e 2at 1 e 2at Itô s Lemma Let X be an Itô process such that dx t = ut; X t dt + vt; X t dw t ; and let gt; x denote a twice di erentiable function. hen, for Y t = gt; X t, dy t; X t t; X t dx t Geometric Brownian 2 t; X t dx 2 t 2 : ds t S t = dt + dz t Black-Scholes Pricing Formulas c t = S t Nd 1 Ke r t Nd 2 3

4 p t = Ke r t N d 2 S t N d 1 where d 1 = lns t/k + r + σ 2 /2 t σ t and d 2 = d 1 σ t 4

5 Copeland, Weston, Shastri: Financial heory and Corporate Policy Chapter Rev t + m t S t = Div t + W &S t + I t 2.5 NI t = Rev t W &S t dep t 2.7 NI t A t S 0 = 1 + k s t t= F CF = EBI 1 τ c + dep I Chapter R jt = ER jt + β j δ mt + ε jt 6.36 R jt R ft = R mt R ft β j + ε jt 6.36 R pt = γ 0 + γ 1 β p + ε pt 6.37 R it = α i + β i R mt + ε it 6.38 ER i = ER Z + ER m ER Z β i 6.40 ER i R f = b i ER m R f + s i ESMB + h i EHML 6.41 λ i = ER m ER Z 6.46 R it = γ 0t + γ 1t β it + ε it 6.49 ER i = ER z,i + ER I ER z,i β i,i 6.50 Ri = E R i + b i1 F b ik Fk + ε i 6.57 E R i = λ 0 + λ 1 b i λ k b ik 6.59 ER i R f = δ1 R f bi δk R f bik 6.60 b ik = CovR i, δ k /V arδ k Chapter CS A, S B, = S A Nd 1 S B Nd 2 where d 1 = ln S A /S B + V 2 /V ; d 2 = d 1 V and V 2 = V 2 A 2ρ AB V A V B + V 2 B Chapter V η m qm max a pe mua, e V η 0 e 5

6 10.4 pr c pdr c 2 = p r/d c pr c Fair Game: ε j,t+1 = P j,t+1 P jt P jt EP j,t+1 η t P jt P jt = a Submartingale: EP j,t+1 η t P jt P jt = Er j,t+1 η t > b Martingale: EP j,t+1 η t P jt = Er j,t+1 η t = 0 P jt ER jt β jt = R jt + ER mt β mt R ft βjt Chapter R jt = α j + β 1j R mt R ft + β 2j RLE t RSE t + β 3j HB M t LB M t + ε jt 11.3 NI jt = â + ˆb j m t + ε jt 11.4 NI j,t+1 = â + ˆb j m t+1 Chapter V α = 1 µα λ 1 + r 12.3 W 0 = X + βv M + Y 1 αv α 12.4 W1 = αµ + ε µα + λ + β M 1 + rv M rw 0 X + µα λ E U W = E U W1 µ + ε µα + λ + 1 αµ α = 0 α E U W = E U W1 M 1 + rvm = 0 where µ α = µ β α E U W1 ε + λ αµ α = E U W ED = 1 V D + µ τ p D β 1 + r ED = r D X V D + t2 τ pd β D2 2t V D = τ p + β D t V D t = 1 t r 2 τ pd t β D t 2 2t 6 X DfXdX

7 12.20 V D t = τ p + βad t τp 1 + r τp A = + β 1 + 2r β I + D = C + Np e = C + P e L τ p D max D τ p = τ p + P D 1 + r r P + τp D L P + τ p D + I C L + I C P + τ p D + I C X DX = 1 τ p maxi C + L, 0 ln X V0 old = P E + S + a + b P + E W 0 z = αp z + βp m, P W s n, z = α P n, z + βp n, p W n = α P n t 2 p γ 1 = P n, z = kn + cz 1/γ X where k = t 2 γ/α 1/γ β1 + 2r τ 2 p 1 + r Mn, z = P n, z n, P = k1 t 1 n + cz 1/γ t 2 nk 1 γ n + cz 1 γ/γ V 0 = 1 tx EX n = Xn = X 0s 0 + Ŷmns m s 0 + s m V 1 n = Xn n C V 2, Y = X 0s 0 + Ŷms m + Y F s E s 0 + s m + F s XtX/n, Ŷm, Y C X 0 s 0 +Y ms m s 0 +s m F s X 0 s 0 + Ŷms m EV 2 Y m = C s 0 + s m + F s dα B V n Bn, D αd = 0 dd D d 2 α dα B 2 B V n Bn, D 2 αd < 0 dd 2 dd D D α D n V n B n, D n V n I = 0 d 2 α dα B V B 2 dd2 dd D α 2 B dd D 2 dn = dα dd εα, D = a D D 2 1 α α 2 7 B n dv dn 2 B + α n D

8 αɛ γ D = X 1 1 α1 ɛγ max U s cs, p fs, p ads dp cs,p,a V cs, p fs, p ads dp Ga V U s cs, p V cs, p max Uk + λ a max cs,a max cs,p,a = λ V cs, pfs, p ads dp Ga V Us csfs a ds + λ +µ V cs f a s ads G a U s cs = λ + µ f as a V cs fs a U s cs, p fs, p ads dp+λ +µ U s cs, p V cs, p U s cp V cp V cs, pf a s, p a ds dp G a = λ + µ f as, p a fs, p a V cs fs a ds Ga V f a1 p a = λ + µ 1 fp a + µ f a1 p a 2 fp a µ f a1 p a n fp a max cs,p,m,am,mm E s,p,m U s cs, p, m am Subject to for all m E s,p m V cs, p, m Gam am V V X X = P X X CX X = S = 1 βes α λ1 βcovs, R M 1 + r f max α,β V cs, pfs, p a ds dp Ga V 1 βes α λ1 βcovs, R M 1 + r f +µ a EW + α + βes b VarW + 2βCovW, s + β 2 Vars V β = λacovs, R M CovW, s 2bVars Vars { V + db B new B = D P D + dd, 1,, r f, σ V + P 8 } V D, 1,, r f, σ V = D P X +P Y

9 Chapter V U = E F CF or V U = EẼBI 1 τ c ρ ρ 15.3 ÑI + k d D = Rev Ṽ C F CC dep 1 τ c + k d Dτ c 15.4 V L = EẼBI 1 τ c ρ 15.6 V L = V U + τ c B V L I = S0 I + Sn + B 0 I 1 τ c EEBI I > ρ + k ddτ c k b = S0 I τ c B I k s = NI/ S = ρ + 1 τ c ρ k b B S G = V L V U = τ c B V U = EEBI 1 τ c1 τ ps ρ V L = V U τ c1 τ ps 1 τ pb β L = τ c B S β U B where B = k d D1 τ pb /k b R f S L + λ 1 τ c CovEBI, R m λ 1 τ c B CovR bj, R m = EEBI 1 τ c ER bj B1 τ c ds = S S dv + V t dt S 2 2 V 2 σ2 V 2 dt r s = S V V S r V S = V Nd 1 e r f DNd β S = 1 1 D/V e r f Nd 2 /Nd 1 β V 15.47/8 k s = R f + R m R f Nd 1 V S β V = R f + Nd 1 R v R f V S k b = R f + ρ R f N d 1 V B Note: his is a correction to the formula in the reading dv V = µv, tdt + σdw 9

10 σ2 V 2 F V V V + rv F V V rf V + C = F V = A 0 + A 1 V + A 2 V 2r/σ V = V B BV = 1 αv B V BV C/r BV = 1 p B C/r + p B 1 αv B where p B = V/V B 2r/σ V = V B DCV = αv B V DCV DCV = αv B V/V B 2r/σ V L V = V U V + c BV DCV = V U V + c B p B c B αv B p B { V1 if V M = 1 + rγ 0 V 0 + γ 1 D 1 V 1 C if V 1 < D { γ0 1 + r V 1a M a = 1+r 1V 1a if D < D V 1a γ r V 1b 1+r 1V 1a if D < D { γ0 1 + r V 1a M b = 1+r 1V 1b C if D D V 1a γ r V 1b 1+r 1V 1b if D < D Chapter V i t = Div it n i tp i t k u t Ṽ i t = ẼBI it + 1 Ĩit Ṽit k u t Ỹ di = ẼBI rdc 1 τ c rd pi 1 τ pi Ỹ gi = ẼBI rd c 1 τ c 1 τ gi rd pi 1 τ pi S 1 ES 1 = ε γ = EBI 1 E 0 EBI γ 1 + k 1 + k Div it = a i + c i Div it Div i,t 1 + U it Div t = β 1 Div t 1 + β 2 NI t + β 3 NI t 1 + Z t P it = a + bdiv it + cre it + ε it Rj = γ 0 + Rm γ 0 β j + γ 1 DY j DY m /DY m + ε j W PE P 0 P P = 1 F P + F P N 0 P 0 P 0 P 0 10

11 Hull: Options Futures and Other Derivatives Chapter 11: Binomial rees 11.1 = f u f d S 0 u S 0 d 11.5/6 f = e r t pf u + 1 pf d where p = er t d u d 11.13/14 u = e σ t d = e σ t Chapter 12: Wiener Processes and Itôs Lemma G = ln S dg = µ σ 2 /2 dt + σ dz Chapter 13: he Black-Scholes-Merton model f f 13.9 df = µs + S t f 2 S 2 σ2 S 2 dt + f S σsdz f t + rs f S σ2 S 2 2 f S 2 = rf Chapter 17: Greek Letters 17. call = Nd 1 put = Nd Θcall = S 0N d 1 σ Θput = S 0N d 1 σ Γcall = Γput = N d 1 S 0 σ 17.4 Θ + rs σ2 S 2 Γ = rπ rke r Nd Vcall = Vput = S 0 N d rhocall = K e r Nd rhoput = K e r N d 2 + rke r N d 2 Chapter 19: Basic Numerical Procedures 19.8 = f 1,1 f 1,0 S 0 u S 0 d 11

12 19.9 Γ = f 2,2 f 2,1 /S 0 u 2 S 0 f 2,1 f 2,0 /S 0 S 0 d 2 h Θ = f 2,1 f 0,0 2 t p = eft gt t d u d a j f i,j 1 + b j f i,j + c j f i,j+1 = f i+1,j where a j = 1 2 r qj t 1 2 σ2 j 2 t, b j = 1 + σ 2 j 2 t + r t and c j = 1 2 r qj t 1 2 σ2 j 2 t f i,j = a jf i+1,j 1 + b jf i+1,j + c jf i+1,j+1 where a 1 j = r t 2 r qj t σ2 j 2 t, b j = and c 1 1 j = 1 + r t 2 r qj t σ2 j 2 t 1 1 σ 2 j 2 t 1 + r t α j f i,j 1 + β j f i,j + γ j f i,j+1 = f i+1,j where α j = t r q σ2 2 Z 2 and γ j = t r q σ2 2 Z 2 t 2 Z 2 σ2 t 2 Z 2 σ2 β j = 1 + t Z 2 σ2 + r t αjf i+1,j 1 + βj f i+1,j + γj f i+1,j+1 = f i,j where αj 1 = t r q σ2 1 + r t 2 Z 2 and βj 1 = 1 t 1 + r t Z 2 σ2 and γ j = r t t 2 Z r q σ2 2 + t 2 Z 2 σ2 + t 2 Z 2 σ2 Chapter 21: Estimating Volatilities and Correlations 21.7 σ 2 n = λσ 2 n λu 2 n σn 2 = γv L + αu 2 n 1 + βσn 1 2 m lnv i u2 i i= E σn+t 2 = VL + α + β t σn 2 V L v i 12

13 Chapter 24: Exotic Options Call on a call S 0 e q 2 M a 1, b 1 ; 1 / 2 K 2 e r 2 M a 2, b 2 ; 1 / 2 e r 1 K 1 Na 2 where a 1 = lns 0/S + r q + σ 2 /2 1 σ 1 a 2 = a 1 σ 1 b 1 = lns 0/K 2 + r q + σ 2 /2 2 σ 2 b 2 = b 1 σ 2 Put on a call K 2 e r 2 M a 2, b 2 ; 1 / 2 S 0 e q 2 M a 1, b 1 ; 1 / 2 + e r 1 K 1 N a 2 Call on a put K 2 e r 2 M a 2, b 2 ; 1 / 2 S 0 e q 2 M a 1, b 1 ; 1 / 2 e r 1 K 1 N a 2 Put on a put S 0 e q 2 M a 1, b 1 ; 1 / 2 K 2 e r 2 M a 2, b 2 ; 1 / 2 + e r 1 K 1 Na 2 Chooser maxc, p = c + e q 2 1 max 0, Ke r q 2 1 S 1 Barrier Options λ = r q + σ2 /2 σ 2 x 1 = lns 0/H σ If H K y = ln H2 /S 0 K σ + λσ y 1 = lnh/s 0 σ + λσ + λσ c di = S 0 e q H/S 0 2λ Ny Ke r H/S 0 2λ 2 N If H K c do = S 0 Nx 1 e q Ke r N x 1 σ S 0 e q H/S 0 2λ Ny 1 + Ke r H/S 0 2λ 2 N If H > K c ui = S 0 Nx 1 e q Ke r N x 1 σ S 0 e q H/S 0 2λ N y N y 1 +Ke r H/S 0 2λ 2 y + σ N 13 y σ y 1 σ y 1 + σ

14 If H K p ui = S 0 e q H/S 0 2λ N y + Ke r H/S 0 2λ 2 N If H K p uo = S 0 N x 1 e q + Ke r N x 1 + σ +S 0 e q H/S 0 2λ N y 1 Ke r H/S 0 2λ 2 N y + σ y 1 + σ If H K p di = S 0 N x 1 e q + Ke r N x 1 + σ + S 0 e q H/S 0 2λ Ny Ny 1 Ke r H/S 0 N 2λ 2 y σ N y 1 σ Lookback Options c fl = S 0 e q Na 1 S 0 e q σ 2 where a 1 = lns 0/S min +r q+σ 2 /2 σ a 3 = lns 0/S min + r+q+σ 2 /2 σ Y 1 = 2r q σ2 /2 lns 0 /S min σ 2 p fl = S max e r Nb 1 where b 1 = lnsmax/s 0+ r+q+σ 2 /2 σ b 2 = b 1 σ b 3 = lnsmax/s 0+r q σ 2 /2 σ Y 2 = 2r q σ2 /2 lns max/s 0 σ 2 Exchange Options 24.3 V 0 e qv Nd 1 U 0 e qu Nd 2 2r q N a 1 S min e r a 2 = a 1 σ Na 2 σ2 2r q ey 1 N a 3 σ2 2r q ey 2 N b 3 +S 0 e q σ 2 2r q N b 2 S 0 e q Nb 2 where d 1 = lnv 0/U 0 + q U q V + ˆσ 2 /2 ˆσ and ˆσ = σu 2 + σ2 V 2ρσ Uσ V d 2 = d 1 ˆσ Chapter 26: More on Models and Numerical Procedures 26.2, 3 ds S = r qdt + V dz S dv = av L V dt + ξv α dz V 14

15 Chapter 27: Martingales and Measures 27.4 Π = σ 2 f 2 f 1 σ 1 f 1 f Π = µ 1 σ 2 f 1 f 2 µ 2 σ 1 f 1 f 2 t 27.7 df = µdt + σdz f 27.8 µ r = λ σ n µ r = λ i σ i d i=1 f = σ f σ g f g g dz f 0 = P 0, E f st = P t, 0 P t, N At f f 0 = A0E A A c = P 0, E maxs K, 0 V f 0 = U 0 E U max 1, 0 U f 0 = V 0 Nd 1 U 0 Nd α v = ρσ v σ w Chapter 28: Interest Rate Derivatives: he Standard Market Models 28.1 c = P 0, F B Nd 1 KNd p = P 0, KN d 2 F B N d 1 where d 1 = ln F B/K + σ 2 B /2 σ B 28.3 F B = B 0 I P 0, 28.4 σ B = D y0 σ y d 2 = d 1 σ B 28.7, Caplet Lδ k P 0, t k+1 F k Nd 1 R K Nd 2 where d 1 = lnf k/r K + σ 2 k t k/2 σ k tk d 2 = d 1 σ k tk 28.8, Floorlet Lδ k P 0, t k+1 R K N d 2 F k N d 1 15

16 28.10 LA s 0 Nd 1 s k Nd 2 Chapter 29: Convexity, iming, and Quanto Adjustments 29.1 E y = y y2 0σ 2 y G y 0 G y E R = R 0 + R2 0σ 2 R τ 1 + R 0 τ 29.3 α V = ρ V W σ V σ W 29.4 E V = E V exp ρ V Rσ V σ R R R 0 /m Chapter 30: Interest Rate Derivatives: Models of the Short Rate 30.20, 21 c = LP 0, snh KP 0, Nh σ p p = KP 0, N h + σ p LP 0, sn h h = 1 σ p ln σ p = σ a P m+1 = n m LP 0, s P 0, K + σ p 2 1 e as 1 e 2a 2a j= n m Q m,j exp g α m + j x t Chapter 32: Swaps Revisited 32.1 F i + F 2 i σ 2 i τ i t i 1 + F i τ i 31.2 y i 1 2 y2 i σ 2 y,it i G i y i G i y i y iτ i F i ρ i σ y,i σ F,i t i 1 + F i τ i 32.3 V i + V i ρ i σ W,i σ V,i t i 16

17 Hardy: Investment Guarantees Chapter F t + = F t 1 m = F t 1 1 m S t S t 1 s t 1 m t M t = F t m c = m c F 0 S C n = n p τ xg F n + errata sheet 6.13 C t = t p τ xm t + t 1 1 q d xg F t C t = t p τ xf 0 S t 1 m t m d + t 1 1 q d x errata sheet G F0 S t 1 m t + errata sheet Chapter 8 8. F = F 0 S S 0 1 m 8.3 P 0 = Ge r Φ d 2 S 0 1 m Φ d H0 = where d 1 = log S 0 1 m /G + r + σ 2 /2 σ n 0 Ge rt Φ d 2 tp τ x µ d x,t dt + n 0 d 2 = d 1 σ S0 1 m t Φ d 1 tp τ x µ d x,t dt 8.9 H0, t 3 = P S t 1 + S 0 1 m t 1 { 1 + P t2 t P t 3 t m t 2 t 1 P t 3 t 2 } 8.15 α = S 0 1 m t 1 where P S t 1 = BSPS 0 1 m t 1, G, t 1 B S 0 ä τ x:n i 8.19 HE t = Ht + t 1 q d x G Ft + Ht 8.22 C t = τ S t Ψ t Ψ t 1 Chapter β% Confidence Interval for α-quantile: 1 + β Nα1 L 0Nα A, L 0Nα+A ; A = Φ 1 α 2 log G/S0 nµ + log1 m 9.4 ξ = 1 Φ nσ 17

18 9.7 V α = G F 0 exp z α nσ + nµ + log1 m e rn { 9.17 CE α L = e rn /2 G enµ+log1 m+σ2 Φ z α nσ } 1 α Chapter H 0 = B0, ne Q Fn ga 65 n H 0 = F 0 E Q ga d 65 0, n B0, n H t = F t {ga 65 tφd 1 t Φd 2 t} where d 1 t = log ga 65t + σ 2 yn t/2 σ y n t, d 2 t = d 1 t σ y n t Chapter PP: H = = αp S 0 + Sn P 1 + α 1 G S 0 { S n S } + 0 G 1 α α P 13.7 H 0 = αp e dn Φd 1 G P 1 α e rn Φd 2 αp ln + r d + σ2 n G P 1 α 2 where d 1 = σ, d 2 = d 1 σ n n CAR: H = P { e r + α e d Φd 1 e r Φd 2 } n FE and FE : Doherty; Integrated Risk Management Chapter 13 p. 465 V E = V F V D = V F D DF + P V F, D = CV F, D p. 481 V F = S + D 1 + m n p. 494 V R E = C + V RF D + P {V r F, D} = C + V R D + P R V N E = V NF D + P {V N F, D} = V N D + P N 18

19 Chapter E + P 1 + r i L 16.2 E = E P RI; S 1 + ER i ELa + hci; S a 16.3 E a = ELa a 1 + h C I I L L a = 0 FE : Babbel and Fabozzi, Investment Management for Insurers Chapter 13 8 Ct = P t, Bχ 2r 2 ϕ + ψ + G, B, 4c, σ 2 X P t, χ 2r 2 φ + ψ, 4c, 2φ2 re γ t σ 2 φ+ψ 2ϕ 2 reγ t ϕ+ψ+g, B FE : Ho and Lee, he Oxford Guide to Financial Modeling Chapter 5: Interest Rate Derivatives: Interest Rate Models 5.10 dr = a 1 + b 1 l rdt + rσ 1 dz dl = a 2 + b 2 r + c 2 l dt + lσ 2 dw 5.12 dv = Mt, rdt + Ωt, rdz Mt, r = V t + µt, rv r σt, r2 V rr Ωt, r = σt, rv r Chapter 6: Implied Volatility Surface: Calibrating the Models 6.10 Lk, j + 1 = Lk, j exp k i=j P, i ; = P + P Li,j Λ 1+Li,j i j 1Λ k j 1 Λ2 k j t= 1 t=1 ht ht δ i where ht = δ t + k j 1 Z FE : he Cost of Capital for Financial Firms p.27 E 0 + F 0 = t=1 D t 1 + COE t 19

20 = F 0 = t=1 t=1 D t + E t E t 1 COE E t COE t ROE t COE 1 + COE t E t 1 t=1 E t 1 + COE + E t 1 t 1 + COE t 1 p R f {A 0 L 0 + F 0 } = A 0 L k {A 0 R f + m A k A L 0 R f m L + k L } + F R f F 0 = 1 k {A 0 m A k A + L 0 m L k L } k R f A 0 L 0 + F 1 p R f F 0 = A 0 1 k m A k A + L 0 1 k m L k L + 1 sf 1 R f + sk A 0 L 0 p R f A 0 L 0 + F 0 = A 0 {1 + 1 k R f m A k A } L 0 {1 + 1 k R f m L k L } + 1 sf 1 sk A 0 L 0 p.41 R f + s g + sgf 0 = A 0 1 k m A k A + L 0 1 k m L k L R f + sk A 0 L 0 t=1 FE : Solvency Measurement for Property-Liability Risk-Based Capital Applications 4a d L = D L c c L = kφ cφ k k d A = D A L = 1 c ca k A φ c A Φ 1 c A k A k A 5a d L = Φa 1 + cφa k 5b d A = Φb Φb k A 1 c A where a = k/2 ln1 + c/k b = k A /2 + ln1 + c A /k A 6 d 1 = 0 zpzdz 7 c 1 = c1 + p c1 + p r + pc b g n 1/2 n 8 C = c 2 i + ρ ij c i c j A1 i=1 i j µ µ D = σφ µφ σ σ 20

21 A2 A3 A4 A5 d = D c c L = k φ c Φ d L = kφ k c c Φ k d A = D A L = 1 1 c A F = SΦa Ee it Φ k c k ca ca c A Φ k A φ k A a σ t where a = lns/e + i + σ2 /2t σ t A6 D L = LΦa 1 + clφa σ L A7 d L = Φa 1 + cφa k A8 D L = AΦa LΦa σ A A9 d A = Φb Φb k A 1 c A where b = k A /2 + ln1 c A /k A k A FE : Capital Allocation in Financial Firms p.116 NP V = 1 dv {S + } C µ 1 + mv {S } = µ dv {S + } + mv {S } V {S + } V {S } z = σnz+znz 1+r = σnz zn z 1+r = C1 + r/σ FE : Babbel and Merrill, Real and Illusory Value Creation by Insurance Companies 2 V E = F + V A P V L + O FE : A Comparative Analysis of U.S. Canadian and Solvency II Capital Adequacy Requirements in Life Insurance, Sharara, Hardy and Saunders p 8 CCM = i ccr SCRt 1e rtt t=1 p 9 SCR = ρi, j SCR i SCR j i j 21

22 Hardy, Freeland and ill, Valuation of Long-erm Equity Return Models for Equity-Linked Guarantees MARCH Y t F t 1 = { Q1 w.p. q w.p. 1 q Q 2 where Q 1 F t 1 = µ 1 + σ t z t σ 2 t = α 1,0 + α 1,1 Y t 1 µ α 1,2 Y t 2 µ 1 2 Q 2 F t 1 = µ 2 + α 2,0 z t z t N0, 1, i.i.d. RSDD Y t ρ t = κ ρt + ϕ ρt D t 1 + σ ρt z t where D t 1 = min 0, D t 2 + Y t 1 RSGARCH Y t ρ t = µ ρt + σ ρt,tz t where σρ 2 t,t = α ρt,0 + α ρt,1ε 2 t 1 + β ρt σt 1 2 ε t = Y t p 1 tµ p 1 tµ 2 σt 2 = p 1 tµ σ1,t p 1 tµ σ2,t 2 p 1 tµ p 1 tµ 2 2 AAA Model Y t = µ t /12 + σ t / 12z y,t where µ t = A + Bσ t + Cσ 2 t log σ t = ν t = 1 ϕν t 1 + ϕ log τ + σ ν z ν,t 4.1 r t,1 = r t ρ t = 1 = y t µ 1 σ r t,2 = r t ρ t = 2 = y t µ 2 σ r t = I {ρt>0.5} r t,1 + 1 I {ρt>0.5} rt,2 Smith: Investor & Management Expectations of the Return on Equity Measure vs. Some Basic ruths of Financial Accounting E t EV t = t ROEx IRRE x IRR t x x=1 22

Financial Economic Theory and Engineering Formula Sheet

Financial Economic Theory and Engineering Formula Sheet Financial Economic heory and Engineering Formula Sheet 2011 Morning and afternoon exam booklets will include a formula package identical to the one attached to this study note. he exam committee felt that

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Teor imov r. ta matem. statist. Vip. 94, 2016, stor eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process

Διαβάστε περισσότερα

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A 2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein

Διαβάστε περισσότερα

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 1 IV. Hedging of credit derivatives 1. Two default free assets, one defaultable asset 1.1 Two

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i) Χρηματοοικονομικά Μαθηματικά Το συνεχές μοντέλο συνεχούς χρόνου Σ. Ξανθόπουλος Παν. Αιγαίου Χειμερινό Εξάμηνο 2015-2016 Χειμερινό Εξάμηνο 2015-2016 1 / Σύνοψη 1 Προκαταρκτικά 2 Διαδικασία Wiener ή Κίνηση

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΝΑΛΥΣΗ ΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΧΡΕΟΚΟΠΙΑΣ ΚΑΙ ΤΩΝ

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Financial Risk Management

Financial Risk Management Pricing of American options University of Oulu - Department of Finance Spring 2018 Volatility-based binomial price process uuuus 0 = 26.51 uuus 0 = 24.71 uus 0 = us 0 = S 0 = ds 0 = dds 0 = ddds 0 = 16.19

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Part III - Pricing A Down-And-Out Call Option

Part III - Pricing A Down-And-Out Call Option Part III - Pricing A Down-And-Out Call Option Gary Schurman MBE, CFA March 202 In Part I we examined the reflection principle and a scaled random walk in discrete time and then extended the reflection

Διαβάστε περισσότερα

FORMULAS FOR STATISTICS 1

FORMULAS FOR STATISTICS 1 FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

Z = 1.2 X 1 + 1, 4 X 2 + 3, 3 X 3 + 0, 6 X 4 + 0, 999 X 5. X 1 X 2 X 2 X 3 X 4 X 4 X 5 X 4 X 4 Z = 0.717 X 1 + 0.847 X 2 + 3.107 X 3 + 0.420 X 4 + 0.998 X 5. X 5 X 4 Z = 6.56 X 1 + 3.26 X 2 + 6.72 X 3

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer: HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

TeSys contactors a.c. coils for 3-pole contactors LC1-D

TeSys contactors a.c. coils for 3-pole contactors LC1-D References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( ) 3 3 Vol.3.3 0 3 JournalofHarbinEngineeringUniversity Mar.0 doi:0.3969/j.isn.006-7043.0.03.0 ARIMA GARCH,, 5000 :!""#$%&' *+&,$-.,/0 ' 3$,456$*+7&'89 $:;,/0 ?4@A$ ARI MA GARCHBCDE FG%&HIJKL$ B

Διαβάστε περισσότερα

Financial Risk Management

Financial Risk Management Pricing of American options University of Oulu - Department of Finance Spring 2017 Volatility-based binomial price process uuuus 0 = 26.51 uuus 0 = 24.71 uus 0 = us 0 = S 0 = ds 0 = dds 0 = ddds 0 = 16.19

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CTD F CTD

No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CTD F CTD 2015 1 227 JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences No. 1 2015 General Serial No. 227 361005 CTD F830. 9 A 0438-0460 2015 01-0033-08 2013 9 6 4 7 CTD 2014-09-10 71101121 71371161 71471155 33

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Premia 14 Closed Formula Methods

Premia 14 Closed Formula Methods 19 pages 1 Premia 14 Closed Formula Methods Routine cf_spm_nig.c Routine cf_hullwhite1d_zbputeuro.c Routine cf_hullwhite1d_zcbond.c Routine cf_hullwhite1d_payerswaption.c Routine cf_hullwhite1d_zbcalleuro.c

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

Eulerian Simulation of Large Deformations

Eulerian Simulation of Large Deformations Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Galatia SIL Keyboard Information

Galatia SIL Keyboard Information Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns Depth versus Rigidity in the Design of International Trade Agreements Leslie Johns Supplemental Appendix September 3, 202 Alternative Punishment Mechanisms The one-period utility functions of the home

Διαβάστε περισσότερα