Wetting and adhesion on nano-patterned surfaces,
|
|
- Σκύλλα Βικελίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Wetting and adhesion on nano-patterned surfaces, How geometry couples to physics Olivier Pierre-Louis Oxford Theoretical Physics, Oxford, UK, AND LSP, Univ. J. Fourier, Grenoble, France. 20th May 2009 Olivier Pierre-Louis ( Oxford Theoretical Physics, Oxford, Wetting UK, and AND adhesion LSP, Univ. on nano-patterned J. Fourier, Grenoble, surfaces, France. Howolivier.pierre-louis@ujf-grenoble.fr geometry couples 20th Mayto 2009 physics ) 1 / 38
2 1 Liquid drops 2 Solid clusters 3 Membranes and Filaments 4 Conclusion Olivier Pierre-Louis ( Oxford Theoretical Physics, Oxford, Wetting UK, and AND adhesion LSP, Univ. on nano-patterned J. Fourier, Grenoble, surfaces, France. Howolivier.pierre-louis@ujf-grenoble.fr geometry couples 20th Mayto 2009 physics ) 2 / 38
3 Liquid drops Wetting of solid clusters on nano-patterned surfaces, How geometry couples to physics 1 Liquid drops 2 Solid clusters 3 Membranes and Filaments 4 Conclusion Olivier Pierre-Louis ( Oxford Theoretical Physics, Oxford, Wetting UK, and AND adhesion LSP, Univ. on nano-patterned J. Fourier, Grenoble, surfaces, France. Howolivier.pierre-louis@ujf-grenoble.fr geometry couples 20th Mayto 2009 physics ) 3 / 38
4 Liquid drops Some examples Contact angle Lotus effect Olivier Pierre-Louis ( Oxford Theoretical Physics, Oxford, Wetting UK, and AND adhesion LSP, Univ. on nano-patterned J. Fourier, Grenoble, surfaces, France. Howolivier.pierre-louis@ujf-grenoble.fr geometry couples 20th Mayto 2009 physics ) 4 / 38
5 Liquid drops Young contact angle Surface/Interface free Energies Z Z Z F = ds γ VS (θ) + ds γ SA (θ) + ds γ(θ) VS SA AV Assumptions: (i) flat substrate (ii) fixed total volume: Z Z N = Ω 1 d 2 r A θ 0 s θ A V Equilibrium: δ(f µn) = 0 S Laplace: µ = Ωγ AV κ Young relation (1805): γ SA + γ AV cos θ 0 = γ SV Olivier Pierre-Louis ( Oxford Theoretical Physics, Oxford, Wetting UK, and AND adhesion LSP, Univ. on nano-patterned J. Fourier, Grenoble, surfaces, France. Howolivier.pierre-louis@ujf-grenoble.fr geometry couples 20th Mayto 2009 physics ) 5 / 38
6 Liquid drops Super-hydro-phobic surfaces: Wenzel and cassie-baxter states Bico, Marzolin, Quéré, Europhys. Lett (1999). Effective contact angle: γ eff SA + γ AV cos θ 0 = γ eff SV Wenzel (1936) substrate lengthening r 1 Wenzel and Cassie-Baxter states cos θ W = r cos θ 0 Cassie-Baxter (1944) solid-liquid contact fraction φ AS liquid-vapor contact fraction η AV cos θ CB = φ AS cos θ 0 η AV Olivier Pierre-Louis ( Oxford Theoretical Physics, Oxford, Wetting UK, and AND adhesion LSP, Univ. on nano-patterned J. Fourier, Grenoble, surfaces, France. Howolivier.pierre-louis@ujf-grenoble.fr geometry couples 20th Mayto 2009 physics ) 6 / 38
7 Liquid drops Pinning Gibbs Inequality Condition (1906) θ 0 θ C θ θ 0 + θ C Pinning at corners θ C θ 0 θ θ C π θ 0. Olivier Pierre-Louis ( Oxford Theoretical Physics, Oxford, Wetting UK, and AND adhesion LSP, Univ. on nano-patterned J. Fourier, Grenoble, surfaces, France. Howolivier.pierre-louis@ujf-grenoble.fr geometry couples 20th Mayto 2009 physics ) 7 / 38
8 Liquid drops Dynamics of lifting and collapse Parallel grooves: Electro-wetting experiments Vary θ 0 continuously with V λ/2 λ/2 λ Lattice-Boltzmann simulations Solve the hydrodynamics Movies R. J. Vrancken, H. Kusumaatmaja, K. Hermans, A.M. Prenen, O. Pierre Louis, C. W. M. Bastiaansen, D.J. Broer, preprint Olivier Pierre-Louis ( Oxford Theoretical Physics, Oxford, Wetting UK, and AND adhesion LSP, Univ. on nano-patterned J. Fourier, Grenoble, surfaces, France. Howolivier.pierre-louis@ujf-grenoble.fr geometry couples 20th Mayto 2009 physics ) 8 / 38
9 Liquid drops Capillary filling Seemanet al (2005) Polystyrene drops on Silicon Olivier Pierre-Louis ( Oxford Theoretical Physics, Oxford, Wetting UK, and AND adhesion LSP, Univ. on nano-patterned J. Fourier, Grenoble, surfaces, France. Howolivier.pierre-louis@ujf-grenoble.fr geometry couples 20th Mayto 2009 physics ) 9 / 38
10 Solid clusters Wetting of solid clusters on nano-patterned surfaces, How geometry couples to physics 1 Liquid drops 2 Solid clusters 3 Membranes and Filaments 4 Conclusion ) 10 / 38
11 Solid clusters Experimental equilibrium shape Au/Graphite, Héyraud, Métois, Marseille He 4 crystal, Balibar et al, Paris NaCl, Métois et al ( o C) ) 11 / 38
12 Solid clusters Solids vs liquid Anisotropy: roughnening transition facets ) 12 / 38
13 Solid clusters Solids vs liquid Anisotropy: roughnening transition facets Energy: elasticity, eletronic energy, etc. ) 12 / 38
14 Solid clusters Solids vs liquid Anisotropy: roughnening transition facets Energy: elasticity, eletronic energy, etc. Mass Transport: diffusion (surface atoms, or bulk vacancies) ) 12 / 38
15 Solid clusters The Wulff and Kaishev constructions Isotropic solid γ(θ) = γ µ = Ω γκ R = Ω γ µ γ cos(θ 0 ) = γ S h s = Ωγ S µ Polygonal shape h i = Ωγ i µ h s = Ωγ S µ R θ 0 h s h s h i h j Global geometry ψ = S AV S AS ) 13 / 38
16 Solid clusters 3D KMC Model 3D KMC Hopping along the surface ν = ν 0 e (n 1J 1 +n 2 J 2 +n s1 J s1 +n s2 J s2 )/T J bond energy, n i nb neighbors i = 1 NN adsrobate i = 2 NNN adsorbate i = s1 NN substrate i = s2 NNN substrate Moves to NN/ surface Shape parameter ζ = J 2 J 1 = J s2 J s1 Wetting controlled by χ = J s1 J 1 isotropic: χ = (1 + cos θ 0 )/2 ) 14 / 38
17 Solid clusters Flat substrate vs parallel nanogrooves N = 10 4, λ = 20, ζ = 0.2, χ = 0.4, T/J 1 = 0.5 Flat substrate Parallel grooves 3 states Wenzel, Cassie-Baxter, Capillary Filling W z y x CB CF λ/2 λ/2 λ ) 15 / 38
18 Solid clusters Hysteresis ψ = S AV S AS, χ = J s1 J Ψ a W z y CB 2.0 x 1.0 CF 0.5 CB W CF Χ ) 16 / 38
19 Solid clusters Surface Diffusion Mullins Model Local chemical potential µ = Ω γκ. Mullins model: j = Dc k B T sµ V n = Ω sj Triple Line Equilibrium contact angle θ = θ 0 Scaling v n ssκ Relaxation time t L 4 θ 0 s j θ A S V ) 17 / 38
20 Solid clusters Dynamics Dynamics limited by peeling or nucleation Combe, Jensen, Pimpinelli, Phys Rev Lett 2000 Mullins and Rohrer, J. Am. Ceram. Soc Activation energy: lateral size R Cost: γ step2πρ Gain: γ rough (1/R) per atom Total: E = γ step2πρ γ rough R πρ2 E b = π γ2 step γ surf R Slow relaxation time t e E b/k B T Eb E ρ ρ 1/R ) 18 / 38
21 Solid clusters Experiments Controlled positionning of mass in holes Ling et al Surf. Sci 2006 McCarty NanoLetters 2006 Ag/W(110) ) 19 / 38
22 Solid clusters Nucleationless motion Going back to equilibrium height without nucleation on top?? ) / 38
23 Solid clusters Model X = (x U + x D )/2, and H = X tan(θ) l T = x U x D, l = y + y Einstein-like relation tx = D C k B T XE T. Diffusion limited dynamics D C Ω2 Dc eq H 2 l T l Khare, Bartelt, Einstein, Phys. Rev. Lett OPL, T.L. Einstein, Phys. Rev.B 2000 z y x x U h(x) l T x D y+ l T y ) 21 / 38
24 Solid clusters Interfacial and Wetting energies Free energy E I γ(h U + h D )(l + l T ) + 2γ(1 χ)l T l X l T Maximum aspect ratio r = l /l T r I max Drift dynamics tx = Ω2 Dc eq k B T «1 χ 1/4 r 3/2 init tan θ 2γ(1 χ) X 3 tan 2 (θ) 2Log (l ) z x U x D y y l x y h(x) l T T leading to X t 1/4 (also wetting potential W(h)) Log (l ) 10 T 2 ) 22 / 38
25 Solid clusters Elastic energy Exp: Tersoff Tromp, 1993 Ag/Si(100) Exp: Xu et al 2007, Ge/Si(111) E E 1 Z Z dr j dr k G j,k `rj r k fj (r)f k (r) 2 Maximum aspect ratio r = l /l T r E max = C V 1/2 tan(θ) 1/2 d 3/2 0 e 3(3+σ)/8(1 σ) where C = Drift dynamics tx = Ω2 Dc eq k B T α 2 (1 σ 2 ) e 1/(1 σ) 1 πyd 0 X where Y is the Young modulus. Scaling law X t 1/2. 2Log (l ) Log 10(l T) 2 ) 23 / 38
26 Solid clusters Other energy Metallic layers: Electronic confinement energy Z. Zhang et al, Phys.Rev.Lett.1998,1999 Metals/Semiconductor 1) Quantum confinement of electrons 2) Charge spilling in the substrate 3) Friedel oscillations Van der Waals forces U VdW = A 12πh 2 A can be either > 0 or < 0??? A J Z. Suo and Z. Zhang, Phys Rev B (1998) Magic thicknesses (as in metal clusters) ) 24 / 38
27 Membranes and Filaments Wetting of solid clusters on nano-patterned surfaces, How geometry couples to physics 1 Liquid drops 2 Solid clusters 3 Membranes and Filaments 4 Conclusion ) 25 / 38
28 Membranes and Filaments Carbon nanostructures Nanotubes on ripples (or grids) Derike et al, NanoLetters (2001). Graphene on rough SiO 2 E.D. Williams et al, NanoLetters (2007); scale-bar 2nm. ) 26 / 38
29 Membranes and Filaments Lipidic membranes Simple (fluid) lipid membrane on a nonflat surface L. Tan et al PNAS (2003); scale-bar 10µm M. Abkarian A. Viallat, Biophys J. (2005); D = 130µm ) 27 / 38
30 Membranes and Filaments 1D model: Filament or membrane on ripples Fakir Carpet Total energy Z E = ds» C 2 κ(s)2 + σ + V(r(s)) Wavelength λ Amplitude ǫ Crenellated Sinusoidal Saw tooth outside solid V = 0, surface V = γ, inside V = +. i.e. Deformations l eq Adhesion energy γ Bending rigidity C Tension σ h(x) h S(x) x ) 28 / 38
31 Membranes and Filaments Equilibrium equations for the Euler elastica with adhesion κ>0 κ<0 Free parts C ssκ + C 2 κ3 σκ = 0. s B F (BC1) Boundary conditions BC1 F B (BC2) (BC3) Euler-Bernoulli elastica model κ F = κ B κ eq, Cut-off length d = (C/σ) 1/2 where κ eq = (2γ/C) 1/2 BC2 κ B κ eq κ F κ B + κ eq. d Similar to the Gibbs Inequality Condition for the wetting contact angle BC3 κ + = κ, and sκ + sκ, ) 29 / 38
32 Membranes and Filaments Patterned substrates: a 1D model Natural parameters Constructing solutions from n-bridges n=1 n=2 n= β = λ d β 1 tension dominates β 1 curvature dominates All possible solutions Non-overlapping reduces the number of possible states «1/2 κeq α = κ g geometrical curvature κ g = 4π 2 ǫ/λ 2 α 1 Floating state α 1 Membrane follows patterns β ε σ C λ γ 0 α ) 30 / 38
33 8α Membranes and Filaments Ground state Transitions α 0, ,5 F β 5 1P 0 3P 4P 2P β ε σ C λ γ np, n 0 8 α ) 31 / 38
34 Membranes and Filaments Metastability n m α > α [β] n m α 0, ,5 F n m α < α [β] n m α n m [β] > α n m+1 [β] α n m [β] = α m n [β] α n m [β] > α n m+p [β] But no total order, e.g. α 5 5 [0] < α 4 9 [0], and α 5 5 [1] > α 4 9 [1] β-dependent decimation order Non-sticky F ground state at α < α [β] β β ε 8α3 α 8 8 α 2 2 α 1 2 8α2 α1 α3 3 8 σ C λ α 8α α 1 1 3P 4P np, n γ 8 2P 1P ) 32 / 38
35 Membranes and Filaments Sinusoidal surfaces n=1 n=2 n= λ 3 x A single family of bridges for: fakir carpet and sinusoidal, more for other surfaces σ C λ β 0 ε α γ Sinusoidal surface 30 F β β np n 0 8 α 1 1,5 2 2,5 α 0,8 0,82 0,84 0,86 0,88 0,9 F P 1P P P P P ) 33 / 38
36 Membranes and Filaments Orders of magnitude Orders of magnitude Graphene C = 0.9eV, γ 6meVÅ 2, σ 0 ǫκ eq 1. ǫ = 1nm, and λ = 10nm, α 2 larger than 100nm follow Orders of magnitude lipid membranes(swain and Andelman) C = J, and σ = Jm 2 γ = Jm 2, l eq = 3nm Choosing ǫ 50nm l eq, λ 500nm ǫ, we obtain α 1.5 and β 5 A. Incze, A. Pasturel and P. Peyla, Phys.Rev.B (2004) Nanotubes Oxygen adsorption tunes bending rigidity: σ 0, C = 20eV.nm, and γ 1eV.nm % oxygen C = 40eV Peyla et al Choosing ǫκ eq < 1. ǫ = 5nm, λ = 50nm ǫ = 1nm, and λ = 10nm, α 0.6. we obtain Oxygen adsorption scan tranisiton region α 2 (Nevertheless ǫκ eq 1) ) 34 / 38
37 Conclusion Wetting of solid clusters on nano-patterned surfaces, How geometry couples to physics 1 Liquid drops 2 Solid clusters 3 Membranes and Filaments 4 Conclusion ) 35 / 38
38 Conclusion Summary Liquids on micro-grooves: R. J. Vrancken, H. Kusumaatmaja, K. Hermans, A.M. Prenen, OPL, C. W. M. Bastiaansen, D.J. Broer, preprint ) 36 / 38
39 Conclusion Summary Liquids on micro-grooves: R. J. Vrancken, H. Kusumaatmaja, K. Hermans, A.M. Prenen, OPL, C. W. M. Bastiaansen, D.J. Broer, preprint Solids on nano-grooves: OPL, Y. Saito, EuroPhys. Lett ) 36 / 38
40 Conclusion Summary Liquids on micro-grooves: R. J. Vrancken, H. Kusumaatmaja, K. Hermans, A.M. Prenen, OPL, C. W. M. Bastiaansen, D.J. Broer, preprint Solids on nano-grooves: OPL, Y. Saito, EuroPhys. Lett Drift of solid islands: M. Dufay, OPL, preprint ) 36 / 38
41 Conclusion Summary Liquids on micro-grooves: R. J. Vrancken, H. Kusumaatmaja, K. Hermans, A.M. Prenen, OPL, C. W. M. Bastiaansen, D.J. Broer, preprint Solids on nano-grooves: OPL, Y. Saito, EuroPhys. Lett Drift of solid islands: M. Dufay, OPL, preprint Membranes and filaments on patterns OPL, Phys. Rev. E 2007 ) 36 / 38
42 Conclusion Perspectives Coupling between physics and morphology ) 37 / 38
43 Conclusion Perspectives Coupling between physics and morphology Nonlinear phenomena, Statistical Physics, Non-equilibrium processes ) 37 / 38
44 Conclusion Perspectives Coupling between physics and morphology Nonlinear phenomena, Statistical Physics, Non-equilibrium processes Dewetting of solid films on flat substrates OPL, A. Chame, Y. Saito, Phys. Rev. Lett ) 37 / 38
45 Conclusion Perspectives Coupling between physics and morphology Nonlinear phenomena, Statistical Physics, Non-equilibrium processes Dewetting of solid films on flat substrates OPL, A. Chame, Y. Saito, Phys. Rev. Lett Nonlinear dynamics, instabilities, and fluctuations of extended fronts OPL, Europhys. Lett. 2005; C. Misbah, OPL, Y. Saito, Rev. Mod. Phys ) 37 / 38
46 Conclusion Elastica: variation of the energy s < s B free s > s B adhesion Z sb» Z» C C E = ds 2 κ2 + σ + ds s B 2 κ2 + σ γ. t s B = t s +, B Variation δr(s) with δr(s) = 0 for s > s B. δe = Z sb» ds(δr n) C ssκ + C 2 κ3 σκ + [ (δr n)c sκ + ( sδr n)cκ] s B» «C + ds B 2 κ2 + σ s B C 2 κ2 + σ γ «s + B ) 38 / 38
Effects of surface roughness on wettability of solid surfaces
Effects of surface roughness on wettability of solid surfaces Shin-ichiro Imabayashi Recent papers discussing the effect of surface roughness on wettability of solid surfaces are reviewed. Wenzel s and
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
April MD simulation of interaction between radiation damages and microstructure: voids, helium bubbles and grain boundaries
2137-32 Joint ICTP-IAEA Advanced Workshop on Multi-Scale Modelling for Characterization and Basic Understanding of Radiation Damage Mechanisms in Materials 12-23 April 2010 MD simulation of interaction
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence
Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal
MECHANICAL PROPERTIES OF MATERIALS
MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Solar Neutrinos: Fluxes
Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-
5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59- , κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv.
Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design
Engineering Tunable Single and Dual Optical Emission from Ru(II)-Polypyridyl Complexes Through Excited State Design Supplementary Information Julia Romanova 1, Yousif Sadik 1, M. R. Ranga Prabhath 1,,
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011
2.019 Design of Ocean Systems Lecture 6 Seakeeping (II) February 21, 2011 ω, λ,v p,v g Wave adiation Problem z ζ 3 (t) = ζ 3 cos(ωt) ζ 3 (t) = ω ζ 3 sin(ωt) ζ 3 (t) = ω 2 ζ3 cos(ωt) x 2a ~n Total: P (t)
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Surface Mount Multilayer Chip Capacitors for Commodity Solutions
Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Linearized Lifting Surface Theory Thin-Wing Theory
13.021 Marine Hdrodnamics Lecture 23 Copright c 2001 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hdrodnamics Lecture 23 Linearized Lifting Surface Theor Thin-Wing Theor
The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density
The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density 5..29 Radek Wojtak Nicolaus Copernicus Astronomical Center collaboration: Ewa Łokas, Gary Mamon, Stefan
Fourier Analysis of Waves
Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
Design Method of Ball Mill by Discrete Element Method
Design Method of Ball Mill by Discrete Element Method Sumitomo Chemical Co., Ltd. Process & Production Technology Center Makio KIMURA Masayuki NARUMI Tomonari KOBAYASHI The grinding rate of gibbsite in
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Eulerian Simulation of Large Deformations
Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications
4.4 Superposition of Linear Plane Progressive Waves
.0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive
Introduction to Theory of. Elasticity. Kengo Nakajima Summer
Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor
.. 2,.. 3 .,, (, ) [1]. - [2]. [4], [5].., [6, 7] -. [8] [9]. -. [8], - ,,?, - . -, - ( ), ,.,. ,. : ; ; - ; ;. . «..»
53.61 1..,.. 3,.,...,. : ; ; - ; ;. -.,, (, ) [1]. - []. :,, -. [3] [4], [5].,,, :., [6, 7] - -. [8], - [9]. -. [8], -. -,, [10], -. -, -.. : -, -,,?, -., -, (), -. 1 13-03-00918. -,,, -. E-mail: korenchenko@physics.susu.ac.ru
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements
5 5 2012 10 Chinese Optics Vol. 5 No. 5 Oct. 2012 1674-2915 2012 05-0525-06 - * 100190-14 - - 14. 51 μm 81. 4 μm - 1. 64 μm / O436. 1 TH703 A doi 10. 3788 /CO. 20120505. 0525 Correction of chromatic aberration
Thermodynamics of the motility-induced phase separation
1/9 Thermodynamics of the motility-induced phase separation Alex Solon (MIT), Joakim Stenhammar (Lund U), Mike Cates (Cambridge U), Julien Tailleur (Paris Diderot U) July 21st 2016 STATPHYS Lyon Active
20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1
20/01/2014 1 of 8 TOW SSD v3 Location Project a =IF(Design_Storm>0,VL b =IF(Design_Storm>0,VL c =IF(Design_Storm>0,VL Designed By Checked By Date Date Comment Min Tc 15 LOCATION From To MH or CBMH STA.
Free Energy and Phase equilibria
Free Energy and Phase equilibria Thermodynamic integration 7.1 Chemical potentials 7.2 Overlapping distributions 7.2 Umbrella sampling 7.4 Application: Phase diagram of Carbon Why free energies? Reaction
ω α β χ φ() γ Γ θ θ Ξ Μ ν ν ρ σ σ σ σ σ σ τ ω ω ω µ υ ρ α Coefficient of friction Coefficient of friction 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 0.90 0.80 0.70 0.60 0.50 0.40 0.30
for fracture orientation and fracture density on physical model data
AVAZ inversion for fracture orientation and fracture density on physical model data Faranak Mahmoudian Gary Margrave CREWES Tech talk, February 0 th, 0 Objective Inversion of prestack PP amplitudes (different
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.
The Early Life of a Peptide Cation-Radical. Ground and Excited-State Trajectories of Electron-Based Peptide Dissociations During the First 330 Femtoseconds Christopher L. Moss, Wenkel Liang, Xiaosong Li,*
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
2.1
181 8588 2 21 1 e-mail: sekig@th.nao.ac.jp 1. G ab kt ab, (1) k 8pGc 4, G c 2. 1 2.1 308 2009 5 3 1 2) ( ab ) (g ab ) (K ab ) 1 2.2 3 1 (g ab, K ab ) 1 t a S n a a b a 2.3 a b i (t a ) 2 1 2.4 1 g ab ab
Mechanical Behaviour of Materials Chapter 5 Plasticity Theory
Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Dr.-Ing. 郭瑞昭 Yield criteria Question: For what combinations of loads will the cylinder begin to yield plastically? The criteria for deciding
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Geodesic paths for quantum many-body systems
Geodesic paths for quantum many-body systems Michael Tomka, Tiago Souza, Steve Rosenberg, and Anatoli Polkovnikov Department of Physics Boston University Group: Condensed Matter Theory June 6, 2016 Workshop:
Zebra reaction or the recipe for heterodimeric zinc complexes synthesis
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 05 Supporting Information Zebra reaction or the recipe for heterodimeric zinc complexes synthesis
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Metal Oxide Varistors (MOV) Data Sheet
Φ SERIES Metal Oxide Varistors (MOV) Data Sheet Features Wide operating voltage (V ma ) range from 8V to 0V Fast responding to transient over-voltage Large absorbing transient energy capability Low clamping
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil
J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
LIGHT UNFLAVORED MESONS (S = C = B = 0)
LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035
Monolithic Crystal Filters (M.C.F.)
Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over
Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts
/ / σ/σ σ/σ θ θ θ θ y 1 0.75 0.5 0.25 0 0 0.5 1 1.5 2 θ θ θ x θ θ Φ θ Φ θ Φ π θ /Φ γφ /θ σ θ π θ Φ θ θ Φ θ θ θ θ σ θ / Φ θ θ / Φ / θ / θ Normalized import share: (Xni / Xn) / (XII / XI) 1 0.1 0.01 0.001
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
UV fixed-point structure of the 3d Thirring model
UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches
Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry
Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry 5th Titan Workshop at Kauai, Hawaii April 11-14, 2011 Seol Kim Outer Solar System Model Ices with
Thermoelectrics: A theoretical approach to the search for better materials
Thermoelectrics: A theoretical approach to the search for better materials Jorge O. Sofo Department of Physics, Department of Materials Science and Engineering, and Materials Research Institute Penn State
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%
91 500 201 0/11 Aluminum raming Linear Motion and Assembly Technologies 1 Section : Engineering Data and Speciications Technical Data or Proiles Metric U.S. Equivalent Material designation according to
Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)
Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships in the Dugganite A 3 B 3 CD 2 O 14 Family (A = Sr, Ba or Pb; B = Mg or Zn; C = Te or W, and D = P or V) Hongwei Yu, Joshua Young,
Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships
Supporting Information
Supporting Information Aluminum Complexes of N 2 O 2 3 Formazanate Ligands Supported by Phosphine Oxide Donors Ryan R. Maar, Amir Rabiee Kenaree, Ruizhong Zhang, Yichen Tao, Benjamin D. Katzman, Viktor
Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell
Jackson 2.25 Hoework Proble Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two conducting planes at zero potential eet along the z axis, aking an angle β between the, as
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
Non-Gaussianity from Lifshitz Scalar
COSMO/CosPA 200 September 27, 200 Non-Gaussianity from Lifshitz Scalar Takeshi Kobayashi (Tokyo U.) based on: arxiv:008.406 with Keisuke Izumi, Shinji Mukohyama Lifshitz scalars with z=3 obtain super-horizon,
ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
APPLICATIONS TECHNOLOGY. Leaded Discs N.03 N.06 N.09
NC Disc hermistors ND 03/06/09 NE 03/06/09 NV 06/09 APPLICAIONS ND or NE: Commerical, Industrial and Automotive Applications AEC-Q200 Qualified NV: Professional Applicationsl Alarm and temperature measurement
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
SMD Transient Voltage Suppressors
SMD Transient Suppressors Feature Full range from 0 to 22 series. form 4 to 60V RMS ; 5.5 to 85Vdc High surge current ability Bidirectional clamping, high energy Fast response time