Φυσική για Μηχανικούς
|
|
- Ἱεριχώ Ελευθερίου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515 km/h, καλύπτοντας την απαιτούμενη απόσταση σε λιγότερο από 5 sec. (George Lepp/Stone/Getty Images) Κίνηση σε Μια Διάσταση Διανύσματα
2 Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515 km/h, καλύπτοντας την απαιτούμενη απόσταση σε λιγότερο από 5 sec. (George Lepp/Stone/Getty Images) Κίνηση σε Μια Διάσταση Διανύσματα
3 Επανάληψη Θέση x : η τοποθεσία του σωματιδίου σε σχέση με ένα σημείο αναφοράς (συχνά, η αρχή των αξόνων αναφοράς) Μονάδα μέτρησης: m (μέτρο) Μετατόπιση Δx: η αλλαγή στη θέση ενός σωματιδίου σε δεδομένο χρονικό διάστημα Δ x x f x i Διανυσματικά μεγέθη για ευκολία, κάνουμε τη σύμβαση προσήμου
4 Επανάληψη Μέση ταχύτητα: Διανυσματικό μέγεθος Κι εδώ, σύμβαση προσήμου Μέση αριθμητική ταχύτητα: όπου d η απόσταση Στιγμιαία ταχύτητα u avg x f x i = Δ x t f t i Δt s avg d Δt Δ x d x u x lim = Δt 0 Δt dt Διανυσματικό μέγεθος κι εδώ, σύμβαση προσήμου Μονάδα μέτρησης: m/s (μέτρο ανά δευτερόλεπτο)
5 Θέση σωματιδίου υπό σταθερή ταχύτητα u avg = u x = Δx Δt Άρα Δx = u x Δt x f x i = u x Δt x f = x i + u x Δt Αν θεωρήσουμε ότι t i = 0: Δt = t f t i = t f = t και τότε x f = x i + u x t Επίσης, το μέτρο της ταχύτητας είναι σταθερό και ίσο με u = d Δt όπου d το μήκος της απόστασης που διανύθηκε
6 Επιτάχυνση Η μεταβολή της ταχύτητας συναρτήσει του χρόνου Μέση επιτάχυνση a x,avg Δu x Δt = u xf u xi t f t i Στιγμιαία επιτάχυνση Αφού όμως είναι Δu x a x lim Δt 0 Δt = du x dt d dt u x = d dt a x = d2 x dt 2 dx dt Μονάδα μέτρησης: m/s 2 (μέτρο ανά δευτερόλεπτο στο τετράγωνο)
7 Quiz 1: Βρείτε τα ζεύγη ταχύτητας-επιτάχυνσης Hint: Η ταχύτητα και η επιτάχυνση έχουν σχέση παραγώγουπαράγουσας
8 Quiz 2: Η θέση ενός σωματιδίου δίνεται από τη σχέση x = 4 27t + t 3 Βρείτε τη συνάρτηση ταχύτητας ως προς το χρόνο Βρείτε τη συνάρτηση επιτάχυνσης ως προς το χρόνο Υπάρχει κάποια χρονική στιγμή που το σωματίδιο είχε u = 0?
9 Επιτάχυνση όταν η ταχύτητα αλλάζει με το χρόνο Σταθερή ταχύτητα μηδενική επιτάχυνση Ταχύτητα και επιτάχυνση: διανύσματα Θετική και αρνητική ταχύτητα Θετική και αρνητική επιτάχυνση Τα πρόσημα υποδηλώνουν φορά! Παράδειγμα:
10 Ειδική περίπτωση: a x σταθερή Ορίζουμε θετική φορά κίνησης προς τα δεξιά Εξισώσεις Μονοδιάστατης Κίνησης υπό σταθερή επιτάχυνση: 1. u xf = u xi + a x t 2. u x,avg = u x i + u xf 2 3. x f = x i u x i + u xf t ή x f = x i + u x,avg t 4. x f = x i + u xi t a xt 2 5. u 2 xf = u 2 xi + 2a x (x f x i ) Οι δείκτες i και f δηλώνουν αρχική και τελική κατάσταση, ενώ ο δείκτης x δηλώνει μονοδιάστατη κίνηση σε έναν οριζόντιο άξονα x x
11 Απόδειξη: Αφού η επιτάχυνση είναι σταθερή, τότε a x,avg = a x Από τον ορισμό έχουμε a x = Δu x Δt = u x f u xi t f t i t i =0,t f =t u xf = u xi + a x t Άρα u xf = u xi + a x t
12 Απόδειξη: Αφού η επιτάχυνση είναι σταθερή, τότε η ταχύτητα (δηλ. το ολοκλήρωμά της) θα είναι γραμμική συνάρτηση του χρόνου Έτσι η μέση ταχύτητα μπορεί να εκφραστεί ως ο αριθμητικός μέσος της αρχικής ταχύτητας u x και της τελικής ταχύτητας i u x f Δηλ. u x avg = u xf + u x i 2 u x f u x i t i t f
13 Απόδειξη: Από την προηγούμενη σχέση, πολλαπλασιάζουμε κατά μέλη με t: Όμως u xavg t = u xf + u x i 2 t u xavg t = Δx = x f x i οπότε Λύνοντας ως προς x f : x f x i = u xf + u x i 2 t x f = x i + u xf + u x i 2 t
14 Απόδειξη: Έχουμε ήδη και Αντικαθιστώντας u xf = u xi + a x t x f = x i + u x f + u xi 2 t x f = x i u x i + a x t + u xi t Άρα = x i + u xi t a xt 2 x f = x i + u xi t a xt 2
15 Απόδειξη: Έχουμε και u xf = u xi + a x t t = u x f u xi a x Αντικαθιστώντας x f = x i u x f + u xi t και x f = x i u x f + u xi = x i + u x 2 f u2 xi 2a x u xf u xi a x u 2 xf = u 2 xi + 2a x x f x i
16 Δεν είναι απαραίτητη η χρήση διανυσμάτων στην κίνηση αυτή Είδατε ότι το τυπολόγιο της κίνησης ήταν χωρίς διανύσματα Προσοχή στην ερμηνεία των αρνητικών μεγεθών! Υπενθυμίζεται η σύμβαση ότι : ορίζουμε ως θετική φορά αυτή προς τα δεξιά Αντίστοιχα, αρνητική προς τα αριστερά Μην ξεχνάτε να ορίζετε το σημείο αναφοράς σας (t i = 0)! Ελεύθερη πτώση (κίνηση σε μια διάσταση κατακόρυφη) Επιτάχυνση βαρύτητας g = 9.8 m/s 2 με φορά προς τα κάτω Ίδια μεθοδολογία και εξισώσεις (x y) Συνήθως ορίζουμε θετική φορά κίνησης προς τα επάνω
17 Ελεύθερη πτώση: a y = g = 9. 8 m/s 2 σταθερή Ορίζουμε θετική φορά προς τα επάνω Εξισώσεις Ελεύθερης Πτώσης: 1. u yf = u yi gt 2. u y,avg = u y i + u yf 2 Οι δείκτες i και f δηλώνουν αρχική και τελική κατάσταση, ενώ ο δείκτης y δηλώνει μονοδιάστατη κίνηση σε έναν κατακόρυφο άξονα y y 3. y f = y i u y i + u yf t ή y f = y i + u y,avg t 4. y f = y i + u yi t 1 2 gt2 5. u 2 yf = u 2 yi 2g(y f y i ) Αν ορίσετε θετική φορά κίνησης προς τα κάτω (δηλ. με ίδια φορά με το διάνυσμα της επιτάχυνσης της βαρύτητας), τότε όπου g θέτουμε g
18 Παράδειγμα: Πετάμε μια μπάλα από την κορυφή ενός κτηρίου με αρχική ταχύτητα 20 m/s και φορά κατακόρυφα προς τα επάνω. Το ύψος του κτηρίου είναι 50 m. Α) Θεωρώντας ότι αρχίζουμε να μετράμε όταν η μπάλα φεύγει από τα χέρια μας, βρείτε το χρόνο που απαιτείται για να φτάσει στο μέγιστο ύψος. Β) Βρείτε αυτό το μέγιστο ύψος. Γ) Βρείτε την ταχύτητα της μπάλας όταν επιστρέφει στο ύψος που έφυγε από τα χέρια μας. Δ) Βρείτε την ταχύτητα και τη θέση της μπάλας όταν t = 5 s.
19 Παράδειγμα Λύση: Πετάμε μια μπάλα από την κορυφή ενός κτηρίου με αρχική ταχύτητα 20 m/s και φορά κατακόρυφα προς τα επάνω. Το ύψος του κτηρίου είναι 50 m. Α) Θεωρώντας ότι αρχίζουμε να μετράμε όταν η μπάλα φεύγει από τα χέρια μας, βρείτε το χρόνο που απαιτείται για να φτάσει στο μέγιστο ύψος.
20 Παράδειγμα Λύση: Πετάμε μια μπάλα από την κορυφή ενός κτηρίου με αρχική ταχύτητα 20 m/s και φορά κατακόρυφα προς τα επάνω. Το ύψος του κτηρίου είναι 50 m. Β) Βρείτε αυτό το μέγιστο ύψος.
21 Παράδειγμα Λύση: Πετάμε μια μπάλα από την κορυφή ενός κτηρίου με αρχική ταχύτητα 20 m/s και φορά κατακόρυφα προς τα επάνω. Το ύψος του κτηρίου είναι 50 m. Γ) Βρείτε την ταχύτητα της μπάλας όταν επιστρέφει στο ύψος που έφυγε από τα χέρια μας.
22 Παράδειγμα Λύση: Πετάμε μια μπάλα από την κορυφή ενός κτηρίου με αρχική ταχύτητα 20 m/s και φορά κατακόρυφα προς τα επάνω. Το ύψος του κτηρίου είναι 50 m. Δ) Βρείτε την ταχύτητα και τη θέση της μπάλας όταν t = 5 s.
23 Παράδειγμα: Πετάμε μια μπάλα από την κορυφή ενός κτηρίου με αρχική ταχύτητα 20 m/s και φορά κατακόρυφα προς τα άνω. Το ύψος του κτηρίου είναι 50 m. Α) Θεωρώντας ότι αρχίζουμε να μετράμε όταν η μπάλα φεύγει από τα χέρια μας, βρείτε το χρόνο που απαιτείται για να φτάσει στο μέγιστο ύψος. Β) Βρείτε αυτό το μέγιστο ύψος. Γ) Βρείτε την ταχύτητα της μπάλας όταν επιστρέφει στο ύψος που έφυγε από τα χέρια μας. Δ) Βρείτε την ταχύτητα και τη θέση της μπάλας όταν t = 5 s. Εξάσκηση: α) Λύστε τα Γ, Δ, με διαφορετικές αρχικές θέσεις. β) Λύστε ξανά τα ερωτήματα Γ, Δ, υποθέτοντας ότι t = 0 όταν το σώμα βρίσκεται στη θέση Β! (πρέπει να βρείτε τα ίδια αποτελέσματα)!
24 Τέλος Διάλεξης
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
1 η Ενότητα Κλασική Μηχανική
Εικόνα: Η κίνηση μπορεί να είναι αναζωογονητική και όμορφη. Αυτά τα σκάφη ανταποκρίνονται σε δυνάμεις αέρα, νερού, και του βάρους του πληρώματος όσο προσπαθούν να ισορροπήσουν στην άκρη του. 1 η Ενότητα
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί
Φυσική για Μηχανικούς
Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί ως κίνηση σε δυο (αντί
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να
Κεφάλαιο 1. Κίνηση σε μία διάσταση
Κεφάλαιο 1 Κίνηση σε μία διάσταση Κινηματική Περιγράφει την κίνηση, αγνοώντας τις αλληλεπιδράσεις με εξωτερικούς παράγοντες που ενδέχεται να προκαλούν ή να μεταβάλλουν την κίνηση. Προς το παρόν, θα μελετήσουμε
Κίνηση με σταθερή επιτάχυνση, α(t) =σταθ.
ΦΥΣ 111 - Διαλ.6 1 Κίνηση με σταθερή επιτάχυνση, α() =σταθ. Από την εξίσωση κίνησης = a( )d + Αντικαθιστώντας στην x = x + ( )d x = x + ( a + )d = x + ( a)d + d = a + (1) x = x + 1 a + () Λύνοντας ως προς
Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής
Κεφάλαιο 2 Κίνηση κατά μήκος ευθείας γραμμής Στόχοι 1 ου Κεφαλαίου Περιγραφή κίνησης σε ευθεία γραμμή όσον αφορά την ταχύτητα και την επιτάχυνση. Διαφορά μεταξύ της μέσης και στιγμιαίας ταχύτητας καθώς
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του
ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση
Κινηµατική ΦΥΣ 111 - Διαλ.04 2 Σύνοψη εννοιών Κινηµατική: Περιγραφή της κίνησης ενός σώµατος Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση Στιγµιαία Κίνηση - Τροχιές ΦΥΣ 111 - Διαλ.04 3!
1 η Ενότητα Κλασική Μηχανική
Εικόνα: Η κίνηση μπορεί να είναι αναζωογονητική και όμορφη. Αυτά τα σκάφη ανταποκρίνονται σε δυνάμεις αέρα, νερού, και του βάρους του πληρώματος όσο προσπαθούν να ισορροπήσουν στην άκρη του. 1 η Ενότητα
a x (t) = d dt u x(t) = d dt dt x(t) )
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2018 ιδάσκων : Γ. Καφεντζής Λύσεις Φροντιστηρίων 1ο Φροντιστήριο Ασκηση 1. Γνωρίζουµε ότι a x (t) = d dt u x(t) = d dt
Κεφάλαιο 2 Κίνηση σε μία διάσταση. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο Κίνηση σε μία διάσταση Copyrigh 9 Pearson Educaion, Inc. Περιεχόμενα Κεφαλαίου Συστήματα Αναφοράς και μετατόπιση Μέση Ταχύτητα Στιγμιαία Ταχύτητα Επιτάχυνση Κίνηση με σταθερή επιτάχυνση Προβλήματα
ΣΥΝΟΨΗ 1 ου Μαθήματος
Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Κεφάλαιο M2. Κίνηση σε μία διάσταση
Κεφάλαιο M2 Κίνηση σε μία διάσταση Κινηματική Περιγράφει την κίνηση, αγνοώντας τις αλληλεπιδράσεις με εξωτερικούς παράγοντες που ενδέχεται να προκαλούν ή να μεταβάλλουν την κίνηση. Προς το παρόν, θα μελετήσουμε
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
ΠΕΡΙΛΗΨΗ ΘΕΩΡΙΑΣ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ
ΠΕΡΙΛΗΨΗ ΘΕΩΡΙΑΣ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ Αλγεβρική τιμή διανύσματος Όταν ένα διάνυσμα είναι παράλληλο σε έναν άξονα (δηλαδή μια ευθεία στην οποία έχουμε ορίσει θετική φορά), τότε αλγεβρική τιμή του διανύσματος
Κεφάλαιο 2 Κίνηση σε µία διάσταση. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο Κίνηση σε µία διάσταση Copyright 9 Pearson Education, Inc. Περιεχόµενα Κεφαλαίου Συστήµατα Αναφοράς και µετατόπιση Μέση Ταχύτητα Στιγµιαία Ταχύτητα Επιτάχυνση Κίνηση µε σταθερή επιτάχυνση Προβλήµατα
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του
ΦΥΣΙΚΗ. Ενότητα 3: ΚΙΝΗΣΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.
ΦΥΣΙΚΗ Ενότητα 3: ΚΙΝΗΣΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις
Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση
Κεφάλαιο 3. Κίνηση σε δύο διαστάσεις (επίπεδο)
Κεφάλαιο 3 Κίνηση σε δύο διαστάσεις (επίπεδο) Κινηματική σε δύο διαστάσεις Θα περιγράψουμε τη διανυσματική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης με περισσότερες λεπτομέρειες. Σαν ειδικές περιπτώσεις,
y = u i t 1 2 gt2 y = m y = 0.2 m
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2018 ιδάσκων : Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. (αʹ) Το χαρτονόµισµα ξεκινά από ηρεµία, u i = 0, και
ΘΕΜΑ A: ΔΙΑΡΚΕΙΑ: 120min ΤΜΗΜΑ:. ONOMA:. ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο ΘΕΜΑ 2 ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ
ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ ΔΙΑΡΚΕΙΑ: 1min ONOMA:. ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ:. ΘΕΜΑ 1 ο ΘΕΜΑ ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ ΘΕΜΑ A: 1. Στην ομαλά επιταχυνόμενη κίνηση: Α. η αρχική ταχύτητα είναι πάντα μηδέν,
Κεφάλαιο 3. Κίνηση σε δύο ή τρεις διαστάσεις
Κεφάλαιο 3 Κίνηση σε δύο ή τρεις διαστάσεις Στόχοι 3 ου Κεφαλαίου Τα διανύσματα της θέσης και της ταχύτητας. Το διάνυσμα της επιτάχυνσης. Παράλληλη και κάθετη συνιστώσα της επιτάχυνσης. Κίνηση βλήματος.
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Διατήρηση της Ενέργειας Εικόνα: Η μετατροπή της δυναμικής ενέργειας σε κινητική κατά την ολίσθηση ενός παιχνιδιού σε μια πλατφόρμα. Μπορούμε να αναλύσουμε τέτοιες καταστάσεις με τις
Κίνηση σε μία διάσταση
Κίνηση σε μία διάσταση ΦΥΣ 131 - Διαλ.5 1 q Ανακεφαλαιώνοντας θέσης τροχιάς μετατόπισης Δx = x f - x i, χρονικού διαστήματος Δ = f i, μέση ταχύτητα v = x x στιγμιαία ταχύτητα x v = lim " = d x d παράγωγος
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.
1.1. Κινηµατική Η µετατόπιση είναι διάνυσµα Η µετατόπιση στην ευθύγραµµη κίνηση Μετατόπιση και διάστηµα.
1.1. 1.1.1. Η µετατόπιση είναι διάνυσµα. Ένα σώµα κινείται σε οριζόντιο επίπεδο ξεκινώντας από το σηµείο Α του σχήµατος. Μετά από λίγο φτάνει στο σηµείο Β. y 4 (m) B Γ 1 Α x 0,0 1 5 x(m) y i) Σχεδιάστε
Κίνηση σε μια διάσταση
Κίνηση σε μια διάσταση Θεωρούμε κίνηση κατά μήκος μιας ευθύγραμμης διαδρομής. Η απόσταση x του κινούμενου σώματος από ένα σημείο του άξονα της κίνησης που παραμένει ακίνητο χρησιμοποιείται ως συντεταγμένη.
ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ. Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΜΑΤΙΚΗΣ
ΠΕΙΡΑΜΑΤΙΚΟ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ Σ (Το τυπολόγιο αυτό δεν αντικαθιστά το βιβλίο. Συγκεντρώνει απλώς τις ουσιώδεις σχέσεις του βιβλίου και σχολιάζει κάποια σημεία τους).
ΦΥΣΙΚΗ. Ενότητα 2: Ταχύτητα - Επιτάχυνση
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗ Ενότητα 2: Ταχύτητα - Επιτάχυνση Παπαζάχος Κωνσταντίνος Καθηγητής Γεωφυσικής, Τομέας Γεωφυσικής Τσόκας Γρηγόρης Καθηγητής Εφαρμοσμένης
2 ο Μάθημα Κίνηση στο επίπεδο
ο Μάθημα Κίνηση στο επίπεδο Διανύσματα διάνυσμα θέσης διάνυσμα μετατόπισης σώματος διάνυσμα ταχύτητας διάνυσμα επιτάχυνσης κίνηση βλήματος ανάλυση κίνησής του σε οριζόντια και κατακόρυφη συνιστώσα ομαλή
Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ
Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ Χρήσιμες έννοιες Κίνηση (σχετική κίνηση) ενός αντικειμένου λέγεται η αλλαγή της θέσης του ως προς κάποιο σύστημα αναφοράς. Τροχιά σώματος ονομάζουμε τη νοητή γραμμή που δημιουργεί
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να
400 = t2 (2) t = 15.1 s (3) 400 = (t + 1)2 (5) t = 15.3 s (6)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Θεωρούµε ως χρονικό σηµείο αναφοράς τη στιγµή που
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί
ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου
ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα
ΚΕΦΑΛΑΙΟ 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ
22 ΚΕΦΑΛΑΙΟ 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ Α. ΚΙΝΗΣΗ - ΜΕΤΑΤΟΠΙΣΗ ΧΡΟΝΟΣ - ΤΑΧΥΤΗΤΑ 1. Πάνω σε έναν άξονα xοx επιλέγουμε τα σημεία Α(0), Β(-3m), Γ(5m) και Δ(3m). Να βρείτε το διάστημα και τη μετατόπιση του κινητού
Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Χρήσιμες μαθηματικές έννοιες Νίκος Ν. Αρπατζάνης Παράγωγος ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ y y = f(x) x φ y y y = f(x) x φ y y y = f(x) φ x 1 x 1 + х x x 1 x 1 + х x x 1 x tanϕ = y x tanϕ = dy dx
ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ
ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου
ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΘΕΣΗ ΤΡΟΧΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΙ ΔΙΑΣΤΗΜΑ. Παρατηρώντας τις εικόνες προσπαθήστε να ορίσετε τις θέσεις των διαφόρων ηρώων των κινουμένων σχεδίων. Ερώτηση: Πότε ένα σώμα
Φυσικά μεγέθη. Φυσική α λυκείου ΕΙΣΑΓΩΓΗ. Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα. Β.
ΕΙΣΑΓΩΓΗ Φυσικά μεγέθη Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα Β. τα διανυσματικά Μονόμετρα ονομάζουμε τα μεγέθη εκείνα τα οποία για να τα γνωρίζουμε χρειάζεται να ξέρουμε
Ένα φορτηγό κινείται σε ευθύγραμμο δρόμο διανύοντας απόσταση Δx = 10 Km σε χρόνο Δt =100sec με σταθερή ταχύτητα υ.
ΕΝΩΣΗ ΦΥΣΙΚΩΝ ΒΟΡΕΙΟΥ ΕΛΛΑΔΑΣ (Ε.Φ.Β.Ε.) Θέματα Εξετάσεων Β τάξης Γυμνασίου 9/4/018 Θέμα 1 ο Ένα φορτηγό κινείται σε ευθύγραμμο δρόμο διανύοντας απόσταση Δx = 10 Km σε χρόνο Δt =100sec με σταθερή ταχύτητα
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 214-2 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/1/214 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό
Πόσο απέχουν; Πόση είναι η µετατόπιση του καθενός; O.T.
Πόσο απέχουν; Πόση είναι η µετατόπιση του καθενός; ιανυσµατικό µέγεθος Μέτρο ιεύθυνση Φορά A Μετατόπιση Τελική θέση Αρχική θέση Σύµβολο µέτρου διανύσµατος A ύο διανύσµατα είναι ίσα αν έχουν ίδιο µέτρο
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή
ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 13/10/2013
ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΛΥΚΕΙΟΥ ΣΕΙΡ: (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙ: 13/1/13 ΘΕΜ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών
Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων
Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με
Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων
Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με
Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου
ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ Φυσική Β Γυμνασίου Εισαγωγή Τα πάντα γύρω μας κινούνται. Στο διάστημα όλα τα ουράνια σώματα κινούνται. Στο μικρόκοσμο συμβαίνουν κινήσεις που δεν μπορούμε να τις αντιληφθούμε άμεσα.
ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ
ΚΕΦΑΛΑΙΟ o ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ.) Τ ι γνωρίζετε για την αρχή της ανεξαρτησίας των κινήσεων; Σε πολλές περιπτώσεις ένα σώμα εκτελεί σύνθετη κίνηση, δηλαδή συμμετέχει σε περισσότερες από μία κινήσεις. Για
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί
2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση
2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,
2 ο Μάθημα Κίνηση στο επίπεδο
2 ο Μάθημα Κίνηση στο επίπεδο Διανύσματα διάνυσμα θέσης διάνυσμα μετατόπισης σώματος διάνυσμα ταχύτητας διάνυσμα επιτάχυνσης κίνηση βλήματος ανάλυση κίνησής του σε οριζόντια και κατακόρυφη συνιστώσα ομαλή
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί να δημιουργηθεί
Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις
Κεφάλαιο 3 Κίνηση σε και 3 Διαστάσεις Κίνηση υλικού σημείου στο επίπεδο ( -D) και στο χώρο (3 -D). Ορισμός διανυσμάτων για την μελέτη της -D 3-D κίνησης: Θέση, Μετατόπιση Μέση και στιγμιαία ταχύτητα Μέση
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ
16-10-11 ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.
ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ
ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του.
1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;
ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε
Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= 1 s ). Αν η ταχύτητα στη θέση x
Εισαγωγή στις Φυσικές Επιστήμες (4 7 09) Μηχανική ΘΕΜΑ Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= s ). Αν η ταχύτητα στη θέση x 0 = 0
2ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου υναµική Ι - Βαρύτητα. Ενδεικτικές Λύσεις. Θέµα Α
2ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου υναµική Ι - Βαρύτητα Ενδεικτικές Λύσεις Θέµα Α Α.1. Οταν ένα σώµα κάνει ευθύγραµµη κίνηση µε αρνητική ταχύτητα τότε : (δ) κινείται προς τα αρνητικά του άξονα των συντεταγµένων.
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Διατήρηση της Ενέργειας Εικόνα: Η μετατροπή της δυναμικής ενέργειας σε κινητική κατά την ολίσθηση ενός παιχνιδιού σε μια πλατφόρμα. Μπορούμε να αναλύσουμε τέτοιες καταστάσεις με τις
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ευθύγραμμη Κίνηση
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. A Λυκείου Ύλη: Ευθύγραμμη Κίνηση 13-11-2016 Θέμα 1 ο : 1) Η έκφραση 2m/s 2 όταν αναφέρεται σε κινητό που εκτελεί ευθύγραμμη κίνηση σημαίνει ότι: α) η θέση του κινητού αλλάζει
1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;
ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική
Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ
Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.
ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ
ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ 5//08 ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα το γράμμα που αντιστοιχεί
Συστήματα συντεταγμένων
Συστήματα συντεταγμένων Χρησιμοποιούνται για την περιγραφή της θέσης ενός σημείου στον χώρο. Κοινά συστήματα συντεταγμένων: Καρτεσιανό (x, y, z) Πολικό (r, θ) Καρτεσιανό σύστημα συντεταγμένων Οι άξονες
Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς
Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης
Α. ο σώμα αρχίζει να κινείται όταν η προωστική δύναμη γίνει ίση με τη δύναμη της τριβής. Έχουμε δηλαδή
Εισαγωγή στις Φυσικές Επιστήμες (8-7-007) Μηχανική Ονοματεπώνυμο Τμήμα ΘΕΜΑ A. Υλικό σώμα μάζας βρίσκεται σε οριζόντιο επίπεδο με μέγιστο συντελεστή στατικής τριβής η και συντελεστή τριβής ολίσθησης μ.
Έργο Δύναμης Έργο σταθερής δύναμης
Παρατήρηση: Σε όλες τις ασκήσεις του φυλλαδίου τα αντικείμενα θεωρούμε ότι οι δυνάμεις ασκούνται στο κέντρο μάζας των αντικειμένων έτσι ώστε αυτά κινούνται μόνο μεταφορικά, χωρίς να μπορούν να περιστραφούν.
Κεφάλαιο 3 Κίνηση σε 2 και 3 διαστάσεις, Διανύσµατα. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 3 Κίνηση σε και 3 διαστάσεις, Διανύσµατα Copyright 009 Pearson ducation, Inc. Περιεχόµενα 3 Διανύσµατα και Βαθµωτές ποσότητες Πράξεις Διανυσµάτων Γραφικές Παραστάσεις Μοναδιαία διανύσµατα Κινηµατική
Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc
4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό
Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η
1 Σκοπός Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την ταχύτητα, την επιτάχυνση, τη θέση ή το χρόνο κίνησης ενός κινητού.
Κεφάλαιο 5. Ενέργεια συστήματος
Κεφάλαιο 5 Ενέργεια συστήματος Εισαγωγή στην ενέργεια Οι νόμοι του Νεύτωνα και οι αντίστοιχες αρχές μας επιτρέπουν να λύνουμε μια ποικιλία προβλημάτων. Ωστόσο, μερικά προβλήματα, που θεωρητικά μπορούν
minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014
minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί να δημιουργηθεί
ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ
F ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά
ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική
Α ΤΑΞΗ ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική ΜΕΡΟΣ 1 : Ευθύγραμμες Κινήσεις 1. Να επαναληφθεί το τυπολόγιο όλων των κινήσεων - σελίδα 2 (ευθύγραμμων και ομαλών, ομαλά μεταβαλλόμενων) 2. Να επαναληφθούν όλες οι
ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 1//1 ΘΕΜΑ 1 ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα
Θέση-Μετατόπιση -ταχύτητα
Φυσική έννοια Φυσική έννοια Φαινόμενα ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Θέση-Μετατόπιση -ταχύτητα Ένα τρένο που ταξιδεύει αλλάζει διαρκώς θέση, το ίδιο ένα αυτοκίνητο και ένα πλοίο ή αεροπλάνο
ΚΕΦΑΛΑΙΟ 3 Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΠΑΡΑΓΩΓΙΣΙΜΗ
ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία
ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ
ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ http://users.sch.gr/cdfan ΣΧΟΛΙΚΟ ΕΤΟΣ 2016-2017 Τα φυσικά μεγέθη, θέση,
Πειραματική μελέτη των ευθύγραμμων κινήσεων
Τα προβλήματα α' περίπτωση: Πειραματική μελέτη των ευθύγραμμων κινήσεων Προβλήματα και θεραπείες Υποθέτουμε ότι ένα αυτοκίνητο κινείται σύμφωνα με την εξίσωση: x = 2 t + 1. Κάθε δευτερόλεπτο καταγράφουμε
ΘΕΜΑ Α. Στις ερωτήσεις Α 1 έως Α 4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ A ΤΑΞΗ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 03/05/05 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:ΠΕΝΤΕ (5) ΘΕΜΑ Α Στις ερωτήσεις Α έως Α 4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Από το ύψος και τη γωνία που µας δίνεται, έχουµε
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 04 Εφαρμογές Νόμων του Νεύτωνα ΦΥΣ102 1 Ισορροπία υλικού σημείου και Δεύτερος νομός
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον
8 ο Μάθημα Περιστροφική κίνηση. Κέντρο μάζας Στερεό σώμα Γωνιακή ταχύτητα γωνιακή επιτάχυνση Περιστροφή με σταθερή γωνιακή επιτάχυνση
8 ο Μάθημα Περιστροφική κίνηση Κέντρο μάζας Στερεό σώμα Γωνιακή ταχύτητα γωνιακή επιτάχυνση Περιστροφή με σταθερή γωνιακή επιτάχυνση Στερεό σώμα Στερεό ονομάζουμε ένα σώμα με καθορισμένο μέγεθος και σχήμα
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2018 ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2017 2018 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2018 ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΤΡΙΑΣ:.... ΒΑΘΜΟΣ : /100, /20 ΥΠΟΓΡΑΦΗ:. Μάθημα: ΦΥΣΙΚΗ Τάξη:
ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ. Είναι η κίνηση στην οποία το κινητό κινείται σε ευθύγραμμη τροχιά και σε ίσους χρόνους διανύει ίσες μετατοπίσεις.
ΘΩΡΙΑ - ΛΥΜΝΣ ΑΣΚΉΣΙΣ ΣΤΑ ΔΙΑΓΡΑΜΜΑΤΑ ΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ίναι η κίνηση στην οποία το κινητό κινείται σε ευθύγραμμη τροχιά και σε ίσους χρόνους διανύει ίσες μετατοπίσεις. ΤΑΧΥΤΗΤΑ ΣΤΗΝ.Ο.Κ. ίναι το