Μορφές και πρόσημο τριωνύμου
|
|
- Ζένα Δελή
- 9 χρόνια πριν
- Προβολές:
Transcript
1 16 Φεβρουαρίου 214
2 Μορφές τριωνύμου Μορφές τριωνύμου Ανάπτυγμα: P(x) = αx 2 + βx + γ
3 Μορφές τριωνύμου Μορφές τριωνύμου Ανάπτυγμα: Παραγοντοποιημένη: P(x) = αx 2 + βx + γ P(x) = k(x λ)(x μ)
4 Μορφές τριωνύμου Μορφές τριωνύμου Ανάπτυγμα: Παραγοντοποιημένη: P(x) = αx 2 + βx + γ P(x) = k(x λ)(x μ) Παραγοντοποιημένη: P(x) = k(x λ) 2
5 Μορφές τριωνύμου Μορφές τριωνύμου Ανάπτυγμα: Παραγοντοποιημένη: P(x) = αx 2 + βx + γ P(x) = k(x λ)(x μ) Παραγοντοποιημένη: P(x) = k(x λ) 2 Κανονική : P(x) = k(x λ) 2 + μ
6 Μορφές τριωνύμου Μετασχηματισμός παραγοντοποιημένης ή κανονικής μορφής σε ανάπτυγμα Γίνεται με εκτέλεση πράξεων και εφαρμογή της επιμεριστικής ιδιότητας
7 Μορφές τριωνύμου Μετασχηματισμός παραγοντοποιημένης ή κανονικής μορφής σε ανάπτυγμα Γίνεται με εκτέλεση πράξεων και εφαρμογή της επιμεριστικής ιδιότητας Να γράψετε το τριώνυμο P(x) = 2(x 3)(x + 4) σε αναπτυγμένη μορφή
8 Μορφές τριωνύμου Μετασχηματισμός παραγοντοποιημένης ή κανονικής μορφής σε ανάπτυγμα Γίνεται με εκτέλεση πράξεων και εφαρμογή της επιμεριστικής ιδιότητας Να γράψετε το τριώνυμο P(x) = 2(x 3)(x + 4) σε αναπτυγμένη μορφή Να γράψετε το τριώνυμο P(x) = 4(x 3) 2 σε αναπτυγμένη μορφή
9 Μορφές τριωνύμου Μετασχηματισμός παραγοντοποιημένης ή κανονικής μορφής σε ανάπτυγμα Γίνεται με εκτέλεση πράξεων και εφαρμογή της επιμεριστικής ιδιότητας Να γράψετε το τριώνυμο P(x) = 2(x 3)(x + 4) σε αναπτυγμένη μορφή Να γράψετε το τριώνυμο P(x) = 4(x 3) 2 σε αναπτυγμένη μορφή Να γράψετε το τριώνυμο P(x) = 2(x + 4) 2 5 σε αναπτυγμένη μορφή
10 Από ανάπτυγμα σε παραγοντοποιημένη P(x) = ax 2 + βx = γ Αν Δ>, τότε υπάρχουν δύο ρίζες ρ 1, ρ 2
11 Από ανάπτυγμα σε παραγοντοποιημένη P(x) = ax 2 + βx = γ Αν Δ>, τότε υπάρχουν δύο ρίζες ρ 1, ρ 2 P(x) = ax 2 + βx + γ
12 Από ανάπτυγμα σε παραγοντοποιημένη P(x) = ax 2 + βx = γ Αν Δ>, τότε υπάρχουν δύο ρίζες ρ 1, ρ 2 P(x) = ax 2 + βx + γ = a x 2 + β α x + γ α
13 Από ανάπτυγμα σε παραγοντοποιημένη P(x) = ax 2 + βx = γ Αν Δ>, τότε υπάρχουν δύο ρίζες ρ 1, ρ 2 P(x) = ax 2 + βx + γ = a x 2 + β α x + γ α = a x 2 (ρ 1 + ρ 2 )x + ρ 1 ρ 2
14 Από ανάπτυγμα σε παραγοντοποιημένη P(x) = ax 2 + βx = γ Αν Δ>, τότε υπάρχουν δύο ρίζες ρ 1, ρ 2 P(x) = ax 2 + βx + γ = a x 2 + β α x + γ α = a x 2 (ρ 1 + ρ 2 )x + ρ 1 ρ 2 = a(x ρ 1 )(x ρ 2 )
15 Από ανάπτυγμα σε παραγοντοποιημένη P(x) = ax 2 + βx = γ Αν Δ=, τότε υπάρχουν δύο ίσες ρίζες ρ 1 = ρ 2 = ρ P(x) = ax 2 + βx + γ = a x 2 + β α x + γ α = a x 2 (ρ 1 + ρ 2 )x + ρ 1 ρ 2 = a(x ρ 1 )(x ρ 2 )
16 Από ανάπτυγμα σε παραγοντοποιημένη P(x) = ax 2 + βx = γ Αν Δ=, τότε υπάρχουν δύο ίσες ρίζες ρ 1 = ρ 2 = ρ P(x) = ax 2 + βx + γ = a x 2 + β α x + γ α = a x 2 2ρx + ρ 2 = a(x ρ 1 )(x ρ 2 )
17 Από ανάπτυγμα σε παραγοντοποιημένη P(x) = ax 2 + βx = γ Αν Δ=, τότε υπάρχουν δύο ίσες ρίζες ρ 1 = ρ 2 = ρ P(x) = ax 2 + βx + γ = a x 2 + β α x + γ α = a x 2 2ρx + ρ 2 = a(x ρ) 2
18 Από ανάπτυγμα σε παραγοντοποιημένη Αν Δ< μπορεί το τριώνυμο να παραγοντοποιηθεί; Γιατί;
19 Από ανάπτυγμα σε κανονική P(x) = ax 2 + βx + γ
20 Από ανάπτυγμα σε κανονική P(x) = ax 2 + βx + γ = a x 2 + β α x + γ a
21 Από ανάπτυγμα σε κανονική P(x) = ax 2 + βx + γ = a x 2 + β α x + γ a = a x β 2α x + β2 4α 2 β2 4α 2 + γ a
22 Από ανάπτυγμα σε κανονική P(x) = ax 2 + βx + γ = a x 2 + β α x + γ a = a x β 2α x + β2 4α 2 β2 4α 2 + γ a = a x + β 2α 2 Δ 4α 2
23 Από ανάπτυγμα σε κανονική P(x) = ax 2 + βx + γ = a x 2 + β α x + γ a = a x β 2α x + β2 4α 2 β2 4α 2 + γ a = a x + β 2α 2 Δ 4α 2 = a x + β 2α 2 Δ 4α
24 με Δ< Στην κανονική μορφή που αναφέρθηκε πιο πάνω P(x) = a x + β 2 2α Δ 4a 2
25 με Δ< Το κλάσμα έχει πρόσημο P(x) = a x + β 2 2α Δ 4a 2
26 με Δ< Η παράσταση στην αγκύλη έχει πρόσημο P(x) = a x + β 2 2α Δ 4a 2
27 με Δ< Άρα για κάθε x R τιμή P(x) έχει το πρόσημο του α Για κάθε x R, a P(x) >
28 με Δ= Το τριώνυμο έχει διπλή ρίζα ρ και είδαμε ότι γράφεται: P(x) = a(x ρ) 2
29 Για x=ρ παίρνει τιμή P(x) = a(x ρ) 2 Μορφές τριωνύμου με Δ=
30 με Δ= Για x=ρ παίρνει τιμή P(x) = a(x ρ) 2 x P(x) ρ
31 με Δ= Για x ρ παίρνει τιμή με πρόσημο P(x) = a(x ρ) 2 x P(x) ρ
32 με Δ= Για x ρ παίρνει τιμή με πρόσημο P(x) = a(x ρ) 2 x P(x) προσ(α) ρ προσ(α)
33 με Δ> Το τριώνυμο έχει δύο ρίζες ρ 1, ρ 2 και είδαμε ότι γράφεται: P(x) = a(x ρ 1 )(x ρ 2 )
34 με Δ> Για x = ρ 1 ή x = ρ 1 παίρνει τιμή P(x) = a(x ρ 1 )(x ρ 2 )
35 με Δ> P(x) = a(x ρ 1 )(x ρ 2 ) Για x = ρ 1 ή x = ρ 1 παίρνει τιμή x x ρ 1 x ρ 2 P(x) ρ 1 ρ 2
36 με Δ> P(x) = a(x ρ 1 )(x ρ 2 ) Το πρόσημο του πρώτου παράγοντα για τις διάφορες τιμές του x είναι x x ρ 1 x ρ 2 P(x) ρ 1 ρ 2
37 με Δ> P(x) = a(x ρ 1 )(x ρ 2 ) Το πρόσημο του πρώτου παράγοντα για τις διάφορες τιμές του x είναι x x ρ 1 - x ρ 2 P(x) ρ 1 + ρ 2 +
38 με Δ> P(x) = a(x ρ 1 )(x ρ 2 ) Το πρόσημο του δεύτερου παράγοντα για τις διάφορες τιμές του x είναι x x ρ 1 - x ρ 2 P(x) ρ 1 + ρ 2 +
39 με Δ> P(x) = a(x ρ 1 )(x ρ 2 ) Το πρόσημο του δεύτερου παράγοντα για τις διάφορες τιμές του x είναι x x ρ 1 - x ρ 2 - P(x) ρ ρ 2 + +
40 με Δ> P(x) = a(x ρ 1 )(x ρ 2 ) Από τον κανόνα των προσήμων, το πρόσημο του πολυωνύμου είναι x x ρ 1 - x ρ 2 - P(x) ρ ρ 2 + +
41 με Δ> P(x) = a(x ρ 1 )(x ρ 2 ) Από τον κανόνα των προσήμων, το πρόσημο του πολυωνύμου είναι x x ρ 1 - x ρ 2 - P(x) προσ(α) ρ προσ(-α) ρ προσ(α)
2.1 Πολυώνυμα. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα; 3 2 ii. x iii. 3 iv. vi.
.1 Πολυώνυμα 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα; i. 1 x + x ii. x + 7 x iii. 5 x + 7x x iv. 1 x + x v. 1 4 4 x + x + 4x vi. 1 x + 5x. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα
4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114
1. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Ομάδας 1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα: x 3x + x 3x Δ ( 3). 1. 9 8 1 > 0 Ρίζες: x Άρα ( 3) 1.1 3 1 3 1 ή 31 x 3x +
( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x
ΜΟΡΦΕΣ ΤΡΙΩΝΥΜΟΥ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Τριώνυµο λέγεται ένα πολυώνυµο της µορφής : f x = αx + βx+ γ, όπου α, β, γ R µε α. ( ) ιακρίνουσα και ρίζες του τριωνύµου f( x) = αx + βx+ γ λέγεται η διακρίνουσα και
β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)
ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ B Λυκείου Γενικής Παιδείας Κ Ε Φ Α Λ Α Ι Ο 4ο - Φ Υ Λ Λ Ο Νο 2 Δ Ι Α Ι Ρ Ε Σ Η ΠΟΛΥΩΝΥΜΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΑΝΙΣΩΣΕΙΣ ΑΣΚΗΣΕΙΣ 1. Ένα πολυώνυμο Δ(x),
Α) Αν το τριώνυμο έχει δύο ρίζες x 1
αν είναι θ < 0, τότε έχουμε πάλι ότι x!. Παράδειγμα 1. Για την ανίσωση x 3 4 έχουμε x 3 4 x 3 4 ή x 3 4 x 7 ή x 1 x (, 1] [7,+ ). Παράδειγμα. Για την ανίσωση x +1 3 έχουμε x +1 3 η x +1 3 x η x 1 η x (,
) = 0. Λύσεις/Ρίζες της εξίσωσης. Ακριβώς δύο άνισες πραγματικές λύσεις, τις: Η εξίσωση δεν έχει πραγματικές λύσεις
4. Εξισώσεις 2ου βαθμού αx 2 + βx + γ = 0, α 0 α, β, γ παράμετροι και x η μεταβλητή Αν ρ ρίζα/λύση της εξίσωσης, τότε αρ 2 + βρ + γ = 0 Αν ρ 1, ρ 2 ρίζες/λύσεις της εξίσωσης, τότε το τριώνυμο γράφεται
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Πράξεις με μονώνυμα και πολυώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης
4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ
4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ Αν η εξίσωση α ν x ν +α ν-1 x ν-1 +... +α 1 x+α 0 = 0 με α ν,α ν-1,...,α 1,α 0 Ζ : έχει ρίζα τον ακέραιο αριθμό ρ, τότε το ρ διαιρεί το α 0. έχει ρίζα το κλάσμα,
Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές
0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)
K. Μυλωνάκης Αλγεβρα B Λυκείου
ΠΟΛΥΩΝΥΜΑ Ονομάζουμε μονώνυμο του x κάθε πραγματικό αριθμό ή κάθε παράσταση της μορφής αx ν, όπου α είναι πραγμ. αριθμός και ν ένας θετικός ακέραιος. Π.χ. οι παραστάσεις 2χ 4, -3χ 2, 7 είναι μονώνυμα του
4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ
1 4. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΘΕΩΡΙΑ 1. Η γενική µορφή του τριωνύµου µε µεταβλητή x R i) α x + βx + γ, α 0 ii) β α x + α 4α, α 0. Ειδικές µορφές του τριωνύµου Όταν > 0 τότε α x + βx + γ α(x x 1 )(x x ), όπου
a = f( x ) =. (Μονάδες 8) 2 = =,από όπου προκύπτει ( υψώνοντας στο τετράγωνο ), x =, επομένως x = 0 x = ή Άσκηση 4679 Δίνεται η συνάρτηση:
Άσκηση 4679 Δίνεται η συνάρτηση: a = + 4 f( x) x x α) Να βρείτε τις τιμές του πραγματικού αριθμού α, ώστε το πεδίο ορισμού της συνάρτησης f να είναι το σύνολο. (Μονάδες 0) β) Αν είναι γνωστό ότι η γραφική
7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1
4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ
4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Πολυωνυµική εξίσωση Λέγεται κάθε εξίσωση της µορφής Ρ(x) = 0, όπου Ρ(x) πολυώνυµο.. Ρίζα πολυωνυµικής εξίσωσης Λέγεται κάθε ρίζα του αντίστοιχου πολυωνύµου.
( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι:
( x) Άρα το είναι ρίζα του P, οπότε το x είναι παράγοντάς του 4 Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x ) είναι: 3 π ( x) = x + x x + 3 Η ταυτότητα της προηγούμενης διαίρεσης είναι: 4 3 x 3x + 5x
Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)
Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)
Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com www.ma8eno.gr
1 Πρόσημο τριωνύμου - λύση ανίσωσης ου βαθμού Έστω το τριώνυμο f(x) = x - 4x - 1. Θέλουμε να εξετάσουμε για ποιες τιμές της μεταβλητής x το τριώνυμο f(x) γίνεται θετικό, για ποιες τιμές του x γίνεται αρνητικό,
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1
Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 3. Ασκήσεις: -5 Θεωρία ως και την 3.3 Ασκήσεις: 6-8 Άσκηση Δίνεται η παράσταση: A= 3 5 +
( ) λ( ) ( ) ( ) 2. 3α β 27αβ 10. x x αx αy βx βy x y y x x x x. 4 x x x y x y x y y. B Να παραγοντοποιηθούν οι παραστάσεις: x y x y x x y a x a x
A Να παραγοντοποιηθούν οι παραστάσεις: 1. kx x kx x kx x kx x x 8 x 5x 10 x x x x x x. λ 5x 10x 5 x x 10 x x x κ x x κ ( x ) λ( x ). ( α 1 )( x ) α ( x ) ( α 1)( x ) α ( x ) ( α )( x ) α ( x ). 1x 1 kx
Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88
ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Έννοια του πολυωνύμου. Ας υποθέσουμε ότι έχουμε μια μεταβλητή x που μπορεί να πάρει κάθε πραγματική τιμή. Μονώνυμο του x, είναι κάθε παράσταση της μορφής : x όπου α είναι
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ Να δείξετε ότι (x 2) 3 + (3x 4) 3 + (6 4x) 3 = 3(x 2)(3x 4)(6 4x). Λύση Στο 1 0 μέλος βλέπουμε άθροισμα κύβων 3 αριθμών, εξετάζουμε αν έχουν άθροισμα 0, (x 2) + (3x 4) + (6
ΘΕΜΑ Α ΘΕΜΑ B. Β.1. Γνωρίζουμε ότι τα σημεία Α(π,4) και Β(-2π,6) ανήκουν στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΘΕΜΑ Α Α.1. Η απόδειξη βρίσκεται στη σελίδα 175 του σχολικού βιβλίου. Α.. Η διατύπωση του ορισμού βρίσκεται στη σελίδα 163 του σχολικού βιβλίου «εκθετική συνάρτηση». Α.3. i) Λάθος ii) Λάθος iii) Σωστό
2.2 ιαίρεση Πολυωνύμων
ιαίρεση Πολυωνύμων 1 Να γίνουν οι διαιρέσεις: α) (x 5 - x + x - 9) : (x - 1) β) (x 4-7x + x - 15) : (x + 5) γ) (x - 4αx + α ) : (x - α) δ) [7x - (9α + 7α ) x + 9α ] : (x - α) Με τη βοήθεια του σχήματος
4.1 ΕΝΝΟΙΑ ΠΟΛΥΩΝΥΜΟΥ -ΒΑΘΜΟΣ-ΙΣΟΤΗΤΑ-ΡΙΖΕΣ. ΛΥΣΗ 1 2 =κ κ κ 1+43κ κ = =0
4.1 ΕΝΝΟΙΑ ΠΟΛΥΩΝΥΜΟΥ -ΒΑΘΜΟΣ-ΙΣΟΤΗΤΑ-ΡΙΖΕΣ 4.1.1 Να δειχθεί ότι για κάθε κ R το πολυώνυμο P (x) = (κ - 1) x 5 + (3κ 2 + 2) x 3 + κx δεν έχει ρίζα το 1. 2 1 2 =κ 11 2 +3κ + 2 1 + 2 1 2 =0 κ 1+43κ + 2+16κ
2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.
Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,
Κεφάλαιο 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
Κεφάλαιο 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 4.1 πωλυωνυμα Η έννοια του πολυωνύμου Έστω x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε πραγματική τιμή. Καλούμε μονώνυμο του x κάθε παράσταση της μορφής
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση
2 είναι λύσεις της ανίσωσης 2x2 3x+1<0.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. α) Να βρείτε τις ρίζες της εξίσωσης x +0x=. x + 0x β) Να λύσετε την εξίσωση x. ίνεται η εξίσωση: x λx+(λ +λ )=0 (), λ R. α) Να προσδιορίσετε τον πραγµατικό αριθµό λ, ώστε η
3.""Πώς"θα"λύσω"μια"εξίσωση"δευτέρου"βαθμού;
3.""Πώς"θα"λύσω"μια"εξίσωση"δευτέρου"βαθμού; Βασικό! Το να έχεις τον άγνωστο x με εκθέτη 2 εξ αρχής στην εξίσωση, δεν είναι σίγουρο ότι θα δώσει εξίσωση δευτέρου βαθμού! Αυτό θα προκύψει μετά την εκτέλεση
ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος
Κεφάλαιο 2ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ 2. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό
ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού
3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ
ΑΝΙΣΩΣΕΙΣ 1 Α ν ι σ ω σ η 1 ο υ β α θ μ ο υ 3. Να δειχτει οτι α + 110 0α. Ποτε ισχυει το ισον; Μορφη: αx + β > 0 με α,β. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ Αν α > 0
6. α) Να λύσετε την εξίσωση 2x 1 =3. β) Αν α, β με α< β είναι οι ρίζες της εξίσωσης του ερωτήματος (α), τότε να λύσετε την εξίσωση αx 2 +βx+3=0.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. Δίνεται η εξίσωση λx=x+λ, με λr. α) Να αποδείξετε ότι η παραπάνω εξίσωση γράφεται ισοδύναμα (λ )x=(λ )(λ+), λr. β) Να βρείτε τις τιμές του λ για τις οποίες η παραπάνω εξίσωση
Εξισώσεις-Ανισώσεις. Δείκτες επιτυχίας: Τι θα μάθουμε: Περιεχόμενα Ενότητας. Αναπαριστούν γραφικά τη συνάρτηση
ΕΝΟΤΗΤΑ 6: Συνάρτηση f(x) = ax 2 + βx + γ Ενδεικτικός Προγραμματισμός 23 περίοδοι Εξισώσεις-Ανισώσεις Δείκτες επιτυχίας: Αναπαριστούν γραφικά τη συνάρτηση y = ax 2 + βx + γ και αναγνωρίζν πώς προκύπτει
Η συνάρτηση y = αχ 2 + βχ + γ
Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική
ΠΩΣ; Το «σωσίβιό» σου στον ωκεανό της Γ Λυκείου! ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ ΑΝΑΝΕΩΜΕΝΗ ΣΥΜΠΕΠΛΗΡΩΜΕΝΗ ΕΚΔΟΣΗ!
ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ Καθηγητής Μαθηµατικών άμιλλα φροντιστήρια ΠΩΣ; Βασικά στοιχεία από την Άλγεβρα της Α και Β Λυκείου, αλλά και από την Κατεύθυνση της Β Λυκείου, που είναι απαραίτητα στα Μαθηµατικά Κατεύθυνσης
4.1. Πολυώνυμα. Η έννοια του πολυωνύμου
4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή).. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της μορφής:
Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ. ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ 1 ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΑ 1. Τι καλούμε μονώνυμο, τι πολυώνυμο, τι όροι,τι συντελεστές
ΠΟΛΥΩΝΥΜΑ-ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
ΜΕΡΟΣ Α 1. ΠΟΛΥΩΝΥΜΑ-ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 51 1. ΠΟΛΥΩΝΥΜΑ-ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ Πολυώνυμα Όπως είδαμε στην προηγούμενη ενότητα Το άθροισμα όμοιων μονώνυμων είναι ένα μονώνυμο όμοιο
ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) P( x) ( 4) x ( 8) x ( 5 6) x 16 είναι το μηδενικό πολυώνυμο.
ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) 1. Δίνονται τα πολυώνυμα: P ( x) x x, Q( x) x x 1. Να βρεθούν: a) P( x) Q( x) ) P( x) Q( x) ) P( x) Q( x). Να βρεθεί η τιμή του λ R για την οποία
Εξισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Εξισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 0 / 0 6 εκδόσεις Ασκήσεις Πιθανότητες Τράπεζα θεμάτων. Δίνεται η
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ ΘΕΜΑ 1 Ο Δίνεται η συνάρτηση f ( x) x ( 1) x 3 με 0 Γ1. Να λυθεί η εξίσωση f ( x) 0 για λ = -1 Γ. Για λ=3, να λυθεί η ανίσωση f ( x) 0 Γ3. Να αποδείξετε ότι στην
4.2 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
. ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ Ασκήσεις σχολικού βιβλίου σελίδας 9 0 A Οµάδας.i) Να κάετε τη διαίρεση ( x + 6x 7x+ 0 ) : ( x+ ) και α γράψετε τη ταυτότητα της διαίρεσης. x + 6x 7x+ 0 x+ x 9x + + x + 9x 8x+ 0 + 8x+
2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
ρ= ρ= ρ= P x με παραγοντοποίηση κατά ομάδες οπότε θα προσπαθήσουμε να το
Να λύσετε την παρακάτω εξίσωση 3 ου βαθμού: 3 Λύση 4 4 0 Ας ονομάσουμε παραγοντοποιηθεί εύκολα το P το πολυώνυμο στο πρώτο μέλος.εκ πρώτης όψεως δεν φαίνεται να μπορεί να P με παραγοντοποίηση κατά ομάδες
Μονώνυμα. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
Μονώνυμα Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πράξεις με μονώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης ενότητας είναι να μάθουν
4.1. Πολυώνυμα. Η έννοια του πολυωνύμου
4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή). 2. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της
4.2. ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
4.. Η ταυτότητα της διαίρεσης A. Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης. Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ(x) και δ(x), με δ(x) 0
ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. β) x 9x. ε) (x 1) 3(x 1) 2(x 1) 0. (2x 1) x 128 0
ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1. Να λύσετε τις εξισώσεις: α) x x 10x 0 5 x 9x γ) x 8x 0 x x x 0 x (x ) 9(x ) ε) (x 1) (x 1) (x 1) 0. Να λύσετε τις εξισώσεις: 5 α) x 0 7 γ) (x ) 1 0 (x 1)
2.2 ιαίρεση Πολυωνύμων
ιαίρεση Πολυωνύμων η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να διαιρέσουμε δύο πολυώνυμα Δίνονται τα πολυώνυμα: P x x x x 8x 4 = + +4 και δ ( x) = x x α) Να βρεθεί το πηλίκο και το υπόλοιπο της διαίρεσης
ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoocom Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ
f (x) dx = f (x) + c a f (x) f (x) cos 2 (f (x)) f (x) dx = tan(f (x)) + c 1 sin 2 (f (x)) f (x) dx = cot(f (x)) + c e f (x) f (x) dx = e f (x) + c
Ασκήσεις στα Μαθηματικά Ι Τμήμα Χημ. Μηχανικών ΑΠΘ Μουτάφη Ευαγγελία Θεσσαλονίκη 208-209 Ορισμοί ΤΟ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Αντιπαράγωγος συνάρτησης Εστω συνάρτηση f : R, R διάστημα. Αν για τη συνάρτηση F :
τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:
κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ
Παράδειγμα 8. Να βρείτε την τιμή της παράστασης:
Μιγαδικοί αριθμοί Σελ 10 ΜΕΘΟΔΟΛΟΓΙΑ 104 Ασκήσεις με παραστάσεις της μορφής συγκεκριμένοι μιγαδικοί z 1 z με z 1,z i Εξετάζουμε μήπως οι μιγαδικοί συνδέονται με σχέση της μορφής z i 1 z ii Αντικάθιστούμε
Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος
Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ
5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ Για να επιλύσουμε μία παραμετρική εξίσωση ακολουθούμε τα παρακάτω βήματα: i) Βγάζω παρενθέσεις ii) Κάνω απαλοιφή παρανομαστών iii) Χωρίζω γνωστούς από αγνώστους (άγνωστος είναι
4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0
1. α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης (x 3 6x 2 +11x 2) : (x 3) β) Αν P(x) = x 3 6x 2 +11x + λ να βρείτε το λ R ώστε η διαίρεση P(x) : (x 3) να έχει υπόλοιπο 0. 2. Δίνονται τα πολυώνυμα:
Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα
Πολυώνυμα. Πολυωνυμικές εξισώσεις. Athens Επιμέλεια: Χατζόπουλος Μάκης. 14/2/2012
Πολυώνυμα Πολυωνυμικές εξισώσεις Άλγεβρα 01 Β Λυκείου Athens 01 13 14//01 1. Περί πολυωνύμων (Α) Πολυώνυμα P x a x a x... a x a v v 1 Πολυώνυμο ονομάζουμε κάθε παράσταση της μορφής: όπου a v, a v-1,,a
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός
ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 ΚΕΦΑΛΑΙΟ 1ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Οι Πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι είναι οι πραγματικοί αριθμοί ; Ποιοι είναι οι
Σας εύχομαι καλή μελέτη και επιτυχία.
ΠΡΟΛΟΓΟΣ Το βιβλίο αυτό αποτελεί συνέχεια του Α τεύχους και απευθύνεται κυρίως στους μαθητές της Α Λυκείου, αλλά και στους καθηγητές που διδάσκουν το μάθημα «Άλγεβρα και στοιχεία πιθανοτήτων» της Α Λυκείου.
1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 008 α). Να αποδείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(x) με το πρωτοβάθμιο πολυώνυμο x ρ ισούται με την αριθμητική τιμή του Ρ(x) για x =
Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ
Α λ γ ε β ρ α Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Γ Γ υ μ ν α σ ι ο υ Με πολυ μερακι Για τους μικρους φιλους μου Τακης Τσακαλακος Κερκυρα
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Γ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Τι λέγεται ταυτότητα; Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: Γ. Να αποδείξετε
Περί εξισώσεων με ένα άγνωστο
1 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΧΑΝΙΩΝ 19 Φεβρουαρίου 013 ΤΑΞΗ Α Σημειώσεις Άλγεβρας Περί εξισώσεων με ένα άγνωστο Εξίσωση με ένα άγνωστο λέμε την ισότητα δύο παραστάσεων μιας μεταβλητής. Πχ f(x) = g(x) όπου x μεταβλητή
4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ
4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ 1 : ΑΠΛΗ ΜΟΡΦΗ Για να λύσω μια ανίσωση της μορφής : 0 ή 0 1 ος τρόπος : Λειτουργώ όπως και στις εξισώσεις πρώτου βαθμού, δηλαδή χωρίζω γνωστούς από αγνώστους, και
Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;
Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;
ΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x.
ΑΣΚΗΣΕΙΣ. ίνονται τα πολυώνυµα Ρ (x), Ρ (x), Ρ (x) αν τα πολυώνυµα Ρ (x) και Ρ (x) δεν έχουν κοινή ρίζα και ισχύει : ( Ρ (x)) + (Ρ (x)) = (Ρ (x)) για κάθε x R να δείξετε ότι το Ρ (x) δεν έχει πραγµατική
Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.
ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+
5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για
5. Να λυθεί η εξίσωση ΛΥΣΗ: Τα για τα οποία 0 0, δεν είναι λύσεις της εξίσωσης γιατί για αυτά ισχύει 1 ή 1 1 0 και αντικαθιστώντας στην εξίσωση παίρνουμε την μή αληθή σχέση Αρα θεωρούμε ότι 0 και πλέον
ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab
1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R
1 of 79 Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R α) Να αποδείξετε ότι η f γράφεται στη μορφή f(x) = (x- 2) 2 + 1. (Μονάδες 12) β) Στο σύστημα συντεταγμένων που ακολουθεί, να παραστήσετε γραφικά τη συνάρτηση
9 Πολυώνυμα Διαίρεση πολυωνύμων
4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ
Προσομοιωμένο διαγώνισμα απολυτήριων εξετάσεων στα Μαθηματικά της Γ Γυμνασίου ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 01-01 ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να συμπληρώσετε
Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...
3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α
1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
1 1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΘΕΩΡΙΑ 1. Ταυτότητα Ευκλείδειας διαίρεσης : Για δύο οποιαδήποτε πολυώνυµα (x) και δ(x) µε δ(x) µπορούµε να βρούµε δύο άλλα πολυώνυµα π(x) και υ(x) τέτοια ώστε να ισχύει (x) = δ(x)π(x)
Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής
D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί
Μαθηματικά. Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Άσκηση 1102 Δίνονται δύο ενδεχόμενα ενός δειγματικού χώρου Ω και οι πιθανότητες α) Να υπολογίσετε την (Μονάδες 9) β) i) Να υπολογίσετε με διάγραμμα Venn και να γράψετε στη γλώσσα των συνόλων το ενδεχόμενο:
2 η δεκάδα θεµάτων επανάληψης
1 2 η δεκάδα θεµάτων επανάληψης 11. Α. Αν α > 0 µε α 1 τότε για οποιουσδήποτε πραγµατικούς αριθµούς θ 1, θ 2 > 0 να αποδείξετε ότι log α (θ 1 θ 2 ) = log α θ 1 + log α θ 2 Β. Έστω το σύστηµα Σ : α1x +
Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1
Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1 Εξίσωση πρώτου βαθμού ή πρωτοβάθμια εξίσωση με άγνωστο x ονομάζεται κάθε εξίσωση της μορφής
Τάξη A Μάθημα: Άλγεβρα
Τάξη A Μάθημα: Άλγεβρα Ερωτήσεις Θεωρίας Θέματα Εξετάσεων Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Α. Θεωρία - Αποδείξεις.. Σελ. Β. Θεωρία-Ορισμοί. Σελ.16 Γ. Ερωτήσεις Σωστού Λάθους...
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου
8. Να εξετάσετε με το σχήμα Horner αν τα πολυώνυμα x+1, x-3 είναι παράγοντες
ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΔΙΑΙΡΕΣΗ 1. Να γίνουν οι διαιρέσεις: α) (x 5 - x 3 + x - 9) : (x - 1) β) (x 7x 3 + x -15) : (x 3 +5) γ) (3x 3 - αx + α ) : (x - α) δ) [7x 3 - (9α + 7α )x + 9α ] : (x - α). Να γίνουν
1. Το πολυώνυµο P (x) = 3 (x - 1) 2-3x είναι Α. µηδενικού βαθµού Β. πρώτου βαθµού Γ. δευτέρου βαθµού. το µηδενικό πολυώνυµο Ε.
Ερωτήσεις πολλαπλής επιλογής 1. Το πολυώνυµο P (x) = 3 (x - 1) 2-3x 2 + 5 είναι Α. µηδενικού βαθµού Β. πρώτου βαθµού Γ. δευτέρου βαθµού. το µηδενικό πολυώνυµο Ε. τρίτου βαθµού 2. Αν το πολυώνυµο P (x)
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 106 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία Πολυώνυμα
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 106 Β' Λυκείου Ον/μο:. Γεν. Παιδείας Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία - 15-01-17 Πολυώνυμα Θέμα 1 ο : Α. Πότε μία συνάρτηση f λέγεται περιοδική με περίοδο T;
Η Θεωρία που πρέπει να θυμάσαι!!!... b a
Κεφ. εξισώσεις ανισώσεις εξάσκησηεπανάληψη Τhe Ds that make a champion: Devotion, Desire, Discipline Η Θεωρία που πρέπει να θυμάσαι!!!... Μορφές Εξισώσεων Λύση ή ρίζα εξίσωσης Εξίσωση ου βαθμού ax + b
2.3 Πολυωνυμικές Εξισώσεις
. Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (
2. Β Εξισώσεις Με Απόλυτες Τιμές
2. Β Εξισώσεις Με Απόλυτες Τιμές I. Εξισώσεις που έχουν (ή μπορούν να πάρουν) μία από τις παρακάτω μορφές: β, β A(x) = B(x), x Όπου β σταθερός αριθμός και Α(x), B(x) παραστάσεις του x B(x), x i. 2x 1 =
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από