Financial Economic Theory and Engineering Formula Sheet
|
|
- ÚΑἰσχύλος Παπαφιλίππου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Financial Economic heory and Engineering Formula Sheet 2011 Morning and afternoon exam booklets will include a formula package identical to the one attached to this study note. he exam committee felt that by providing many key formulas, candidates would be able to focus more of their exam preparation time on the application of the formulas and concepts to demonstrate their understanding of the syllabus material and less time on the memorization of the formulas. he formula sheet was developed sequentially by reviewing the syllabus material for each major syllabus topic. Candidates should be able to follow the flow of the formula package easily. We recommend that candidates use the formula package concurrently with the syllabus material. Not every formula in the syllabus is in the formula package. Candidates are responsible for all formulas on the syllabus, including those not on the formula sheet. Candidates should carefully observe the sometimes subtle differences in formulas and their application to slightly different situations. For example, there are several versions of the Black-Scholes-Merton option pricing formula to differentiate between instruments paying dividends, tied to an index, etc. Candidates will be expected to recognize the correct formula to apply in a specific situation of an exam question. Candidates will note that the formula package does not generally provide names or definitions of the formula or symbols used in the formula. With the wide variety of references and authors of the syllabus, candidates should recognize that the letter conventions and use of symbols may vary from one part of the syllabus to another and thus from one formula to another. We trust that you will find the inclusion of the formula package to be a valuable study aide that will allow for more of your preparation time to be spent on mastering the learning objectives and learning outcomes. 1
2 General Formulas Lognormal distribution: { 1 fx) = xσ 2π exp 1 } lnx) µ) 2 2 σ 2 ) EX = e µ+σ2 /2 VX = e 2µ+σ2 e σ2 1 ) lnx) µ PrX x = Φ σ x > 0 Normal distribution: fx) = 1 { σ 2π exp 1 } x µ) 2 2 σ 2 Capital Asset Pricing Model: ER i = R f + β i ER m R f ) where β i = CovR i, R m ) VarR m Weighted Average Cost of Capital: B WACC = 1 τ c )k b B + S + k S s B + S where k b =return on debt, k s =return in equity. GARCH1,1) Model Y t = µ + σ t ɛ t σ 2 t = α 0 + α 1 Y t 1 µ) 2 + βσ 2 t 1 RSLN-2 Model Y t ρ t N µ ρt, σ 2 ρ t ) where {ρt }, t = 1, 2,..., is a Markov process with 2-states. p ij = Prρ t+1 = j ρ t = i Conditional ail Expectation For loss L, continuous at V α = F 1 L α): CE α L) = EL L > V α L) If there is a probability mass at V α, define β = max{β : V α = V β }, then CE α L) = 1 β )E X X > V α + β α)v α 1 α 2
3 Vasicek Model dr = ab r)dt + σdz Pt, ) = At, )e Bt,)rt) t) 1 e a Bt, ) + t)a 2 b σ 2 /2) Bt, ) = At, ) = exp σ2 Bt, ) 2 a a 2 4a Cox Ingersoll Ross Model dr = ab r)dt + σ rdz Bt, ) = Ho-Lee Model 2e γ t) 1) γ + a)e γ t) 1) + 2γ dr = θt)dt + σdz rt) t) Pt, ) = At, )e lnat, ) = ln Pt, ) = At, )e Bt,)rt) At, ) = θt) = F t 0, t) + σ 2 t P0, ) P0, t) + t)f0, t) 1 2 σ2 t t) 2 Hull-White Extended Vasicek) Model dr = θt) ar)dt + σdz Pt, ) = At, )e Bt,)rt) a+γ) t)/2 2γe γ + a)e γ t) 1) + 2γ θt) = F t 0, t) + af0, t) + σ2 ) 1 e 2at 2a t) 1 e a Bt, ) = a P0, ) 1 lnat, ) = ln + Bt, )F0, t) e a e at) 2 e 2at 1 ) P0, t) 4a 3σ2 Itô s Lemma Let X be an Itô process such that dx t = ut, X t )dt + vt, X t )dw t, and let gt, x) denote a twice differentiable function, then for Y t = gt, X t ) dy t = gt, X t) t dt + gt, X t) x Geometric Brownian Motion dx t gt, X t ) x 2 dx t ) 2. 2ab/σ 2 ds t S t = µdt + σ dz t Black-Scholes Pricing Formulas c t = S t Nd 1 ) Ke r t) Nd 2 ) 3
4 p t = Ke r t) N d 2 ) S t N d 1 ) where d 1 = lns t/k) + r + σ 2 /2) t) σ t and d 2 = d 1 σ t 4
5 Copeland, Weston, Shastri: Financial heory and Corporate Policy Chapter 2 2.2) Rev t + m t S t = Div t + W&S) t + I t 2.5) NI t = Rev t W&S) t dep t 2.7) NI t A t S 0 = 1 + k s ) t t=1 2.13) FCF = EBI1 τ c ) + dep I Chapter ) R jt = ER jt ) + β j δ mt + ε jt 6.36) R jt R ft = R mt R ft )β j + ε jt 6.36) R pt = γ 0 + γ 1 β p + ε pt 6.37) R it = α i + β i R mt + ε it 6.38) ER i ) = ER Z ) + ER m ) ER Z ) β i 6.40) ER i ) R f = b i ER m ) R f + s i ESMB) + h i EHML) 6.41) λ i = ER m ) ER Z ) 6.46) R it = γ 0t + γ 1t β it + ε it 6.49) ER i ) = ER z,i ) + ER I ) ER z,i )β i,i 6.50) R i = E R i ) + b i1 F b ik F k + ε i 6.57) E R i ) = λ 0 + λ 1 b i λ k b ik 6.59) ER i ) R f = δ1 R f bi δk R f bik 6.60) b ik = CovR i, δ k )/V arδ k ) Chapter 9 9.1) CS A, S B, ) = S A Nd 1 ) S B Nd 2 ) where d 1 = lns A /S B ) + V 2 /V ; d 2 = d 1 V and V 2 = V 2 A 2ρ AB V A V B + V 2 B Chapter ) V η) m qm) max a pe m)ua, e) V η 0 ) e 5
6 10.4) pr c 2 ) + 1 p)dr c 2 ) = pr/d c 1 ) + 1 p)r c 1 ) 10.7) Fair Game: ε j,t+1 = P j,t+1 P jt P jt EP j,t+1 η t ) P jt P jt = a) Submartingale: EP j,t+1 η t ) P jt P jt = Er j,t+1 η t ) > b) Martingale: EP j,t+1 η t ) P jt = Er j,t+1 η t ) = 0 P jt 10.14) ER jt β jt ) = R jt + ER mt β mt ) R ft βjt Chapter ) R jt = α j + β 1j R mt R ft ) + β 2j RLE t RSE t ) + β 3j HBM t LBM t ) + ε jt 11.3) NI jt = â + ˆb j m t + ε jt 11.4) NI j,t+1 = â + ˆb j m t+1 Chapter ) V α) = 1 µα) λ 1 + r) 12.3) W 0 = X + βv M + Y 1 α)v α) 12.4) W 1 = αµ + ε µα) + λ + β M 1 + r)v M r)w 0 X) + µα) λ )) E U W 1 ) 12.5) = E U W1 µ + ε µα) + λ + 1 α)µ α ) = 0 α )) E U W 1 ) 12.6) = E U W 1 ) M 1 + r)v M = 0 where µ α = µ β α ) E U W 1 ε + λ) 12.7) 1 α)µ α = ) E U W ) ED) = 1 V D) + µ τ p D β 1 + r 12.16) ED) = r D X V D) + t2 τ pd β D2 2t 12.17) V D ) = τ p + β D t 12.18) V D t) = 1 t r 2 τ pd t) β D t) 2 2t 6 X D)fX)dX
7 12.20) V D t) = τ p + βa)d t) 12.21) τp 1 + r τp A = + β 1 + 2r β 12.22) I + D = C + Np e = C + P e L τ p D ) max D 12.25) τ p = τ p + P ) D 1 + r r P + τp D L P + τ p D + I C L + I C P + τ p D + I C X 12.26) DX) = 1 τ p maxi C + L, 0)ln X 12.30) V0 old = P E + S + a + b) P + E 12.36) W 0 z) = αpz) + βp m, P) 12.37) W s n, z) = α Pn, z) + βp n, p) 12.38) W n = α P n t 2 p γ 1 = 0 ) X 12.40) Pn, z) = kn + cz) 1/γ where k = t 2 γ/α) 1/γ β1 + 2r) τ 2 p 1 + r) ) Mn, z) = Pn, z) n, P) = k1 t 1 )n + cz) 1/γ t 2 nk 1 γ n + cz) 1 γ)/γ 12.45) V 0 = 1 t)x ) EX n) = Xn) = X 0s 0 + Ŷmn)s m s 0 + s m 12.47) V 1 n) = Xn) n) C 12.50) V 2, Y ) = X 0s 0 + Ŷ m s m + Y Fs E s 0 + s m + Fs XtX/n), Ŷm, Y C X 0 s 0 +Y ms m s 0 +s m )Fs X 0 s 0 + Ŷ m s m ) EV 2 ) Y m = C s 0 + s m + Fs ) ) dα B 12.54) V n) Bn, D) αd) = 0 dd D ) ) ) ) d 2 α dα B 2 B 12.55) V n) Bn, D) 2 αd) < 0 dd 2 dd D D ) α D n)) V n) B n, D n)) V n) I = 0 d 2 α dα B 12.57) V B) 2 dd2 dd D B dd α 2 D 2 dn = dα dd 12.58) εα, D) = a D 0 ) 2 + D 2 1 α α 2 7 B n dv dn ) ) 2 B + α n D
8 αɛ γ) 12.59) D = X 1 1 α)1 ɛ)γ 12.60) max U s cs, p) fs, p a)dsdp 12.61) 12.63) cs,p),a V cs, p) fs, p a)dsdp Ga) V U s cs, p) V cs, p) 12.65) max Uk) + λ a 12.68) max cs),a 12.70) 12.73) max cs,p),a 12.74) 12.75) = λ V cs, p)fs, p a)dsdp Ga) V Us cs)fs a)ds + λ +µ V cs) f a s a)ds G a) U s cs) = λ + µ f as a) V cs) fs a) U s cs, p) fs, p a)dsdp+λ +µ U s cs, p) V cs, p) U s cp) V cp) V cs, p)f a s, p a)dsdp G a) = λ + µ f as, p a) fs, p a) V cs)fs a)ds Ga) V f a1 p a) = λ + µ 1 fp a) + µ f a1 p a) 2 fp a) µ f a1 p a) n fp a) 12.81) max cs,p,m),am),mm) E s,p,m U s cs,p, m) am) 12.82) Subject to for all m) E s,p m V cs,p, m) Gam) am) V V X ) X = PX ) X CX ) X = ) S = 1 β)es) α λ1 β)covs, R M) 1 + r f 12.86) max α,β V cs, p)fs, p a)dsdp Ga) V 1 β)es) α λ1 β)covs, R M ) 1 + r f +µ a EW) + α + βes) b VarW) + 2βCovW, s) + β 2 Vars) V ) 12.90) β = λacovs, R M) CovW, s) 2bVars) Vars) { ) V + db 12.94) B new B = D P D + dd, 1,, r f, σ V + P 8 )} V D, 1,, r f, σ V = D P X +P Y )
9 Chapter ) V U = E FCF) or V U = EẼBI)1 τ c ) ρ ρ ) 15.3) ÑI + k d D = Rev Ṽ C FCC dep 1 τ c ) + k d Dτ c 15.4) V L = EẼBI)1 τ c ) ρ 15.6) V L = V U + τ c B 15.9) 15.11) V L I = S0 I + Sn + B 0 I 1 τ c ) EEBI) I > ρ + k ddτ c k b = S0 I + 1 ) 1 τ c B I 15.18) k s = NI/ S = ρ + 1 τ c )ρ k b ) B S 15.20) G = V L V U = τ c B 15.21) V U = EEBI)1 τ c)1 τ ps ) ρ 15.23) V L = V U τ c)1 τ ps ) 1 τ pb ) 15.28) β L = τ c ) B S β U B where B = k d D1 τ pb )/k b 15.33) R f S L + λ 1 τ c )CovEBI, R m ) λ 1 τ c )B CovR bj, R m ) = EEBI)1 τ c ) ER bj )B1 τ c ) 15.38) ds = S S dv + V t dt S V 2 dt 2 2 V 2σ ) r s = S V V S r V 15.43) S = V Nd 1 ) e r f DNd 2 ) 15.46) β S = 1 1 D/V )e r f Nd 2 )/Nd 1 ) β V 15.47/8) k s = R f + R m R f )Nd 1 ) V S β V = R f + Nd 1 )R v R f ) V S 15.52) k b = R f + ρ R f )N d 1 ) V B Note: his is a correction to the formula in the reading ) dv V = µv, t)dt + σdw 9
10 15.57) 1 2 σ2 V 2 F V V V ) + rv F V V ) rfv ) + C = ) FV ) = A 0 + A 1 V + A 2 V 2r/σ2 ) 15.59) V = V B BV ) = 1 α)v B V BV ) C/r 15.61) BV ) = 1 p B )C/r + p B 1 α)v B where p B = V/V B ) 2r/σ ) V = V B DCV ) = αv B V DCV ) ) DCV ) = αv B V/V B ) 2r/σ ) V L V ) = V U V ) + c BV ) DCV ) = V U V ) + c B p B c B αv B p B { V1 if V 15.68) M = 1 + r)γ 0 V 0 + γ 1 D 1 V 1 C if V 1 < D 15.69) { γ0 1 + r) V 1a 1+r M a = 1V 1a if D < D V 1a γ r) V 1b 1+r 1V 1a if D < D 15.70) { γ0 1 + r) V 1a 1+r M b = 1V 1b C) if D D V 1a γ r) V 1b 1+r 1V 1b if D < D Chapter ) V i t) = Div it + 1) + n i t)p i t + 1) 1 + k u t + 1) 16.8) Ṽ i t) = ẼBI it + 1) Ĩit + 1) + Ṽit + 1) 1 + k u t + 1) ) 16.9) Ỹ di = ẼBI rdc 1 τ c ) rd pi 1 τ pi ) 16.10) Ỹ gi = ẼBI rd c )1 τ c )1 τ gi ) rd pi 1 τ pi ) 16.26) S 1 ES 1 ) = ε γ = EBI 1 E 0 EBI 1 ) 1 + k 16.27) Div it = a i + c i Div it Div i,t 1 ) + U it 16.33) Div t = β 1 Div t 1 + β 2 NI t + β 3 NI t 1 + Z t 16.35) P it = a + bdiv it + cre it + ε it 16.38) Rj = γ 0 + Rm γ 0 β j + γ 1 DY j DY m /DY m + ε j ) W PE P 0 P P ) = 1 F P ) + F P N 0 P 0 P 0 P γ 1 + k 10
11 Hull: Options Futures and Other Derivatives Chapter 12: Binomial rees 12.1) = f u f d S 0 u S 0 d 12.5/6) f = e r t pf u + 1 p)f d where p = er t d u d 12.13/14) u = e σ t d = e σ t Chapter 13: Wiener Processes and Itôs Lemma 13.17) G = lns dg = µ σ 2 /2 ) dt + σ dz Chapter 14: he Black-Scholes-Merton model f f 14.9) df = µs + S t + 1 ) 2 f S 2 dt + f 2 S 2σ2 S σsdz 14.16) f t + rs f S σ2 S 2 2 f S 2 = rf Chapter 18: Greek Letters 18. ) call) = Nd 1 ) put) = Nd 1 ) ) Θcall) = S 0N d 1 )σ ) Θput) = S 0N d 1 )σ ) Γcall) = Γput) = N d 1 ) S 0 σ 18.4) Θ + rs σ2 S 2 Γ = rπ rke r Nd 2 ) 18. ) Vcall) = Vput) = S 0 N d 1 ) 18. ) rhocall) = Ke r Nd 2 ) 18. ) rhoput) = Ke r N d 2 ) + rke r N d 2 ) Chapter 20: Basic Numerical Procedures 20.8) = f 1,1 f 1,0 S 0 u S 0 d 11
12 20.9) Γ = f 2,2 f 2,1 )/S 0 u 2 S 0 ) f 2,1 f 2,0 )/S 0 S 0 d 2 ) h 20.10) Θ = f 2,1 f 0,0 2 t 20.12) p = eft) gt) t d u d 20.27) a j f i,j 1 + b j f i,j + c j f i,j+1 = f i+1,j where a j = 1 2 r q)j t 1 2 σ2 j 2 t, b j = 1 + σ 2 j 2 t + r t and c j = 1 2 r q)j t 1 2 σ2 j 2 t 20.34) f i,j = a j f i+1,j 1 + b j f i+1,j + c j f i+1,j+1 where a j = r t 2 r q)j t + 1 ) 2 σ2 j 2 t, b j = 1 1 σ 2 j 2 t ) 1 + r t and c 1 1 j = 1 + r t 2 r q)j t + 1 ) 2 σ2 j 2 t 20.35) α j f i,j 1 + β j f i,j + γ j f i,j+1 = f i+1,j where α j = t ) r q σ2 2 Z 2 and γ j = t ) r q σ2 2 Z 2 t 2 Z 2σ2 t 2 Z 2σ2 β j = 1 + t Z 2σ2 + r t 20.36) α jf i+1,j 1 + βjf i+1,j + γj f i+1,j+1 = f i,j where α 1 j = t ) r q σ2 1 + r t 2 Z 2 and βj = 1 1 t ) 1 + r t Z 2σ2 and γ j = r t t 2 Z r q σ2 2 ) + t 2 Z 2σ2 + t 2 Z 2σ2 Chapter 22: Estimating Volatilities and Correlations 22.7) σ 2 n = λσ2 n λ)u2 n ) σn 2 = γv L + αu 2 n 1 + βσ2 n 1 m 22.12) lnv i ) u2 i i= ) E σn+t 2 = VL + α + β) ) t σn 2 V L v i 12
13 Chapter 25: Exotic Options Call on a call S 0 e q 2 M a 1, b 1 ; ) 1 / 2 K 2 e r 2 M a 2, b 2 ; ) 1 / 2 e r 1 K 1 Na 2 ) where a 1 = lns 0/S ) + r q + σ 2 /2) 1 σ 1 a 2 = a 1 σ 1 b 1 = lns 0/K 2 ) + r q + σ 2 /2) 2 σ 2 b 2 = b 1 σ 2 Put on a call K 2 e r 2 M a 2, b 2 ; ) 1 / 2 S 0 e q 2 M a 1, b 1 ; ) 1 / 2 + e r 1 K 1 N a 2 ) Call on a put K 2 e r 2 M a 2, b 2 ; ) 1 / 2 S 0 e q 2 M a 1, b 1 ; ) 1 / 2 e r 1 K 1 N a 2 ) Put on a put S 0 e q 2 M a 1, b 1 ; ) 1 / 2 K 2 e r 2 M a 2, b 2 ; ) 1 / 2 + e r 1 K 1 Na 2 ) Chooser maxc, p) = c + e q 2 1 ) max 0, Ke r q) 2 1 ) S 1 ) Barrier Options λ = r q + σ2 /2 σ 2 x 1 = lns 0/H) σ If H K y = lnh2 /S 0 K) σ + λσ y 1 = lnh/s 0) σ + λσ + λσ c di = S 0 e q H/S 0 ) 2λ Ny) Ke r H/S 0 ) 2λ 2 N If H K c do = S 0 Nx 1 )e q Ke r N x 1 σ ) S 0 e q H/S 0 ) 2λ Ny 1 ) + Ke r H/S 0 ) 2λ 2 N If H > K c ui = S 0 Nx 1 )e q Ke r N x 1 σ ) S 0 e q H/S 0 ) 2λ N y) N y 1 ) +Ke r H/S 0 ) 2λ 2 y + σ ) N 13 y σ ) y 1 σ ) y 1 + σ )
14 If H K p ui = S 0 e q H/S 0 ) 2λ N y) + Ke r H/S 0 ) 2λ 2 N If H K p uo = S 0 N x 1 )e q + Ke r N x 1 + σ ) +S 0 e q H/S 0 ) 2λ N y 1 ) Ke r H/S 0 ) 2λ 2 N y + σ ) y 1 + σ ) If H K p di = S 0 N x 1 )e q + Ke r N x 1 + σ ) + S 0 e q H/S 0 ) 2λ Ny) Ny 1 ) Ke r H/S 0 ) N 2λ 2 y σ ) N y 1 σ ) Lookback Options c fl = S 0 e q Na 1 ) S 0 e q σ 2 where a 1 = lns 0/S min )+r q+σ 2 /2) σ a 3 = lns 0/S min )+ r+q+σ 2 /2) σ Y 1 = 2r q σ2 /2)lnS 0 /S min ) σ 2 p fl = S max e r Nb 1 ) where b 1 = lnsmax/s 0)+ r+q+σ 2 /2) σ b 2 = b 1 σ b 3 = lnsmax/s 0)+r q σ 2 /2) σ Y 2 = 2r q σ2 /2)lnS max/s 0 ) σ 2 Exchange Options 25.5) V 0 e q V Nd 1 ) U 0 e q U Nd 2 ) 2r q) N a 1) S min e r a 2 = a 1 σ where d 1 = lnv 0/U 0 ) + q U q V + ˆσ 2 /2) ˆσ and ˆσ = σu 2 + σ2 V 2ρσ Uσ V Realized volatility: σ = 252 n 1 ln n ) Ê V ) = 2 ln F 0 S 2 ) Na 2 ) σ2 2r q) ey 1 N a 3 ) σ2 2r q) ey 2 N b 3 ) )+S 0 e q σ 2 2r q) N b 2) S 0 e q Nb 2 ) i=1 F0 S Si+1 14 S i S K=0 d 2 = d 1 ˆσ ) pk)dk + ck)dk K 2er K=S K 2er
15 25.7) L var Ê V ) V K e r 25.8) S K=0 25.9) Ê σ) = 1 K 2er pk)dk + Ê V ) ck)dk = K 2er { } 1 1 var V ) 8 Ê V ) 2 K=S 1 ) 2 F ) Ê V ) = S n i=1 K i e r QK Ki 2 i ) n i=1 K i e r QK Ki 2 i ) Chapter 26: More on Models and Numerical Procedures 26.2, 3) ds S = r q)dt + V dz S dv = av L V )dt + ξv α dz V Chapter 27: Martingales and Measures 27.4) Π = σ 2 f 2 )f 1 σ 1 f 1 ) f ) Π = µ 1 σ 2 f 1 f 2 µ 2 σ 1 f 1 f 2 ) t 27.7) df = µdt + σdz f 27.8) µ r = λ σ n 27.13) µ r = λ i σ i 27.14) d i=1 ) f = σ f σ g ) f g g dz 27.20) f 0 = P0, )E f ) 27.23) st) = Pt, 0) Pt, N ) At) f 27.25) f 0 = A0)E A A) 27.26) c = P0, )E maxs K, 0) ) V 27.31) f 0 = U 0 E U max 1, 0 U 27.32) f 0 = V 0 Nd 1 ) U 0 Nd 2 ) 27.35) α v = ρσ v σ w 15
16 Chapter 28: Interest Rate Derivatives: he Standard Market Models 28.1) c = P0, )F B Nd 1 ) KNd 2 ) 28.2) p = P0, )KN d 2 ) F B N d 1 ) where d 1 = lnf B/K) + σ 2 B/2 σ B 28.3) F B = B 0 I P0, ) 28.4) σ B = Dy 0 σ y d 2 = d 1 σ B 28.7, Caplet) Lδ k P0, t k+1 )F k Nd 1 ) R K Nd 2 ) where d 1 = lnf k/r K ) + σ 2 k t k/2 σ k tk d 2 = d 1 σ k tk 28.8, Floorlet) Lδ k P0, t k+1 )R K N d 2 ) F k N d 1 ) 28.10) LA s 0 Nd 1 ) s k Nd 2 ) where A = 1 m mn i=1 P0, i ) Chapter 29: Convexity, iming, and Quanto Adjustments 29.1) E y ) = y y2 0σ 2 y G y 0 ) G y 0 ) 29.2) E R ) = R 0 + R2 0σ 2 Rτ 1 + R 0 τ 29.3) α V = ρ V W σ V σ W 29.4) E V ) = E V )exp ρ V Rσ V σ R R 0 ) 1 + R 0 /m Chapter 30: Interest Rate Derivatives: Models of the Short Rate 30.20) c = LP0, s)nh) KP0, )Nh σ p ) p = KP0, )N h + σ p ) LP0, s)n h) h = 1 σ p ln σ p = σ a 30.24) P m+1 = LP0, s) P0, )K + σ p 2 1 e as ) 1 e 2a n m 2a j= n m Q m,j exp g α m + j x) t 16
17 Chapter 32: Swaps Revisited 32.1) F i + F 2 i σ 2 i τ i t i 1 + F i τ i 31.2) y i 1 2 y2 i σ 2 y,it i G i y i) G i y i) y iτ i F i ρ i σ y,i σ F,i t i 1 + F i τ i 32.3) V i + V i ρ i σ W,i σ V,i t i Hardy: Investment Guarantees Chapter 2 AR1) 2.7): 2.7) Y t = µ + ay t 1 µ) + σε t ARCH1) 2.8-9): ε t independent and identically distributed iid), ε t N0, 1) 2.8) Y t = µ + σ t ε t 2.9) σt 2 = a 0 + a 1 Y t 1 µ) 2 ARCH1) with AR1) stock price ): 2.10) Y t = µ + ay t 1 µ) + σ t ε t ε t iid N0, 1) 2.11) σt 2 = a 0 + αy t 1 µ) 2 GARCH1,1) ): 2.12) Y t = µ + σ t ε t 2.13) σ 2 t = a 0 + α 1 Y t 1 µ) 2 + βσ 2 t 1 GARCH1,1) with AR1) stock price ): 2.14) Y t = µ + ay t 1 µ) + σ t ε t ε t iid N0, 1) 2.15) σ 2 t = α 0 + α 1 Y t 1 µ) 2 + βσ 2 t 1 Chapter 3 3.1) Lθ) = fx 1, X 2,..., X n ; θ) 3.2) Lθ) = n fx t ; θ) lθ) = t=1 n logfx t ; θ) t=1 17
18 3.3) Lθ) = fx 1 ; θ)fx 2 ; θ x 1 )fx 3 ; θ x 1, x 2 ) fx n ; θ x 1,..., x n 1 ) n 3.4) lθ) = logfx t ; θ x 1,..., x t 1 ) t=1 3.5) EY t = µ for all t 3.6) EY t µ)y t j µ) = γ j for all t and j 3.7) bθ) = Eˆθ θ Lognormal model ,22-23): 3.13) ˆµ = ȳ n t=1 3.14) ˆσ = y t ˆµ) 2 n ) σ 3.22) Σ = 2 /n 0 0 σ 2 /2n ) ˆσ 3.23) Σ 2 /n 0 0 ˆσ 2 /2n AR1) model ): 3.24) Y t Y t 1 Nµ1 a) + ay t 1, σ 2 ) t = 2, 3,..., n 1 a , 26) lµ, σ, a) = log 2πσ exp 2 + n log t=2 { 1 2 { 1 2πσ 2exp 1 2 )} ) Y1 µ) 2 1 a 2 ) σ 2 )} ) Yt 1 a)µ ay t 1 ) 2 = n 2 log2π) log1 a2 ) nlogσ { 1 Y1 ) µ) 2 1 a 2 ) n ) } Yt 1 a)µ ay t 1 ) σ 2 σ 2 t=2 σ ) V ˆµ ARCH1) ): σ 2 n1 a 2 ) V ˆσ σ2 2n 1 a2 V â n 3.28) Y t = µ + σ t ε t 3.29) σ 2 t = a 0 + a 1 Y t 1 µ) ) Y t Y t 1 N µ, a 0 + a 1 Y t 1 µ) 2) t = 2, 3,..., n 18
19 GARCH1,1) ): 3.31) Y t = µ + σ t ε t 3.32) σ 2 t = α 0 + α 1 Y t 1 µ) 2 + βσ 2 t ) Y t Y t 1 Nµ, σt 2 ) t = 2, 3,..., n 3.35) µ = ȳ σ = s y Chapter 8 8. ) F = F 0 S S 0 1 m) 8.3) P 0 = Ge r Φ d 2 ) S 0 1 m) Φ d 1 ) where d 1 = log S 0 1 m) /G ) + r + σ 2 /2) σ d 2 = d 1 σ ) n 8.8) H0) = Ge rt Φ d 2 ) ) n tp τ x µd) x,t dt + S0 1 m) t Φ d 1 ) ) tp τ x µd) x,t dt 0 8.9) H0, t 3 ) = P S t 1 ) + S 0 1 m) t 1) { 1 + Pt2 t 1 )1 + Pt 3 t 2 )) + 1 m) t 2 t 1 Pt 3 t 2 ) } 8.15) α = S 0 1 m) t 1 where P S t 1 ) = BSPS 0 1 m) t 1, G, t 1 ) B S 0 ä τ x:n i 8.19) HE t = Ht) + t 1 q d x G Ft ) +) Ht ) 8.22) C t = τ S t Ψ t Ψ t 1 0 FE and FE : Doherty; Integrated Risk Management Chapter 13 p. 465) p. 481) V E) = V F) V D) = V F) D DF + PV F), D) = CV F), D) V F) = S + D 1 + m ) n p. 494) V R E) = C + V RF) D + P {V r F), D} = C + V R D + P R V NE) = V N F) D + P {V N F), D} = V N D + P N 19
20 Chapter ) + E + P)1 + r i ) L 16.2) E) = E P RI; S))1 + ER i )) ELa)) + hci; S) a 16.3) E) a = ELa)) a 1 + h C I I L L a = 0 Manistre and Hancock; Variance of the CE Estimator p. 130) C ˆEα) = 1 k k j=1 x j) p. 131) V ARC ˆE) = EV ARC ˆE X k) ) + V AREC ˆE X k) ) p. 131) V ARC ˆE) V ARx 1),..., x k) ) + α C ˆE x k) ) 2 p. 132) C ˆEα) = 1 k p. 133) IF V ar x) = k i=1 x i) 1 α) fv ar) k V ârα) = x k) x < V ar 0 x = V ar x > V ar α fv ar) { V ar CE x < V ar p. 133) IF CE x) = V ar CE + x > V ar x V ar 1 α p. 133) V ARC ˆE n ) EIF CE) 2 n = V ARX X > V ar) + α CE V ar)2 n 1 α) p. 133) V ARV âr n ) EIF V ar) 2 n = α 1 α) n fv ar) 2 p. 133) CovC ˆE n, V âr n ) EIF CE IF V ar n = α CE V ar) n fv ar) p. 134) FSECE) = V ARX 1),..., X k) ) + α C ˆE X k) ) 2 20 n 1 α)
21 p. 134) FSEV ar) = 1 α 1 α) ˆfV ar) n p. 134) CôvCE, V ar) = α C ˆE X k) ) n ˆfV âr) p. 146) V ARV âr n ) E GIF V ar ) 2 n = V AR GWH n fv ar) 2 p. 146) V ARC ˆE n ) E GIF CE ) 2 n = V AR GWX V ar)h n 1 α) 2 p. 146) CovC ˆE n, V âr n ) E GIF CE IF V ar n = Cov GWH, WHX V ar) n fv ar) 1 α) p. 146) V ARV âr n ) 1 α) EFW X V ar 1 + α n fv ar) 2 p. 146) V ARC ˆE n ) V AR F WHX V ar) n 1 α) 2 = E FW X V ar V AR F X V ar n 1 α) + CE V ar)2 E F W X V ar 1 + α) n 1 α) + Cov FW, X V ar) 2 X V ar n 1 α) p. 146) CovC ˆE, V âr) Cov FW, X V ar X V ar n fv ar) + 1 α n fv ar) {E FW X V ar 1 + α} 21
22 FE : Ho and Lee, he Oxford Guide to Financial Modeling Chapter 5: Interest Rate Derivatives: Interest Rate Models 5.10) dr = a 1 + b 1 l r)dt + rσ 1 dz dl = a 2 + b 2 r + c 2 l)dt + lσ 2 dw 5.12) dv = Mt, r)dt + Ωt, r)dz Mt, r) = V t + µt, r)v r σt, r)2 V rr Ωt, r) = σt, r)v r Chapter 6: Implied Volatility Surface: Calibrating the Models 6.10) Lk, j + 1) = Lk, j)exp k i=j ) P, i ; ) = P + ) P ) Li,j) Λ 1+Li,j) i j 1Λ k j 1 Λ2 k j t= 1 t=1 ht) ht) δ i where ht) = δ t ) + k j 1 Z FE : Capital Allocation in Financial Firms p.116 NPV = 1 d)v {S + } C µ) 1 + m)v {S } = µ dv {S + } + mv {S }) V {S + } V {S } z = σnz)+znz)) 1+r) = σnz) zn z)) 1+r) = C1 + r)/σ FE : Babbel and Merrill, Real and Illusory Value Creation by Insurance Companies 2) V E) = F + V A ) PV L) + O Smith: Investor & Management Expectations of the Return on Equity Measure vs. Some Basic ruths of Financial Accounting E t EV t = t ROEx IRR)E x IRR) t x x=1 22
Financial Economic Theory and Engineering Formula Sheet
Financial Economic heory and Engineering Formula Sheet 2010 Morning and afternoon exam booklets will include a formula package identical to the one attached to this study note. he exam committee felt that
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A
2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein
Teor imov r. ta matem. statist. Vip. 94, 2016, stor
eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process
Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009
Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 1 IV. Hedging of credit derivatives 1. Two default free assets, one defaultable asset 1.1 Two
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Mean-Variance Analysis
Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
Financial Risk Management
Pricing of American options University of Oulu - Department of Finance Spring 2018 Volatility-based binomial price process uuuus 0 = 26.51 uuus 0 = 24.71 uus 0 = us 0 = S 0 = ds 0 = dds 0 = ddds 0 = 16.19
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)
Χρηματοοικονομικά Μαθηματικά Το συνεχές μοντέλο συνεχούς χρόνου Σ. Ξανθόπουλος Παν. Αιγαίου Χειμερινό Εξάμηνο 2015-2016 Χειμερινό Εξάμηνο 2015-2016 1 / Σύνοψη 1 Προκαταρκτικά 2 Διαδικασία Wiener ή Κίνηση
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Financial Risk Management
Pricing of American options University of Oulu - Department of Finance Spring 2017 Volatility-based binomial price process uuuus 0 = 26.51 uuus 0 = 24.71 uus 0 = us 0 = S 0 = ds 0 = dds 0 = ddds 0 = 16.19
Part III - Pricing A Down-And-Out Call Option
Part III - Pricing A Down-And-Out Call Option Gary Schurman MBE, CFA March 202 In Part I we examined the reflection principle and a scaled random walk in discrete time and then extended the reflection
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΝΑΛΥΣΗ ΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΧΡΕΟΚΟΠΙΑΣ ΚΑΙ ΤΩΝ
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1
Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CTD F CTD
2015 1 227 JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences No. 1 2015 General Serial No. 227 361005 CTD F830. 9 A 0438-0460 2015 01-0033-08 2013 9 6 4 7 CTD 2014-09-10 71101121 71371161 71471155 33
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:
HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Advanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes
Z = 1.2 X 1 + 1, 4 X 2 + 3, 3 X 3 + 0, 6 X 4 + 0, 999 X 5. X 1 X 2 X 2 X 3 X 4 X 4 X 5 X 4 X 4 Z = 0.717 X 1 + 0.847 X 2 + 3.107 X 3 + 0.420 X 4 + 0.998 X 5. X 5 X 4 Z = 6.56 X 1 + 3.26 X 2 + 6.72 X 3
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )
3 3 Vol.3.3 0 3 JournalofHarbinEngineeringUniversity Mar.0 doi:0.3969/j.isn.006-7043.0.03.0 ARIMA GARCH,, 5000 :!""#$%&' *+&,$-.,/0 ' 3$,456$*+7&'89 $:;,/0 ?4@A$ ARI MA GARCHBCDE FG%&HIJKL$ B
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Lecture 7: Overdispersion in Poisson regression
Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for
ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ
Σχολή Διοίκησης και Οικονομίας Κρίστια Κυριάκου ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΜΠΟΡΙΟΥ,ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΝΑΥΤΙΛΙΑΣ Της Κρίστιας Κυριάκου ii Έντυπο έγκρισης Παρουσιάστηκε
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
Gaussian related distributions
Gaussian related distributions Santiago Aja-Fernández June 19, 009 1 Gaussian related distributions 1. Gaussian: ormal PDF: MGF: Main moments:. Rayleigh: PDF: MGF: Raw moments: Main moments: px = 1 σ π
Introduction to the ML Estimation of ARMA processes
Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y
Premia 14 Closed Formula Methods
19 pages 1 Premia 14 Closed Formula Methods Routine cf_spm_nig.c Routine cf_hullwhite1d_zbputeuro.c Routine cf_hullwhite1d_zcbond.c Routine cf_hullwhite1d_payerswaption.c Routine cf_hullwhite1d_zbcalleuro.c
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
Limit theorems under sublinear expectations and probabilities
Limit theorems under sublinear expectations and probabilities Xinpeng LI Shandong University & Université Paris 1 Young Researchers Meeting on BSDEs, Numerics and Finance 4 July, Oxford 1 / 25 Outline
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
MOTORCAR INSURANCE I
MOTORCAR INSURANCE I I Acc. II Acc. III Acc. Sex Year Month Day 19970602 0 0 M 1966 4 11 19820101 19840801 0 M 1926 3 25 19820801 19840712 0 F 1952 2 19 19781222 19810507 0 M 1952 3 23 19821110 19870614
Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns
Depth versus Rigidity in the Design of International Trade Agreements Leslie Johns Supplemental Appendix September 3, 202 Alternative Punishment Mechanisms The one-period utility functions of the home
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
ΜΕΤΡΑ ΚΙΝΔΥΝΟΥ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ
ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕΤΡΑ ΚΙΝΔΥΝΟΥ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΦΟΙΤΗΤΡΙΑ: ΠΑΤΣΑΚΗ ΣΤΑΥΡΟΥΛΑ
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Empirical best prediction under area-level Poisson mixed models
Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date
TeSys contactors a.c. coils for 3-pole contactors LC1-D
References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and
1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F
Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων 4..2006 Φυλλάδιο Τυπολόγιο μετασχηματισμών ourier, Laplace και Z Σύμβολα Για έναν πραγματικό αριθμό x, συμβολίζουμε με x, x, [x], τον αμέσως
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13
ENGR 69/69 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework : Bayesian Decision Theory (solutions) Due: Septemer 3 Prolem : ( pts) Let the conditional densities for a two-category one-dimensional