CP VIOLATION in b system ΜΑΑΝΤΗΣ ΑΛΕΞΑΝΔΟΣ --ΣΑΒΒΙΔΗΣ ΓΙΩΓΟΣ
|
|
- Βεελζεβούλ Γλυκύς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 CP VIOLATION in b system ΜΑΑΝΤΗΣ ΑΛΕΞΑΝΔΟΣ --ΣΑΒΒΙΔΗΣ ΓΙΩΓΟΣ
2 PARITY (ΟΜΟΤΙΜΙΑ) P & ΣΥΖΥΓΙΑ ΦΟΤΙΟΥ C Τι είναι θ parity; Τι είναι θ ςυηυγία φορτίου; Το C αντιςτρζφει και τον λεπτονικό και βαρυονικό αρικμό. Τα ουδζτερα ςωματίδια μποροφν να υπάρξουν ωσ ιδιοκαταςτάςεισ του C. 10/5/2011 CP Violation in b quark 2
3 PARITY ΣΤΗ β-διασραση Μζχρι τα μζςα τθσ δεκαετίασ του '50, κεωρείτο ότι τα P και C διατθροφνταν. Ωςτόςο, το 1957, θ Wu et al., διερευνϊντασ τισ ιδζεσ των Lee & Yang παρατιρθςε παραβία ςθ τθσ P ςτθ β- διάςπαςθ (αςκενείσ αλλθλεπιδράςεισ) Γνωρίηουμε ότι θ P διατθρείται ςτισ ιςχυρζσ και θλεκτρομαγνθτικζσ αλλθλεπιδράςεισ
4 PARITY ΣΤΗ β-διασραση Η ομοτιμία ςτισ θλεκτρομαγνθτικζσ διαδικαςίεσ διατθρείται, αφοφ οι δφο τφποι φωτονίων εκπζμπονται πάντα με ίςα πλάτθ και δε μποροφμε να παρατθριςουμε μια ςυνολικι κυκλικι πόλωςθ. Αντίκετα ςτισ αςκενείσ αλλθλεπιδράςεισ ζχουμε τισ β-διαςπάςεισ που αποτελοφν εκπομπι είτε θλεκτρονίου με ςυνολικι αριςτερόςτροφθ πόλωςθ του ςπιν είτε ποηιτρονίου τα οποία είναι κυρίωσ δεξιόςτροφα
5 PARITY ΣΤΗ β-διασραση Οι ελικότθτεσ των λεπτονίων που εκπζμπονται ςτθν πυρθνικθ β-διάςπαςθ είναι: Σωμάτιο e + e - ν v(bar) Ελικότητα u/c -u/c -1 +1
6 PARITY ΚΑΙ ΣΥΖΥΓΙΑ ΦΟΤΙΟΥ C (CP) Η κεωρία για τθ διατιρθςθ τθσ CP ζπαψε όταν το 1964 οι Val Fitch και Jim Cronin παρατιρθςαν τθ διάςπαςθ. CP (Κ L ) = -1 ενϊ CP (π + π - ) = +1 10/5/2011 CP Violation in b quark 6
7 QUARK MIXING 10/5/2011 CP Violation in b quark 7
8 QUARK MIXING Tο Cabibbo (2x2) αλλά και το KM (3x3) mixing περιγράφονται από μοναδιαίουσ μεταςχθματιςμοφσ. Γενικά ιςχφει: d = Md όπου M M=1 10/5/2011 CP Violation in b quark 8
9 QUARK MIXING Για τισ αςκενείσ αλλθλεπιδράςεισ οι αςκενείσ ιδιοκαταςτάςεισ d, s, b δεν είναι ιςοδφναμεσ με τισ d, s και b, (ιδιοκαταςτάςεισ μάηασ) αλλά αποτελοφν γραμμικό ςυνδυαςμό τουσ. π.χ. d =V ud d + V us s + V ub b 10/5/2011 CP Violation in b quark 9
10 QUARK MIXING Τελικά: 10/5/2011 CP Violation in b quark 10
11 ΡΑΑΜΕΤΟΡΟΙΗΣΗ ΤΩΝ KOBAYASHI-MASKAWA Ππου s i = sinι i και c i = cosι i Η εμφάνιςθ τθσ φάςθσ δ KM προςφζρει μία φυςικι εξιγθςθ για τθ CP παραβίαςθ ςτο SM. 10/5/2011 CP Violation in b quark 11
12 ΡΑΑΜΕΤΟΡΟΙΗΣΗ ΤΟΥ WOLFENSTEIN Όπου βάηουμε - 10/5/2011 CP Violation in b quark 12
13 ΡΑΑΜΕΤΟΡΟΙΗΣΗ ΤΟΥ WOLFENSTEIN Η προςζγγιςθ (λ<<1) αντιπροςωπεφει τθ κεωρθτικι (αλλά και πειραματικι πραγματικότθτα) ότι τα ςτοιχεία του πίνακα μικραίνουν κακϊσ απομακρυνόμαςτε από τθ διαγϊνιο. 10/5/2011 CP Violation in b quark 13
14 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 14
15 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 15
16 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 16
17 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 17
18 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 18
19 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 19
20 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 20
21 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 21
22 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 22
23 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 23
24 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 24
25 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 25
26 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ V ud V ub* +V cd V cb* +V td V tb* =0 10/5/2011 CP Violation in b quark 26
27 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 27
28 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 28
29 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 29
30 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 30
31 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 31
32 ΜΟΝΑΔΙΑΙΟ ΤΙΓΩΝΟ 10/5/2011 CP Violation in b quark 32
33 Ρλάτη & φάςη φ weak 10/5/2011 CP Violation in b quark 33
34 Ρλάτη & φάςη φ weak 10/5/2011 CP Violation in b quark 34
35 Ρλάτη & φάςη φ weak 10/5/2011 CP Violation in b quark 35
36 Ρλάτη & φάςη φ weak 10/5/2011 CP Violation in b quark 36
37 Ρλάτη & φάςη φ weak 10/5/2011 CP Violation in b quark 37
38 Ρλάτη & φάςη φ weak 10/5/2011 CP Violation in b quark 38
39 Ρλάτη & φάςη φ weak Οι αςκενείσ φάςεισ είναι απαραίτθτεσ αλλά ανεπαρκείσ για παραβίαςθ τθσ CP 10/5/2011 CP Violation in b quark 39
40 Ραρεμβολθ (interference) Μετριςαμε τισ πλευρζσ και προβλζψαμε τισ γωνίεσ Πωσ μετράμε όμωσ τισ γωνίεσ (φάςεισ) ; Παρεμβολι!! (ςυμβολι) 10/5/2011 CP Violation in b quark 40
41 Ραρεμβολθ (interference) 10/5/2011 CP Violation in b quark 41
42 Λφνοντασ τηv εξ. Schrοdinger 10/5/2011 CP Violation in b quark 42
43 Ραρεμβολθ (interference) 10/5/2011 CP Violation in b quark 43
44 Ραρεμβολθ (interference) 10/5/2011 CP Violation in b quark 44
45 Ραρεμβολθ (interference) 10/5/2011 CP Violation in b quark 45
46 Ραρεμβολθ (interference) 10/5/2011 CP Violation in b quark 46
47 Ραρεμβολθ (interference) 10/5/2011 CP Violation in b quark 47
48 Ραρεμβολθ (interference) 10/5/2011 CP Violation in b quark 48
49 Ραρεμβολθ (interference) 10/5/2011 CP Violation in b quark 49
50 Ραρεμβολθ (interference) 10/5/2011 CP Violation in b quark 50
51 Ραρεμβολθ (interference) 10/5/2011 CP Violation in b quark 51
52 10/5/2011 CP Violation in b quark 52
53 10/5/2011 CP Violation in b quark 53
54 10/5/2011 CP Violation in b quark 54
55 10/5/2011 CP Violation in b quark 55
56 10/5/2011 CP Violation in b quark 56
57 10/5/2011 CP Violation in b quark 57
58 10/5/2011 CP Violation in b quark 58
59 10/5/2011 CP Violation in b quark 59
60 10/5/2011 CP Violation in b quark 60
61 10/5/2011 CP Violation in b quark 61
62 10/5/2011 CP Violation in b quark 62
63 10/5/2011 CP Violation in b quark 63
64 10/5/2011 CP Violation in b quark 64
65 10/5/2011 CP Violation in b quark 65
66 Μέτρηςη του A CP (t) ςτο B 0 J/ψ K s Χρονικι εξζλιξθ τθσ ϒ(4s) διάςπαςθσ t=0: Διάςπαςθ τθσ ϒ(4s) ςε 2 B μεςόνια Κανζνα B δε βρίςκεται ςε ςυγκεκριμζνθ ιδιοκατάςταςθ, αλλά το ςφςτθμα των B 1 B 2 εξελίςςεται ςυνεκτικά, δθλαδι θ αντιςτροφι τθσ γεφςθσ διατθρείται κατά τθν εξζλιξθ. t=t 1 Ένα από τα δφο μεςόνια (B 1 ) διαςπάται. Αν διαςπαςτεί ςε μία ιδιοκατάςταςθ γεφςθσ, θ διατιρθςθ τθσ γεφςθσ ςτθ ςυηευγμζνθ κατάςταςθ B 1 B 2 προχποκζτει ότι και το μεςόνιο B 2 πθγαίνει ςε μία ιδιοκατάςταςθ γεφςθσ, παρόλο που δεν ζχει διαςπαςτεί ακόμα! t=t 2 Το άλλο μεςόνιο B διαςπάται. Αυτό το μεςόνιο μπορεί να διαςπαςτεί ςε οποιαδιποτε ιδιοκατάςταςθ, π.χ. ςε ζνα Β 0 (bar) ι ςε ζνα B 0. Το δεφτερο ςθμαίνει ότι το mixing ςυνζβθ ανάμεςα ςτισ χρονικζσ ςτιγμζσ t 1 και t 2. Μπορεί επίςθσ να διαςπαςτεί ςε ιδιοκατάςταςθ CP (είτε απ ευκείασ είτε μετά από mixing). 10/5/2011 CP Violation in b quark 66
67 Μέτρηςη του A CP (t) ςτο B 0 J/ψ K s Μποροφμε να χρθςιμοποιιςουμε αυτι τθ διαδικαςία για να μετριςουμε το A CP (t) Μεγαλφτερθ ακρίβεια ςτθν αναγνϊριςθ του ACP: Δεν είναι απαραίτθτο να παράγουμε μεςόνια Β 0 ςε μία ιδιοκατάςταςθ γεφςθσ, αλλά απλά να μετριςουμε τθ διάςπαςθ ςε CP μετά από γνωςτό χρόνο t κακϊσ βριςκόταν ιδθ ςε μία ιδιοκατάςταςθ. Συμπζραςμα Ψάχνουμε για διαςπάςεισ ϒ(4s) Β 0 Β 0 (bar) όπου το 1 ο Β 0 διαςπάται ςε ιδιοκατάςταςθ γεφςθσ και το 2 ο Β 0 ςε ιδιοκατάςταςθ CP και αποδίδουμε τθ διαφορά t 2 t 1 ωσ το ςωςτό χρονικό διάςτθμα για τθ μζτρθςθ του A CP (t) Σθμείωςθ: ο φορμαλιςμόσ ιςχφει και όταν Δt<0! 10/5/2011 CP Violation in b quark 67
68 Μέτρηςη του A CP (t) ςτο B 0 J/ψ K s Πωσ μετράμε τθ διαφορά t 2 t 1 ; «Αφελισ» λφςθ: μετροφμε τουσ χρόνουσ διάςπαςθσ. Αδφνατο ςτθν εφαρμογι κακϊσ μετράμε τουσ χρόνουσ διάςπαςθσ από τθν απόςταςθ που διανφουν, αλλά δε γνωρίηουμε το ςθμείο διάςπαςθσ του ςυντονιςμοφ Y(4s). Αλλά ακόμα κι αν ξζραμε το ςθμείο διάςπαςθσ, τα παραγόμενα Β είναι ςχεδόν ςε θρεμία ςτο Y(4s). 10/5/2011 CP Violation in b quark 68
69 10/5/2011 CP Violation in b quark 69
70 10/5/2011 CP Violation in b quark 70
71 10/5/2011 CP Violation in b quark 71
72 10/5/2011 CP Violation in b quark 72
73 Συςτατικά των μετρθςεων 10/5/2011 CP Violation in b quark 73
74 Συςτατικά των μετρθςεων 10/5/2011 CP Violation in b quark 74
75 Συςτατικά των μετρθςεων 10/5/2011 CP Violation in b quark 75
76 Συςτατικά των μετρθςεων 10/5/2011 CP Violation in b quark 76
77 Συςτατικά των μετρθςεων 10/5/2011 CP Violation in b quark 77
78 Συςτατικά των μετρθςεων 10/5/2011 CP Violation in b quark 78
79 Συςτατικά των μετρθςεων 10/5/2011 CP Violation in b quark 79
80 Συνοψίζοντασ 10/5/2011 CP Violation in b quark 80
81 10/5/2011 CP Violation in b quark 81
82 10/5/2011 CP Violation in b quark 82
83 Τελικά!! 10/5/2011 CP Violation in b quark 83
84 Τελικά!! 10/5/2011 CP Violation in b quark 84
85 10/5/2011 CP Violation in b quark 85
ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.
.. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται
Διαβάστε περισσότεραςυςτιματα γραμμικϊν εξιςϊςεων
κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει
Διαβάστε περισσότεραΟ CKM Πίνακας και Παραβίαση της CP Συµµετρίας. Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 1
Ο CKM Πίνακας και Παραβίαση της CP Συµµετρίας Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 1 Παραβίαση της CP Συµµετρίας στο πρώιµο Σύµπαν αναµένεται ίσος αριθµός βαρυονίων και αντί-βαρυονίων σήµερα, στο παρατηρούµενο
Διαβάστε περισσότεραΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)
ΦΥΕ ΑΚΑΔ. ΕΤΟΣ 007-008 Η ΕΡΓΑΣΙΑ Ημερομηνία παράδοςησ: Νοεμβρίου 007 (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 0 μονάδεσ θ κάκε μία) Άςκηςη α) Να υπολογιςκεί θ προβολι του πάνω ςτο διάνυςμα όταν: (.
Διαβάστε περισσότεραΑρχή διατήρηςησ τησ μηχανικήσ ενζργειασ
Αρχή διατήρηςησ τησ μηχανικήσ ενζργειασ Φφλλο εργαςίασ Α. Όργανα και υλικά που απαιτοφνται Βάςθ παραλλθλόγραμμθ φιγκτιρασ τφπου G Μία (1) ράβδοσ μεταλλικι 80 cm Δφο () ράβδοι μεταλλικζσ 30 cm Δφο () απλοί
Διαβάστε περισσότεραΕφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)».
Εφδοξοσ+ Διαθζτοντασ βιβλία μζςω του «Εφδοξοσ+» Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εμφανίηεται θ λίςτα με όλα ςασ τα βιβλία. Από εδϊ μπορείτε: -
Διαβάστε περισσότεραΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ
ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ Οριςμόσ: Με τον όρο αδράνεια ςτθ Φυςικι ονομάηεται θ χαρακτθριςτικι ιδιότθτα των ςωμάτων να αντιςτζκονται
Διαβάστε περισσότεραΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ
ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ Λογικι πρόταςθ: Με τον όρο λογικι πρόταςθ (ι απλά πρόταςθ) ςτα μακθματικά, εννοοφμε μια ζκφραςθ με πλιρεσ νόθμα που δζχεται τον χαρακτθριςμό ι μόνο αλθκισ ι μόνο ψευδισ. Παραδείγματα:
Διαβάστε περισσότεραΕισαγωγή στα Lasers. Γ. Μήτσου
Εισαγωγή στα Lasers Γ. Μήτσου Θζματα προσ ανάπτυξθ Η ανακάλυψθ του Laser Στακμοί ςτθν τεχνολογία Εφαρμογζσ Μοναδικζσ ιδιότθτεσ των Lasers Χωρικζσ ιδιότθτεσ τθσ δζςμθσ Κατανομι τθσ ζνταςθσ Συμφωνία Φαινόμενα
Διαβάστε περισσότεραΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι
Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ
Διαβάστε περισσότεραΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β
4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι
Διαβάστε περισσότεραΑπάντηση ΘΕΜΑ1 ΘΕΜΑ2. t=t 1 +T/2. t=t 1 +3T/4. t=t 1 +T ΔΙΑΓΩΝΙΣΜΑ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ).
Απάντηση ΘΕΜΑ1 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ). ΘΕΜΑ2 Α)Ανάκλαςθ ςε ακίνθτο άκρο. Το προςπίπτον κφμα ςε χρόνο Τ/2 κα ζχει μετακινθκεί προσ τα δεξιά κατά 2 τετράγωνα όπωσ φαίνεται ςτο ςχιμα. Για
Διαβάστε περισσότερα3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ
3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ 1 2 3 4 5 6 7 Παραπάνω φαίνεται θ χαρακτθριςτικι καμπφλθ μετάβαςθσ δυναμικοφ (voltage transfer characteristic) για ζναν αντιςτροφζα,
Διαβάστε περισσότεραΔιαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις
Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί
Διαβάστε περισσότεραΔιάδοση θερμότητας σε μία διάσταση
Διάδοση θερμότητας σε μία διάσταση Η θεωρητική μελζτη που ακολουθεί πραγματοποιήθηκε με αφορμή την εργαςτηριακή άςκηςη μζτρηςησ του ςυντελεςτή θερμικήσ αγωγιμότητασ του αλουμινίου, ςτην οποία διαγωνίςτηκαν
Διαβάστε περισσότεραSlide 1. Εισαγωγή στη ψυχρομετρία
Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν
Διαβάστε περισσότεραΔίκτυα Υπολογιςτϊν 2-Rooftop Networking Project
Ονοματεπώνυμα και Α.Μ. μελών ομάδασ Κοφινάσ Νίκοσ ΑΜ:2007030111 Πζρροσ Ιωακείμ ΑΜ:2007030085 Site survey Τα κτιρια τθσ επιλογισ μασ αποτελοφν το κτιριο επιςτθμϊν και το κτιριο ςτο οποίο ςτεγάηεται θ λζςχθ
Διαβάστε περισσότεραΗ άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 2009_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ
ΕΚΦΕ Αχαρνών Η άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 9_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ Εφαρμογζσ τθσ Αρχισ του Αρχιμιδθ & τθσ ςυνκικθσ
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης 1 Stathis STILIARIS,
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ
Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί ςτθ
Διαβάστε περισσότεραΠοσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR
Διαβάστε περισσότεραΘεςιακά ςυςτιματα αρίκμθςθσ
Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ
Διαβάστε περισσότεραΟμοτιμία Parity Parity
Ομοτιμία Parity Ο μετασχηματισμός της Parity, αντιστρέφει κάθε χωρική συντεταγμένη. P(t,x) (t,-x), ή Pψ(r) ψ(-r) που αντιστοιχεί σε ανάκλαση και μετά στροφή 18 ο. αν επαναλάβουμε την διαδικασία προφανώς
Διαβάστε περισσότεραΑ ΕΚΦΕ ΑΝ. ΑΤΤΙΚΗΣ Υπ. Κ. Παπαμιχάλθσ. Μζτρηςη του λόγου γ=c P /C V των αερίων με τη μζθοδο Clement Desormes
Α ΕΚΦΕ ΑΝ. ΑΤΤΙΚΗΣ Υπ. Κ. Παπαμιχάλθσ Μζτρηςη του λόγου γ=c P /C V των αερίων με τη μζθοδο Clement Desormes Στόχοι 1. Ανάλυςθ τθσ λειτουργίασ τθσ πειραματικισ διάταξθσ 2. Εφαρμογι των νόμων τθσ κερμοδυναμικισ
Διαβάστε περισσότεραΕνδεικτικζσ Λφςεισ Θεμάτων
c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.
Διαβάστε περισσότεραΠόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ
Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα
Διαβάστε περισσότεραΠαράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.
Διαβάστε περισσότεραΔιδάςκων: Κακθγθτισ Αλζξανδροσ Ριγασ υνεπικουρία: πφρογλου Ιωάννθσ
ΔΗΜΟΚΡΙΣΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΡΑΚΗ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΠΟΛΟΓΙΣΩΝ ΣΟΜΕΑ ΣΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΔΙΑΣΗΜΙΚΗ Βιοϊατρική Σεχνολογία 9 ο Εξάμηνο Διδάςκων: Κακθγθτισ Αλζξανδροσ Ριγασ υνεπικουρία:
Διαβάστε περισσότεραΜεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία).
Μεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία). Από τθν τράπεηα κεμάτων Α_ΧΘΜ_0_20651 Διακζτουμε υδατικό διάλυμα (Δ1) KOH 0,1 Μ. α)να υπολογίςετε τθν % w/v περιεκτικότθτα του
Διαβάστε περισσότεραΠαραβίαση της συμμετρίας CP
CP ΠΑΡΑΒΙΑΣΗ Καόνια Ονοματεπώνυμο: Φλωρεντία Κωνσταντίνου ΑΕΜ: 12527 Εξάμηνο: 8o Μάθημα: Στοιχειώδη Σωμάτια ΙΙ Διδάσκων: Κώστας Κορδάς Ημερομηνία: 11.5.2010 Παραβίαση της συμμετρίας CP Είναι οι νόμοι της
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ XHMEIAΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΑ:
ΔΙΑΓΩΝΙΣΜΑ XHMEIAΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΑ: 1-2-3-4-5 Ονοματεπϊνυμο:..... Ημ/νία:.. Σάξθ: Χρονικι Διάρκεια:... Βακμόσ: ΘΕΜΑ Α Για τισ προτάςεισ Α1 ζωσ Α5 να γράψετε ςτο τετράδιό ςασ τον αρικμό τθσ πρόταςθσ
Διαβάστε περισσότεραα) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα
ΘΕΜΑ Α ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΔΕΤΣΕΡΑ 8 ΜΑΪΟΤ ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΣΙΚΑ ΘΕΣΙΚΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ ΤΝΟΛΟ ΕΛΙΔΩΝ: ΣΕΕΡΙ A. Ζςτω μια ςυνάρτθςθ f θ
Διαβάστε περισσότεραΑυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του
Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα
Διαβάστε περισσότεραZ μποηόνιο. Σαμαράσ Σταφροσ Α.Ε.Μ.: Σαράφθ Ευαγγελία Α.Ε.Μ.: 12467
Z μποηόνιο Σαμαράσ Σταφροσ Α.Ε.Μ.: 12466 Σαράφθ Ευαγγελία Α.Ε.Μ.: 12467 ΡΕΙΕΧΟΜΕΝΑ Ιςτορικι αναδρομι ανακάλυψθ του Η Ιδιότθτεσ του Η Διαςπάςεισ του Η Η lineshape Θ γωνία Weinberg Ιςτορικι αναδρομι Οι αςκενείσ
Διαβάστε περισσότεραΔιαγώνισμα Φυσική ς Α Λυκει ου Δυναμική σε μι α δια στασή και στο επι πεδο
Διαγώνισμα Φυσική ς Α Λυκει ου Δυναμική σε μι α δια στασή και στο επι πεδο Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα
Διαβάστε περισσότεραΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO
ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO Το Micro Worlds Pro είναι ζνα ολοκλθρωμζνο περιβάλλον προγραμματιςμοφ. Χρθςιμοποιεί τθ γλϊςςα προγραμματιςμοφ Logo (εξελλθνιςμζνθ) Το Micro Worlds Pro περιλαμβάνει
Διαβάστε περισσότεραx n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.
Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα
Διαβάστε περισσότεραΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ
ΦΥΣΙΚΗ vs ΒΙΟΛΟΓΙΑ ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ «Προτείνω να αναπτφξουμε πρώτα αυτό που κα μποροφςε να ζχει τον τίτλο: «ιδζεσ ενόσ απλοϊκοφ φυςικοφ για τουσ οργανιςμοφσ». Κοντολογίσ, τισ ιδζεσ που κα μποροφςαν
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Ε.Ο.Κ. και Ε.Ο.Μ.Κ.
Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Ε.Ο.Κ. και Ε.Ο.Μ.Κ. Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα
Διαβάστε περισσότεραΟΝΟΜΑΣΕΠΩΝΤMΟ: ΗΜΕΡΟΜΗΝΙΑ: ΕΙΡΑ: 3 ΕΞΕΣΑΣΕΑ ΤΛΗ: ΗΛΕΚΣΡΙΚΟ ΠΕΔΙΟ- ΜΑΓΝΗΣΙΚΟ ΠΕΔΙΟ- ΕΠΑΓΩΓΗ
ΜΑΘΗΜΑ /ΣΑΞΗ: ΦΤΙΚΗ ΚΑΣΕΤΘΤΝΗ / Β ΛΤΚΕΙΟΤ ΟΝΟΜΑΣΕΠΩΝΤMΟ: ΗΜΕΡΟΜΗΝΙΑ: ΕΙΡΑ: 3 ΕΞΕΣΑΣΕΑ ΤΛΗ: ΗΛΕΚΣΡΙΚΟ ΠΕΔΙΟ- ΜΑΓΝΗΣΙΚΟ ΠΕΔΙΟ- ΕΠΑΓΩΓΗ ΘΕΜΑ Α 1. Δφο ςθμειακά φορτία απζχον μεταξφ τοσ απόςταςθ r και θ δναμικι
Διαβάστε περισσότεραΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ
Στο εργαςτιριο αυτό κα δοφμε πωσ μποροφμε να προςομοιϊςουμε μια κίνθςθ χωρίσ τθ χριςθ εξειδικευμζνων εργαλείων, παρά μόνο μζςω ενόσ προγράμματοσ λογιςτικϊν φφλλων, όπωσ είναι το Calc και το Excel. Τα δφο
Διαβάστε περισσότεραΠαράςταςη ςυμπλήρωμα ωσ προσ 1
Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'
Διαβάστε περισσότεραGNSS Solutions guide. 1. Create new Project
GNSS Solutions guide 1. Create new Project 2. Import Raw Data Αναλόγωσ τον τφπο των δεδομζνων επιλζγουμε αντίςτοιχα το Files of type. παράδειγμα ζχουν επιλεγεί για ειςαγωγι αρχεία τφπου RINEX. το Με τθν
Διαβάστε περισσότεραΔομθμζνοσ Προγραμματιςμόσ. Βαγγζλθσ Οικονόμου Εργαςτιριο 9
Δομθμζνοσ Προγραμματιςμόσ Βαγγζλθσ Οικονόμου Εργαςτιριο 9 Συναρτιςεισ Αφαιρετικότθτα ςτισ διεργαςίεσ Συνάρτθςεισ Διλωςθ, Κλιςθ και Οριςμόσ Εμβζλεια Μεταβλθτών Μεταβίβαςθ παραμζτρων ςε ςυναρτιςεισ Συναρτιςεισ
Διαβάστε περισσότεραΣφντομεσ Οδθγίεσ Χριςθσ
Σφντομεσ Οδθγίεσ Χριςθσ Περιεχόμενα 1. Επαφζσ... 3 2. Ημερολόγιο Επιςκζψεων... 4 3. Εκκρεμότθτεσ... 5 4. Οικονομικά... 6 5. Το 4doctors ςτο κινθτό ςου... 8 6. Υποςτιριξθ... 8 2 1. Επαφζσ Στισ «Επαφζσ»
Διαβάστε περισσότεραΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ. 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν
ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν Τι είναι θ Γραμμι Εντολϊν (1/6) Στουσ πρϊτουσ υπολογιςτζσ, και κυρίωσ από τθ δεκαετία του 60 και μετά, θ αλλθλεπίδραςθ του χριςτθ με τουσ
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 5 η : Μερικι Παράγωγοσ Ι Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότερα1. Αν θ ςυνάρτθςθ είναι ΠΟΛΤΩΝΤΜΙΚΗ τότε το πεδίο οριςμοφ είναι το διότι για κάκε x θ f(x) δίνει πραγματικό αρικμό.
ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΝΑ ΒΡΙΚΟΤΜΕ ΣΟ ΠΕΔΙΟ ΟΡΙΜΟΤ ΤΝΑΡΣΗΗ Για να οριςκεί μια ςυνάρτθςθ πρζπει να δοκοφν δφο ςτοιχεία : Σο πεδίο οριςμοφ τθσ Α και Η τιμι τθσ f() για κάκε Α. Οριςμζνεσ φορζσ μασ δίνουν μόνο τον
Διαβάστε περισσότεραΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ:
ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ: 2008030075 ΕΙΑΓΩΓΗ Το Heartstone είναι ζνα ψθφιακό παιχνίδι καρτϊν που διεξάγιεται πάνω ςτο Battle.net, ζναν διακομιςτι τθσ εταιρίασ
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,
Διαβάστε περισσότεραΚΥΚΛΩΜΑΤΑ VLSI. Ασκήσεις Ι. Γ. Τσιατούχας. Πανεπιςτιμιο Ιωαννίνων. Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18
ΚΥΚΛΩΜΑΤΑ LSI Πανεπιςτιμιο Ιωαννίνων Ασκήσεις Ι Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18 Γ. Τσιατούχας Άσκηση 1 1) Σχεδιάςτε τισ ςφνκετεσ COS λογικζσ πφλεσ (ςε επίπεδο τρανηίςτορ) που υλοποιοφν τισ
Διαβάστε περισσότεραElectronics μαηί με τα ςυνοδευτικά καλϊδια και το αιςκθτιριο κερμοκραςίασ LM335 που περιζχονται
Σομζασ: Ηλεκτρονικόσ Εκπαιδευτικόσ: Μπουλταδάκθσ τζλιοσ Μάθημα: υλλογι και μεταφορά δεδομζνων μζςω Η/Τ, Αιςκθτιρεσ-Ενεργοποιθτζσ Αντικείμενο: α) Μζτρθςθ κερμοκραςίασ με το αιςκθτιριο LM335 και μεταφορά
Διαβάστε περισσότεραΜόδα είναι και αλλάηει
Μόδα είναι και αλλάηει Οριςμόσ μόδασ Παροδικι ςυνικεια που για οριςμζνο χρονικό διάςτθμα γενικεφεται ςε μεγάλο φάςμα τθσ κοινωνίασ, ςε ότι αφορά τθν ενδυμαςία, τθν κόμμωςθ, τθ μουςικι. Κακρεφτίηει τισ
Διαβάστε περισσότεραΤάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ. Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά
Τάξη Β Φυςικθ Γενικθσ Παιδείασ Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά k 2 9 9 10 Nm 2 1. Δφο ακίνθτα ςθμειακά θλεκτρικά φορτία q 1 = - 2 μq και q 2 = + 3 μq, βρίςκονται
Διαβάστε περισσότεραΟδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Αυτζσ οι οδθγίεσ ζχουν ςτόχο λοιπόν να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο του Άβακα. Παρουςίαςη
Διαβάστε περισσότεραΗ ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά;
; Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά; 30/1/ 2 Η φυςικι τθσ ςθμαςία είναι ότι προςδιορίηει τθ ςτροφικι κίνθςθ ενόσ ςτερεοφ ωσ
Διαβάστε περισσότεραΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου
ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ Ειρινθ Φιλιοποφλου Ειςαγωγι Ο Παγκόςμιοσ Ιςτόσ (World Wide Web - WWW) ι πιο απλά Ιςτόσ (Web) είναι μία αρχιτεκτονικι για τθν προςπζλαςθ διαςυνδεδεμζνων εγγράφων
Διαβάστε περισσότεραΤο Ρολφεδρο. Ζδρεσ: ΑΗΘΔ, ΗΘΚΕ, ΕΚΓΒ, ΔΓΚΘ, ΑΒΓΔ. Κορυφζσ: Α, Β, Γ, Δ, Ε,Η Θ, Κ. Διαγϊνιοσ: ΑΚ. Ακμζσ: ΑΒ, ΒΓ, ΓΔ, ΑΔ,.
Το Ρολφεδρο Ζδρεσ: ΑΗΘΔ, ΗΘΚΕ, ΕΚΓΒ, ΔΓΚΘ, ΑΒΓΔ Κορυφζσ: Α, Β, Γ, Δ, Ε,Η Θ, Κ Διαγϊνιοσ: ΑΚ Ακμζσ: ΑΒ, ΒΓ, ΓΔ, ΑΔ,. Θ Ρριςματικι - Ρρίςμα οσ Οριςμόσ οσ Οριςμόσ Δίδεται μια Θ κλειςτι κυρτι πολυγωνικι γραμμι,
Διαβάστε περισσότεραΕιςαγωγι ςτθν Τεχνολογία Αυτοματιςμοφ
ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑIΟΤ & ΑΕΙ ΠΕΙΡΑΙΑ Σ.Σ. Σμήματα Ναυτιλίας και Επιχειρηματικών Τπηρεσιών & Μηχ. Αυτοματισμού ΣΕ Ειςαγωγι ςτθν Τεχνολογία Αυτοματιςμοφ Ενότθτα # 7: Συςτιματα Ελζγχου Μόνιμο ςφάλμα Ευςτάκεια
Διαβάστε περισσότεραΝΟΜΟ ΣΟΤ BOYLE(βαςιςμζνο ςε πείραμα)
2ο ΠΕΙΡΑΜΑΣΙΚΟ ΛΤΚΕΙΟ ΑΘΗΝΩΝ τθσ Κυπραίου Φωτεινισ 'Eτοσ:2012-2013 ΝΟΜΟ ΣΟΤ BOYLE(βαςιςμζνο ςε πείραμα) O Νόμος του Boyle τθ κερμοδυναμικι ο Νόμοσ του Boyle είναι ζνασ από τουσ τρεισ νόμουσ των αερίων.ωσ
Διαβάστε περισσότεραΛΥΣΕΙΣ ΒΙΟΛΟΓΙΑΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2010
ΛΥΣΕΙΣ ΒΙΟΛΟΓΙΑΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2010 ΘΕΜΑ Α Α1 δ Α2 β Α3 α Α4 β Α5 γ ΘΕΜΑ Β Β1. Σελ.17 Τα κφτταρα διπλοειδι Β2. Σελ.14 Το DNA φωςφοδιεςτερικόσ δεςμόσ Β3. Σελ.37,38 Σθμειϊνεται.αντίγραφα ενόσ γονιδίου
Διαβάστε περισσότεραΜάκθςθ Κατανομϊν Πικανότθτασ και Ομαδοποίθςθ
Μάκθςθ Κατανομϊν Πικανότθτασ και Ομαδοποίθςθ Κϊςτασ Διαμαντάρασ Τμιμα Πλθροφορικισ ΤΕΙ Θεςςαλονίκθσ 1 Μάκθςθ κατανομισ πικανότθτασ Σε όλθ τθν ανάλυςθ μζχρι τϊρα ζγινε ςιωπθρά θ παραδοχι ότι γνωρίηουμε
Διαβάστε περισσότεραEUROPEAN TRADESMAN PROJECT
EUROPEAN TRADESMAN PROJECT NOTES ON ELECTRICAL TESTS OF ELECTRICAL INSTALLATIONS ΚΥΚΛΩΜΑΤΑ ΦΩΤΙΣΜΟΥ Εγκατάςταςη κυκλωμάτων φωτιςμοφ 2 Μια λάμπα που λειτουργεί με ζναν διακόπτη Αυτό είναι το ευκολότερο
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 7 η : Σφνκετεσ Συναρτιςεισ Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΚΩΝΣΑΝΣΙΝΟ ΑΛ. ΝΑΚΟ ΜΑΘΗΜΑΣΙΚΟ M.Sc ΧΟΛΙΚΟ ΤΜΒΟΤΛΟ Πτυχ. ΚΟΙΝΩΝΙΚΗ ΟΙΚΟΝΟΜΙΑ
1 ΚΩΝΣΑΝΣΙΝΟ ΑΛ. ΝΑΚΟ ΜΑΘΗΜΑΣΙΚΟ M.Sc ΧΟΛΙΚΟ ΤΜΒΟΤΛΟ Πτυχ. ΚΟΙΝΩΝΙΚΗ ΟΙΚΟΝΟΜΙΑ.ΣΙΡΚΑ 8 και ΑΝΣΤΠΑ 30100 ΑΓΡΙΝΙΟ Email: nakosk@sch.gr Σηλ 64105400 κι.69749695 ΜΕΓΙΣΑ-ΕΛΑΧΙΣΑ ΧΩΡΙ ΠΑΡΑΓΩΓΟΤ 3 ΕΙΣΑΓΩΓΗ Σα
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ
ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΑΠΟ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
Λφκειο Ακρόπολθσ 2015 Επιμζλεια Μάριοσ Πουργουρίδθσ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΑΠΟ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 1. Η πιο κάτω μπάλα αφινεται να πζςει από το ςθμείο Α,κτυπά ςτο ζδαφοσ ςτο ςθμείο Ε και αναπθδά ςε μικρότερο
Διαβάστε περισσότεραΕνδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα,
Ενδεικτική Οργάνωςη Ενοτήτων Α Σάξη Α/ Μαθηματικό περιεχόμενο Δείκτεσ Επιτυχίασ Ώρεσ Α Διδ. 1 ΕΝΟΣΗΣΑ 1 Αλ1.1 υγκρίνουν και ταξινομοφν αντικείμενα ςφμφωνα με κάποιο χαρακτθριςτικό/κριτιριο/ιδιότθτά Ομαδοποίθςθ,
Διαβάστε περισσότεραΤεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων
Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων
Διαβάστε περισσότεραΟ ήχοσ ωσ φυςικό φαινόμενο
Ο ήχοσ ωσ φυςικό φαινόμενο Φφλλο Εργαςίασ Ονοματεπώνυμο. Παραγωγή και διάδοςη του ήχου Ήχοσ παράγεται όταν τα ςωματίδια κάποιου υλικοφ μζςου αναγκαςκοφν να εκτελζςουν ταλάντωςθ. Για να διαδοκεί ο ιχοσ
Διαβάστε περισσότεραΈνα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:
Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.
Διαβάστε περισσότεραΘεωρία Cabibbo - CKM Πίνακας
Θεωρία Cabibbo - CKM Πίνακας Στοιχεώδη Σωµατίδια ΙΙ Αχιλλέως Νικολέττα Α.Ε.Μ: 12521 Εξάµηνο : 8 ο : Yπ.καθηγητής: κ.κώστας Κορδάς Αριστοτέλειο Πανεπιστήµιο Θεσ/νίκης Τι θα παρουσιάσω σήµερα? Θεωρία Cabibbo
Διαβάστε περισσότεραΘΕΜΑ Α Να γράψετε ςτο τετράδιό ςασ τον αριθμό καθεμιάσ από τισ παρακάτω ερωτήςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί ςτη ςωςτή απάντηςη.
ΣΤΠΟΤ ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ (ΚΡΟΤΕΙ-ΣΑΛΑΝΣΩΕΙ-ΚΤΜΑΣΑ) ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΕΣΑΡΣΗ 6 ΙΑΝΟΤΑΡΙΟΤ 2016 ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΤΙΚΗ ΘΕΣΙΚΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ (ΚΑΙ ΣΩΝ ΔΤΟ
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Λουκάσ Βλάχοσ Τμιμα Φυςικισ Α.Π.Θ. Θεςςαλονίκθ, 2014 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ
Διαβάστε περισσότεραΣτατιςτικζσ δοκιμζσ. Συνεχι δεδομζνα. Γεωργία Σαλαντι
Στατιςτικζσ δοκιμζσ Συνεχι δεδομζνα Γεωργία Σαλαντι Τι κζλουμε να ςυγκρίνουμε; Δφο δείγματα Μζςθ αρτθριακι πίεςθ ςε δφο ομάδεσ Πικανότθτα κανάτου με δφο διαφορετικά είδθ αντικατακλιπτικϊν Τθν μζςθ τιμι
Διαβάστε περισσότερα3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ
3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 1) Τίτλοσ τθσ ζρευνασ: «Ποια είναι θ επίδραςθ τθσ κερμοκραςίασ ςτθ διαλυτότθτα των ςτερεϊν ςτο νερό;» 2) Περιγραφι του ςκοποφ τθσ ζρευνασ: Η ζρευνα
Διαβάστε περισσότεραlim x και lim f(β) f(β). (β > 0)
. Δίνεται θ παραγωγίςιμθ ςτο * α, β + ( 0 < α < β ) ςυνάρτθςθ f για τθν οποία ιςχφουν: f(α) lim (-) a και lim ( f(β)) = Να δείξετε ότι: α. f(α) < α και f(β) > β β. Αν g() = τότε θ C f και C g ζχουν ζνα
Διαβάστε περισσότεραΠρόςβαςη και δήλωςη μαθημάτων ςτον Εφδοξο
Πρόςβαςη και δήλωςη μαθημάτων ςτον Εφδοξο Τι πρζπει να γνωρίηω πριν ξεκινιςω τθν διαδικαςία 1. Να ζχω κωδικοφσ από τον Κζντρο Δικτφου του ΤΕΙ Ακινασ (είναι αυτοί με τουσ οποίουσ ζχω πρόςβαςθ ςτο αςφρματο
Διαβάστε περισσότεραΑνάλυςη κλειςτϊν δικτφων
Ανάλυςη κλειςτϊν δικτφων Θ ανάλυςθ κλειςτϊν δικτφων ςτθρίηεται ςτθ διατιρθςθ τθσ μάηασ και τθσ ενζργειασ. Σε ζνα τυπικό βρόχο ABCDA υπάρχει ζνασ αρικμόσ από κόμβουσ, εδϊ A,B,C,D, ςτουσ οποίουσ ιςχφει θ
Διαβάστε περισσότεραΑΤΡΜΑΣΕ ΕΠΙΚΟΙΝΩΝΙΕ ΑΚΗΕΙ
ΑΤΡΜΑΣΕ ΕΠΙΚΟΙΝΩΝΙΕ ΑΚΗΕΙ Άςκθςθ 1 Η μζγιςτθ τιμι του ρεφματοσ που διαρρζει μία κεραία είναι 0.5 Α, θ αντίςταςθ ακτινοβολίασ τθσ είναι 200 Ω, θ πυκνότθτα ιςχφοσ ςε απόςταςθ 10 km από τθν κεραία είναι 1
Διαβάστε περισσότεραΛ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις
Ασθενείς Αλληλεπιδράσεις έχουμε ήδη δει διάφορες αντιδράσεις που γίνονται μέσω των ασθενών αλληλεπιδράσεων π.χ. ασθενείς διασπάσεις αδρονίων + + 0 K ππ Λ pπ n pe ν π e μ v + + μ ασθενείς διασπάσεις λεπτονίων
Διαβάστε περισσότεραΖπειτα κάναμε μια ςυηιτθςθ και εκφράςαμε τισ απορίεσ που είχαμε. Όλεσ οι ερωτιςεισ που κάναμε ςτον κ. Γιάννθ είναι: Επ : Πωρ μοξπώ μα
Στα πλαίςια του προγράμματοσ Κυκλοφοριακισ Αγωγισ : «Ασ μάκουμε τα ςιματα, μθν πάκουμε ατυχιματα» που υλοποιεί θ τάξθ μασ κατά τθ φετινι ςχολικι χρονιά, τθν Τρίτθ 17 Φεβρουαρίου 2015 πραγματοποιιςαμε επίςκεψθ
Διαβάστε περισσότεραΕΝΟΤΘΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΘ. ΚΕΦΑΛΑΙΟ 6: Θ «Βοικεια» ςτον Υπολογιςτι
ΕΝΟΤΘΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΘ ΚΕΦΑΛΑΙΟ 6: Θ «Βοικεια» ςτον Υπολογιςτι Βοικεια (Help), Ευρετιριο, Κόμβοσ, Λζξθ κλειδί, Σφνδεςμόσ, Υπερκείμενο Τι είναι θ «Βοικεια» ςτουσ υπολογιςτζσ; Πώσ ενεργοποιοφμε
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω
Διαβάστε περισσότεραΕίναι μια μελζτθ αςκενι-μάρτυρα (case-control). Όςοι ςυμμετζχουν ςτθν μελζτθ ζχουν επιλεγεί με βάςθ τθν ζκβαςθ.
Ερϊτθςθ 1 Μια μελζτθ πραγματοποιείται για να εξετάςει αν θ μετεμμθνοπαυςιακι ορμονικι κεραπεία ζχει προςτατευτικό ρόλο για τθν πρόλθψθ εμφράγματοσ του μυοκαρδίου. 1013 γυναίκεσ με οξφ ζμφραγμα του μυοκαρδίου
Διαβάστε περισσότεραΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ
ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ Θζμα Α Α1: γ, Α2: β, Α3: α, Α4: β, A5: β Θζμα Β Β1: Σ ι Λ (ελλιπισ διατφπωςθ), Λ, Σ, Σ, Σ Β2: α) Οι διαφορζσ μεταξφ ς και π δεςμοφ είναι: α. Στον ς
Διαβάστε περισσότεραΕΠΑΝΕΚΔΟΗ ΣΙΜΟΛΟΓΙΩΝ ΙΑΝΟΤΑΡΙΟΤ (version )
ΕΠΑΝΕΚΔΟΗ ΣΙΜΟΛΟΓΙΩΝ ΙΑΝΟΤΑΡΙΟΤ (version 2.14.13) Σχετικά με το κζμα που προζκυψε με τθν επιςτροφι των τιμολογίων του ΕΟΠΥΥ, που υποβλικθκαν με το λογαριαςμό Ιανουαρίου 2014, και τθν απαίτθςθ ορκισ επανζκδοςθσ
Διαβάστε περισσότεραΝΟΕΜΒΡΙΟ Ημερομηνία: 12/11/2016 Ώρα Εξέτασης: 10:00-12:00
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΕΠΑΡΧΙΑΚΟ ΔΙΑΓΩΝΙΜΟ ΝΟΕΜΒΡΙΟ 016 Α ΓΤΜΝΑΙΟΤ Ημερομηνία: 1/11/016 Ώρα Εξέτασης: 10:00-1:00 ΟΔΗΓΙΕ: 1. Να λφςετε όλα τα κζματα, αιτιολογϊντασ πλιρωσ τισ απαντιςεισ ςασ.. Κάκε
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι
ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι Λογιςμικό (Software), Πρόγραμμα (Programme ι Program), Προγραμματιςτισ (Programmer), Λειτουργικό Σφςτθμα (Operating
Διαβάστε περισσότεραΑυτόματη δημιουργία στηλών Αντιστοίχηση νέων λογαριασμών ΦΠΑ
Αυτόματη δημιουργία στηλών Αντιστοίχηση νέων λογαριασμών ΦΠΑ 1 Περίληψη Το ςυγκεκριμζνο εγχειρίδιο δημιουργήθηκε για να βοηθήςει την κατανόηςη τησ διαδικαςίασ αυτόματησ δημιουργίασ ςτηλών και αντιςτοίχιςησ
Διαβάστε περισσότεραΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ ΕΚΦΕ Α & Β ΑΝΑΣΟΛΙΚΗ ΑΣΣΙΚΗ τόχοι Μετά το πζρασ τθσ εργαςτθριακισ άςκθςθσ, οι μακθτζσ κα πρζπει να είναι ςε κζςθ:
Διαβάστε περισσότεραΒΡΥΩΝΗΣ ΧΑΡΑΛΑΜΠΟΥΣ Α.Ε.Μ : Θεωρία Cabibbo CKM Matrix (Πίνακας) «εργασία στα πλαίσια του µαθήµατος ΦΥΣΙΚΗ ΣΤΟΙΧΕΙΟ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΙΙ»
ΒΡΥΩΝΗΣ ΧΑΡΑΛΑΜΠΟΥΣ Α.Ε.Μ :1781 Θεωρία Cabibbo CKM Matrix (Πίνακας) «εργασία στα πλαίσια του µαθήµατος ΦΥΣΙΚΗ ΣΤΟΙΧΕΙΟ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΙΙ» Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Μάιος 011 ΠΕΡΙΕΧΟΜΕΝΑ Θεωρία
Διαβάστε περισσότεραΕγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)
Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Ιοφνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1.Εθνικό Τυπογραφείο... 3 1.1. Είςοδοσ... 3 1.2. Αρχική Οθόνη... 4 1.3. Διεκπεραίωςη αίτηςησ...
Διαβάστε περισσότεραΑνταλλαγι δυο ταυτόςθμων κβαντικών ςωματιδίων. r 2. r 2 r 1. ,r 1. r 1. r, r r. , r
Ανταλλαγι δυο ταυτόςθμων κβαντικών ςωματιδίων Μποηόνια - Φερμιόνια ςπιν ακζραιο ςπιν θμι-ακζραιο 5 ςυμμετρικι Ψ αντι-ςυμμετρικι Ψ φωτόνια μεςόνια Γκλουόνια κλπ θλεκτρόνια πρωτόνια νετρόνια Μιόνια κλπ β
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:
Διαβάστε περισσότεραΦυλλάδιο Εργαςίασ 1. Αξιολόγηςη Διδακτικών Δραςτηριοτήτων από τα διδακτικά εγχειρίδια. Δραςτηριότητα 1. Κωνςταντίνοσ Κακαρίκοσ, Ευφροςφνθ Κοντοκϊςτα
Φυλλάδιο Εργαςίασ 1 Αξιολόγηςη Διδακτικών Δραςτηριοτήτων από τα διδακτικά εγχειρίδια Κωνςταντίνοσ Κακαρίκοσ, Ευφροςφνθ Κοντοκϊςτα k_kakarikos@hotmail.com efkodok@yahoo.gr Δραςτηριότητα 1 1 Χαρακτηριςτικά
Διαβάστε περισσότεραΑν η ςυνάρτηςη ƒ είναι ςυνεχήσ ςτο να προςδιορίςετε το α.
1 AΣΚΗΣΕΙΣ 1. Να υπολογιςθοφν τα παρακάτω όρια Ι. ΙΙ. ΙΙΙ. Ιν. ν. νι. νιι. νιιι. 2. Να βρεθοφν τα όρια Ι. ΙΙ. 3. Αν ƒ(χ)= α. Να βρείτε το πεδίο οριςμοφ Β. Να βρείτε τα όρια Ι. ΙΙ. 4. Δίνεται η ςυνάρτηςη
Διαβάστε περισσότεραΗ αυτεπαγωγή ενός δακτυλίου
Η αυτεπαγωγή ενός δακτυλίου Υποκζςτε ότι κρατάτε ςτο χζρι ςασ ζναν μεταλλικό δακτφλιο διαμζτρου πχ 5 cm. Ζνασ φυςικόσ πικανότθτα κα προβλθματιςτεί: τι αυτεπαγωγι ζχει άραγε; Νομίηω κα ιταν μια καλι ιδζα
Διαβάστε περισσότεραόπου θ ςτακερά k εξαρτάται από το μζςο και είναι για το κενό
Φυςικι [1] ΔΤΝΑΜΙΚΟ ΗΛΕΚΣΡΟΣΑΣΙΚΟΤ ΠΕΔΙΟΤ Ειςαγωγή. Γφρω από θλεκτρικά φορτιςμζνα ςώματα δθμιουργείται θλεκτροςτατικό πεδίο. Η μελζτθ του θλεκτρικοφ πεδίου γίνεται με τθ βοικεια των μεγεκών: ζνταςη E (διανυςματικό)
Διαβάστε περισσότερα